Education before Ramadan key to safe fasting with diabetes

Article Type
Changed
Fri, 07/07/2023 - 07:37

– An assessment of people with diabetes before Ramadan is vital so they can learn whether it is safe for them to fast, and if it is, how to do so without jeopardizing their health.

“With correct advice and support” from knowledgeable health care professionals “most people with type 2 diabetes can fast safely during Ramadan,” Mohamed Hassanein, MBChB, said at the annual scientific sessions of the American Diabetes Association.

One of the most authoritative guidelines on how people with diabetes can safely fast during Ramadan has come from a collaboration between the International Diabetes Federation and the Diabetes & Ramadan International Alliance, an organization chaired by Dr. Hassanein. The groups issued a revised practical guide in 2021 for Ramadan fasting for people with diabetes, an update of the first edition released in 2016. Dr. Hassanein was lead author of the 2016 guidelines and edited the 2021 revision.

The 2021 guidelines also led to an update of a risk stratification app available for free from the DAR. The app provides risk stratification for people with diabetes and helps them access educational material to guide them through their fasts.

Although the latest guidelines address fasting for people with type 1 or type 2 diabetes, far more people with type 2 diabetes are at risk from fasting, and not only because of the higher prevalence of type 2 diabetes.

Results from a global survey of Muslims with diabetes in 2020 showed that 30% of those with type 1 diabetes did not do any fasting during Ramadan, but the percentage of those abstaining from fasting dropped to 16% among Muslims with type 2 diabetes, Dr. Hassanein explained. (Survey results in 2013 from about 38,000 Muslims in 39 countries showed a median of 7% of all adults did no fasting during Ramadan.)
 

Risk assessment by app

Currently, the DAR app is available in Arabic, English, French, and Urdu (the primary language of Pakistan), with more languages being added soon, said Dr. Hassanein, an endocrinologist at Dubai Hospital and professor at Mohammed Bin-Rashid University of Medicine & Health Sciences in Dubai, United Arab Emirates.

The app and screening protocol divides people with diabetes into low-, moderate-, and high-risk subgroups, and those at high risk are advised to refrain from fasting.

But the many other people with diabetes who potentially could fast still face risks for hypoglycemia, hyperglycemia (from overindulgent break-fast meals), diabetic ketoacidosis, dehydration, and thrombosis. Individual risk for these adverse events depends on many factors, including age, duration of diabetes, diabetes type, treatments received, history of hypoglycemia, and diabetes complications.

Dr. Hassanein and colleagues documented the high rate of complications from fasting in a 2020 survey of more than 5,800 Muslims with type 2 diabetes from 20 countries. The results showed that 72% of survey participants had to interrupt their 30 days of daily fasting for at least 1 day because of a diabetes-related event, and an additional 28% had diabetes-triggered interruptions that totaled more than 7 days. About 7% required hospitalization or an emergency department visit, and 16% developed at least one episode of daytime hypoglycemia.
 

Endorsement from Islamic clerics

The recommended risk assessment, and resulting exemptions from fasting, have been endorsed by the Mofty of Egypt, a group of religious scholars who issue legal opinions interpreting Islamic law.

The Mofty agreed that fasting should be interrupted for cases of hypoglycemia with blood glucose less than 70 mg/dL, hyperglycemia with blood glucose greater than 300 mg/dL, symptoms of hypo- or hyperglycemia, or symptoms of acute illness. The Mofty also endorsed that although fasting is obligatory for low-risk adults with diabetes and preferred for those with moderate-risk diabetes, the latter group may consider not fasting out of concern for their safety or to take prescribed medications. People at high risk were deemed by the Mofty as individuals who should not fast because of the potential for harm.

Other notable 2020 survey findings included pre-Ramadan education being received by just 43% of the respondents, and no self-monitoring of blood glucose performed by about a quarter of the respondents.

The 2021 guidelines also include treatment recommendations, such as avoiding older, longer-acting sulfonylurea agents in people with type 2 diabetes. And having people achieve stable, guideline-directed dosages of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagonlike peptide-1 (GLP-1) agonists before Ramadan starts, rather than trying to initiate these agents during Ramadan. The guidelines also recommend reducing usual insulin doses when fasting during Ramadan.

Despite summarizing findings from several observational studies and surveys, research to date on how to optimize the safety of diabetes management during Ramadan fasting “is all very basic,” Dr. Hassanein said in an interview.

“We need more randomized clinical trials. We need more [data and evidence] for every single aspect” of management, he added.

The 2021 Diabetes and Ramadan Practical Guidelines were supported by an educational grant from Sanofi and Servier. Dr. Hassanein has reported being a speaker on behalf of Abbott, AstraZeneca, Boehringer Ingelheim, Lilly, Novo Nordisk, Sanofi, and Servier.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

– An assessment of people with diabetes before Ramadan is vital so they can learn whether it is safe for them to fast, and if it is, how to do so without jeopardizing their health.

“With correct advice and support” from knowledgeable health care professionals “most people with type 2 diabetes can fast safely during Ramadan,” Mohamed Hassanein, MBChB, said at the annual scientific sessions of the American Diabetes Association.

One of the most authoritative guidelines on how people with diabetes can safely fast during Ramadan has come from a collaboration between the International Diabetes Federation and the Diabetes & Ramadan International Alliance, an organization chaired by Dr. Hassanein. The groups issued a revised practical guide in 2021 for Ramadan fasting for people with diabetes, an update of the first edition released in 2016. Dr. Hassanein was lead author of the 2016 guidelines and edited the 2021 revision.

The 2021 guidelines also led to an update of a risk stratification app available for free from the DAR. The app provides risk stratification for people with diabetes and helps them access educational material to guide them through their fasts.

Although the latest guidelines address fasting for people with type 1 or type 2 diabetes, far more people with type 2 diabetes are at risk from fasting, and not only because of the higher prevalence of type 2 diabetes.

Results from a global survey of Muslims with diabetes in 2020 showed that 30% of those with type 1 diabetes did not do any fasting during Ramadan, but the percentage of those abstaining from fasting dropped to 16% among Muslims with type 2 diabetes, Dr. Hassanein explained. (Survey results in 2013 from about 38,000 Muslims in 39 countries showed a median of 7% of all adults did no fasting during Ramadan.)
 

Risk assessment by app

Currently, the DAR app is available in Arabic, English, French, and Urdu (the primary language of Pakistan), with more languages being added soon, said Dr. Hassanein, an endocrinologist at Dubai Hospital and professor at Mohammed Bin-Rashid University of Medicine & Health Sciences in Dubai, United Arab Emirates.

The app and screening protocol divides people with diabetes into low-, moderate-, and high-risk subgroups, and those at high risk are advised to refrain from fasting.

But the many other people with diabetes who potentially could fast still face risks for hypoglycemia, hyperglycemia (from overindulgent break-fast meals), diabetic ketoacidosis, dehydration, and thrombosis. Individual risk for these adverse events depends on many factors, including age, duration of diabetes, diabetes type, treatments received, history of hypoglycemia, and diabetes complications.

Dr. Hassanein and colleagues documented the high rate of complications from fasting in a 2020 survey of more than 5,800 Muslims with type 2 diabetes from 20 countries. The results showed that 72% of survey participants had to interrupt their 30 days of daily fasting for at least 1 day because of a diabetes-related event, and an additional 28% had diabetes-triggered interruptions that totaled more than 7 days. About 7% required hospitalization or an emergency department visit, and 16% developed at least one episode of daytime hypoglycemia.
 

Endorsement from Islamic clerics

The recommended risk assessment, and resulting exemptions from fasting, have been endorsed by the Mofty of Egypt, a group of religious scholars who issue legal opinions interpreting Islamic law.

The Mofty agreed that fasting should be interrupted for cases of hypoglycemia with blood glucose less than 70 mg/dL, hyperglycemia with blood glucose greater than 300 mg/dL, symptoms of hypo- or hyperglycemia, or symptoms of acute illness. The Mofty also endorsed that although fasting is obligatory for low-risk adults with diabetes and preferred for those with moderate-risk diabetes, the latter group may consider not fasting out of concern for their safety or to take prescribed medications. People at high risk were deemed by the Mofty as individuals who should not fast because of the potential for harm.

Other notable 2020 survey findings included pre-Ramadan education being received by just 43% of the respondents, and no self-monitoring of blood glucose performed by about a quarter of the respondents.

The 2021 guidelines also include treatment recommendations, such as avoiding older, longer-acting sulfonylurea agents in people with type 2 diabetes. And having people achieve stable, guideline-directed dosages of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagonlike peptide-1 (GLP-1) agonists before Ramadan starts, rather than trying to initiate these agents during Ramadan. The guidelines also recommend reducing usual insulin doses when fasting during Ramadan.

Despite summarizing findings from several observational studies and surveys, research to date on how to optimize the safety of diabetes management during Ramadan fasting “is all very basic,” Dr. Hassanein said in an interview.

“We need more randomized clinical trials. We need more [data and evidence] for every single aspect” of management, he added.

The 2021 Diabetes and Ramadan Practical Guidelines were supported by an educational grant from Sanofi and Servier. Dr. Hassanein has reported being a speaker on behalf of Abbott, AstraZeneca, Boehringer Ingelheim, Lilly, Novo Nordisk, Sanofi, and Servier.

A version of this article first appeared on Medscape.com.

– An assessment of people with diabetes before Ramadan is vital so they can learn whether it is safe for them to fast, and if it is, how to do so without jeopardizing their health.

“With correct advice and support” from knowledgeable health care professionals “most people with type 2 diabetes can fast safely during Ramadan,” Mohamed Hassanein, MBChB, said at the annual scientific sessions of the American Diabetes Association.

One of the most authoritative guidelines on how people with diabetes can safely fast during Ramadan has come from a collaboration between the International Diabetes Federation and the Diabetes & Ramadan International Alliance, an organization chaired by Dr. Hassanein. The groups issued a revised practical guide in 2021 for Ramadan fasting for people with diabetes, an update of the first edition released in 2016. Dr. Hassanein was lead author of the 2016 guidelines and edited the 2021 revision.

The 2021 guidelines also led to an update of a risk stratification app available for free from the DAR. The app provides risk stratification for people with diabetes and helps them access educational material to guide them through their fasts.

Although the latest guidelines address fasting for people with type 1 or type 2 diabetes, far more people with type 2 diabetes are at risk from fasting, and not only because of the higher prevalence of type 2 diabetes.

Results from a global survey of Muslims with diabetes in 2020 showed that 30% of those with type 1 diabetes did not do any fasting during Ramadan, but the percentage of those abstaining from fasting dropped to 16% among Muslims with type 2 diabetes, Dr. Hassanein explained. (Survey results in 2013 from about 38,000 Muslims in 39 countries showed a median of 7% of all adults did no fasting during Ramadan.)
 

Risk assessment by app

Currently, the DAR app is available in Arabic, English, French, and Urdu (the primary language of Pakistan), with more languages being added soon, said Dr. Hassanein, an endocrinologist at Dubai Hospital and professor at Mohammed Bin-Rashid University of Medicine & Health Sciences in Dubai, United Arab Emirates.

The app and screening protocol divides people with diabetes into low-, moderate-, and high-risk subgroups, and those at high risk are advised to refrain from fasting.

But the many other people with diabetes who potentially could fast still face risks for hypoglycemia, hyperglycemia (from overindulgent break-fast meals), diabetic ketoacidosis, dehydration, and thrombosis. Individual risk for these adverse events depends on many factors, including age, duration of diabetes, diabetes type, treatments received, history of hypoglycemia, and diabetes complications.

Dr. Hassanein and colleagues documented the high rate of complications from fasting in a 2020 survey of more than 5,800 Muslims with type 2 diabetes from 20 countries. The results showed that 72% of survey participants had to interrupt their 30 days of daily fasting for at least 1 day because of a diabetes-related event, and an additional 28% had diabetes-triggered interruptions that totaled more than 7 days. About 7% required hospitalization or an emergency department visit, and 16% developed at least one episode of daytime hypoglycemia.
 

Endorsement from Islamic clerics

The recommended risk assessment, and resulting exemptions from fasting, have been endorsed by the Mofty of Egypt, a group of religious scholars who issue legal opinions interpreting Islamic law.

The Mofty agreed that fasting should be interrupted for cases of hypoglycemia with blood glucose less than 70 mg/dL, hyperglycemia with blood glucose greater than 300 mg/dL, symptoms of hypo- or hyperglycemia, or symptoms of acute illness. The Mofty also endorsed that although fasting is obligatory for low-risk adults with diabetes and preferred for those with moderate-risk diabetes, the latter group may consider not fasting out of concern for their safety or to take prescribed medications. People at high risk were deemed by the Mofty as individuals who should not fast because of the potential for harm.

Other notable 2020 survey findings included pre-Ramadan education being received by just 43% of the respondents, and no self-monitoring of blood glucose performed by about a quarter of the respondents.

The 2021 guidelines also include treatment recommendations, such as avoiding older, longer-acting sulfonylurea agents in people with type 2 diabetes. And having people achieve stable, guideline-directed dosages of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagonlike peptide-1 (GLP-1) agonists before Ramadan starts, rather than trying to initiate these agents during Ramadan. The guidelines also recommend reducing usual insulin doses when fasting during Ramadan.

Despite summarizing findings from several observational studies and surveys, research to date on how to optimize the safety of diabetes management during Ramadan fasting “is all very basic,” Dr. Hassanein said in an interview.

“We need more randomized clinical trials. We need more [data and evidence] for every single aspect” of management, he added.

The 2021 Diabetes and Ramadan Practical Guidelines were supported by an educational grant from Sanofi and Servier. Dr. Hassanein has reported being a speaker on behalf of Abbott, AstraZeneca, Boehringer Ingelheim, Lilly, Novo Nordisk, Sanofi, and Servier.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

AT ADA 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

COORDINATE-Diabetes: A ‘wake-up call’ for many specialties

Article Type
Changed
Thu, 07/06/2023 - 13:53

Prescribing optimal medical therapy for people with both type 2 diabetes and cardiovascular disease can and should improve, speakers urged at the annual scientific sessions of the American Diabetes Association.

A symposium there focused on the recent randomized, controlled COORDINATE-Diabetes trial, which investigated a multipronged educational intervention in 43 U.S. cardiology clinics aimed at improving prescribing of guideline-recommended treatments for people with both type 2 diabetes and cardiovascular disease. Compared with clinics that were randomly assigned to offer usual care, the intervention significantly increased recommended prescribing of high-intensity statins, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ARBs), and sodium-glucose cotransporter 2 (SGLT2) inhibitors and/or glucagonlike peptide 1 receptor agonists (GLP-1 agonists).

COORDINATE-Diabetes was aimed at cardiologists, who typically see these patients more often than do endocrinologists. However, the results are relevant to all health care providers involved in the care of those with type 2 diabetes, speakers argued at the ADA symposium.

“This is a cardiology study. I think it’s safe to say that not too many of you in the room are cardiologists. So why would you care about the results of the COORDINATE study?” said Ildiko Lingvay, MD, of the University of Texas Southwestern Medical Center, Dallas.

Dr. Lingvay went on to outline reasons that the COORDINATE findings apply to endocrinologists and primary care clinicians, as well as cardiologists. For one, a study from her institution that was presented at a recent internal medicine meeting showed that, among more than 10,000 patients with type 2 diabetes and cardiovascular disease, heart failure, and/or chronic kidney disease, the proportion of patients who were prescribed the appropriate guideline-indicated medications was 20.1% for those seen in primary care, 24.8% in endocrinology, 20.3% in cardiology, and 18.3% in nephrology.

“So, we [endocrinologists are] not that much better [than other specialties]” at prescribing, she noted.

Mikhail N. Kosiborod, MD, in independent commentary called the COORDINATE trial and other similar initiatives “the beginning of care transformation.”

The COORDINATE-Diabetes results were originally presented in March at the joint scientific sessions of the American College of Cardiology and the World Heart Federation. The study was simultaneously published in JAMA.
 

‘They’ve shown we can do better’

Asked to comment, Robert H. Eckel, MD, said in an interview, “I look at COORDINATE as a wake-up call to the need for multispecialty approaches to people with type 2 diabetes and cardiovascular disease. ... I think it’s a step in the door.”

Dr. Eckel, who has long advocated for a new “cardiometabolic” physician subspecialty, noted that COORDINATE-Diabetes “stopped short of training health care providers in the science and medicine of cardio-renal-metabolic disease.”

Nonetheless, regarding the efforts toward a more coordinated system of care, Dr. Eckel said, “I support the concept, unequivocally.” He is associated with the division of endocrinology, metabolism, and diabetes, University of Colorado at Denver, Aurora.

But the cost-effectiveness of the intervention “requires time to assess,” he added. “We don’t know anything yet other than [that] managing drug administration to meet goals that relate to outcomes in people with diabetes can be accomplished. They’ve shown that we can do better.”
 

 

 

Why should you care about a cardiology study?

In COORDINATE-Diabetes, 20 of the centers were randomly assigned to provide five interventions: assess local barriers, develop care pathways, coordinate care, educate clinicians, report data back to the clinics, and provide tools for the 459 participants. The other 23 clinics, with 590 participants, were randomly assigned to provide usual care per practice guidelines.

The primary outcome was the proportion of participants that prescribed all three groups of the recommended therapies at 6-12 months after enrollment; 37.9% prescribed the intervention, and 14.5% provided usual care, a significant 23% difference (P < .001). The rate of prescriptions of each of the three individual drug groups was also significantly higher with the intervention. No differences were seen in cardiovascular risk factors or outcomes.

Dr. Lingvay pointed out that the interventions tested in COORDINATE – such as fact sheets and medication passports for patients, system audits and feedback, and provider grand rounds – can be extrapolated to any specialist setting.

She added that the long-held model of team-based care means that “everyone involved in the care of these patients is responsible for ensuring best practices are followed.” Part of that, she said, is helping other specialists prescribe the same medications and communicate across the team.

For all specialists, she recommends using the resources available on the COORDINATE website.
 

‘It’s not a silver bullet; additional solutions are needed’

In his commentary, Dr. Kosiborod, executive director of the Cardiometabolic Center Alliance, noted, “The treatments studied in COORDINATE represent the biggest advances in a generation when it comes to improving outcomes in this population. ... We’re living in a renaissance age with the number of tools we have available. ... It’s getting better every day.”

Moreover, all the relevant professional society guidelines now recommend GLP-1 agonists and SGLT2 inhibitors. “And yet, when we look, less than 1 in 10 patients with type 2 diabetes and atherosclerotic cardiovascular disease are getting appropriate recommended care. One of the lessons of COORDINATE is that this needs to change if we’re really going to improve our patients’ lives.”

