How to modify psychotropic therapy for patients who have liver dysfunction

Article Type
Changed
Thu, 03/28/2019 - 15:35
Display Headline
How to modify psychotropic therapy for patients who have liver dysfunction

Police bring Ms. R, age 35, to the psychiat­ric ER after they find her asleep in a park. She is awake but drowsy, and states that she has a history of bipolar disorder. She claims that she had been stable on valproic acid (VPA), 1,500 mg/d, bupropion XL, 300 mg/d, quetiap­ine, 400 mg/d, and trazodone, 100 mg/d, until 2 weeks ago, when her best friend died and she stopped taking her medications all together. The previous evening, feeling “alone, hopeless, and sad,” she attempted suicide by ingesting a handful of VPA and clonazepam, obtained from a friend, and 2 liters of vodka. She complains of nausea, vomiting, and abdominal pain. Ele­vated laboratory chemistries included aspartate aminotransferase (AST), 220 U/L; alanine ami­notransferase (ALT), 182 U/L; alkaline phospha­tase (AP), 75 U/L; γ-glutamyltransferase (GGT), 104 U/L; total bilirubin, 1.4 mg/dL; and an ele­vated VPA serum concentration of 152 μg/mL.

Drug-induced hepatotoxicity accounts for approximately 50% of acute liver failure cases, and almost 10% of liver transplants in some facilities.1 The incidence of drug-induced hepatotoxicity is between 0.001% and 0.1% in patients on standard medication doses.2 Drug-induced hepatotoxicity is char­acterized by:
   • abnormalities in laboratory parameters (hepatocellular, cholestatic, or mixed)
   • mechanisms of toxicity (direct, immune-mediated, idiosyncratic, mito­chondrial toxicity)
   • liver biopsy histology (steatosis, sinu­soidal obstruction syndrome).3

 

Liver function test results of hepatocel­lular injury are characterized by ALT ele­vation and minimal AP elevation, whereas cholestatic injury manifests as high AP. Table 13 categorizes psychotropics based on type of liver injury and how each injury manifest in liver function tests. Delayed idiosyncratic reactions occur after tak­ing the drug, whereas direct toxicities are dose-dependent and more predictable. By definition, a clinically significant hepato­toxicity is associated with an ALT >3 times the upper limit of normal.3

 

VPA-induced liver injury occurs in approximately 1 in 37,000 persons taking the drug.4 Patients at an increased risk of VPA-induced liver injury include:
   • children
   • patients with mitochondrial enzyme deficiencies
   • Reye’s syndrome
   • Friedreich’s ataxia
   • polypharmacy patients
   • patients with a sibling who has experi­enced VPA toxicity.4


Benign enzyme elevations occur in approximately 20% of patients taking VPA.5 In Ms. R’s case, concomitant VPA, clonazepam, and alcohol may have led to elevations in ALT, AST, and GGT. Her nausea, vomiting, and abdominal pain are consistent with hepatic dysfunction.

Carnitine is effective in increasing sur­vival of patients with VPA-induced hepa­totoxicity.4 Because Ms. R is symptomatic, discontinuing VPA and administering IV L-carnitine is warranted.5 L-carnitine can be initiated at 100 mg/kg as an IV bolus, followed by 50 mg/kg as an IV infusion every 8 hours, with a maximum dosage of 3,000 mg.6 Patients may require sev­eral days of therapy based on symptoms. L-carnitine should be continued until a patient shows clinical improvement, such as decreases in ALT and AST.

Ms. R experienced a VPA-induced hepa­totoxic reaction. However, continuous mon­itoring is appropriate for all patients who are prescribed any potentially hepatotoxic psychotropic, especially after hepatic inju­ries resolve. This includes mood stabilizers, antipsychotics, benzodiazepines, selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibi­tors, especially when given concomitantly with other hepatotoxic agents.

Table 2 lists dosing recommen­dations for commonly used psychotro­pics in patients with hepatic impairment. Among mood stabilizers, carbamazepine and VPA are associated with the highest incidence of hepatotoxicity.2 A follow-up study of more than 1,000,000 VPA prescrip­tions found 29 cases of fatal hepatotoxicity in a 7-year period.7 Although there are case reports of hepatotoxicity with oxcarbaze­pine, it may have a better liver safety profile than carbamazepine.2 Hepatotoxicity with lamotrigine is rare, although fatal cases have been reported.5


When initiating an antipsychotic, a tem­porary, benign increase in liver enzymes can be expected, but typically discontinuation is unnecessary.2 Phenothiazines in particular can cause increases in liver enzymes in 20% of patients.2 Hepatotoxicity with benzodi­azepines is infrequent, with a few cases of cholestatic injury reported with diazepam, chlordiazepoxide, and flurazepam.2

SSRIs are relatively safe; incidents of hepatic injury are rare. Among SSRIs, parox­etine is most frequently associated with hep­atotoxicity. Abnormal liver function tests have been observed with fluoxetine (0.5% of long-term recipients) and other SSRIs.1,2,4

Among antidepressants with dual serotonergic action, nefazodone carries a black-box warning for hepatotoxicity and is used rarely, whereas trazodone is not regarded as hepatotoxic.2 Antidepressants with dual norepinephrine and serotonin reuptake inhibitor properties carry a higher risk of liver injury, especially duloxetine. Hepatocellular, cholestatic, and mixed types of hepatotoxicity are associated with duloxetine-induced hepatotoxicity.2


Monitoring recommendations
Before prescribing potentially hepatotoxic medications, order baseline liver function tests. During therapy, periodic liver func­tion monitoring is recommended. Elevated transaminase concentrations (>3 × the upper limit of normal), bilirubin (>2 × the upper limit of normal), and prolonged pro­thrombin times are indicators of hepatic injury.2 Caution should be taken to prevent polypharmacy with multiple hepatotoxic medications and over-the-counter use of hepatotoxic drugs and supplements.

When choosing a psychotropic, take into account patient-specific factors, such as underlying liver disease and alcohol con­sumption. Patients on potentially hepato­toxic medications should be counseled to recognize and report symptoms of liver dysfunction, including nausea, vomiting, jaundice, and lower-extremity edema.2 If liver injury occurs, modify therapy with the potential offending agent and check liver function periodically.

 

 

 

Related Resourcesa
• Bleibel W, Kim S, D’Silva K, et al. Drug-induced liver injury: review article. Dig Dis Sci. 2007;52(10):2463-2471.
• U.S. National Library of Medicine. LiverTox. National Institute of Health. www.livertox.nih.gov.


Drug Brand Names
Amitriptyline • Elavil                                       Lurasidone • Latuda
Molindone • Moban                                         Molindone • Moban
Aripiprazole • Abilify                                       Nefazodone • Serzone
Asenapine • Saphris                                       Nortriptyline • Pamelor
Bupropion XL • Wellbutrin XL                          Olanzapine • Zyprexa
Citalopram • Celexa                                       Oxcarbazepine • Trileptal
Carbamazepine • Tegretol                               Paroxetine • Paxil
Chlordiazepoxide • Librium                              Perphenazine • Trilafon
Chlorpromazine • Thorazine                             Phenobarbital • Luminal
Clonazepam • Klonopin                                   Phenytoin • Dilantin
Clozapine • Clozaril                                         Quetiapine • Seroquel
Desvenlafaxine • Pristiq                                   Risperidone • Risperdal
Diazepam • Valium                                         Sertraline • Zoloft
Duloxetine • Cymbalta                                    Thiothixene • Navane
Escitalopram • Lexapro                                   Trazodone • Desyrel
Fluoxetine • Prozac                                         Trifluoperazine • Stelazine
Fluphenazine • Prolixin                                    Topiramate • Topamax
Flurazepam • Dalmane                                    Valproic acid • Depakote
Haloperidol • Haldol                                        Venlafaxine • Effexor
Iloperidone • Fanapt                                       Ziprasidone • Geodon
Lamotrigine • Lamictal
Levocarnitine • L-carnitine

 

Disclosure
The authors report no financial relationships with any company whose products are mentioned in this article or with manufacturers of competing products.

