Atraumatic splenic rupture in acute myeloid leukemia

Article Type
Changed
Fri, 11/01/2019 - 06:54
Display Headline
Atraumatic splenic rupture in acute myeloid leukemia

A 50-year-old man with acute myeloid leukemia (AML) with a complex karyotype was admitted to the hospital with several days of dull, left-sided abdominal pain. His most recent bone marrow biopsy showed 30% blasts, and immunophenotyping was suggestive of persistent AML (CD13+, CD34+, CD117+, CD33+, CD7+, MPO–). He was on treatment with venetoclax and cytarabine after induction therapy had failed.

On admission, his heart rate was 101 beats per minute and his blood pressure was 122/85 mm Hg. Abdominal examination revealed mild distention, hepatomegaly, and previously known massive splenomegaly, with the splenic tip extending to the umbilicus, and mild tenderness.

Results of laboratory testing revealed persistent pancytopenia:

  • Hemoglobin level 6.8 g/dL (reference range 13.0–17.0)
  • Total white blood cell count 0.8 × 109/L (4.5–11.0)
  • Platelet count 8 × 109/L (150–400).

Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Computed tomography (CT) of the abdomen (Figure 1) showed splenomegaly (the spleen measured 26 cm, unchanged from before), but without evidence of infarct or other acute abnormality.

The next day, he developed severe, acute-onset left-sided abdominal pain. A check of vital signs showed worsening sinus tachycardia at 132 beats per minute and a drop in blood pressure to 90/56 mm Hg. He had worsening diffuse abdominal tenderness with sluggish bowel sounds. His hemoglobin concentration was 6.4 g/dL and platelet count 12 × 109/L.

Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Urgent CT of the abdomen with contrast (Figure 2) showed heterogeneous splenic enhancement suggestive of intrasplenic hemorrhage, irregularity of the margins suggestive of rupture, and moderate hemoperitoneum.

He received supportive transfusions of blood products. Surgical exploration was deemed risky, given his overall condition and severe thrombocytopenia. Splenic angiography showed no evidence of pseudoaneurysm or focal contrast extravasation. He underwent empiric embolization of the midsplenic artery, after which his hemodynamic status stabilized. He died 4 weeks later of acute respiratory failure from pneumonia.

SPLENIC RUPTURE IN AML

Atraumatic splenic rupture is rare but potentially life-threatening, especially if the diagnosis is delayed. Conditions that can cause splenomegaly and predispose to rupture include infection (infectious mononucleosis, malaria), malignant hematologic disorders (leukemia, lymphoma), other neoplasms, and amyloidosis.1

The literature includes a few reports of splenic rupture in patients with AML.2–4 The proposed mechanisms include bleeding from infarction sites or tumor foci, dysregulated hemostasis, and leukostasis.

The classic presentation of splenic rupture is acute-onset left-sided abdominal pain associated with hypotension and decreasing hemoglobin levels. CT of the abdomen is confirmatory, and resuscitation with crystalloids and blood products is a vital initial step in management. Choice of treatment depends on the patient’s surgical risk and hemodynamic status; options include conservative medical management, splenic artery embolization, and exploratory laparotomy.

In patients with AML and splenomegaly presenting with acute abdominal pain, clinicians need to be aware of this potential hematologic emergency.

References
  1. Renzulli P, Hostettler A, Schoepfer AM, Gloor B, Candinas D. Systematic review of atraumatic splenic rupture. Br J Surg 2009; 96(10):1114–1121. doi:10.1002/bjs.6737
  2. Gardner JA, Bao L, Ornstein DL. Spontaneous splenic rupture in acute myeloid leukemia with mixed-lineage leukemia gene rearrangement. Med Rep Case Stud 2016; 1:119. doi:10.4172/2572-5130.1000119
  3. Zeidan AM, Mitchell M, Khatri R, et al. Spontaneous splenic rupture during induction chemotherapy for acute myeloid leukemia. Leuk Lymphoma 2014; 55(1):209–212. doi:10.3109/10428194.2013.796060
  4. Fahmi Y, Elabbasi T, Khaiz D, et al. Splenic spontaneous rupture associated with acute myeloïd leukemia: report of a case and literature review. Surgery Curr Res 2014; 4:170. doi:10.4172/2161-1076.1000170
Article PDF
Author and Disclosure Information