The barriers aren’t simply financial, Dr. Kosiborod said. He pointed to two studies that show that even reducing out-of-pocket costs resulted in only modest increases in adherence.

Educational gaps on the part of both clinicians and patients also factor in, as do misaligned incentives.

“Clinicians get paid for how many things they do, not necessarily how well they do them. Everyone wants to do the right thing, but ultimately, incentives do matter,” he emphasized.

While the COORDINATE-Diabetes interventions addressed several of the barriers, two-thirds of the participants still did not receive optimal therapy.

“It’s not a silver bullet. ... Additional solutions are needed,” Dr. Kosiborod observed.
 

Transformation occurs ‘when the status quo is no longer acceptable’

Enter his institution, the Cardiometabolic Center Alliance, part of Saint Luke’s Mid-America Heart Institute. The nonprofit system, which currently has 16 subscribing clinics around the country, offers patient-centered “team-based, coordinated, comprehensive care” for people with both type 2 diabetes and cardiovascular disease.

The model is led by preventive cardiology in collaboration with endocrinology and primary care. Support staff includes advance practice providers, nurse navigators, certified diabetes educators, dietitians, and pharmacists. Individualized treatment plans aim for “aggressive secondary risk reduction,” Dr. Kosiborod noted.

Six-month data from the Cardiometabolic Center Alliance show an increase from 28.2% at baseline to 67.1% (P < .0001) in prescribing of a four-agent guideline-directed medical therapy “bundle,” including the three from COORDINATE-Diabetes plus an antiplatelet or anticoagulant agent. Dr. Kosiborod presented these data during the ADA meeting in a poster.

Remaining questions involve sustainability, scalability, and system transformation, which require buy-in from multiple stakeholders, he noted.

He contends that it can be done. A prior example of “rapid and lasting care transformation” occurred in November 2006 with the launch of the “Door to Balloon (D2B) Alliance for Quality,” which dramatically increased the proportion of patients who received primary angioplasty within 90 minutes at hospitals around the United States. From January 2005 to September 2010, those proportions rose from 27.3% to 70.4%.

“Patients were coming into the emergency department with myocardial infarctions and waiting for hours before the interventional cardiologist came. The community said we needed a nationwide quality improvement initiative. ... Almost every hospital in the country changed their systems of care. It was a huge national effort. ... When we no longer consider the status quo acceptable, we can actually make something very special happen very quickly.”

After the session, Dr. Kosiborod said in an interview that the Cardiometabolic Center Alliance is now gathering data to make the financial case for the approach.

“We’re trying to develop a model that tells the admins which patients will save money, because, of course, if you can create a financial incentive, it only makes it go faster. ... We want to synchronize it in the best way possible.”

Dr. Lingvay has receiving nonfinancial support and grants from Novo Nordisk, personal fees or nonfinancial support from Sanofi, Lilly, Boehringer Ingelheim, Merck/Pfizer, Mylan, AstraZeneca, Johnson & Johnson, Intercept, Target Pharma, Zealand, Shionogi, Carmot, Structure, Bayer, Mediflix, WebMD, GI Dynamics, Intarcia Therapeutics, Mannkind, Novartis, Structure Therapeutics, and Valeritas. Dr. Kosiborod is a consultant for Alnylam Pharmaceuticals, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Cytokinetics, Dexcom, Eli Lilly, ESPERION Therapeutics, Janssen Pharmaceuticals, Lexicon Pharmaceuticals, Merck, Novo Nordisk, Pharmacosmos, Pfizer, Sanofi, Vifor Pharma Management, and Youngene Therapeutics. He also receives research support from AstraZeneca and Boehringer Ingelheim. Dr. Eckel serves on consulting/advisory boards for Amgen, Arrowhead, Better, Ionis, Kowa, Lexicon, Novo Nordisk, Precision BioSciences, The Healthy Aging Company, Tolmar, and Weight Watchers.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

Prescribing optimal medical therapy for people with both type 2 diabetes and cardiovascular disease can and should improve, speakers urged at the annual scientific sessions of the American Diabetes Association.

A symposium there focused on the recent randomized, controlled COORDINATE-Diabetes trial, which investigated a multipronged educational intervention in 43 U.S. cardiology clinics aimed at improving prescribing of guideline-recommended treatments for people with both type 2 diabetes and cardiovascular disease. Compared with clinics that were randomly assigned to offer usual care, the intervention significantly increased recommended prescribing of high-intensity statins, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ARBs), and sodium-glucose cotransporter 2 (SGLT2) inhibitors and/or glucagonlike peptide 1 receptor agonists (GLP-1 agonists).

COORDINATE-Diabetes was aimed at cardiologists, who typically see these patients more often than do endocrinologists. However, the results are relevant to all health care providers involved in the care of those with type 2 diabetes, speakers argued at the ADA symposium.

“This is a cardiology study. I think it’s safe to say that not too many of you in the room are cardiologists. So why would you care about the results of the COORDINATE study?” said Ildiko Lingvay, MD, of the University of Texas Southwestern Medical Center, Dallas.

Dr. Lingvay went on to outline reasons that the COORDINATE findings apply to endocrinologists and primary care clinicians, as well as cardiologists. For one, a study from her institution that was presented at a recent internal medicine meeting showed that, among more than 10,000 patients with type 2 diabetes and cardiovascular disease, heart failure, and/or chronic kidney disease, the proportion of patients who were prescribed the appropriate guideline-indicated medications was 20.1% for those seen in primary care, 24.8% in endocrinology, 20.3% in cardiology, and 18.3% in nephrology.

“So, we [endocrinologists are] not that much better [than other specialties]” at prescribing, she noted.

Mikhail N. Kosiborod, MD, in independent commentary called the COORDINATE trial and other similar initiatives “the beginning of care transformation.”

The COORDINATE-Diabetes results were originally presented in March at the joint scientific sessions of the American College of Cardiology and the World Heart Federation. The study was simultaneously published in JAMA.
 

‘They’ve shown we can do better’

Asked to comment, Robert H. Eckel, MD, said in an interview, “I look at COORDINATE as a wake-up call to the need for multispecialty approaches to people with type 2 diabetes and cardiovascular disease. ... I think it’s a step in the door.”

Dr. Eckel, who has long advocated for a new “cardiometabolic” physician subspecialty, noted that COORDINATE-Diabetes “stopped short of training health care providers in the science and medicine of cardio-renal-metabolic disease.”