References


1. Pugh AJ, Barve AJ, Falkner K, et al. Drug-induced hepatotoxicity or drug-induced liver injury. Clin Liver Dis. 2009;13(2):277-294.
2. Sedky K, Nazir R, Joshi A, et al. Which psychotropic medications induce hepatotoxicity? Gen Hosp Psychiatry. 2012;34(1):53-61.
3. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther. 2007;25(10):1135-1151.
4. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis. 2002;22(2):169-183.
5. Murray KF, Hadzic N, Wirth S, et al. Drug-related hepatotoxicity and acute liver failure. J Pediatr Gastroenterol Nutr. 2008;47(4):395-405.
6. Perrott J, Murphy NG, Zed PJ. L-carnitine for acute valproic acid overdose: a systematic review of published cases. Ann Pharmacother. 2010;44(7-8):1287-1293.
7. Bryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology. 1996;46(2):465-469.

Article PDF
Author and Disclosure Information

 

Shadi Doroudgar, PharmD
PGY-2 Psychiatric Pharmacy Practice Resident
Touro University
College of Pharmacy
Vallejo, California


Tony I. Chou, PharmD, BCPP
Assistant Professor of Pharmacy Practice
Chair of Assessment Committee
West Coast University
School of Pharmacy
Los Angeles, California


Vicki I. Ellingrod, Pharm D, FCCP
Series Editor

Issue
Current Psychiatry - 13(12)
Publications
Topics
Page Number
46-49
Legacy Keywords
psychotropic therapy, hepatoxicity, liver dysfunction
Sections
Author and Disclosure Information

 

Shadi Doroudgar, PharmD
PGY-2 Psychiatric Pharmacy Practice Resident
Touro University
College of Pharmacy
Vallejo, California


Tony I. Chou, PharmD, BCPP
Assistant Professor of Pharmacy Practice
Chair of Assessment Committee
West Coast University
School of Pharmacy
Los Angeles, California


Vicki I. Ellingrod, Pharm D, FCCP
Series Editor

Author and Disclosure Information

 

Shadi Doroudgar, PharmD
PGY-2 Psychiatric Pharmacy Practice Resident
Touro University
College of Pharmacy
Vallejo, California


Tony I. Chou, PharmD, BCPP
Assistant Professor of Pharmacy Practice
Chair of Assessment Committee
West Coast University
School of Pharmacy
Los Angeles, California


Vicki I. Ellingrod, Pharm D, FCCP
Series Editor

Article PDF
Article PDF

Police bring Ms. R, age 35, to the psychiat­ric ER after they find her asleep in a park. She is awake but drowsy, and states that she has a history of bipolar disorder. She claims that she had been stable on valproic acid (VPA), 1,500 mg/d, bupropion XL, 300 mg/d, quetiap­ine, 400 mg/d, and trazodone, 100 mg/d, until 2 weeks ago, when her best friend died and she stopped taking her medications all together. The previous evening, feeling “alone, hopeless, and sad,” she attempted suicide by ingesting a handful of VPA and clonazepam, obtained from a friend, and 2 liters of vodka. She complains of nausea, vomiting, and abdominal pain. Ele­vated laboratory chemistries included aspartate aminotransferase (AST), 220 U/L; alanine ami­notransferase (ALT), 182 U/L; alkaline phospha­tase (AP), 75 U/L; γ-glutamyltransferase (GGT), 104 U/L; total bilirubin, 1.4 mg/dL; and an ele­vated VPA serum concentration of 152 μg/mL.

Drug-induced hepatotoxicity accounts for approximately 50% of acute liver failure cases, and almost 10% of liver transplants in some facilities.1 The incidence of drug-induced hepatotoxicity is between 0.001% and 0.1% in patients on standard medication doses.2 Drug-induced hepatotoxicity is char­acterized by:
   • abnormalities in laboratory parameters (hepatocellular, cholestatic, or mixed)
   • mechanisms of toxicity (direct, immune-mediated, idiosyncratic, mito­chondrial toxicity)
   • liver biopsy histology (steatosis, sinu­soidal obstruction syndrome).3

 

