Article Type
Changed
Fri, 09/23/2016 - 05:00
Display Headline
Targeting a protein receptor to treat AML, other diseases

AML cells

Researchers say they have determined the 3-dimensional, atomic structure of GPR56, an adhesion G protein-coupled receptor (aGPCR) linked to the development of several diseases, including acute myeloid leukemia (AML).

The team also engineered a molecule that can turn off GPR56, laying the groundwork for the development of treatments that target diseases mediated by GPR56 and other aGPCRs.

“Given the complicated biology mediated by aGPCRs, particularly in neurodevelopment, we believe our work will pave the way for future studies investigating the molecular details of these important processes, bringing us closer to the ultimate goal of combatting diseases influenced by aGPCRs,” said study author Gabriel Salzman, an MD/PhD student at the University of Chicago in Illinois.

Salzman and his colleagues detailed their work in the journal Neuron.

Over the past several years, researchers have discovered that aGPCRs play a range of biological roles, many of which are closely linked to human diseases.

aGPCRs are characterized by the presence of a large segment that sticks out into the extracellular space. However, a structural foundation for understanding the function of these extracellular regions has been lacking. And researchers didn’t know if these regions could be targeted for therapeutic intervention.

The focus of the current study is GPR56 (also known as ADGRG1), an aGPCR that has established biological roles in muscle cell development, neurodevelopment, and several cancers, including AML.

The researchers engineered a monobody molecule that binds to the extracellular region of GPR56 and causes intracellular signaling to decrease. They said this establishes that it’s possible to change the function of aGPCRs by targeting their extracellular regions with pharmaceuticals.

The team also determined the structure of the entire extracellular region of GPR56 at an atomic level, the first such structural description of any aGPCR. In doing so, they identified a unique protein domain called PLL, which, if deleted, corresponds to a naturally occurring variant of GPR56.

The researchers went on to show that deleting the PLL domain led to increased signaling, further supporting the concept that extracellular regions govern cell signaling.

Bioinformatics analysis also revealed a particular position in the PLL domain that is highly conserved across species, often a telltale sign of biological importance.

The researchers believe that understanding the biological roles played by aGPCR extracellular regions will give scientists more tools to develop treatments for diseases influenced by these protein receptors.

For example, recent studies have shown that AML therapy may benefit from GPR56 inhibition. And this study suggests a monobody like the one created by Salzman’s team might be useful in that respect.

“Our discovery that aGPCR extracellular regions regulate function in a multifaceted and complex manner provides important guidelines for developing therapeutics for diverse diseases in which aGPCRs play important roles,” Salzman said.

Publications
Topics

AML cells

Researchers say they have determined the 3-dimensional, atomic structure of GPR56, an adhesion G protein-coupled receptor (aGPCR) linked to the development of several diseases, including acute myeloid leukemia (AML).

The team also engineered a molecule that can turn off GPR56, laying the groundwork for the development of treatments that target diseases mediated by GPR56 and other aGPCRs.

“Given the complicated biology mediated by aGPCRs, particularly in neurodevelopment, we believe our work will pave the way for future studies investigating the molecular details of these important processes, bringing us closer to the ultimate goal of combatting diseases influenced by aGPCRs,” said study author Gabriel Salzman, an MD/PhD student at the University of Chicago in Illinois.

Salzman and his colleagues detailed their work in the journal Neuron.

Over the past several years, researchers have discovered that aGPCRs play a range of biological roles, many of which are closely linked to human diseases.

aGPCRs are characterized by the presence of a large segment that sticks out into the extracellular space. However, a structural foundation for understanding the function of these extracellular regions has been lacking. And researchers didn’t know if these regions could be targeted for therapeutic intervention.

The focus of the current study is GPR56 (also known as ADGRG1), an aGPCR that has established biological roles in muscle cell development, neurodevelopment, and several cancers, including AML.

The researchers engineered a monobody molecule that binds to the extracellular region of GPR56 and causes intracellular signaling to decrease. They said this establishes that it’s possible to change the function of aGPCRs by targeting their extracellular regions with pharmaceuticals.

The team also determined the structure of the entire extracellular region of GPR56 at an atomic level, the first such structural description of any aGPCR. In doing so, they identified a unique protein domain called PLL, which, if deleted, corresponds to a naturally occurring variant of GPR56.

The researchers went on to show that deleting the PLL domain led to increased signaling, further supporting the concept that extracellular regions govern cell signaling.

Bioinformatics analysis also revealed a particular position in the PLL domain that is highly conserved across species, often a telltale sign of biological importance.

The researchers believe that understanding the biological roles played by aGPCR extracellular regions will give scientists more tools to develop treatments for diseases influenced by these protein receptors.

For example, recent studies have shown that AML therapy may benefit from GPR56 inhibition. And this study suggests a monobody like the one created by Salzman’s team might be useful in that respect.

“Our discovery that aGPCR extracellular regions regulate function in a multifaceted and complex manner provides important guidelines for developing therapeutics for diverse diseases in which aGPCRs play important roles,” Salzman said.

AML cells

Researchers say they have determined the 3-dimensional, atomic structure of GPR56, an adhesion G protein-coupled receptor (aGPCR) linked to the development of several diseases, including acute myeloid leukemia (AML).

The team also engineered a molecule that can turn off GPR56, laying the groundwork for the development of treatments that target diseases mediated by GPR56 and other aGPCRs.

“Given the complicated biology mediated by aGPCRs, particularly in neurodevelopment, we believe our work will pave the way for future studies investigating the molecular details of these important processes, bringing us closer to the ultimate goal of combatting diseases influenced by aGPCRs,” said study author Gabriel Salzman, an MD/PhD student at the University of Chicago in Illinois.

Salzman and his colleagues detailed their work in the journal Neuron.

Over the past several years, researchers have discovered that aGPCRs play a range of biological roles, many of which are closely linked to human diseases.

aGPCRs are characterized by the presence of a large segment that sticks out into the extracellular space. However, a structural foundation for understanding the function of these extracellular regions has been lacking. And researchers didn’t know if these regions could be targeted for therapeutic intervention.

The focus of the current study is GPR56 (also known as ADGRG1), an aGPCR that has established biological roles in muscle cell development, neurodevelopment, and several cancers, including AML.

The researchers engineered a monobody molecule that binds to the extracellular region of GPR56 and causes intracellular signaling to decrease. They said this establishes that it’s possible to change the function of aGPCRs by targeting their extracellular regions with pharmaceuticals.

The team also determined the structure of the entire extracellular region of GPR56 at an atomic level, the first such structural description of any aGPCR. In doing so, they identified a unique protein domain called PLL, which, if deleted, corresponds to a naturally occurring variant of GPR56.

The researchers went on to show that deleting the PLL domain led to increased signaling, further supporting the concept that extracellular regions govern cell signaling.

Bioinformatics analysis also revealed a particular position in the PLL domain that is highly conserved across species, often a telltale sign of biological importance.

The researchers believe that understanding the biological roles played by aGPCR extracellular regions will give scientists more tools to develop treatments for diseases influenced by these protein receptors.

For example, recent studies have shown that AML therapy may benefit from GPR56 inhibition. And this study suggests a monobody like the one created by Salzman’s team might be useful in that respect.

“Our discovery that aGPCR extracellular regions regulate function in a multifaceted and complex manner provides important guidelines for developing therapeutics for diverse diseases in which aGPCRs play important roles,” Salzman said.

Publications
Publications
Topics
Article Type
Display Headline
Targeting a protein receptor to treat AML, other diseases
Display Headline
Targeting a protein receptor to treat AML, other diseases
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica