Bringing you the latest news, research and reviews, exclusive interviews, podcasts, quizzes, and more.

mdrheum
Main menu
MD Rheumatology Main Menu
Explore menu
MD Rheumatology Explore Menu
Proclivity ID
18853001
Unpublish
Negative Keywords Excluded Elements
header[@id='header']
div[contains(@class, 'header__large-screen')]
div[contains(@class, 'read-next-article')]
div[contains(@class, 'main-prefix')]
div[contains(@class, 'nav-primary')]
nav[contains(@class, 'nav-primary')]
section[contains(@class, 'footer-nav-section-wrapper')]
footer[@id='footer']
section[contains(@class, 'nav-hidden')]
div[contains(@class, 'ce-card-content')]
nav[contains(@class, 'nav-ce-stack')]
div[contains(@class, 'view-medstat-quiz-listing-panes')]
div[contains(@class, 'pane-article-sidebar-latest-news')]
div[contains(@class, 'medstat-accordion-set article-series')]
Altmetric
Click for Credit Button Label
Click For Credit
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Publication LayerRX Default ID
975
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Expire Announcement Bar
Wed, 12/18/2024 - 09:39
Use larger logo size
On
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Gating Strategy
First Peek Free
Challenge Center
Disable Inline Native ads
survey writer start date
Wed, 12/18/2024 - 09:39

Cybersecurity Concerns Continue to Rise With Ransom, Data Manipulation, AI Risks

Article Type
Changed
Tue, 10/29/2024 - 10:00

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Extended-Release Fluticasone Injection Successful in Phase 2 Knee OA Trial

Article Type
Changed
Tue, 11/05/2024 - 07:54

 

TOPLINE:

The extended-release fluticasone propionate injection (EP-104IAR) significantly reduces knee osteoarthritis (OA) pain over 12 weeks, compared with a vehicle control, with no serious treatment-related adverse events.

METHODOLOGY:

  • EP-104IAR utilizes a novel diffusion-based extended-release technology to optimize the action of fluticasone propionate.
  • The researchers conducted a phase 2 trial at 12 research sites in Denmark, Poland, and the Czech Republic to assess the clinical efficacy, pharmacokinetics, and safety of EP-104IAR in 318 participants (58% women; 99% White) with a diagnosis of primary knee OA.
  • Eligible patients, with a score of at least 4 out of 10 on the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain rating scale, were randomly assigned to receive either 25 mg EP-104IAR (n = 163; mean age, 64 years) or a vehicle control (n = 155; mean age, 63.2 years).
  • The primary outcome was the between-group difference in the change in the WOMAC pain score from baseline to week 12.

TAKEAWAY:

  • The reduction in WOMAC pain scores from baseline to week 12 was significantly higher with EP-104IAR than with a vehicle control (between-group difference, −0.66; P = .0044), with the difference maintained through week 14.
  • The treatment resulted in a significant improvement in WOMAC function scores (P = .014) and the area under the curve for changes in the WOMAC pain score (P < .0001) over 12 weeks.
  • Treatment-emergent adverse events were noted in 9% of participants in the EP-104IAR group and 7% of participants in the vehicle control group. No serious treatment-related adverse events or discontinuations related to EP-104IAR were reported.
  • Fluticasone propionate levels were maintained at around 66% to 33% of peak values between weeks 2 and 24 at near-constant levels. The effects on glucose and cortisol levels were minimal and transient.

IN PRACTICE:

“The results of this trial show that EP-104IAR has the potential for clinically meaningful benefit in reducing knee osteoarthritis pain, addressing a substantial unmet medical need,” the authors wrote. “Additionally, the stable delivery of fluticasone propionate over an extended period with fewer systemic and local side effects than other corticosteroid treatments for knee osteoarthritis support the possibility of bilateral and repeat dosing.”

SOURCE:

The study was led by Amanda Malone, PhD, Eupraxia Pharmaceuticals, Victoria, British Columbia, Canada. It was published online in The Lancet Rheumatology.

LIMITATIONS:

The study’s generalizability may be limited because of the predominantly White participant population. The success of masking was not evaluated, and the treatment was administered by an unmasked injector. Efficacy outcomes were patient-reported, with no objective measurement of knee function.

DISCLOSURES:

This study was supported by Eupraxia Pharmaceuticals. Some authors disclosed their employment with Eupraxia Pharmaceuticals or with companies contracted by Eupraxia Pharmaceuticals for clinical research and trial and data management. One author reported serving as a consultant or participating in a speakers’ bureau. Another reported being on the board of directors for Eupraxia Pharmaceuticals and receiving royalties from a medical technology company.

This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The extended-release fluticasone propionate injection (EP-104IAR) significantly reduces knee osteoarthritis (OA) pain over 12 weeks, compared with a vehicle control, with no serious treatment-related adverse events.

METHODOLOGY:

  • EP-104IAR utilizes a novel diffusion-based extended-release technology to optimize the action of fluticasone propionate.
  • The researchers conducted a phase 2 trial at 12 research sites in Denmark, Poland, and the Czech Republic to assess the clinical efficacy, pharmacokinetics, and safety of EP-104IAR in 318 participants (58% women; 99% White) with a diagnosis of primary knee OA.
  • Eligible patients, with a score of at least 4 out of 10 on the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain rating scale, were randomly assigned to receive either 25 mg EP-104IAR (n = 163; mean age, 64 years) or a vehicle control (n = 155; mean age, 63.2 years).
  • The primary outcome was the between-group difference in the change in the WOMAC pain score from baseline to week 12.

TAKEAWAY:

  • The reduction in WOMAC pain scores from baseline to week 12 was significantly higher with EP-104IAR than with a vehicle control (between-group difference, −0.66; P = .0044), with the difference maintained through week 14.
  • The treatment resulted in a significant improvement in WOMAC function scores (P = .014) and the area under the curve for changes in the WOMAC pain score (P < .0001) over 12 weeks.
  • Treatment-emergent adverse events were noted in 9% of participants in the EP-104IAR group and 7% of participants in the vehicle control group. No serious treatment-related adverse events or discontinuations related to EP-104IAR were reported.
  • Fluticasone propionate levels were maintained at around 66% to 33% of peak values between weeks 2 and 24 at near-constant levels. The effects on glucose and cortisol levels were minimal and transient.

IN PRACTICE:

“The results of this trial show that EP-104IAR has the potential for clinically meaningful benefit in reducing knee osteoarthritis pain, addressing a substantial unmet medical need,” the authors wrote. “Additionally, the stable delivery of fluticasone propionate over an extended period with fewer systemic and local side effects than other corticosteroid treatments for knee osteoarthritis support the possibility of bilateral and repeat dosing.”

SOURCE:

The study was led by Amanda Malone, PhD, Eupraxia Pharmaceuticals, Victoria, British Columbia, Canada. It was published online in The Lancet Rheumatology.

LIMITATIONS:

The study’s generalizability may be limited because of the predominantly White participant population. The success of masking was not evaluated, and the treatment was administered by an unmasked injector. Efficacy outcomes were patient-reported, with no objective measurement of knee function.

DISCLOSURES:

This study was supported by Eupraxia Pharmaceuticals. Some authors disclosed their employment with Eupraxia Pharmaceuticals or with companies contracted by Eupraxia Pharmaceuticals for clinical research and trial and data management. One author reported serving as a consultant or participating in a speakers’ bureau. Another reported being on the board of directors for Eupraxia Pharmaceuticals and receiving royalties from a medical technology company.

This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

The extended-release fluticasone propionate injection (EP-104IAR) significantly reduces knee osteoarthritis (OA) pain over 12 weeks, compared with a vehicle control, with no serious treatment-related adverse events.

METHODOLOGY:

  • EP-104IAR utilizes a novel diffusion-based extended-release technology to optimize the action of fluticasone propionate.
  • The researchers conducted a phase 2 trial at 12 research sites in Denmark, Poland, and the Czech Republic to assess the clinical efficacy, pharmacokinetics, and safety of EP-104IAR in 318 participants (58% women; 99% White) with a diagnosis of primary knee OA.
  • Eligible patients, with a score of at least 4 out of 10 on the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain rating scale, were randomly assigned to receive either 25 mg EP-104IAR (n = 163; mean age, 64 years) or a vehicle control (n = 155; mean age, 63.2 years).
  • The primary outcome was the between-group difference in the change in the WOMAC pain score from baseline to week 12.

TAKEAWAY:

  • The reduction in WOMAC pain scores from baseline to week 12 was significantly higher with EP-104IAR than with a vehicle control (between-group difference, −0.66; P = .0044), with the difference maintained through week 14.
  • The treatment resulted in a significant improvement in WOMAC function scores (P = .014) and the area under the curve for changes in the WOMAC pain score (P < .0001) over 12 weeks.
  • Treatment-emergent adverse events were noted in 9% of participants in the EP-104IAR group and 7% of participants in the vehicle control group. No serious treatment-related adverse events or discontinuations related to EP-104IAR were reported.
  • Fluticasone propionate levels were maintained at around 66% to 33% of peak values between weeks 2 and 24 at near-constant levels. The effects on glucose and cortisol levels were minimal and transient.

IN PRACTICE:

“The results of this trial show that EP-104IAR has the potential for clinically meaningful benefit in reducing knee osteoarthritis pain, addressing a substantial unmet medical need,” the authors wrote. “Additionally, the stable delivery of fluticasone propionate over an extended period with fewer systemic and local side effects than other corticosteroid treatments for knee osteoarthritis support the possibility of bilateral and repeat dosing.”

SOURCE:

The study was led by Amanda Malone, PhD, Eupraxia Pharmaceuticals, Victoria, British Columbia, Canada. It was published online in The Lancet Rheumatology.

LIMITATIONS:

The study’s generalizability may be limited because of the predominantly White participant population. The success of masking was not evaluated, and the treatment was administered by an unmasked injector. Efficacy outcomes were patient-reported, with no objective measurement of knee function.

DISCLOSURES:

This study was supported by Eupraxia Pharmaceuticals. Some authors disclosed their employment with Eupraxia Pharmaceuticals or with companies contracted by Eupraxia Pharmaceuticals for clinical research and trial and data management. One author reported serving as a consultant or participating in a speakers’ bureau. Another reported being on the board of directors for Eupraxia Pharmaceuticals and receiving royalties from a medical technology company.

This article was created using several editorial tools, including artificial intelligence, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Six Tips for Media Interviews

Article Type
Changed
Mon, 10/28/2024 - 14:47

As a physician, you might be contacted by the media to provide your professional opinion and advice. Or you might be looking for media interview opportunities to market your practice or side project. And if you do research, media interviews can be an effective way to spread the word. It’s important to prepare for a media interview so that you achieve the outcome you are looking for. Here are six tips I learned from writing health articles, interviewing experts, and being interviewed myself. 

Keep your message simple. When you are a subject expert, you might think that the basics are obvious or even boring, and that the nuances are more important. However, most of the audience is looking for big-picture information that they can apply to their lives. Consider a few key takeaways, keeping in mind that your interview is likely to be edited to short sound bites or a few quotes. It may help to jot down notes so that you cover the fundamentals clearly. You could even write and rehearse a script beforehand. If there is something complicated or subtle that you want to convey, you can preface it by saying, “This is confusing but very important …” to let the audience know to give extra consideration to what you are about to say.

Avoid extremes and hyperbole. Sometimes, exaggerated statements make their way into medical discussions. Statements such as “it doesn’t matter how many calories you consume — it’s all about the quality” are common oversimplifications. But you might be upset to see your name next to a comment like this because it is not actually correct. Check the phrasing of your key takeaways to avoid being stuck defending or explaining an inaccurate statement when your patients ask you about it later. 

Ask the interviewers what they are looking for. Many medical topics have some controversial element, so it is good to know what you’re getting into. Find out the purpose of the article or interview before you decide whether it is right for you. It could be about another doctor in town who is being sued; if you don’t want to be associated with that story, it might be best to decline the interview. 

Explain your goals. You might accept or pursue an interview to raise awareness about an underrecognized condition. You might want the public to identify and get help for early symptoms, or you might want to create empathy for people coping with a disease you treat. Consider why you are participating in an interview, and communicate that to the interviewer to ensure that your objective can be part of the final product. 

Know whom you’re dealing with. It is good to learn about the publication/media channel before you agree to participate. It may have a political bias, or perhaps the interview is intended to promote a specific product. If you agree with and support their purposes, then you may be happy to lend your opinion. But learning about the “voice” of the publication in advance allows you to make an informed decision about whether you want to be identified with a particular political ideology or product endorsement.

Ask to see your quotes before publication. It’s good to have the opportunity to make corrections in case you are accidentally misquoted or misunderstood. It is best to ask to see quotes before you agree to the interview. Some reporters may agree to (or even prefer) a written question-and-answer format so that they can directly quote your responses without rephrasing your words. You could suggest this, especially if you are too busy for a call or live meeting.

As a physician, your insights and advice can be highly beneficial to others. You can also use media interviews to propel your career forward. Doing your homework can ensure that you will be pleased with the final product and how your words were used. 
 

Dr. Moawad, Clinical Assistant Professor, Department of Medical Education, Case Western Reserve University School of Medicine, Cleveland, Ohio, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

As a physician, you might be contacted by the media to provide your professional opinion and advice. Or you might be looking for media interview opportunities to market your practice or side project. And if you do research, media interviews can be an effective way to spread the word. It’s important to prepare for a media interview so that you achieve the outcome you are looking for. Here are six tips I learned from writing health articles, interviewing experts, and being interviewed myself. 

Keep your message simple. When you are a subject expert, you might think that the basics are obvious or even boring, and that the nuances are more important. However, most of the audience is looking for big-picture information that they can apply to their lives. Consider a few key takeaways, keeping in mind that your interview is likely to be edited to short sound bites or a few quotes. It may help to jot down notes so that you cover the fundamentals clearly. You could even write and rehearse a script beforehand. If there is something complicated or subtle that you want to convey, you can preface it by saying, “This is confusing but very important …” to let the audience know to give extra consideration to what you are about to say.

Avoid extremes and hyperbole. Sometimes, exaggerated statements make their way into medical discussions. Statements such as “it doesn’t matter how many calories you consume — it’s all about the quality” are common oversimplifications. But you might be upset to see your name next to a comment like this because it is not actually correct. Check the phrasing of your key takeaways to avoid being stuck defending or explaining an inaccurate statement when your patients ask you about it later. 

Ask the interviewers what they are looking for. Many medical topics have some controversial element, so it is good to know what you’re getting into. Find out the purpose of the article or interview before you decide whether it is right for you. It could be about another doctor in town who is being sued; if you don’t want to be associated with that story, it might be best to decline the interview. 

Explain your goals. You might accept or pursue an interview to raise awareness about an underrecognized condition. You might want the public to identify and get help for early symptoms, or you might want to create empathy for people coping with a disease you treat. Consider why you are participating in an interview, and communicate that to the interviewer to ensure that your objective can be part of the final product. 

Know whom you’re dealing with. It is good to learn about the publication/media channel before you agree to participate. It may have a political bias, or perhaps the interview is intended to promote a specific product. If you agree with and support their purposes, then you may be happy to lend your opinion. But learning about the “voice” of the publication in advance allows you to make an informed decision about whether you want to be identified with a particular political ideology or product endorsement.

Ask to see your quotes before publication. It’s good to have the opportunity to make corrections in case you are accidentally misquoted or misunderstood. It is best to ask to see quotes before you agree to the interview. Some reporters may agree to (or even prefer) a written question-and-answer format so that they can directly quote your responses without rephrasing your words. You could suggest this, especially if you are too busy for a call or live meeting.

As a physician, your insights and advice can be highly beneficial to others. You can also use media interviews to propel your career forward. Doing your homework can ensure that you will be pleased with the final product and how your words were used. 
 

Dr. Moawad, Clinical Assistant Professor, Department of Medical Education, Case Western Reserve University School of Medicine, Cleveland, Ohio, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

As a physician, you might be contacted by the media to provide your professional opinion and advice. Or you might be looking for media interview opportunities to market your practice or side project. And if you do research, media interviews can be an effective way to spread the word. It’s important to prepare for a media interview so that you achieve the outcome you are looking for. Here are six tips I learned from writing health articles, interviewing experts, and being interviewed myself. 

Keep your message simple. When you are a subject expert, you might think that the basics are obvious or even boring, and that the nuances are more important. However, most of the audience is looking for big-picture information that they can apply to their lives. Consider a few key takeaways, keeping in mind that your interview is likely to be edited to short sound bites or a few quotes. It may help to jot down notes so that you cover the fundamentals clearly. You could even write and rehearse a script beforehand. If there is something complicated or subtle that you want to convey, you can preface it by saying, “This is confusing but very important …” to let the audience know to give extra consideration to what you are about to say.

Avoid extremes and hyperbole. Sometimes, exaggerated statements make their way into medical discussions. Statements such as “it doesn’t matter how many calories you consume — it’s all about the quality” are common oversimplifications. But you might be upset to see your name next to a comment like this because it is not actually correct. Check the phrasing of your key takeaways to avoid being stuck defending or explaining an inaccurate statement when your patients ask you about it later. 

Ask the interviewers what they are looking for. Many medical topics have some controversial element, so it is good to know what you’re getting into. Find out the purpose of the article or interview before you decide whether it is right for you. It could be about another doctor in town who is being sued; if you don’t want to be associated with that story, it might be best to decline the interview. 

Explain your goals. You might accept or pursue an interview to raise awareness about an underrecognized condition. You might want the public to identify and get help for early symptoms, or you might want to create empathy for people coping with a disease you treat. Consider why you are participating in an interview, and communicate that to the interviewer to ensure that your objective can be part of the final product. 

Know whom you’re dealing with. It is good to learn about the publication/media channel before you agree to participate. It may have a political bias, or perhaps the interview is intended to promote a specific product. If you agree with and support their purposes, then you may be happy to lend your opinion. But learning about the “voice” of the publication in advance allows you to make an informed decision about whether you want to be identified with a particular political ideology or product endorsement.

Ask to see your quotes before publication. It’s good to have the opportunity to make corrections in case you are accidentally misquoted or misunderstood. It is best to ask to see quotes before you agree to the interview. Some reporters may agree to (or even prefer) a written question-and-answer format so that they can directly quote your responses without rephrasing your words. You could suggest this, especially if you are too busy for a call or live meeting.

As a physician, your insights and advice can be highly beneficial to others. You can also use media interviews to propel your career forward. Doing your homework can ensure that you will be pleased with the final product and how your words were used. 
 

Dr. Moawad, Clinical Assistant Professor, Department of Medical Education, Case Western Reserve University School of Medicine, Cleveland, Ohio, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Disc Degeneration in Chronic Low Back Pain: Can Stem Cells Help?

Article Type
Changed
Wed, 11/06/2024 - 04:49

 

TOPLINE:

Allogeneic bone marrow–derived mesenchymal stromal cells (BM-MSCs) are safe but do not show efficacy in treating intervertebral disc degeneration (IDD) in patients with chronic low back pain.

METHODOLOGY:

  • The RESPINE trial assessed the efficacy and safety of a single intradiscal injection of allogeneic BM-MSCs in the treatment of chronic low back pain caused by single-level IDD.
  • Overall, 114 patients (mean age, 40.9 years; 35% women) with IDD-associated chronic low back pain that was persistent for 3 months or more despite conventional medical therapy and without previous surgery, were recruited across four European countries from April 2018 to April 2021 and randomly assigned to receive either intradiscal injections of allogeneic BM-MSCs (n = 58) or sham injections (n = 56).
  • The first co-primary endpoint was the rate of response to BM-MSC injections at 12 months after treatment, defined as improvement of at least 20% or 20 mm in the Visual Analog Scale for pain or improvement of at least 20% in the Oswestry Disability Index for functional status.
  • The secondary co-primary endpoint was structural efficacy, based on disc fluid content measured by quantitative T2 MRI between baseline and month 12.

TAKEAWAY:

  • At 12 months post-intervention, 74% of patients in the BM-MSC group were classified as responders compared with 68.8% in the placebo group. However, the difference between the groups was not statistically significant.
  • The probability of being a responder was higher in the BM-MSC group than in the sham group; however, the findings did not reach statistical significance.
  • The average change in disc fluid content, indicative of disc regeneration, from baseline to 12 months was 37.9% in the BM-MSC group and 41.7% in the placebo group, with no significant difference between the groups.
  • The incidence of adverse events and serious adverse events was not significantly different between the treatment groups.

IN PRACTICE:

“BM-MSC represents a promising opportunity for the biological treatment of IDD, but only high-quality randomized controlled trials, comparing it to standard care, can determine whether it is a truly effective alternative to spine fusion or disc replacement,” the authors wrote.

SOURCE:

The study was led by Yves-Marie Pers, MD, PhD, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France. It was published online on October 11, 2024, in Annals of the Rheumatic Diseases.

LIMITATIONS:

MRI results were collected from only 55 patients across both trial arms, which may have affected the statistical power of the findings. Although patients were monitored for up to 24 months, the long-term efficacy and safety of BM-MSC therapy for IDD may not have been fully captured. Selection bias could not be excluded because of the difficulty in accurately identifying patients with chronic low back pain caused by single-level IDD.

DISCLOSURES:

The study was funded by the European Union’s Horizon 2020 Research and Innovation Programme. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Allogeneic bone marrow–derived mesenchymal stromal cells (BM-MSCs) are safe but do not show efficacy in treating intervertebral disc degeneration (IDD) in patients with chronic low back pain.

METHODOLOGY:

  • The RESPINE trial assessed the efficacy and safety of a single intradiscal injection of allogeneic BM-MSCs in the treatment of chronic low back pain caused by single-level IDD.
  • Overall, 114 patients (mean age, 40.9 years; 35% women) with IDD-associated chronic low back pain that was persistent for 3 months or more despite conventional medical therapy and without previous surgery, were recruited across four European countries from April 2018 to April 2021 and randomly assigned to receive either intradiscal injections of allogeneic BM-MSCs (n = 58) or sham injections (n = 56).
  • The first co-primary endpoint was the rate of response to BM-MSC injections at 12 months after treatment, defined as improvement of at least 20% or 20 mm in the Visual Analog Scale for pain or improvement of at least 20% in the Oswestry Disability Index for functional status.
  • The secondary co-primary endpoint was structural efficacy, based on disc fluid content measured by quantitative T2 MRI between baseline and month 12.

TAKEAWAY:

  • At 12 months post-intervention, 74% of patients in the BM-MSC group were classified as responders compared with 68.8% in the placebo group. However, the difference between the groups was not statistically significant.
  • The probability of being a responder was higher in the BM-MSC group than in the sham group; however, the findings did not reach statistical significance.
  • The average change in disc fluid content, indicative of disc regeneration, from baseline to 12 months was 37.9% in the BM-MSC group and 41.7% in the placebo group, with no significant difference between the groups.
  • The incidence of adverse events and serious adverse events was not significantly different between the treatment groups.

IN PRACTICE:

“BM-MSC represents a promising opportunity for the biological treatment of IDD, but only high-quality randomized controlled trials, comparing it to standard care, can determine whether it is a truly effective alternative to spine fusion or disc replacement,” the authors wrote.

SOURCE:

The study was led by Yves-Marie Pers, MD, PhD, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France. It was published online on October 11, 2024, in Annals of the Rheumatic Diseases.

LIMITATIONS:

MRI results were collected from only 55 patients across both trial arms, which may have affected the statistical power of the findings. Although patients were monitored for up to 24 months, the long-term efficacy and safety of BM-MSC therapy for IDD may not have been fully captured. Selection bias could not be excluded because of the difficulty in accurately identifying patients with chronic low back pain caused by single-level IDD.

DISCLOSURES:

The study was funded by the European Union’s Horizon 2020 Research and Innovation Programme. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

Allogeneic bone marrow–derived mesenchymal stromal cells (BM-MSCs) are safe but do not show efficacy in treating intervertebral disc degeneration (IDD) in patients with chronic low back pain.

METHODOLOGY:

  • The RESPINE trial assessed the efficacy and safety of a single intradiscal injection of allogeneic BM-MSCs in the treatment of chronic low back pain caused by single-level IDD.
  • Overall, 114 patients (mean age, 40.9 years; 35% women) with IDD-associated chronic low back pain that was persistent for 3 months or more despite conventional medical therapy and without previous surgery, were recruited across four European countries from April 2018 to April 2021 and randomly assigned to receive either intradiscal injections of allogeneic BM-MSCs (n = 58) or sham injections (n = 56).
  • The first co-primary endpoint was the rate of response to BM-MSC injections at 12 months after treatment, defined as improvement of at least 20% or 20 mm in the Visual Analog Scale for pain or improvement of at least 20% in the Oswestry Disability Index for functional status.
  • The secondary co-primary endpoint was structural efficacy, based on disc fluid content measured by quantitative T2 MRI between baseline and month 12.

TAKEAWAY:

  • At 12 months post-intervention, 74% of patients in the BM-MSC group were classified as responders compared with 68.8% in the placebo group. However, the difference between the groups was not statistically significant.
  • The probability of being a responder was higher in the BM-MSC group than in the sham group; however, the findings did not reach statistical significance.
  • The average change in disc fluid content, indicative of disc regeneration, from baseline to 12 months was 37.9% in the BM-MSC group and 41.7% in the placebo group, with no significant difference between the groups.
  • The incidence of adverse events and serious adverse events was not significantly different between the treatment groups.

IN PRACTICE:

“BM-MSC represents a promising opportunity for the biological treatment of IDD, but only high-quality randomized controlled trials, comparing it to standard care, can determine whether it is a truly effective alternative to spine fusion or disc replacement,” the authors wrote.

SOURCE:

The study was led by Yves-Marie Pers, MD, PhD, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France. It was published online on October 11, 2024, in Annals of the Rheumatic Diseases.

LIMITATIONS:

MRI results were collected from only 55 patients across both trial arms, which may have affected the statistical power of the findings. Although patients were monitored for up to 24 months, the long-term efficacy and safety of BM-MSC therapy for IDD may not have been fully captured. Selection bias could not be excluded because of the difficulty in accurately identifying patients with chronic low back pain caused by single-level IDD.

DISCLOSURES:

The study was funded by the European Union’s Horizon 2020 Research and Innovation Programme. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Duloxetine Bottles Recalled by FDA Because of Potential Carcinogen

Article Type
Changed
Mon, 10/28/2024 - 14:33

The US Food and Drug Administration (FDA) has announced a voluntary manufacturer-initiated recall of more than 7000 bottles of duloxetine delayed-release capsules due to unacceptable levels of a potential carcinogen.

Duloxetine (Cymbalta) is a serotonin-norepinephrine reuptake inhibitor used to treat major depressive disorder, generalized anxiety disorderfibromyalgia, chronic musculoskeletal pain, and neuropathic pain associated with diabetic peripheral neuropathy.

The recall is due to the detection of the nitrosamine impurity, N-nitroso duloxetine, above the proposed interim limit.

Nitrosamines are common in water and foods, and exposure to some levels of the chemical is common. Exposure to nitrosamine impurities above acceptable levels and over long periods may increase cancer risk, the FDA reported.

“If drugs contain levels of nitrosamines above the acceptable daily intake limits, FDA recommends these drugs be recalled by the manufacturer as appropriate,” the agency noted on its website.

The recall was initiated by Breckenridge Pharmaceutical and covers 7107 bottles of 500-count, 20 mg duloxetine delayed-release capsules. The drug is manufactured by Towa Pharmaceutical Europe and distributed nationwide by BPI.

The affected bottles are from lot number 220128 with an expiration date of 12/2024 and NDC of 51991-746-05.

The recall was initiated on October 10 and is ongoing.

“Healthcare professionals can educate patients about alternative treatment options to medications with potential nitrosamine impurities if available and clinically appropriate,” the FDA advises. “If a medication has been recalled, pharmacists may be able to dispense the same medication from a manufacturing lot that has not been recalled. Prescribers may also determine whether there is an alternative treatment option for patients.”

The FDA has labeled this a “class II” recall, which the agency defines as “a situation in which use of or exposure to a violative product may cause temporary or medically reversible adverse health consequences or where the probability of serious adverse health consequences is remote.”

Nitrosamine impurities have prompted a number of drug recalls in recent years, including oral anticoagulantsmetformin, and skeletal muscle relaxants.

The impurities may be found in drugs for a number of reasons, the agency reported. The source may be from a drug’s manufacturing process, chemical structure, or the conditions under which it is stored or packaged.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Food and Drug Administration (FDA) has announced a voluntary manufacturer-initiated recall of more than 7000 bottles of duloxetine delayed-release capsules due to unacceptable levels of a potential carcinogen.

Duloxetine (Cymbalta) is a serotonin-norepinephrine reuptake inhibitor used to treat major depressive disorder, generalized anxiety disorderfibromyalgia, chronic musculoskeletal pain, and neuropathic pain associated with diabetic peripheral neuropathy.

The recall is due to the detection of the nitrosamine impurity, N-nitroso duloxetine, above the proposed interim limit.

Nitrosamines are common in water and foods, and exposure to some levels of the chemical is common. Exposure to nitrosamine impurities above acceptable levels and over long periods may increase cancer risk, the FDA reported.

“If drugs contain levels of nitrosamines above the acceptable daily intake limits, FDA recommends these drugs be recalled by the manufacturer as appropriate,” the agency noted on its website.

The recall was initiated by Breckenridge Pharmaceutical and covers 7107 bottles of 500-count, 20 mg duloxetine delayed-release capsules. The drug is manufactured by Towa Pharmaceutical Europe and distributed nationwide by BPI.

The affected bottles are from lot number 220128 with an expiration date of 12/2024 and NDC of 51991-746-05.

The recall was initiated on October 10 and is ongoing.

“Healthcare professionals can educate patients about alternative treatment options to medications with potential nitrosamine impurities if available and clinically appropriate,” the FDA advises. “If a medication has been recalled, pharmacists may be able to dispense the same medication from a manufacturing lot that has not been recalled. Prescribers may also determine whether there is an alternative treatment option for patients.”

The FDA has labeled this a “class II” recall, which the agency defines as “a situation in which use of or exposure to a violative product may cause temporary or medically reversible adverse health consequences or where the probability of serious adverse health consequences is remote.”

Nitrosamine impurities have prompted a number of drug recalls in recent years, including oral anticoagulantsmetformin, and skeletal muscle relaxants.

The impurities may be found in drugs for a number of reasons, the agency reported. The source may be from a drug’s manufacturing process, chemical structure, or the conditions under which it is stored or packaged.
 

A version of this article appeared on Medscape.com.

The US Food and Drug Administration (FDA) has announced a voluntary manufacturer-initiated recall of more than 7000 bottles of duloxetine delayed-release capsules due to unacceptable levels of a potential carcinogen.

Duloxetine (Cymbalta) is a serotonin-norepinephrine reuptake inhibitor used to treat major depressive disorder, generalized anxiety disorderfibromyalgia, chronic musculoskeletal pain, and neuropathic pain associated with diabetic peripheral neuropathy.

The recall is due to the detection of the nitrosamine impurity, N-nitroso duloxetine, above the proposed interim limit.

Nitrosamines are common in water and foods, and exposure to some levels of the chemical is common. Exposure to nitrosamine impurities above acceptable levels and over long periods may increase cancer risk, the FDA reported.

“If drugs contain levels of nitrosamines above the acceptable daily intake limits, FDA recommends these drugs be recalled by the manufacturer as appropriate,” the agency noted on its website.

The recall was initiated by Breckenridge Pharmaceutical and covers 7107 bottles of 500-count, 20 mg duloxetine delayed-release capsules. The drug is manufactured by Towa Pharmaceutical Europe and distributed nationwide by BPI.

The affected bottles are from lot number 220128 with an expiration date of 12/2024 and NDC of 51991-746-05.

The recall was initiated on October 10 and is ongoing.

“Healthcare professionals can educate patients about alternative treatment options to medications with potential nitrosamine impurities if available and clinically appropriate,” the FDA advises. “If a medication has been recalled, pharmacists may be able to dispense the same medication from a manufacturing lot that has not been recalled. Prescribers may also determine whether there is an alternative treatment option for patients.”

The FDA has labeled this a “class II” recall, which the agency defines as “a situation in which use of or exposure to a violative product may cause temporary or medically reversible adverse health consequences or where the probability of serious adverse health consequences is remote.”

Nitrosamine impurities have prompted a number of drug recalls in recent years, including oral anticoagulantsmetformin, and skeletal muscle relaxants.

The impurities may be found in drugs for a number of reasons, the agency reported. The source may be from a drug’s manufacturing process, chemical structure, or the conditions under which it is stored or packaged.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ACIP Recommends Pneumococcal Vaccine for Adults 50 Years or Older

Article Type
Changed
Wed, 12/18/2024 - 12:57

The US Centers for Disease Control and Prevention’s (CDC’s) Advisory Committee on Immunization Practices (ACIP) now recommends a pneumococcal conjugate vaccine (PCV) for all PCV-naive adults aged 50 years or older. The new recommendation, which passed with an ACIP member vote of 14 for and one against, expands the current age-based recommendations, which include children younger than 5 years and adults older than 65 years, as well as adults aged 19-64 years with underlying conditions or risk factors who have not received a PCV and certain adults who have received PCV13 but not PCV20.