Karthik Gnanapandithan, MD, MS
Department of Internal Medicine, Yale New Haven Hospital; Assistant Clinical Professor, Department of Medicine, Yale University School of Medicine, New Haven, CT

Address: Karthik Gnanapandithan, MD, MS, Department of Internal Medicine, Yale New Haven Hospital, 20 York Street, CB2041, New Haven, CT 06510; [email protected]

Issue
Cleveland Clinic Journal of Medicine - 86(11)
Publications
Topics
Page Number
715-716
Legacy Keywords
spleen, splenic rupture, acute myeloid leukemia, AML, computed tomography, CT, splenomegaly, anemia, pancytopenia, intraparenchymal hemorrhage, hemoperitoneum, Karthik Gnanapandithan
Sections
Author and Disclosure Information

Karthik Gnanapandithan, MD, MS
Department of Internal Medicine, Yale New Haven Hospital; Assistant Clinical Professor, Department of Medicine, Yale University School of Medicine, New Haven, CT

Address: Karthik Gnanapandithan, MD, MS, Department of Internal Medicine, Yale New Haven Hospital, 20 York Street, CB2041, New Haven, CT 06510; [email protected]

Author and Disclosure Information

Karthik Gnanapandithan, MD, MS
Department of Internal Medicine, Yale New Haven Hospital; Assistant Clinical Professor, Department of Medicine, Yale University School of Medicine, New Haven, CT

Address: Karthik Gnanapandithan, MD, MS, Department of Internal Medicine, Yale New Haven Hospital, 20 York Street, CB2041, New Haven, CT 06510; [email protected]

Article PDF
Article PDF
Related Articles

A 50-year-old man with acute myeloid leukemia (AML) with a complex karyotype was admitted to the hospital with several days of dull, left-sided abdominal pain. His most recent bone marrow biopsy showed 30% blasts, and immunophenotyping was suggestive of persistent AML (CD13+, CD34+, CD117+, CD33+, CD7+, MPO–). He was on treatment with venetoclax and cytarabine after induction therapy had failed.

On admission, his heart rate was 101 beats per minute and his blood pressure was 122/85 mm Hg. Abdominal examination revealed mild distention, hepatomegaly, and previously known massive splenomegaly, with the splenic tip extending to the umbilicus, and mild tenderness.

Results of laboratory testing revealed persistent pancytopenia:

  • Hemoglobin level 6.8 g/dL (reference range 13.0–17.0)
  • Total white blood cell count 0.8 × 109/L (4.5–11.0)
  • Platelet count 8 × 109/L (150–400).

Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Computed tomography (CT) of the abdomen (Figure 1) showed splenomegaly (the spleen measured 26 cm, unchanged from before), but without evidence of infarct or other acute abnormality.

The next day, he developed severe, acute-onset left-sided abdominal pain. A check of vital signs showed worsening sinus tachycardia at 132 beats per minute and a drop in blood pressure to 90/56 mm Hg. He had worsening diffuse abdominal tenderness with sluggish bowel sounds. His hemoglobin concentration was 6.4 g/dL and platelet count 12 × 109/L.

Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Urgent CT of the abdomen with contrast (Figure 2) showed heterogeneous splenic enhancement suggestive of intrasplenic hemorrhage, irregularity of the margins suggestive of rupture, and moderate hemoperitoneum.