Nonetheless, regarding the efforts toward a more coordinated system of care, Dr. Eckel said, “I support the concept, unequivocally.” He is associated with the division of endocrinology, metabolism, and diabetes, University of Colorado at Denver, Aurora.

But the cost-effectiveness of the intervention “requires time to assess,” he added. “We don’t know anything yet other than [that] managing drug administration to meet goals that relate to outcomes in people with diabetes can be accomplished. They’ve shown that we can do better.”
 

 

 

Why should you care about a cardiology study?

In COORDINATE-Diabetes, 20 of the centers were randomly assigned to provide five interventions: assess local barriers, develop care pathways, coordinate care, educate clinicians, report data back to the clinics, and provide tools for the 459 participants. The other 23 clinics, with 590 participants, were randomly assigned to provide usual care per practice guidelines.

The primary outcome was the proportion of participants that prescribed all three groups of the recommended therapies at 6-12 months after enrollment; 37.9% prescribed the intervention, and 14.5% provided usual care, a significant 23% difference (P < .001). The rate of prescriptions of each of the three individual drug groups was also significantly higher with the intervention. No differences were seen in cardiovascular risk factors or outcomes.

Dr. Lingvay pointed out that the interventions tested in COORDINATE – such as fact sheets and medication passports for patients, system audits and feedback, and provider grand rounds – can be extrapolated to any specialist setting.

She added that the long-held model of team-based care means that “everyone involved in the care of these patients is responsible for ensuring best practices are followed.” Part of that, she said, is helping other specialists prescribe the same medications and communicate across the team.

For all specialists, she recommends using the resources available on the COORDINATE website.
 

‘It’s not a silver bullet; additional solutions are needed’

In his commentary, Dr. Kosiborod, executive director of the Cardiometabolic Center Alliance, noted, “The treatments studied in COORDINATE represent the biggest advances in a generation when it comes to improving outcomes in this population. ... We’re living in a renaissance age with the number of tools we have available. ... It’s getting better every day.”

Moreover, all the relevant professional society guidelines now recommend GLP-1 agonists and SGLT2 inhibitors. “And yet, when we look, less than 1 in 10 patients with type 2 diabetes and atherosclerotic cardiovascular disease are getting appropriate recommended care. One of the lessons of COORDINATE is that this needs to change if we’re really going to improve our patients’ lives.”

The barriers aren’t simply financial, Dr. Kosiborod said. He pointed to two studies that show that even reducing out-of-pocket costs resulted in only modest increases in adherence.

Educational gaps on the part of both clinicians and patients also factor in, as do misaligned incentives.

“Clinicians get paid for how many things they do, not necessarily how well they do them. Everyone wants to do the right thing, but ultimately, incentives do matter,” he emphasized.

While the COORDINATE-Diabetes interventions addressed several of the barriers, two-thirds of the participants still did not receive optimal therapy.

“It’s not a silver bullet. ... Additional solutions are needed,” Dr. Kosiborod observed.
 

Transformation occurs ‘when the status quo is no longer acceptable’

Enter his institution, the Cardiometabolic Center Alliance, part of Saint Luke’s Mid-America Heart Institute. The nonprofit system, which currently has 16 subscribing clinics around the country, offers patient-centered “team-based, coordinated, comprehensive care” for people with both type 2 diabetes and cardiovascular disease.

The model is led by preventive cardiology in collaboration with endocrinology and primary care. Support staff includes advance practice providers, nurse navigators, certified diabetes educators, dietitians, and pharmacists. Individualized treatment plans aim for “aggressive secondary risk reduction,” Dr. Kosiborod noted.

Six-month data from the Cardiometabolic Center Alliance show an increase from 28.2% at baseline to 67.1% (P < .0001) in prescribing of a four-agent guideline-directed medical therapy “bundle,” including the three from COORDINATE-Diabetes plus an antiplatelet or anticoagulant agent. Dr. Kosiborod presented these data during the ADA meeting in a poster.

Remaining questions involve sustainability, scalability, and system transformation, which require buy-in from multiple stakeholders, he noted.

He contends that it can be done. A prior example of “rapid and lasting care transformation” occurred in November 2006 with the launch of the “Door to Balloon (D2B) Alliance for Quality,” which dramatically increased the proportion of patients who received primary angioplasty within 90 minutes at hospitals around the United States. From January 2005 to September 2010, those proportions rose from 27.3% to 70.4%.

“Patients were coming into the emergency department with myocardial infarctions and waiting for hours before the interventional cardiologist came. The community said we needed a nationwide quality improvement initiative. ... Almost every hospital in the country changed their systems of care. It was a huge national effort. ... When we no longer consider the status quo acceptable, we can actually make something very special happen very quickly.”

After the session, Dr. Kosiborod said in an interview that the Cardiometabolic Center Alliance is now gathering data to make the financial case for the approach.

“We’re trying to develop a model that tells the admins which patients will save money, because, of course, if you can create a financial incentive, it only makes it go faster. ... We want to synchronize it in the best way possible.”

Dr. Lingvay has receiving nonfinancial support and grants from Novo Nordisk, personal fees or nonfinancial support from Sanofi, Lilly, Boehringer Ingelheim, Merck/Pfizer, Mylan, AstraZeneca, Johnson & Johnson, Intercept, Target Pharma, Zealand, Shionogi, Carmot, Structure, Bayer, Mediflix, WebMD, GI Dynamics, Intarcia Therapeutics, Mannkind, Novartis, Structure Therapeutics, and Valeritas. Dr. Kosiborod is a consultant for Alnylam Pharmaceuticals, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Cytokinetics, Dexcom, Eli Lilly, ESPERION Therapeutics, Janssen Pharmaceuticals, Lexicon Pharmaceuticals, Merck, Novo Nordisk, Pharmacosmos, Pfizer, Sanofi, Vifor Pharma Management, and Youngene Therapeutics. He also receives research support from AstraZeneca and Boehringer Ingelheim. Dr. Eckel serves on consulting/advisory boards for Amgen, Arrowhead, Better, Ionis, Kowa, Lexicon, Novo Nordisk, Precision BioSciences, The Healthy Aging Company, Tolmar, and Weight Watchers.

A version of this article first appeared on Medscape.com.

Prescribing optimal medical therapy for people with both type 2 diabetes and cardiovascular disease can and should improve, speakers urged at the annual scientific sessions of the American Diabetes Association.