The recommendation would leave the choice of PCV up to the clinician. The updated language calls for a single dose of PCV (which could be PCV15, PCV20, or PCV21) for all adults aged 50 years or older; adults aged 19-64 years with underlying conditions (for whom PCV is already recommended) could receive the newly approved PCV21 as an option.

The decision was based in part on economic analyses of the use of PCV in adults aged 50-64 years in the United States. Miwako Kobayashi, MD, presented the summary of the Pneumococcal Vaccines Work Group’s interpretation of the evidence and the proposed recommendation in a meeting of the ACIP on October 23, 2024, when the ACIP voting occurred.

Data from the CDC show an increase in the relative burden of pneumococcal disease in adults aged 50-64 years based in part on the success of the pediatric PCV program, she said.

Health equity was another main factor in the Work Group’s decision to recommend vaccination for adults aged 50 years or older. “Disparities in pneumococcal vaccine coverage by race and ethnicity exist for both age-based and risk-based indications,” Kobayashi noted in her presentation. The Work Group acknowledged that the overall effect of a vaccine recommendation on health equity is complex, but the majority agreed that the update would improve health equity by increasing vaccine coverage for those with known or unknown risk factors and providing protection at an earlier age when some populations already experience elevated disease rates, she said.

As for safety, the Work Group concluded that the undesirable anticipated effects of PCVs are minimal, despite the potential signal for Guillain-Barré Syndrome, and the CDC and US Food and Drug Administration will continue to monitor post-licensure safety of PCVs.

Support Not Universal

A majority of the ACIP Pneumococcal Vaccines Work Group supported the approved option, but agreed that a future booster dose may be needed, Work Group Chair James Loehr, MD, said in his introductory presentation.

Overall, key uncertainties remain, including indirect effects of new pediatric pneumococcal vaccines on adults, data on the duration of protection with adult vaccinations, and the impact new higher-valency vaccines have on adults, several of which are in development, Loehr said.

A new 21-valent PCV, known as PCV 21, was approved by the FDA for adults aged 18 years or older in June 2024, said Loehr. “PCV21 is not PCV20 with one additional serotype” and provides additional protection, he emphasized. The Work Group examined models involving PCV21 and the existing PCV20. However, a majority of the Work Group agreed that having age-based recommendations based on vaccine product would be more challenging to implement and that insurance coverage may be a factor given the recent approval of PCV21. Therefore, the proposal submitted to the full ACIP was not for a specific PCV.

Notably, Loehr said that, although as Work Group Chair he was tasked with making the motion in favor of the recommendation, he voted against it as a voting member because of his strong opinion that only the PCV21 vaccine is needed for vaccine-naive adults aged 50 or older. “I think that PCV21 is a better vaccine that targets more serotypes,” he said during the discussion. Data presented at the February 2024 ACIP meeting showed more than 80% coverage vs less than 60% coverage for invasive pneumococcal disease with PCV21 vs PCV20 among adults aged 65 years or older and those aged 19-64 years with a risk-based indication, Loehr said.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Centers for Disease Control and Prevention’s (CDC’s) Advisory Committee on Immunization Practices (ACIP) now recommends a pneumococcal conjugate vaccine (PCV) for all PCV-naive adults aged 50 years or older. The new recommendation, which passed with an ACIP member vote of 14 for and one against, expands the current age-based recommendations, which include children younger than 5 years and adults older than 65 years, as well as adults aged 19-64 years with underlying conditions or risk factors who have not received a PCV and certain adults who have received PCV13 but not PCV20.

The recommendation would leave the choice of PCV up to the clinician. The updated language calls for a single dose of PCV (which could be PCV15, PCV20, or PCV21) for all adults aged 50 years or older; adults aged 19-64 years with underlying conditions (for whom PCV is already recommended) could receive the newly approved PCV21 as an option.

The decision was based in part on economic analyses of the use of PCV in adults aged 50-64 years in the United States. Miwako Kobayashi, MD, presented the summary of the Pneumococcal Vaccines Work Group’s interpretation of the evidence and the proposed recommendation in a meeting of the ACIP on October 23, 2024, when the ACIP voting occurred.

Data from the CDC show an increase in the relative burden of pneumococcal disease in adults aged 50-64 years based in part on the success of the pediatric PCV program, she said.

Health equity was another main factor in the Work Group’s decision to recommend vaccination for adults aged 50 years or older. “Disparities in pneumococcal vaccine coverage by race and ethnicity exist for both age-based and risk-based indications,” Kobayashi noted in her presentation. The Work Group acknowledged that the overall effect of a vaccine recommendation on health equity is complex, but the majority agreed that the update would improve health equity by increasing vaccine coverage for those with known or unknown risk factors and providing protection at an earlier age when some populations already experience elevated disease rates, she said.

As for safety, the Work Group concluded that the undesirable anticipated effects of PCVs are minimal, despite the potential signal for Guillain-Barré Syndrome, and the CDC and US Food and Drug Administration will continue to monitor post-licensure safety of PCVs.

Support Not Universal

A majority of the ACIP Pneumococcal Vaccines Work Group supported the approved option, but agreed that a future booster dose may be needed, Work Group Chair James Loehr, MD, said in his introductory presentation.

Overall, key uncertainties remain, including indirect effects of new pediatric pneumococcal vaccines on adults, data on the duration of protection with adult vaccinations, and the impact new higher-valency vaccines have on adults, several of which are in development, Loehr said.

A new 21-valent PCV, known as PCV 21, was approved by the FDA for adults aged 18 years or older in June 2024, said Loehr. “PCV21 is not PCV20 with one additional serotype” and provides additional protection, he emphasized. The Work Group examined models involving PCV21 and the existing PCV20. However, a majority of the Work Group agreed that having age-based recommendations based on vaccine product would be more challenging to implement and that insurance coverage may be a factor given the recent approval of PCV21. Therefore, the proposal submitted to the full ACIP was not for a specific PCV.

Notably, Loehr said that, although as Work Group Chair he was tasked with making the motion in favor of the recommendation, he voted against it as a voting member because of his strong opinion that only the PCV21 vaccine is needed for vaccine-naive adults aged 50 or older. “I think that PCV21 is a better vaccine that targets more serotypes,” he said during the discussion. Data presented at the February 2024 ACIP meeting showed more than 80% coverage vs less than 60% coverage for invasive pneumococcal disease with PCV21 vs PCV20 among adults aged 65 years or older and those aged 19-64 years with a risk-based indication, Loehr said.

A version of this article appeared on Medscape.com.

The US Centers for Disease Control and Prevention’s (CDC’s) Advisory Committee on Immunization Practices (ACIP) now recommends a pneumococcal conjugate vaccine (PCV) for all PCV-naive adults aged 50 years or older. The new recommendation, which passed with an ACIP member vote of 14 for and one against, expands the current age-based recommendations, which include children younger than 5 years and adults older than 65 years, as well as adults aged 19-64 years with underlying conditions or risk factors who have not received a PCV and certain adults who have received PCV13 but not PCV20.

The recommendation would leave the choice of PCV up to the clinician. The updated language calls for a single dose of PCV (which could be PCV15, PCV20, or PCV21) for all adults aged 50 years or older; adults aged 19-64 years with underlying conditions (for whom PCV is already recommended) could receive the newly approved PCV21 as an option.

The decision was based in part on economic analyses of the use of PCV in adults aged 50-64 years in the United States. Miwako Kobayashi, MD, presented the summary of the Pneumococcal Vaccines Work Group’s interpretation of the evidence and the proposed recommendation in a meeting of the ACIP on October 23, 2024, when the ACIP voting occurred.

Data from the CDC show an increase in the relative burden of pneumococcal disease in adults aged 50-64 years based in part on the success of the pediatric PCV program, she said.

Health equity was another main factor in the Work Group’s decision to recommend vaccination for adults aged 50 years or older. “Disparities in pneumococcal vaccine coverage by race and ethnicity exist for both age-based and risk-based indications,” Kobayashi noted in her presentation. The Work Group acknowledged that the overall effect of a vaccine recommendation on health equity is complex, but the majority agreed that the update would improve health equity by increasing vaccine coverage for those with known or unknown risk factors and providing protection at an earlier age when some populations already experience elevated disease rates, she said.

As for safety, the Work Group concluded that the undesirable anticipated effects of PCVs are minimal, despite the potential signal for Guillain-Barré Syndrome, and the CDC and US Food and Drug Administration will continue to monitor post-licensure safety of PCVs.

Support Not Universal

A majority of the ACIP Pneumococcal Vaccines Work Group supported the approved option, but agreed that a future booster dose may be needed, Work Group Chair James Loehr, MD, said in his introductory presentation.

Overall, key uncertainties remain, including indirect effects of new pediatric pneumococcal vaccines on adults, data on the duration of protection with adult vaccinations, and the impact new higher-valency vaccines have on adults, several of which are in development, Loehr said.

A new 21-valent PCV, known as PCV 21, was approved by the FDA for adults aged 18 years or older in June 2024, said Loehr. “PCV21 is not PCV20 with one additional serotype” and provides additional protection, he emphasized. The Work Group examined models involving PCV21 and the existing PCV20. However, a majority of the Work Group agreed that having age-based recommendations based on vaccine product would be more challenging to implement and that insurance coverage may be a factor given the recent approval of PCV21. Therefore, the proposal submitted to the full ACIP was not for a specific PCV.

Notably, Loehr said that, although as Work Group Chair he was tasked with making the motion in favor of the recommendation, he voted against it as a voting member because of his strong opinion that only the PCV21 vaccine is needed for vaccine-naive adults aged 50 or older. “I think that PCV21 is a better vaccine that targets more serotypes,” he said during the discussion. Data presented at the February 2024 ACIP meeting showed more than 80% coverage vs less than 60% coverage for invasive pneumococcal disease with PCV21 vs PCV20 among adults aged 65 years or older and those aged 19-64 years with a risk-based indication, Loehr said.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 12/18/2024 - 12:57
Un-Gate On Date
Wed, 12/18/2024 - 12:57
Use ProPublica
CFC Schedule Remove Status
Wed, 12/18/2024 - 12:57
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 12/18/2024 - 12:57
Activity Salesforce Deliverable ID
428428.1
Activity ID
120491
Product Name
Condition Focus Channel
Product ID
122
Supporter Name /ID
Moderna [7099]

Industry Payments to Peer Reviewers Scrutinized at Four Major Medical Journals

Article Type
Changed
Thu, 10/24/2024 - 09:35

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Game We Play Every Day

Article Type
Changed
Wed, 10/23/2024 - 13:40

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

Publications
Topics
Sections

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Doctor Gets the Save When a Little League Umpire Collapses

Article Type
Changed
Wed, 10/23/2024 - 13:36

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Therapeutic Drug Monitoring in Rheumatology: A Promising Outlook But Many Barriers to Overcome

Article Type
Changed
Wed, 10/23/2024 - 12:27

Therapeutic drug monitoring (TDM) — the practice of using laboratory testing to measure blood levels of drugs — has garnered growing interest among rheumatologists in managing patients on disease-modifying antirheumatic drugs (DMARDs), but that hasn’t exactly translated to widespread practice.