Liver function test results of hepatocel­lular injury are characterized by ALT ele­vation and minimal AP elevation, whereas cholestatic injury manifests as high AP. Table 13 categorizes psychotropics based on type of liver injury and how each injury manifest in liver function tests. Delayed idiosyncratic reactions occur after tak­ing the drug, whereas direct toxicities are dose-dependent and more predictable. By definition, a clinically significant hepato­toxicity is associated with an ALT >3 times the upper limit of normal.3

 

VPA-induced liver injury occurs in approximately 1 in 37,000 persons taking the drug.4 Patients at an increased risk of VPA-induced liver injury include:
   • children
   • patients with mitochondrial enzyme deficiencies
   • Reye’s syndrome
   • Friedreich’s ataxia
   • polypharmacy patients
   • patients with a sibling who has experi­enced VPA toxicity.4


Benign enzyme elevations occur in approximately 20% of patients taking VPA.5 In Ms. R’s case, concomitant VPA, clonazepam, and alcohol may have led to elevations in ALT, AST, and GGT. Her nausea, vomiting, and abdominal pain are consistent with hepatic dysfunction.

Carnitine is effective in increasing sur­vival of patients with VPA-induced hepa­totoxicity.4 Because Ms. R is symptomatic, discontinuing VPA and administering IV L-carnitine is warranted.5 L-carnitine can be initiated at 100 mg/kg as an IV bolus, followed by 50 mg/kg as an IV infusion every 8 hours, with a maximum dosage of 3,000 mg.6 Patients may require sev­eral days of therapy based on symptoms. L-carnitine should be continued until a patient shows clinical improvement, such as decreases in ALT and AST.

Ms. R experienced a VPA-induced hepa­totoxic reaction. However, continuous mon­itoring is appropriate for all patients who are prescribed any potentially hepatotoxic psychotropic, especially after hepatic inju­ries resolve. This includes mood stabilizers, antipsychotics, benzodiazepines, selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibi­tors, especially when given concomitantly with other hepatotoxic agents.

Table 2 lists dosing recommen­dations for commonly used psychotro­pics in patients with hepatic impairment. Among mood stabilizers, carbamazepine and VPA are associated with the highest incidence of hepatotoxicity.2 A follow-up study of more than 1,000,000 VPA prescrip­tions found 29 cases of fatal hepatotoxicity in a 7-year period.7 Although there are case reports of hepatotoxicity with oxcarbaze­pine, it may have a better liver safety profile than carbamazepine.2 Hepatotoxicity with lamotrigine is rare, although fatal cases have been reported.5


When initiating an antipsychotic, a tem­porary, benign increase in liver enzymes can be expected, but typically discontinuation is unnecessary.2 Phenothiazines in particular can cause increases in liver enzymes in 20% of patients.2 Hepatotoxicity with benzodi­azepines is infrequent, with a few cases of cholestatic injury reported with diazepam, chlordiazepoxide, and flurazepam.2

SSRIs are relatively safe; incidents of hepatic injury are rare. Among SSRIs, parox­etine is most frequently associated with hep­atotoxicity. Abnormal liver function tests have been observed with fluoxetine (0.5% of long-term recipients) and other SSRIs.1,2,4

Among antidepressants with dual serotonergic action, nefazodone carries a black-box warning for hepatotoxicity and is used rarely, whereas trazodone is not regarded as hepatotoxic.2 Antidepressants with dual norepinephrine and serotonin reuptake inhibitor properties carry a higher risk of liver injury, especially duloxetine. Hepatocellular, cholestatic, and mixed types of hepatotoxicity are associated with duloxetine-induced hepatotoxicity.2


Monitoring recommendations
Before prescribing potentially hepatotoxic medications, order baseline liver function tests. During therapy, periodic liver func­tion monitoring is recommended. Elevated transaminase concentrations (>3 × the upper limit of normal), bilirubin (>2 × the upper limit of normal), and prolonged pro­thrombin times are indicators of hepatic injury.2 Caution should be taken to prevent polypharmacy with multiple hepatotoxic medications and over-the-counter use of hepatotoxic drugs and supplements.

When choosing a psychotropic, take into account patient-specific factors, such as underlying liver disease and alcohol con­sumption. Patients on potentially hepato­toxic medications should be counseled to recognize and report symptoms of liver dysfunction, including nausea, vomiting, jaundice, and lower-extremity edema.2 If liver injury occurs, modify therapy with the potential offending agent and check liver function periodically.