He received supportive transfusions of blood products. Surgical exploration was deemed risky, given his overall condition and severe thrombocytopenia. Splenic angiography showed no evidence of pseudoaneurysm or focal contrast extravasation. He underwent empiric embolization of the midsplenic artery, after which his hemodynamic status stabilized. He died 4 weeks later of acute respiratory failure from pneumonia.

SPLENIC RUPTURE IN AML

Atraumatic splenic rupture is rare but potentially life-threatening, especially if the diagnosis is delayed. Conditions that can cause splenomegaly and predispose to rupture include infection (infectious mononucleosis, malaria), malignant hematologic disorders (leukemia, lymphoma), other neoplasms, and amyloidosis.1

The literature includes a few reports of splenic rupture in patients with AML.2–4 The proposed mechanisms include bleeding from infarction sites or tumor foci, dysregulated hemostasis, and leukostasis.

The classic presentation of splenic rupture is acute-onset left-sided abdominal pain associated with hypotension and decreasing hemoglobin levels. CT of the abdomen is confirmatory, and resuscitation with crystalloids and blood products is a vital initial step in management. Choice of treatment depends on the patient’s surgical risk and hemodynamic status; options include conservative medical management, splenic artery embolization, and exploratory laparotomy.

In patients with AML and splenomegaly presenting with acute abdominal pain, clinicians need to be aware of this potential hematologic emergency.

A 50-year-old man with acute myeloid leukemia (AML) with a complex karyotype was admitted to the hospital with several days of dull, left-sided abdominal pain. His most recent bone marrow biopsy showed 30% blasts, and immunophenotyping was suggestive of persistent AML (CD13+, CD34+, CD117+, CD33+, CD7+, MPO–). He was on treatment with venetoclax and cytarabine after induction therapy had failed.

On admission, his heart rate was 101 beats per minute and his blood pressure was 122/85 mm Hg. Abdominal examination revealed mild distention, hepatomegaly, and previously known massive splenomegaly, with the splenic tip extending to the umbilicus, and mild tenderness.

Results of laboratory testing revealed persistent pancytopenia:

  • Hemoglobin level 6.8 g/dL (reference range 13.0–17.0)
  • Total white blood cell count 0.8 × 109/L (4.5–11.0)
  • Platelet count 8 × 109/L (150–400).

Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Figure 1. Coronal (left) and transverse (right) views on initial computed tomography of the abdomen without contrast showed massive splenomegaly (white arrow).
Computed tomography (CT) of the abdomen (Figure 1) showed splenomegaly (the spleen measured 26 cm, unchanged from before), but without evidence of infarct or other acute abnormality.

The next day, he developed severe, acute-onset left-sided abdominal pain. A check of vital signs showed worsening sinus tachycardia at 132 beats per minute and a drop in blood pressure to 90/56 mm Hg. He had worsening diffuse abdominal tenderness with sluggish bowel sounds. His hemoglobin concentration was 6.4 g/dL and platelet count 12 × 109/L.

Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Figure 2. On repeat computed tomography with contrast, coronal (left) and transverse (right) views showed irregular splenic margins (red arrows), intraparenchymal hemorrhages (black arrows), and hemoperitoneum (white arrows).
Urgent CT of the abdomen with contrast (Figure 2) showed heterogeneous splenic enhancement suggestive of intrasplenic hemorrhage, irregularity of the margins suggestive of rupture, and moderate hemoperitoneum.

He received supportive transfusions of blood products. Surgical exploration was deemed risky, given his overall condition and severe thrombocytopenia. Splenic angiography showed no evidence of pseudoaneurysm or focal contrast extravasation. He underwent empiric embolization of the midsplenic artery, after which his hemodynamic status stabilized. He died 4 weeks later of acute respiratory failure from pneumonia.

SPLENIC RUPTURE IN AML

Atraumatic splenic rupture is rare but potentially life-threatening, especially if the diagnosis is delayed. Conditions that can cause splenomegaly and predispose to rupture include infection (infectious mononucleosis, malaria), malignant hematologic disorders (leukemia, lymphoma), other neoplasms, and amyloidosis.1

The literature includes a few reports of splenic rupture in patients with AML.2–4 The proposed mechanisms include bleeding from infarction sites or tumor foci, dysregulated hemostasis, and leukostasis.