While TDM has made some inroads with patients taking monoclonal antibodies, specifically infliximab, its uptake has encountered a number of headwinds, not the least of which is a lack of evidence and clinical guidelines, uneven access and standards of assays, and even an uncertainty about how to interpret laboratory results.

“In some fields, such as neurology, TDM is accepted for antiepileptics,” Michelle Petri, MD, MPH, director of the Johns Hopkins Lupus Center, Baltimore, told Medscape Medical News. “In rheumatology, though, TDM is underutilized and not adequately championed by the American College of Rheumatology.”

Johns Hopkins University
Dr. Michelle Petri


She noted that TDM is most acutely needed for management of systemic lupus erythematosus, where nonadherence is a major problem. “Whole blood hydroxychloroquine monitoring has proven beneficial for identifying nonadherence, but also to pinpoint patients who are on too much, a risk factor for retinopathy,” Petri said.

“The state of therapeutic drug monitoring in general has been interesting when you think about its use in autoimmune disease because it’s very much used in gastroenterology and it’s been much less used in rheumatology,” Zachary Wallace, MD, codirector of the Rheumatology & Allergy Clinical Epidemiology Research Center at Massachusetts General Hospital in Boston, told Medscape Medical News. “Some of that may have to do with the interpretation of the availability of evidence, but I think it’s something clinicians will come across more and more often in their practice and wondering what its role might be,” he added.

Dr. Zachary S. Wallace


The movement to precision medicine also portends to grow interest in TDM in rheumatology, said Stephen Balevic, MD, PhD, a rheumatologist and pharmacologist at Duke University and director of pharmacometrics at the Duke Clinical Research Institute, Durham, North Carolina.

Duke University
Dr. Stephen Balevic


“It’s a very exciting time for rheumatologists to begin thinking outside box on what it means to study precision medicine, and I think pharmacology is one of the most overlooked aspects of precision medicine in our community,” he told Medscape Medical News.

That may be because older DMARDs, namely hydroxychloroquine and methotrexate, came to market when regulatory requirements were different than they are today, Balevic said. “Many of the older conventional DMARDs were discovered incidentally and never really had the traditional pharmacokinetic-pharmacodynamic trials to determine optimal dosing, or perhaps that was extrapolated from other populations,” he said.

So, the “one-size-fits-all” approach does not work for prescribing older or even some of the newer DMARDs for rheumatologic disorders, Balevic said.
 

Reactive vs Proactive TDM

Among the few trials that examined TDM in rheumatology patients are the NOR-DRUM A and B trials in Norway. Marthe Brun, MD, PhD, a rheumatologist at the Center for Treatment of Rheumatic and Musculoskeletal Diseases at Diakonhjemmet Hospital in Oslo, Norway, and a coauthor of the NOR-DRUM trials, told Medscape Medical News that the trials found an overall benefit to TDM during infliximab maintenance therapy. The trials included not only patients with inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, and spondyloarthritis) but also patients with inflammatory bowel disease and psoriasis, Brun said.

Nicolas Tourrenc
Dr. Marthe Brun

Brun explained that two types of TDM exist: Reactive and proactive. “Reactive TDM is when you use it to find the reason for a patient having a flare or disease worsening,” she told Medscape Medical News. “Proactive TDM would be regular testing to keep a patient within a therapeutic range to avoid flare because of low drug concentrations.”

Gastroenterologists are more inclined than rheumatologists and dermatologists to use reactive TDM, she said. “There have been no recommendations regarding proactive TDM because of the lack of data.”

In Europe, Wallace noted that European Alliance of Associations for Rheumatology (EULAR) recommendations consider the use of TDM in specific clinical scenarios, such as when treatment fails or to evaluate immunogenicity of a reaction, but they are limited. The American College of Rheumatology (ACR) does not have any recommendations for the use of TDM.

Based on the NOR-DRUM trials, rheumatologists in Norway have published their own guidelines for TDM for infliximab in rheumatologic disease, but they are in Norwegian and have not yet been taken up by EULAR, Brun noted. Publication of those recommendations in English is pending, she said.

“But for other subcutaneously administered TNF inhibitors, there’s a lack of data,” Brun added.
 

The State of the Evidence

NOR-DRUM A did not support the use of proactive TDM in the 30-week induction period as a way to improve disease remission in patients with chronic immune-mediated inflammatory disease. NOR-DRUM B, which evaluated TDM over a year, found the approach was more likely to lead to sustained disease control for that period.

Brun’s group recently published an analysis of the trials. “We did not find an overall effect during the initial phase of the treatment, the first 30 weeks,” she told Medscape Medical News.

“Then we looked at subgroups, and we found that the patients that developed antidrug antibodies [ADAs] had an effect, and ADA are associated with poorer outcomes as well as infusion reactions for patients treated with infliximab.

“So, it’s probably a benefit to be able to detect these ADA early before the patient experiences a disease flare or infusion reaction,” Brun added. “It facilitates for the clinician to take action to, for example, increase the dosing or switch therapy.”

However, the quality of the data supporting TDM in rheumatology is limited, Balevic said. “There’s very good observational data, but we have very few clinical trials that actually leverage TDM,” he said.

NOR-DRUM is the exception, he said. “Ideally, we need more of these dose-optimization trials to help guide clinical practice,” he said. But it stands alone.

Wallace noted several take-home messages from the NOR-DRUM trials, namely that using TDM to prevent ADA may be more effective during the maintenance phase of treatment than the induction phase. However, he said, the evidence is still emerging.

“It’s reasonable to say that we’re at an early stage of the evidence,” he said. “If you look at the large trials that have been done in rheumatology, they’ve combined patients with many different types of conditions, and a lot of our recommendations in rheumatology are disease-specific — in rheumatoid arthritis, in vasculitis. There’s a lack of data in specific diseases to guide or examine what the role of TDM might be.”

In the meantime, no fewer than four clinical trials evaluating TDM with tumor necrosis factor (TNF) inhibitors in rheumatologic diseases are ongoing or have completed but not yet released results, according to Wallace. Three Adalimumab Drug Optimization in Rheumatoid Arthritis trials are underway: The first is evaluating drug tapering vs disease activity score; the second is testing low or usual drug concentration; and the third is studying switches to etanercept or a non-TNF inhibitor drug (abatacept, rituximab, tocilizumab, or sarilumab) in patients failing treatment. Another trial called Tocilizumab Drug Levels to Optimized Treatment in RA is randomizing patients with high drug levels to dose maintenance or dose reduction. All four trials are sponsored by the Reade Rheumatology Research Institute, Amsterdam, the Netherlands.

Until clearer answers emerge from clinical trials, a number of barriers to and questions about the potential for TDM in rheumatology persist.
 

 

 

Barriers to Wider Use of TDM

“The biggest barrier with TDM is simply just a lack of what to do with the data,” Balevic said. “The clinician needs clear-cut guidance on what to do with the drug level. So, in other words, what is the target concentration for the drug? And if that target is not the goal, how should that dose be adjusted?”

The optimal drug levels, particularly for the older conventional synthetic DMARDs, simply have not been validated by clinical trials, he said.

“Different studies may report different target drug levels, and this could be due to different underlying population, or a different matrix — a measure of whole blood vs plasma — or even the timing of the sample,” he said. Balevic led a pharmacokinetic study earlier this year that proposed an algorithm for determining the number of missed hydroxychloroquine doses.

“This really goes back to the clinician needing to draw on a lot of pharmacology training to interpret the literature,” Balevic added.

That gets to the need for more education among rheumatologists, as Brun pointed out. “The physician needs to be educated about therapeutic ranges, when to assess concentrations of drug antibodies, and how to react to the results,” Brun said.

Which ADAs to identify is also problematic. “For antidrug antibodies, it’s especially challenging because there are so many assay formats in use, and it’s a bit complicated to analyze these antidrug antibodies,” Brun said. “There’s no consensus on what calibrators to use, and there’s no standardization of how to report the results, so you can’t really compare results from different assays. You need to know what your laboratory is using and how to interpret results from that particular assay, so that’s a challenge.”

Variability in drug tolerance also exists across assays, Wallace noted. “One of the challenges that have come up in the discussion of therapeutic drug monitoring is understanding what the target level is,” he said. “Defining what the target level might be for a specific condition is not something that’s well understood.”

Breaking down the science, he noted that an ADA can bind to a monoclonal antibody, forming an immune complex that avoids detection. Drug-sensitive assays may detect high concentrations of ADAs but miss low or moderate concentrations. Drug-tolerant assays may be more likely to detect low concentrations at ADAs, but the clinical significance is unclear.
 

Cost and Patient Trust as Barriers

“The costs vary a lot from assay to assay,” Brun said. “Some commercial assays can be really expensive.” In Norway, a dedicated lab with its own in-house assays helps to keep costs down, she said.

But that’s not the case in the United States, where insurance coverage can be a question mark, Shivani Garg, MD, a rheumatologist at the University of Wisconsin (UW)-Madison and director of the UW-Madison Health Lupus and Lupus Nephritis Clinics, told Medscape Medical News. “A lot of insurances are covering therapeutic drug monitoring, but for the high-deductible plans, there should be a way to offer these important tests to patients at a lower cost or figure out a way for coverage for those patients so that they can show that there are benefits of therapeutic drug monitoring without being sent a really big bill,” she said.

UW Health
Dr. Shivani Garg


Patient trust could be another potential barrier, Garg said. “A lot of times there is not shared decision-making involved in why this test is being done, how those tests will help us as clinicians, and [patients’ understanding of] the use of the medicine,” Garg said.

“If the shared decision-making to build trust is not there, a lot of times patients worry that they’re being under surveillance or they’re being watched, so that might add to the lack of trust in the core issues that are critical threats to patients with chronic diseases because this is a lifelong partnership,” she said.

Convenience is another issue. “Particularly with mycophenolate levels, a lot of studies have used area under the curve, so getting an area under the curve level over a period of 12 hours would require several samples,” Garg said.

Testing protocols are also uncertain, Garg added. “A few data points ... are missing, like how we use the data over time,” she said. “If you do it for a given patient over several years, how often should you do it? How often do the levels fluctuate? How are the data used to inform dosing changes or monitoring changes?

“When those pieces are put together, then we are more likely to build up an intervention that clinicians can use in clinical practice, so they know how to order it and how frequently do it — every 6 months, 3 months, or every month. And then, over a period of time, how to adjust the dosing. That’s the big question.”
 

 

 

Who May Benefit Most From TDM?

In the NOR-DRUM trials, patients at risk of developing ADA early on, before a disease flare or infusion reaction, seemed to benefit most from TDM. But who are those patients?

“We looked at risk factors for developing antidrug antibodies, and we found that patients with high disease activity when starting treatment, smokers, and patients with rheumatoid arthritis had a higher risk than other patients, as did patients who are not using concomitant immunosuppressive therapy,” Brun said.

“During treatment, we also found that low serum drug levels and drug holidays above 11 weeks were also risk factors,” she added.