 

 

 

Related Resourcesa
• Bleibel W, Kim S, D’Silva K, et al. Drug-induced liver injury: review article. Dig Dis Sci. 2007;52(10):2463-2471.
• U.S. National Library of Medicine. LiverTox. National Institute of Health. www.livertox.nih.gov.


Drug Brand Names
Amitriptyline • Elavil                                       Lurasidone • Latuda
Molindone • Moban                                         Molindone • Moban
Aripiprazole • Abilify                                       Nefazodone • Serzone
Asenapine • Saphris                                       Nortriptyline • Pamelor
Bupropion XL • Wellbutrin XL                          Olanzapine • Zyprexa
Citalopram • Celexa                                       Oxcarbazepine • Trileptal
Carbamazepine • Tegretol                               Paroxetine • Paxil
Chlordiazepoxide • Librium                              Perphenazine • Trilafon
Chlorpromazine • Thorazine                             Phenobarbital • Luminal
Clonazepam • Klonopin                                   Phenytoin • Dilantin
Clozapine • Clozaril                                         Quetiapine • Seroquel
Desvenlafaxine • Pristiq                                   Risperidone • Risperdal
Diazepam • Valium                                         Sertraline • Zoloft
Duloxetine • Cymbalta                                    Thiothixene • Navane
Escitalopram • Lexapro                                   Trazodone • Desyrel
Fluoxetine • Prozac                                         Trifluoperazine • Stelazine
Fluphenazine • Prolixin                                    Topiramate • Topamax
Flurazepam • Dalmane                                    Valproic acid • Depakote
Haloperidol • Haldol                                        Venlafaxine • Effexor
Iloperidone • Fanapt                                       Ziprasidone • Geodon
Lamotrigine • Lamictal
Levocarnitine • L-carnitine

 

Disclosure
The authors report no financial relationships with any company whose products are mentioned in this article or with manufacturers of competing products.

Police bring Ms. R, age 35, to the psychiat­ric ER after they find her asleep in a park. She is awake but drowsy, and states that she has a history of bipolar disorder. She claims that she had been stable on valproic acid (VPA), 1,500 mg/d, bupropion XL, 300 mg/d, quetiap­ine, 400 mg/d, and trazodone, 100 mg/d, until 2 weeks ago, when her best friend died and she stopped taking her medications all together. The previous evening, feeling “alone, hopeless, and sad,” she attempted suicide by ingesting a handful of VPA and clonazepam, obtained from a friend, and 2 liters of vodka. She complains of nausea, vomiting, and abdominal pain. Ele­vated laboratory chemistries included aspartate aminotransferase (AST), 220 U/L; alanine ami­notransferase (ALT), 182 U/L; alkaline phospha­tase (AP), 75 U/L; γ-glutamyltransferase (GGT), 104 U/L; total bilirubin, 1.4 mg/dL; and an ele­vated VPA serum concentration of 152 μg/mL.

Drug-induced hepatotoxicity accounts for approximately 50% of acute liver failure cases, and almost 10% of liver transplants in some facilities.1 The incidence of drug-induced hepatotoxicity is between 0.001% and 0.1% in patients on standard medication doses.2 Drug-induced hepatotoxicity is char­acterized by:
   • abnormalities in laboratory parameters (hepatocellular, cholestatic, or mixed)
   • mechanisms of toxicity (direct, immune-mediated, idiosyncratic, mito­chondrial toxicity)
   • liver biopsy histology (steatosis, sinu­soidal obstruction syndrome).3

 

Liver function test results of hepatocel­lular injury are characterized by ALT ele­vation and minimal AP elevation, whereas cholestatic injury manifests as high AP. Table 13 categorizes psychotropics based on type of liver injury and how each injury manifest in liver function tests. Delayed idiosyncratic reactions occur after tak­ing the drug, whereas direct toxicities are dose-dependent and more predictable. By definition, a clinically significant hepato­toxicity is associated with an ALT >3 times the upper limit of normal.3

 