The classic presentation of splenic rupture is acute-onset left-sided abdominal pain associated with hypotension and decreasing hemoglobin levels. CT of the abdomen is confirmatory, and resuscitation with crystalloids and blood products is a vital initial step in management. Choice of treatment depends on the patient’s surgical risk and hemodynamic status; options include conservative medical management, splenic artery embolization, and exploratory laparotomy.

In patients with AML and splenomegaly presenting with acute abdominal pain, clinicians need to be aware of this potential hematologic emergency.

References
  1. Renzulli P, Hostettler A, Schoepfer AM, Gloor B, Candinas D. Systematic review of atraumatic splenic rupture. Br J Surg 2009; 96(10):1114–1121. doi:10.1002/bjs.6737
  2. Gardner JA, Bao L, Ornstein DL. Spontaneous splenic rupture in acute myeloid leukemia with mixed-lineage leukemia gene rearrangement. Med Rep Case Stud 2016; 1:119. doi:10.4172/2572-5130.1000119
  3. Zeidan AM, Mitchell M, Khatri R, et al. Spontaneous splenic rupture during induction chemotherapy for acute myeloid leukemia. Leuk Lymphoma 2014; 55(1):209–212. doi:10.3109/10428194.2013.796060
  4. Fahmi Y, Elabbasi T, Khaiz D, et al. Splenic spontaneous rupture associated with acute myeloïd leukemia: report of a case and literature review. Surgery Curr Res 2014; 4:170. doi:10.4172/2161-1076.1000170
References
  1. Renzulli P, Hostettler A, Schoepfer AM, Gloor B, Candinas D. Systematic review of atraumatic splenic rupture. Br J Surg 2009; 96(10):1114–1121. doi:10.1002/bjs.6737
  2. Gardner JA, Bao L, Ornstein DL. Spontaneous splenic rupture in acute myeloid leukemia with mixed-lineage leukemia gene rearrangement. Med Rep Case Stud 2016; 1:119. doi:10.4172/2572-5130.1000119
  3. Zeidan AM, Mitchell M, Khatri R, et al. Spontaneous splenic rupture during induction chemotherapy for acute myeloid leukemia. Leuk Lymphoma 2014; 55(1):209–212. doi:10.3109/10428194.2013.796060
  4. Fahmi Y, Elabbasi T, Khaiz D, et al. Splenic spontaneous rupture associated with acute myeloïd leukemia: report of a case and literature review. Surgery Curr Res 2014; 4:170. doi:10.4172/2161-1076.1000170
Issue
Cleveland Clinic Journal of Medicine - 86(11)
Issue
Cleveland Clinic Journal of Medicine - 86(11)
Page Number
715-716
Page Number
715-716
Publications
Publications
Topics
Article Type
Display Headline
Atraumatic splenic rupture in acute myeloid leukemia
Display Headline
Atraumatic splenic rupture in acute myeloid leukemia
Legacy Keywords
spleen, splenic rupture, acute myeloid leukemia, AML, computed tomography, CT, splenomegaly, anemia, pancytopenia, intraparenchymal hemorrhage, hemoperitoneum, Karthik Gnanapandithan
Legacy Keywords
spleen, splenic rupture, acute myeloid leukemia, AML, computed tomography, CT, splenomegaly, anemia, pancytopenia, intraparenchymal hemorrhage, hemoperitoneum, Karthik Gnanapandithan
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 10/28/2019 - 16:00
Un-Gate On Date
Mon, 10/28/2019 - 16:00
Use ProPublica
CFC Schedule Remove Status
Mon, 10/28/2019 - 16:00
Hide sidebar & use full width
render the right sidebar.
Article PDF Media