The NOR-DRUM researchers also evaluated genetic risk factors and found that patients with the HLA-DQ2 gene variant were also at increased risk of developing ADA.

While NOR-DRUM evaluated only infliximab, some of its lessons may be applied to other DMARDs, Brun said. “We think that for other subcutaneously administered TNF inhibitors, you would probably see the same effect of proactive TDM, but we currently do not have data on that,” she said. A study similar to the NOR-DRUM design will evaluate this in Norway, Brun added.

She explained why the findings with infliximab may extend to adalimumab, which may be the second most immunogenic TNF inhibitor after infliximab. “The administration is different; it’s administered more often than infliximab; that would also make the results more uncertain to generalize to the other treatments, but I would guess there are also benefits of using TDM in other treatments.”
 

Potential Risks for TDM

Wallace has noted that TDM, with the current state of evidence, carries a number of potential risks. “The potential risks might be that you unnecessarily discontinue a medication because you detected an antibody, or the level seems low and you’re not able to get it higher, but the patient is otherwise doing fine,” he said. “You might end up increasing doses of the medicine that would put the patient at potentially increased risk of infection, as well as obviously more costs.”

That would also lead to more utilization of resources and costs, he said. “Some of those reasons are why there has been hesitation with therapeutic drug monitoring,” Wallace added.

A number of questions also surround the use of biosimilars and ADA levels, Wallace said. While a review of clinical trials found no meaningful differences in terms of immunogenicity between biosimilars and reference products, it did note discrepancies in how the agents were evaluated.
 

What DMARDs Are Most Suitable for TDM?

Petri said TDM would be useful for monitoring patients on mycophenolate mofetil. “A trough level can at least tell us if a patient is taking it,” she said. “Tacrolimus, used for lupus nephritis, has well-accepted peak and trough trends due to widespread use in transplant.”

Drugs with a wide variability in pharmacokinetics may also be suitable for TDM, Balevic said. That would include hydroxychloroquine, azathioprine, mycophenolate, or even cyclophosphamide. Drugs that have a narrow therapeutic index, such as tacrolimus, cyclosporine, or again, cyclophosphamide, might also be amenable to TDM, he said.
 

 

 

Why Do TDM?

“The two main reasons why somebody would go on to detect drug levels: The first may be to assess medication adherence, and this applies virtually to any drug that rheumatologists use; the second reason is to optimize dozing, either for efficacy purposes or to prevent toxicity,” Balevic said.

“When it comes to optimizing dosing, you should really think about TDM as one tool in our toolbelt,” he said.

Dose is “just a surrogate,” he said. “When we prescribe a drug, what truly matters is the amount of active unbound drug at the site of action. That’s what’s responsible for a drug’s pharmacologic effect.”

However, the same dose, or even the same weight-based dose, does not necessarily mean similar patients will achieve the same amount of exposure to the drug, but TDM can help determine that, he said.
 

What’s Next

Studies into the use of TDM in rheumatology are ongoing. Brun said her group is currently conducting a cost-effective analysis from the NOR-DRUM trials.

“There’s going to be more studies coming out in the next few years, looking at what impact the use of therapeutic drug monitoring might have on outcomes,” Wallace said.

“As we accumulate more and more evidence, we might see organizations like ACR and EULAR start to weigh in more on whether or not therapeutic drug monitoring can or should be used.”

Petri, Brun, and Garg had no relevant disclosures. Wallace disclosed financial relationships with Amgen, Alexion, BioCryst, Boehringer Ingelheim, Bristol Myers Squibb, Medpace, Novartis, Sanofi, Viela Bio, Visterra, Xencor, and Zenas. Balevic disclosed relationships with the National Institutes of Health, the Childhood Arthritis and Rheumatology Research Alliance, and UCB.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Therapeutic drug monitoring (TDM) — the practice of using laboratory testing to measure blood levels of drugs — has garnered growing interest among rheumatologists in managing patients on disease-modifying antirheumatic drugs (DMARDs), but that hasn’t exactly translated to widespread practice.

While TDM has made some inroads with patients taking monoclonal antibodies, specifically infliximab, its uptake has encountered a number of headwinds, not the least of which is a lack of evidence and clinical guidelines, uneven access and standards of assays, and even an uncertainty about how to interpret laboratory results.

“In some fields, such as neurology, TDM is accepted for antiepileptics,” Michelle Petri, MD, MPH, director of the Johns Hopkins Lupus Center, Baltimore, told Medscape Medical News. “In rheumatology, though, TDM is underutilized and not adequately championed by the American College of Rheumatology.”

Johns Hopkins University
Dr. Michelle Petri


She noted that TDM is most acutely needed for management of systemic lupus erythematosus, where nonadherence is a major problem. “Whole blood hydroxychloroquine monitoring has proven beneficial for identifying nonadherence, but also to pinpoint patients who are on too much, a risk factor for retinopathy,” Petri said.

“The state of therapeutic drug monitoring in general has been interesting when you think about its use in autoimmune disease because it’s very much used in gastroenterology and it’s been much less used in rheumatology,” Zachary Wallace, MD, codirector of the Rheumatology & Allergy Clinical Epidemiology Research Center at Massachusetts General Hospital in Boston, told Medscape Medical News. “Some of that may have to do with the interpretation of the availability of evidence, but I think it’s something clinicians will come across more and more often in their practice and wondering what its role might be,” he added.

Dr. Zachary S. Wallace


The movement to precision medicine also portends to grow interest in TDM in rheumatology, said Stephen Balevic, MD, PhD, a rheumatologist and pharmacologist at Duke University and director of pharmacometrics at the Duke Clinical Research Institute, Durham, North Carolina.

Duke University
Dr. Stephen Balevic


“It’s a very exciting time for rheumatologists to begin thinking outside box on what it means to study precision medicine, and I think pharmacology is one of the most overlooked aspects of precision medicine in our community,” he told Medscape Medical News.

That may be because older DMARDs, namely hydroxychloroquine and methotrexate, came to market when regulatory requirements were different than they are today, Balevic said. “Many of the older conventional DMARDs were discovered incidentally and never really had the traditional pharmacokinetic-pharmacodynamic trials to determine optimal dosing, or perhaps that was extrapolated from other populations,” he said.

So, the “one-size-fits-all” approach does not work for prescribing older or even some of the newer DMARDs for rheumatologic disorders, Balevic said.
 

Reactive vs Proactive TDM

Among the few trials that examined TDM in rheumatology patients are the NOR-DRUM A and B trials in Norway. Marthe Brun, MD, PhD, a rheumatologist at the Center for Treatment of Rheumatic and Musculoskeletal Diseases at Diakonhjemmet Hospital in Oslo, Norway, and a coauthor of the NOR-DRUM trials, told Medscape Medical News that the trials found an overall benefit to TDM during infliximab maintenance therapy. The trials included not only patients with inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, and spondyloarthritis) but also patients with inflammatory bowel disease and psoriasis, Brun said.

Nicolas Tourrenc
Dr. Marthe Brun

Brun explained that two types of TDM exist: Reactive and proactive. “Reactive TDM is when you use it to find the reason for a patient having a flare or disease worsening,” she told Medscape Medical News. “Proactive TDM would be regular testing to keep a patient within a therapeutic range to avoid flare because of low drug concentrations.”

Gastroenterologists are more inclined than rheumatologists and dermatologists to use reactive TDM, she said. “There have been no recommendations regarding proactive TDM because of the lack of data.”

In Europe, Wallace noted that European Alliance of Associations for Rheumatology (EULAR) recommendations consider the use of TDM in specific clinical scenarios, such as when treatment fails or to evaluate immunogenicity of a reaction, but they are limited. The American College of Rheumatology (ACR) does not have any recommendations for the use of TDM.

Based on the NOR-DRUM trials, rheumatologists in Norway have published their own guidelines for TDM for infliximab in rheumatologic disease, but they are in Norwegian and have not yet been taken up by EULAR, Brun noted. Publication of those recommendations in English is pending, she said.

“But for other subcutaneously administered TNF inhibitors, there’s a lack of data,” Brun added.
 

The State of the Evidence

NOR-DRUM A did not support the use of proactive TDM in the 30-week induction period as a way to improve disease remission in patients with chronic immune-mediated inflammatory disease. NOR-DRUM B, which evaluated TDM over a year, found the approach was more likely to lead to sustained disease control for that period.

Brun’s group recently published an analysis of the trials. “We did not find an overall effect during the initial phase of the treatment, the first 30 weeks,” she told Medscape Medical News.

“Then we looked at subgroups, and we found that the patients that developed antidrug antibodies [ADAs] had an effect, and ADA are associated with poorer outcomes as well as infusion reactions for patients treated with infliximab.

“So, it’s probably a benefit to be able to detect these ADA early before the patient experiences a disease flare or infusion reaction,” Brun added. “It facilitates for the clinician to take action to, for example, increase the dosing or switch therapy.”

However, the quality of the data supporting TDM in rheumatology is limited, Balevic said. “There’s very good observational data, but we have very few clinical trials that actually leverage TDM,” he said.

NOR-DRUM is the exception, he said. “Ideally, we need more of these dose-optimization trials to help guide clinical practice,” he said. But it stands alone.

Wallace noted several take-home messages from the NOR-DRUM trials, namely that using TDM to prevent ADA may be more effective during the maintenance phase of treatment than the induction phase. However, he said, the evidence is still emerging.

“It’s reasonable to say that we’re at an early stage of the evidence,” he said. “If you look at the large trials that have been done in rheumatology, they’ve combined patients with many different types of conditions, and a lot of our recommendations in rheumatology are disease-specific — in rheumatoid arthritis, in vasculitis. There’s a lack of data in specific diseases to guide or examine what the role of TDM might be.”

In the meantime, no fewer than four clinical trials evaluating TDM with tumor necrosis factor (TNF) inhibitors in rheumatologic diseases are ongoing or have completed but not yet released results, according to Wallace. Three Adalimumab Drug Optimization in Rheumatoid Arthritis trials are underway: The first is evaluating drug tapering vs disease activity score; the second is testing low or usual drug concentration; and the third is studying switches to etanercept or a non-TNF inhibitor drug (abatacept, rituximab, tocilizumab, or sarilumab) in patients failing treatment. Another trial called Tocilizumab Drug Levels to Optimized Treatment in RA is randomizing patients with high drug levels to dose maintenance or dose reduction. All four trials are sponsored by the Reade Rheumatology Research Institute, Amsterdam, the Netherlands.

Until clearer answers emerge from clinical trials, a number of barriers to and questions about the potential for TDM in rheumatology persist.
 

 

 

Barriers to Wider Use of TDM

“The biggest barrier with TDM is simply just a lack of what to do with the data,” Balevic said. “The clinician needs clear-cut guidance on what to do with the drug level. So, in other words, what is the target concentration for the drug? And if that target is not the goal, how should that dose be adjusted?”

The optimal drug levels, particularly for the older conventional synthetic DMARDs, simply have not been validated by clinical trials, he said.

“Different studies may report different target drug levels, and this could be due to different underlying population, or a different matrix — a measure of whole blood vs plasma — or even the timing of the sample,” he said. Balevic led a pharmacokinetic study earlier this year that proposed an algorithm for determining the number of missed hydroxychloroquine doses.