VPA-induced liver injury occurs in approximately 1 in 37,000 persons taking the drug.4 Patients at an increased risk of VPA-induced liver injury include:
   • children
   • patients with mitochondrial enzyme deficiencies
   • Reye’s syndrome
   • Friedreich’s ataxia
   • polypharmacy patients
   • patients with a sibling who has experi­enced VPA toxicity.4


Benign enzyme elevations occur in approximately 20% of patients taking VPA.5 In Ms. R’s case, concomitant VPA, clonazepam, and alcohol may have led to elevations in ALT, AST, and GGT. Her nausea, vomiting, and abdominal pain are consistent with hepatic dysfunction.

Carnitine is effective in increasing sur­vival of patients with VPA-induced hepa­totoxicity.4 Because Ms. R is symptomatic, discontinuing VPA and administering IV L-carnitine is warranted.5 L-carnitine can be initiated at 100 mg/kg as an IV bolus, followed by 50 mg/kg as an IV infusion every 8 hours, with a maximum dosage of 3,000 mg.6 Patients may require sev­eral days of therapy based on symptoms. L-carnitine should be continued until a patient shows clinical improvement, such as decreases in ALT and AST.

Ms. R experienced a VPA-induced hepa­totoxic reaction. However, continuous mon­itoring is appropriate for all patients who are prescribed any potentially hepatotoxic psychotropic, especially after hepatic inju­ries resolve. This includes mood stabilizers, antipsychotics, benzodiazepines, selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibi­tors, especially when given concomitantly with other hepatotoxic agents.

Table 2 lists dosing recommen­dations for commonly used psychotro­pics in patients with hepatic impairment. Among mood stabilizers, carbamazepine and VPA are associated with the highest incidence of hepatotoxicity.2 A follow-up study of more than 1,000,000 VPA prescrip­tions found 29 cases of fatal hepatotoxicity in a 7-year period.7 Although there are case reports of hepatotoxicity with oxcarbaze­pine, it may have a better liver safety profile than carbamazepine.2 Hepatotoxicity with lamotrigine is rare, although fatal cases have been reported.5


When initiating an antipsychotic, a tem­porary, benign increase in liver enzymes can be expected, but typically discontinuation is unnecessary.2 Phenothiazines in particular can cause increases in liver enzymes in 20% of patients.2 Hepatotoxicity with benzodi­azepines is infrequent, with a few cases of cholestatic injury reported with diazepam, chlordiazepoxide, and flurazepam.2

SSRIs are relatively safe; incidents of hepatic injury are rare. Among SSRIs, parox­etine is most frequently associated with hep­atotoxicity. Abnormal liver function tests have been observed with fluoxetine (0.5% of long-term recipients) and other SSRIs.1,2,4

Among antidepressants with dual serotonergic action, nefazodone carries a black-box warning for hepatotoxicity and is used rarely, whereas trazodone is not regarded as hepatotoxic.2 Antidepressants with dual norepinephrine and serotonin reuptake inhibitor properties carry a higher risk of liver injury, especially duloxetine. Hepatocellular, cholestatic, and mixed types of hepatotoxicity are associated with duloxetine-induced hepatotoxicity.2


Monitoring recommendations
Before prescribing potentially hepatotoxic medications, order baseline liver function tests. During therapy, periodic liver func­tion monitoring is recommended. Elevated transaminase concentrations (>3 × the upper limit of normal), bilirubin (>2 × the upper limit of normal), and prolonged pro­thrombin times are indicators of hepatic injury.2 Caution should be taken to prevent polypharmacy with multiple hepatotoxic medications and over-the-counter use of hepatotoxic drugs and supplements.

When choosing a psychotropic, take into account patient-specific factors, such as underlying liver disease and alcohol con­sumption. Patients on potentially hepato­toxic medications should be counseled to recognize and report symptoms of liver dysfunction, including nausea, vomiting, jaundice, and lower-extremity edema.2 If liver injury occurs, modify therapy with the potential offending agent and check liver function periodically.