A symposium there focused on the recent randomized, controlled COORDINATE-Diabetes trial, which investigated a multipronged educational intervention in 43 U.S. cardiology clinics aimed at improving prescribing of guideline-recommended treatments for people with both type 2 diabetes and cardiovascular disease. Compared with clinics that were randomly assigned to offer usual care, the intervention significantly increased recommended prescribing of high-intensity statins, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ARBs), and sodium-glucose cotransporter 2 (SGLT2) inhibitors and/or glucagonlike peptide 1 receptor agonists (GLP-1 agonists).

COORDINATE-Diabetes was aimed at cardiologists, who typically see these patients more often than do endocrinologists. However, the results are relevant to all health care providers involved in the care of those with type 2 diabetes, speakers argued at the ADA symposium.

“This is a cardiology study. I think it’s safe to say that not too many of you in the room are cardiologists. So why would you care about the results of the COORDINATE study?” said Ildiko Lingvay, MD, of the University of Texas Southwestern Medical Center, Dallas.

Dr. Lingvay went on to outline reasons that the COORDINATE findings apply to endocrinologists and primary care clinicians, as well as cardiologists. For one, a study from her institution that was presented at a recent internal medicine meeting showed that, among more than 10,000 patients with type 2 diabetes and cardiovascular disease, heart failure, and/or chronic kidney disease, the proportion of patients who were prescribed the appropriate guideline-indicated medications was 20.1% for those seen in primary care, 24.8% in endocrinology, 20.3% in cardiology, and 18.3% in nephrology.

“So, we [endocrinologists are] not that much better [than other specialties]” at prescribing, she noted.

Mikhail N. Kosiborod, MD, in independent commentary called the COORDINATE trial and other similar initiatives “the beginning of care transformation.”

The COORDINATE-Diabetes results were originally presented in March at the joint scientific sessions of the American College of Cardiology and the World Heart Federation. The study was simultaneously published in JAMA.
 

‘They’ve shown we can do better’

Asked to comment, Robert H. Eckel, MD, said in an interview, “I look at COORDINATE as a wake-up call to the need for multispecialty approaches to people with type 2 diabetes and cardiovascular disease. ... I think it’s a step in the door.”

Dr. Eckel, who has long advocated for a new “cardiometabolic” physician subspecialty, noted that COORDINATE-Diabetes “stopped short of training health care providers in the science and medicine of cardio-renal-metabolic disease.”

Nonetheless, regarding the efforts toward a more coordinated system of care, Dr. Eckel said, “I support the concept, unequivocally.” He is associated with the division of endocrinology, metabolism, and diabetes, University of Colorado at Denver, Aurora.

But the cost-effectiveness of the intervention “requires time to assess,” he added. “We don’t know anything yet other than [that] managing drug administration to meet goals that relate to outcomes in people with diabetes can be accomplished. They’ve shown that we can do better.”
 

 

 

Why should you care about a cardiology study?

In COORDINATE-Diabetes, 20 of the centers were randomly assigned to provide five interventions: assess local barriers, develop care pathways, coordinate care, educate clinicians, report data back to the clinics, and provide tools for the 459 participants. The other 23 clinics, with 590 participants, were randomly assigned to provide usual care per practice guidelines.

The primary outcome was the proportion of participants that prescribed all three groups of the recommended therapies at 6-12 months after enrollment; 37.9% prescribed the intervention, and 14.5% provided usual care, a significant 23% difference (P < .001). The rate of prescriptions of each of the three individual drug groups was also significantly higher with the intervention. No differences were seen in cardiovascular risk factors or outcomes.

Dr. Lingvay pointed out that the interventions tested in COORDINATE – such as fact sheets and medication passports for patients, system audits and feedback, and provider grand rounds – can be extrapolated to any specialist setting.

She added that the long-held model of team-based care means that “everyone involved in the care of these patients is responsible for ensuring best practices are followed.” Part of that, she said, is helping other specialists prescribe the same medications and communicate across the team.

For all specialists, she recommends using the resources available on the COORDINATE website.
 

‘It’s not a silver bullet; additional solutions are needed’

In his commentary, Dr. Kosiborod, executive director of the Cardiometabolic Center Alliance, noted, “The treatments studied in COORDINATE represent the biggest advances in a generation when it comes to improving outcomes in this population. ... We’re living in a renaissance age with the number of tools we have available. ... It’s getting better every day.”

Moreover, all the relevant professional society guidelines now recommend GLP-1 agonists and SGLT2 inhibitors. “And yet, when we look, less than 1 in 10 patients with type 2 diabetes and atherosclerotic cardiovascular disease are getting appropriate recommended care. One of the lessons of COORDINATE is that this needs to change if we’re really going to improve our patients’ lives.”

The barriers aren’t simply financial, Dr. Kosiborod said. He pointed to two studies that show that even reducing out-of-pocket costs resulted in only modest increases in adherence.

Educational gaps on the part of both clinicians and patients also factor in, as do misaligned incentives.

“Clinicians get paid for how many things they do, not necessarily how well they do them. Everyone wants to do the right thing, but ultimately, incentives do matter,” he emphasized.

While the COORDINATE-Diabetes interventions addressed several of the barriers, two-thirds of the participants still did not receive optimal therapy.

“It’s not a silver bullet. ... Additional solutions are needed,” Dr. Kosiborod observed.
 

Transformation occurs ‘when the status quo is no longer acceptable’

Enter his institution, the Cardiometabolic Center Alliance, part of Saint Luke’s Mid-America Heart Institute. The nonprofit system, which currently has 16 subscribing clinics around the country, offers patient-centered “team-based, coordinated, comprehensive care” for people with both type 2 diabetes and cardiovascular disease.

The model is led by preventive cardiology in collaboration with endocrinology and primary care. Support staff includes advance practice providers, nurse navigators, certified diabetes educators, dietitians, and pharmacists. Individualized treatment plans aim for “aggressive secondary risk reduction,” Dr. Kosiborod noted.

Six-month data from the Cardiometabolic Center Alliance show an increase from 28.2% at baseline to 67.1% (P < .0001) in prescribing of a four-agent guideline-directed medical therapy “bundle,” including the three from COORDINATE-Diabetes plus an antiplatelet or anticoagulant agent. Dr. Kosiborod presented these data during the ADA meeting in a poster.

Remaining questions involve sustainability, scalability, and system transformation, which require buy-in from multiple stakeholders, he noted.