“This really goes back to the clinician needing to draw on a lot of pharmacology training to interpret the literature,” Balevic added.

That gets to the need for more education among rheumatologists, as Brun pointed out. “The physician needs to be educated about therapeutic ranges, when to assess concentrations of drug antibodies, and how to react to the results,” Brun said.

Which ADAs to identify is also problematic. “For antidrug antibodies, it’s especially challenging because there are so many assay formats in use, and it’s a bit complicated to analyze these antidrug antibodies,” Brun said. “There’s no consensus on what calibrators to use, and there’s no standardization of how to report the results, so you can’t really compare results from different assays. You need to know what your laboratory is using and how to interpret results from that particular assay, so that’s a challenge.”

Variability in drug tolerance also exists across assays, Wallace noted. “One of the challenges that have come up in the discussion of therapeutic drug monitoring is understanding what the target level is,” he said. “Defining what the target level might be for a specific condition is not something that’s well understood.”

Breaking down the science, he noted that an ADA can bind to a monoclonal antibody, forming an immune complex that avoids detection. Drug-sensitive assays may detect high concentrations of ADAs but miss low or moderate concentrations. Drug-tolerant assays may be more likely to detect low concentrations at ADAs, but the clinical significance is unclear.
 

Cost and Patient Trust as Barriers

“The costs vary a lot from assay to assay,” Brun said. “Some commercial assays can be really expensive.” In Norway, a dedicated lab with its own in-house assays helps to keep costs down, she said.

But that’s not the case in the United States, where insurance coverage can be a question mark, Shivani Garg, MD, a rheumatologist at the University of Wisconsin (UW)-Madison and director of the UW-Madison Health Lupus and Lupus Nephritis Clinics, told Medscape Medical News. “A lot of insurances are covering therapeutic drug monitoring, but for the high-deductible plans, there should be a way to offer these important tests to patients at a lower cost or figure out a way for coverage for those patients so that they can show that there are benefits of therapeutic drug monitoring without being sent a really big bill,” she said.

UW Health
Dr. Shivani Garg


Patient trust could be another potential barrier, Garg said. “A lot of times there is not shared decision-making involved in why this test is being done, how those tests will help us as clinicians, and [patients’ understanding of] the use of the medicine,” Garg said.

“If the shared decision-making to build trust is not there, a lot of times patients worry that they’re being under surveillance or they’re being watched, so that might add to the lack of trust in the core issues that are critical threats to patients with chronic diseases because this is a lifelong partnership,” she said.

Convenience is another issue. “Particularly with mycophenolate levels, a lot of studies have used area under the curve, so getting an area under the curve level over a period of 12 hours would require several samples,” Garg said.

Testing protocols are also uncertain, Garg added. “A few data points ... are missing, like how we use the data over time,” she said. “If you do it for a given patient over several years, how often should you do it? How often do the levels fluctuate? How are the data used to inform dosing changes or monitoring changes?

“When those pieces are put together, then we are more likely to build up an intervention that clinicians can use in clinical practice, so they know how to order it and how frequently do it — every 6 months, 3 months, or every month. And then, over a period of time, how to adjust the dosing. That’s the big question.”
 

 

 

Who May Benefit Most From TDM?

In the NOR-DRUM trials, patients at risk of developing ADA early on, before a disease flare or infusion reaction, seemed to benefit most from TDM. But who are those patients?

“We looked at risk factors for developing antidrug antibodies, and we found that patients with high disease activity when starting treatment, smokers, and patients with rheumatoid arthritis had a higher risk than other patients, as did patients who are not using concomitant immunosuppressive therapy,” Brun said.

“During treatment, we also found that low serum drug levels and drug holidays above 11 weeks were also risk factors,” she added.

The NOR-DRUM researchers also evaluated genetic risk factors and found that patients with the HLA-DQ2 gene variant were also at increased risk of developing ADA.

While NOR-DRUM evaluated only infliximab, some of its lessons may be applied to other DMARDs, Brun said. “We think that for other subcutaneously administered TNF inhibitors, you would probably see the same effect of proactive TDM, but we currently do not have data on that,” she said. A study similar to the NOR-DRUM design will evaluate this in Norway, Brun added.

She explained why the findings with infliximab may extend to adalimumab, which may be the second most immunogenic TNF inhibitor after infliximab. “The administration is different; it’s administered more often than infliximab; that would also make the results more uncertain to generalize to the other treatments, but I would guess there are also benefits of using TDM in other treatments.”
 

Potential Risks for TDM

Wallace has noted that TDM, with the current state of evidence, carries a number of potential risks. “The potential risks might be that you unnecessarily discontinue a medication because you detected an antibody, or the level seems low and you’re not able to get it higher, but the patient is otherwise doing fine,” he said. “You might end up increasing doses of the medicine that would put the patient at potentially increased risk of infection, as well as obviously more costs.”

That would also lead to more utilization of resources and costs, he said. “Some of those reasons are why there has been hesitation with therapeutic drug monitoring,” Wallace added.

A number of questions also surround the use of biosimilars and ADA levels, Wallace said. While a review of clinical trials found no meaningful differences in terms of immunogenicity between biosimilars and reference products, it did note discrepancies in how the agents were evaluated.
 

What DMARDs Are Most Suitable for TDM?

Petri said TDM would be useful for monitoring patients on mycophenolate mofetil. “A trough level can at least tell us if a patient is taking it,” she said. “Tacrolimus, used for lupus nephritis, has well-accepted peak and trough trends due to widespread use in transplant.”

Drugs with a wide variability in pharmacokinetics may also be suitable for TDM, Balevic said. That would include hydroxychloroquine, azathioprine, mycophenolate, or even cyclophosphamide. Drugs that have a narrow therapeutic index, such as tacrolimus, cyclosporine, or again, cyclophosphamide, might also be amenable to TDM, he said.
 

 

 

Why Do TDM?

“The two main reasons why somebody would go on to detect drug levels: The first may be to assess medication adherence, and this applies virtually to any drug that rheumatologists use; the second reason is to optimize dozing, either for efficacy purposes or to prevent toxicity,” Balevic said.

“When it comes to optimizing dosing, you should really think about TDM as one tool in our toolbelt,” he said.

Dose is “just a surrogate,” he said. “When we prescribe a drug, what truly matters is the amount of active unbound drug at the site of action. That’s what’s responsible for a drug’s pharmacologic effect.”

However, the same dose, or even the same weight-based dose, does not necessarily mean similar patients will achieve the same amount of exposure to the drug, but TDM can help determine that, he said.
 

What’s Next

Studies into the use of TDM in rheumatology are ongoing. Brun said her group is currently conducting a cost-effective analysis from the NOR-DRUM trials.

“There’s going to be more studies coming out in the next few years, looking at what impact the use of therapeutic drug monitoring might have on outcomes,” Wallace said.

“As we accumulate more and more evidence, we might see organizations like ACR and EULAR start to weigh in more on whether or not therapeutic drug monitoring can or should be used.”

Petri, Brun, and Garg had no relevant disclosures. Wallace disclosed financial relationships with Amgen, Alexion, BioCryst, Boehringer Ingelheim, Bristol Myers Squibb, Medpace, Novartis, Sanofi, Viela Bio, Visterra, Xencor, and Zenas. Balevic disclosed relationships with the National Institutes of Health, the Childhood Arthritis and Rheumatology Research Alliance, and UCB.
 

A version of this article appeared on Medscape.com.

Therapeutic drug monitoring (TDM) — the practice of using laboratory testing to measure blood levels of drugs — has garnered growing interest among rheumatologists in managing patients on disease-modifying antirheumatic drugs (DMARDs), but that hasn’t exactly translated to widespread practice.

While TDM has made some inroads with patients taking monoclonal antibodies, specifically infliximab, its uptake has encountered a number of headwinds, not the least of which is a lack of evidence and clinical guidelines, uneven access and standards of assays, and even an uncertainty about how to interpret laboratory results.

“In some fields, such as neurology, TDM is accepted for antiepileptics,” Michelle Petri, MD, MPH, director of the Johns Hopkins Lupus Center, Baltimore, told Medscape Medical News. “In rheumatology, though, TDM is underutilized and not adequately championed by the American College of Rheumatology.”

Johns Hopkins University
Dr. Michelle Petri


She noted that TDM is most acutely needed for management of systemic lupus erythematosus, where nonadherence is a major problem. “Whole blood hydroxychloroquine monitoring has proven beneficial for identifying nonadherence, but also to pinpoint patients who are on too much, a risk factor for retinopathy,” Petri said.

“The state of therapeutic drug monitoring in general has been interesting when you think about its use in autoimmune disease because it’s very much used in gastroenterology and it’s been much less used in rheumatology,” Zachary Wallace, MD, codirector of the Rheumatology & Allergy Clinical Epidemiology Research Center at Massachusetts General Hospital in Boston, told Medscape Medical News. “Some of that may have to do with the interpretation of the availability of evidence, but I think it’s something clinicians will come across more and more often in their practice and wondering what its role might be,” he added.

Dr. Zachary S. Wallace


The movement to precision medicine also portends to grow interest in TDM in rheumatology, said Stephen Balevic, MD, PhD, a rheumatologist and pharmacologist at Duke University and director of pharmacometrics at the Duke Clinical Research Institute, Durham, North Carolina.

Duke University
Dr. Stephen Balevic


“It’s a very exciting time for rheumatologists to begin thinking outside box on what it means to study precision medicine, and I think pharmacology is one of the most overlooked aspects of precision medicine in our community,” he told Medscape Medical News.

That may be because older DMARDs, namely hydroxychloroquine and methotrexate, came to market when regulatory requirements were different than they are today, Balevic said. “Many of the older conventional DMARDs were discovered incidentally and never really had the traditional pharmacokinetic-pharmacodynamic trials to determine optimal dosing, or perhaps that was extrapolated from other populations,” he said.

So, the “one-size-fits-all” approach does not work for prescribing older or even some of the newer DMARDs for rheumatologic disorders, Balevic said.
 

Reactive vs Proactive TDM

Among the few trials that examined TDM in rheumatology patients are the NOR-DRUM A and B trials in Norway. Marthe Brun, MD, PhD, a rheumatologist at the Center for Treatment of Rheumatic and Musculoskeletal Diseases at Diakonhjemmet Hospital in Oslo, Norway, and a coauthor of the NOR-DRUM trials, told Medscape Medical News that the trials found an overall benefit to TDM during infliximab maintenance therapy. The trials included not only patients with inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, and spondyloarthritis) but also patients with inflammatory bowel disease and psoriasis, Brun said.

Nicolas Tourrenc
Dr. Marthe Brun

Brun explained that two types of TDM exist: Reactive and proactive. “Reactive TDM is when you use it to find the reason for a patient having a flare or disease worsening,” she told Medscape Medical News. “Proactive TDM would be regular testing to keep a patient within a therapeutic range to avoid flare because of low drug concentrations.”

Gastroenterologists are more inclined than rheumatologists and dermatologists to use reactive TDM, she said. “There have been no recommendations regarding proactive TDM because of the lack of data.”