 

 

 

Related Resourcesa
• Bleibel W, Kim S, D’Silva K, et al. Drug-induced liver injury: review article. Dig Dis Sci. 2007;52(10):2463-2471.
• U.S. National Library of Medicine. LiverTox. National Institute of Health. www.livertox.nih.gov.


Drug Brand Names
Amitriptyline • Elavil                                       Lurasidone • Latuda
Molindone • Moban                                         Molindone • Moban
Aripiprazole • Abilify                                       Nefazodone • Serzone
Asenapine • Saphris                                       Nortriptyline • Pamelor
Bupropion XL • Wellbutrin XL                          Olanzapine • Zyprexa
Citalopram • Celexa                                       Oxcarbazepine • Trileptal
Carbamazepine • Tegretol                               Paroxetine • Paxil
Chlordiazepoxide • Librium                              Perphenazine • Trilafon
Chlorpromazine • Thorazine                             Phenobarbital • Luminal
Clonazepam • Klonopin                                   Phenytoin • Dilantin
Clozapine • Clozaril                                         Quetiapine • Seroquel
Desvenlafaxine • Pristiq                                   Risperidone • Risperdal
Diazepam • Valium                                         Sertraline • Zoloft
Duloxetine • Cymbalta                                    Thiothixene • Navane
Escitalopram • Lexapro                                   Trazodone • Desyrel
Fluoxetine • Prozac                                         Trifluoperazine • Stelazine
Fluphenazine • Prolixin                                    Topiramate • Topamax
Flurazepam • Dalmane                                    Valproic acid • Depakote
Haloperidol • Haldol                                        Venlafaxine • Effexor
Iloperidone • Fanapt                                       Ziprasidone • Geodon
Lamotrigine • Lamictal
Levocarnitine • L-carnitine

 

Disclosure
The authors report no financial relationships with any company whose products are mentioned in this article or with manufacturers of competing products.

References


1. Pugh AJ, Barve AJ, Falkner K, et al. Drug-induced hepatotoxicity or drug-induced liver injury. Clin Liver Dis. 2009;13(2):277-294.
2. Sedky K, Nazir R, Joshi A, et al. Which psychotropic medications induce hepatotoxicity? Gen Hosp Psychiatry. 2012;34(1):53-61.
3. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther. 2007;25(10):1135-1151.
4. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis. 2002;22(2):169-183.
5. Murray KF, Hadzic N, Wirth S, et al. Drug-related hepatotoxicity and acute liver failure. J Pediatr Gastroenterol Nutr. 2008;47(4):395-405.
6. Perrott J, Murphy NG, Zed PJ. L-carnitine for acute valproic acid overdose: a systematic review of published cases. Ann Pharmacother. 2010;44(7-8):1287-1293.
7. Bryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology. 1996;46(2):465-469.

References


1. Pugh AJ, Barve AJ, Falkner K, et al. Drug-induced hepatotoxicity or drug-induced liver injury. Clin Liver Dis. 2009;13(2):277-294.
2. Sedky K, Nazir R, Joshi A, et al. Which psychotropic medications induce hepatotoxicity? Gen Hosp Psychiatry. 2012;34(1):53-61.
3. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther. 2007;25(10):1135-1151.
4. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis. 2002;22(2):169-183.
5. Murray KF, Hadzic N, Wirth S, et al. Drug-related hepatotoxicity and acute liver failure. J Pediatr Gastroenterol Nutr. 2008;47(4):395-405.
6. Perrott J, Murphy NG, Zed PJ. L-carnitine for acute valproic acid overdose: a systematic review of published cases. Ann Pharmacother. 2010;44(7-8):1287-1293.
7. Bryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology. 1996;46(2):465-469.

Issue
Current Psychiatry - 13(12)
Issue
Current Psychiatry - 13(12)
Page Number
46-49
Page Number
46-49
Publications
Publications
Topics
Article Type
Display Headline
How to modify psychotropic therapy for patients who have liver dysfunction
Display Headline
How to modify psychotropic therapy for patients who have liver dysfunction
Legacy Keywords
psychotropic therapy, hepatoxicity, liver dysfunction
Legacy Keywords
psychotropic therapy, hepatoxicity, liver dysfunction
Sections
Disallow All Ads
Alternative CME
Article PDF Media