He contends that it can be done. A prior example of “rapid and lasting care transformation” occurred in November 2006 with the launch of the “Door to Balloon (D2B) Alliance for Quality,” which dramatically increased the proportion of patients who received primary angioplasty within 90 minutes at hospitals around the United States. From January 2005 to September 2010, those proportions rose from 27.3% to 70.4%.

“Patients were coming into the emergency department with myocardial infarctions and waiting for hours before the interventional cardiologist came. The community said we needed a nationwide quality improvement initiative. ... Almost every hospital in the country changed their systems of care. It was a huge national effort. ... When we no longer consider the status quo acceptable, we can actually make something very special happen very quickly.”

After the session, Dr. Kosiborod said in an interview that the Cardiometabolic Center Alliance is now gathering data to make the financial case for the approach.

“We’re trying to develop a model that tells the admins which patients will save money, because, of course, if you can create a financial incentive, it only makes it go faster. ... We want to synchronize it in the best way possible.”

Dr. Lingvay has receiving nonfinancial support and grants from Novo Nordisk, personal fees or nonfinancial support from Sanofi, Lilly, Boehringer Ingelheim, Merck/Pfizer, Mylan, AstraZeneca, Johnson & Johnson, Intercept, Target Pharma, Zealand, Shionogi, Carmot, Structure, Bayer, Mediflix, WebMD, GI Dynamics, Intarcia Therapeutics, Mannkind, Novartis, Structure Therapeutics, and Valeritas. Dr. Kosiborod is a consultant for Alnylam Pharmaceuticals, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Cytokinetics, Dexcom, Eli Lilly, ESPERION Therapeutics, Janssen Pharmaceuticals, Lexicon Pharmaceuticals, Merck, Novo Nordisk, Pharmacosmos, Pfizer, Sanofi, Vifor Pharma Management, and Youngene Therapeutics. He also receives research support from AstraZeneca and Boehringer Ingelheim. Dr. Eckel serves on consulting/advisory boards for Amgen, Arrowhead, Better, Ionis, Kowa, Lexicon, Novo Nordisk, Precision BioSciences, The Healthy Aging Company, Tolmar, and Weight Watchers.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

AT ADA 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Artificial pancreas’ for all type 1 diabetes pregnancies?

Article Type
Changed
Wed, 07/05/2023 - 12:56

In the largest randomized controlled trial of an automated insulin delivery (AID) system (hybrid closed-loop) versus standard insulin delivery in pregnant women with type 1 diabetes, the automated CamAPS FX system prevailed.

The percentage of time spent in the pregnancy-specific target blood glucose range of 63-140 mg/dL (3.5-7.8 mmol/L) from 16 weeks’ gestation to delivery was significantly higher in women in the AID group.

Helen R. Murphy, MD, presented these topline findings from the Automated Insulin Delivery Amongst Pregnant Women With Type 1 Diabetes (AiDAPT) trial during an e-poster session at the annual scientific sessions of the American Diabetes Association.

The “hybrid closed-loop significantly improved maternal glucose and should be offered to all pregnant women with type 1 diabetes,” concluded Dr. Murphy, professor of medicine at the University of East Anglia and a clinician at Norfolk and Norwich University Hospital in the United Kingdom.

CamAPS FX is the only AID system approved in Europe and the United Kingdom for type 1 diabetes from age 1 and during pregnancy. The hybrid closed-loop system is not available in the United States but other systems are available and sometimes used off label in pregnancy. Such systems are sometimes known colloquially as an “artificial pancreas.”

The researchers said their findings provide evidence for the UK National Institute of Clinical Excellence (NICE) to recommend that all pregnant women with type 1 diabetes should be offered the CamAPS FX system.

Asked by an audience member about type 2 diabetes in pregnancy, Dr. Murphy said: “I don’t think we can necessarily extend these data to women with type 2 diabetes. We just don’t have enough data on glucose profiles in type 2 to train an algorithm yet.”  

However, the data provide support for earlier use of closed-loop therapy in type 1 diabetes, she said. “The ideal time to start closed-loop is not necessarily between 8 and 12 weeks. Half of all pregnancies are unplanned,” she noted, “so start [AID] as early as possible [in patients with type 1 diabetes].”
 

Two experts weigh in

Whether pregnant women with type 1 diabetes should be offered hybrid closed-loop therapy “depends,” said Anne L. Peters, MD, who was not involved with the research.

“It is all about being able to set [blood glucose] targets,” according to Dr. Peters, director of the University of Southern California Westside Center for Diabetes in Los Angeles.

USC Westside Center for Diabetes
Dr. Anne L. Peters


“If a woman is on an AID system – except for DIY loop – I have them stop the automation and adjust manually,” she said in an email. “My [patients] do amazingly well in pregnancy – most can get their A1cs below 6%,” she noted. “But if someone can’t do that and their A1cs are higher, automation can help.

“It is always about individualizing care,” said Dr. Peters. “The one thing that helps the most is continuous glucose monitoring (CGM). And I do have patients who remain on [insulin] injections throughout pregnancy.”

And Sarit Polsky, MD, MPH, who was also not involved with the current study, agrees that “AID with CamAPS, which has an option to customize the glucose target in the pregnancy-specific range, appears to be safe and effective in pregnancy and should be offered” to patients in Europe and the United Kingdom.

“Whether other AID systems should be recommended in pregnancy is still unclear, said Dr. Polsky, associate professor of medicine and pediatrics at Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus.

“Around 48% of [global] pregnancies are unplanned,” Dr. Polsky said in an interview. “Many women do indeed become pregnant while using AID systems and many opt to continue use of these systems.

“Off-label use of these products can be beneficial in pregnancy in select cases, but the systems generally need the use of assistive techniques, which we previously published, to help get glucose levels to pregnancy-specific targets,” she noted in an email.
 

 

 

Study rationale, method, and findings

Pregnant women with diabetes are advised to aim for very tight glucose targets throughout pregnancy and avoid hyperglycemia, to reduce risk of preterm delivery, neonatal weight > 90th percentile, and neonatal morbidity, according to Dr. Murphy and colleagues.

“However, despite increased use of [CGM], continuous subcutaneous insulin infusion (CSII), and improved insulin analogs, achieving and maintaining the recommended glucose targets remains challenging for most pregnant women with type 1 diabetes,” they wrote in their abstract.