In Europe, Wallace noted that European Alliance of Associations for Rheumatology (EULAR) recommendations consider the use of TDM in specific clinical scenarios, such as when treatment fails or to evaluate immunogenicity of a reaction, but they are limited. The American College of Rheumatology (ACR) does not have any recommendations for the use of TDM.

Based on the NOR-DRUM trials, rheumatologists in Norway have published their own guidelines for TDM for infliximab in rheumatologic disease, but they are in Norwegian and have not yet been taken up by EULAR, Brun noted. Publication of those recommendations in English is pending, she said.

“But for other subcutaneously administered TNF inhibitors, there’s a lack of data,” Brun added.
 

The State of the Evidence

NOR-DRUM A did not support the use of proactive TDM in the 30-week induction period as a way to improve disease remission in patients with chronic immune-mediated inflammatory disease. NOR-DRUM B, which evaluated TDM over a year, found the approach was more likely to lead to sustained disease control for that period.

Brun’s group recently published an analysis of the trials. “We did not find an overall effect during the initial phase of the treatment, the first 30 weeks,” she told Medscape Medical News.

“Then we looked at subgroups, and we found that the patients that developed antidrug antibodies [ADAs] had an effect, and ADA are associated with poorer outcomes as well as infusion reactions for patients treated with infliximab.

“So, it’s probably a benefit to be able to detect these ADA early before the patient experiences a disease flare or infusion reaction,” Brun added. “It facilitates for the clinician to take action to, for example, increase the dosing or switch therapy.”

However, the quality of the data supporting TDM in rheumatology is limited, Balevic said. “There’s very good observational data, but we have very few clinical trials that actually leverage TDM,” he said.

NOR-DRUM is the exception, he said. “Ideally, we need more of these dose-optimization trials to help guide clinical practice,” he said. But it stands alone.

Wallace noted several take-home messages from the NOR-DRUM trials, namely that using TDM to prevent ADA may be more effective during the maintenance phase of treatment than the induction phase. However, he said, the evidence is still emerging.

“It’s reasonable to say that we’re at an early stage of the evidence,” he said. “If you look at the large trials that have been done in rheumatology, they’ve combined patients with many different types of conditions, and a lot of our recommendations in rheumatology are disease-specific — in rheumatoid arthritis, in vasculitis. There’s a lack of data in specific diseases to guide or examine what the role of TDM might be.”

In the meantime, no fewer than four clinical trials evaluating TDM with tumor necrosis factor (TNF) inhibitors in rheumatologic diseases are ongoing or have completed but not yet released results, according to Wallace. Three Adalimumab Drug Optimization in Rheumatoid Arthritis trials are underway: The first is evaluating drug tapering vs disease activity score; the second is testing low or usual drug concentration; and the third is studying switches to etanercept or a non-TNF inhibitor drug (abatacept, rituximab, tocilizumab, or sarilumab) in patients failing treatment. Another trial called Tocilizumab Drug Levels to Optimized Treatment in RA is randomizing patients with high drug levels to dose maintenance or dose reduction. All four trials are sponsored by the Reade Rheumatology Research Institute, Amsterdam, the Netherlands.

Until clearer answers emerge from clinical trials, a number of barriers to and questions about the potential for TDM in rheumatology persist.
 

 

 

Barriers to Wider Use of TDM

“The biggest barrier with TDM is simply just a lack of what to do with the data,” Balevic said. “The clinician needs clear-cut guidance on what to do with the drug level. So, in other words, what is the target concentration for the drug? And if that target is not the goal, how should that dose be adjusted?”

The optimal drug levels, particularly for the older conventional synthetic DMARDs, simply have not been validated by clinical trials, he said.

“Different studies may report different target drug levels, and this could be due to different underlying population, or a different matrix — a measure of whole blood vs plasma — or even the timing of the sample,” he said. Balevic led a pharmacokinetic study earlier this year that proposed an algorithm for determining the number of missed hydroxychloroquine doses.

“This really goes back to the clinician needing to draw on a lot of pharmacology training to interpret the literature,” Balevic added.

That gets to the need for more education among rheumatologists, as Brun pointed out. “The physician needs to be educated about therapeutic ranges, when to assess concentrations of drug antibodies, and how to react to the results,” Brun said.

Which ADAs to identify is also problematic. “For antidrug antibodies, it’s especially challenging because there are so many assay formats in use, and it’s a bit complicated to analyze these antidrug antibodies,” Brun said. “There’s no consensus on what calibrators to use, and there’s no standardization of how to report the results, so you can’t really compare results from different assays. You need to know what your laboratory is using and how to interpret results from that particular assay, so that’s a challenge.”

Variability in drug tolerance also exists across assays, Wallace noted. “One of the challenges that have come up in the discussion of therapeutic drug monitoring is understanding what the target level is,” he said. “Defining what the target level might be for a specific condition is not something that’s well understood.”

Breaking down the science, he noted that an ADA can bind to a monoclonal antibody, forming an immune complex that avoids detection. Drug-sensitive assays may detect high concentrations of ADAs but miss low or moderate concentrations. Drug-tolerant assays may be more likely to detect low concentrations at ADAs, but the clinical significance is unclear.
 

Cost and Patient Trust as Barriers

“The costs vary a lot from assay to assay,” Brun said. “Some commercial assays can be really expensive.” In Norway, a dedicated lab with its own in-house assays helps to keep costs down, she said.

But that’s not the case in the United States, where insurance coverage can be a question mark, Shivani Garg, MD, a rheumatologist at the University of Wisconsin (UW)-Madison and director of the UW-Madison Health Lupus and Lupus Nephritis Clinics, told Medscape Medical News. “A lot of insurances are covering therapeutic drug monitoring, but for the high-deductible plans, there should be a way to offer these important tests to patients at a lower cost or figure out a way for coverage for those patients so that they can show that there are benefits of therapeutic drug monitoring without being sent a really big bill,” she said.

UW Health
Dr. Shivani Garg


Patient trust could be another potential barrier, Garg said. “A lot of times there is not shared decision-making involved in why this test is being done, how those tests will help us as clinicians, and [patients’ understanding of] the use of the medicine,” Garg said.

“If the shared decision-making to build trust is not there, a lot of times patients worry that they’re being under surveillance or they’re being watched, so that might add to the lack of trust in the core issues that are critical threats to patients with chronic diseases because this is a lifelong partnership,” she said.

Convenience is another issue. “Particularly with mycophenolate levels, a lot of studies have used area under the curve, so getting an area under the curve level over a period of 12 hours would require several samples,” Garg said.

Testing protocols are also uncertain, Garg added. “A few data points ... are missing, like how we use the data over time,” she said. “If you do it for a given patient over several years, how often should you do it? How often do the levels fluctuate? How are the data used to inform dosing changes or monitoring changes?

“When those pieces are put together, then we are more likely to build up an intervention that clinicians can use in clinical practice, so they know how to order it and how frequently do it — every 6 months, 3 months, or every month. And then, over a period of time, how to adjust the dosing. That’s the big question.”
 

 

 

Who May Benefit Most From TDM?

In the NOR-DRUM trials, patients at risk of developing ADA early on, before a disease flare or infusion reaction, seemed to benefit most from TDM. But who are those patients?

“We looked at risk factors for developing antidrug antibodies, and we found that patients with high disease activity when starting treatment, smokers, and patients with rheumatoid arthritis had a higher risk than other patients, as did patients who are not using concomitant immunosuppressive therapy,” Brun said.

“During treatment, we also found that low serum drug levels and drug holidays above 11 weeks were also risk factors,” she added.

The NOR-DRUM researchers also evaluated genetic risk factors and found that patients with the HLA-DQ2 gene variant were also at increased risk of developing ADA.

While NOR-DRUM evaluated only infliximab, some of its lessons may be applied to other DMARDs, Brun said. “We think that for other subcutaneously administered TNF inhibitors, you would probably see the same effect of proactive TDM, but we currently do not have data on that,” she said. A study similar to the NOR-DRUM design will evaluate this in Norway, Brun added.

She explained why the findings with infliximab may extend to adalimumab, which may be the second most immunogenic TNF inhibitor after infliximab. “The administration is different; it’s administered more often than infliximab; that would also make the results more uncertain to generalize to the other treatments, but I would guess there are also benefits of using TDM in other treatments.”
 

Potential Risks for TDM

Wallace has noted that TDM, with the current state of evidence, carries a number of potential risks. “The potential risks might be that you unnecessarily discontinue a medication because you detected an antibody, or the level seems low and you’re not able to get it higher, but the patient is otherwise doing fine,” he said. “You might end up increasing doses of the medicine that would put the patient at potentially increased risk of infection, as well as obviously more costs.”

That would also lead to more utilization of resources and costs, he said. “Some of those reasons are why there has been hesitation with therapeutic drug monitoring,” Wallace added.

A number of questions also surround the use of biosimilars and ADA levels, Wallace said. While a review of clinical trials found no meaningful differences in terms of immunogenicity between biosimilars and reference products, it did note discrepancies in how the agents were evaluated.
 

What DMARDs Are Most Suitable for TDM?

Petri said TDM would be useful for monitoring patients on mycophenolate mofetil. “A trough level can at least tell us if a patient is taking it,” she said. “Tacrolimus, used for lupus nephritis, has well-accepted peak and trough trends due to widespread use in transplant.”

Drugs with a wide variability in pharmacokinetics may also be suitable for TDM, Balevic said. That would include hydroxychloroquine, azathioprine, mycophenolate, or even cyclophosphamide. Drugs that have a narrow therapeutic index, such as tacrolimus, cyclosporine, or again, cyclophosphamide, might also be amenable to TDM, he said.
 

 

 

Why Do TDM?

“The two main reasons why somebody would go on to detect drug levels: The first may be to assess medication adherence, and this applies virtually to any drug that rheumatologists use; the second reason is to optimize dozing, either for efficacy purposes or to prevent toxicity,” Balevic said.

“When it comes to optimizing dosing, you should really think about TDM as one tool in our toolbelt,” he said.

Dose is “just a surrogate,” he said. “When we prescribe a drug, what truly matters is the amount of active unbound drug at the site of action. That’s what’s responsible for a drug’s pharmacologic effect.”

However, the same dose, or even the same weight-based dose, does not necessarily mean similar patients will achieve the same amount of exposure to the drug, but TDM can help determine that, he said.
 

What’s Next

Studies into the use of TDM in rheumatology are ongoing. Brun said her group is currently conducting a cost-effective analysis from the NOR-DRUM trials.

“There’s going to be more studies coming out in the next few years, looking at what impact the use of therapeutic drug monitoring might have on outcomes,” Wallace said.

“As we accumulate more and more evidence, we might see organizations like ACR and EULAR start to weigh in more on whether or not therapeutic drug monitoring can or should be used.”

Petri, Brun, and Garg had no relevant disclosures. Wallace disclosed financial relationships with Amgen, Alexion, BioCryst, Boehringer Ingelheim, Bristol Myers Squibb, Medpace, Novartis, Sanofi, Viela Bio, Visterra, Xencor, and Zenas. Balevic disclosed relationships with the National Institutes of Health, the Childhood Arthritis and Rheumatology Research Alliance, and UCB.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article