Researchers randomized 124 women who had type 1 diabetes for at least 12 months, were at < 13 weeks’ to 6 days’ gestation, and had an A1c of 6.5% to < 10% who were taking intensive standard insulin therapy at nine antenatal clinics in the United Kingdom. Half of the women were using CSII and half were receiving multiple daily injections of insulin. 

As explained in the published study protocol, the women were randomized to continue their standard insulin delivery or switch to a closed-loop system consisting of the study insulin pump (Dana Diabecare RS), a CGM transmitter, and an app (CamAPS FX) on an Android smartphone that communicates wirelessly with the insulin pump and CGM transmitter.

Participants in both groups used the same CGM system and received support for insulin dose adjustment from their antenatal clinical care team.

They were a mean age of 31 years, had a mean A1c of 7.7%, and had had type 1 diabetes for 17 years on average. Their body mass index varied; 37% had normal weight, 27% had overweight, and 26% had obesity.

A significantly higher percentage of women in the AID group than in the control group had blood glucose in target range more than 70% of the time (46% vs. 10%; P < .001).

Compared with women in the control group, those in the AID group had larger reductions in hyperglycemia (–11%; P < .001), higher overnight time-in-range (13%; P < .001), and lower A1c (–0.34%; P < .001), without additional insulin, weight gain, or hypoglycemia.

The effect was consistent across clinical sites and maternal age and A1c categories.
 

Ongoing studies, off-label use

Hybrid closed-loop systems “including Tandem Control IQ, the Omnipod 5, and the Medtronic 780G give insulin continuously on the basis of values obtained from a sensor,” Dr. Peters explained in a recent commentary. “These aren’t fully closed-loop systems because the individual still has to interact with the system and give doses for meals, and then adjust doses for exercise.”

There are currently three studies using commercially available AID systems without pregnancy-specific glucose targets, in type 1 diabetes pregnancies, Dr. Polsky noted.

The Pregnancy Intervention With a Closed-Loop System (PICLS) trial used the Medtronic 670G system in pregnancy and was conducted in the United States. The Closed-Loop Insulin Delivery in Pregnant Women With Type 1 Diabetes (CRISTAL) study is using the Medtronic 780G system in pregnancy and is being conducted in Belgium and the Netherlands. And the Closed-Loop Insulin Delivery in Type 1 Diabetes Pregnancies (CIRCUIT) study is using the Tandem Control IQ system in pregnancy and is being conducted in Canada, she explained.

“The decision to continue to use or to initiate (off-label) use of any of these systems in pregnancy should be individualized, and pregnant individuals should make these decisions by working with an experienced endocrine/diabetes team,” Dr. Polsky stressed.

“The hope is that the results of these exciting trials will show safe and effective use of these systems throughout gestation with improvements in glucose control and quality of life,” she concluded.

The study was funded by the UK National Institute for Health Research, JDRF, and Diabetes Research and Wellness Foundation. Dr. Murphy has reported being on the advisory panel for Medtronic and receiving research support from Dexcom. Dr. Peters disclosed that she served as a consultant for Blue Circle Health, Vertex, and Abbott Diabetes Care, received a research grant from Abbott Diabetes Care, and received stock options from Teladoc and Omada Health. Dr. Polsky has disclosed that she is a contributing writer for diaTribe, was on a medical advisory board for Medtronic MiniMed, has received research funding from DexCom, Eli Lilly, JDRF, Leona & Harry Helmsley Charitable Trust, NIDDK, and Sanofi, and has received research support from Diasome Pharmaceuticals, LabStyle Innovation, Lexicon, Medtronic MiniMed, and Sanofi.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

In the largest randomized controlled trial of an automated insulin delivery (AID) system (hybrid closed-loop) versus standard insulin delivery in pregnant women with type 1 diabetes, the automated CamAPS FX system prevailed.

The percentage of time spent in the pregnancy-specific target blood glucose range of 63-140 mg/dL (3.5-7.8 mmol/L) from 16 weeks’ gestation to delivery was significantly higher in women in the AID group.

Helen R. Murphy, MD, presented these topline findings from the Automated Insulin Delivery Amongst Pregnant Women With Type 1 Diabetes (AiDAPT) trial during an e-poster session at the annual scientific sessions of the American Diabetes Association.

The “hybrid closed-loop significantly improved maternal glucose and should be offered to all pregnant women with type 1 diabetes,” concluded Dr. Murphy, professor of medicine at the University of East Anglia and a clinician at Norfolk and Norwich University Hospital in the United Kingdom.

CamAPS FX is the only AID system approved in Europe and the United Kingdom for type 1 diabetes from age 1 and during pregnancy. The hybrid closed-loop system is not available in the United States but other systems are available and sometimes used off label in pregnancy. Such systems are sometimes known colloquially as an “artificial pancreas.”

The researchers said their findings provide evidence for the UK National Institute of Clinical Excellence (NICE) to recommend that all pregnant women with type 1 diabetes should be offered the CamAPS FX system.

Asked by an audience member about type 2 diabetes in pregnancy, Dr. Murphy said: “I don’t think we can necessarily extend these data to women with type 2 diabetes. We just don’t have enough data on glucose profiles in type 2 to train an algorithm yet.”  

However, the data provide support for earlier use of closed-loop therapy in type 1 diabetes, she said. “The ideal time to start closed-loop is not necessarily between 8 and 12 weeks. Half of all pregnancies are unplanned,” she noted, “so start [AID] as early as possible [in patients with type 1 diabetes].”
 

Two experts weigh in

Whether pregnant women with type 1 diabetes should be offered hybrid closed-loop therapy “depends,” said Anne L. Peters, MD, who was not involved with the research.

“It is all about being able to set [blood glucose] targets,” according to Dr. Peters, director of the University of Southern California Westside Center for Diabetes in Los Angeles.

USC Westside Center for Diabetes
Dr. Anne L. Peters


“If a woman is on an AID system – except for DIY loop – I have them stop the automation and adjust manually,” she said in an email. “My [patients] do amazingly well in pregnancy – most can get their A1cs below 6%,” she noted. “But if someone can’t do that and their A1cs are higher, automation can help.

“It is always about individualizing care,” said Dr. Peters. “The one thing that helps the most is continuous glucose monitoring (CGM). And I do have patients who remain on [insulin] injections throughout pregnancy.”

And Sarit Polsky, MD, MPH, who was also not involved with the current study, agrees that “AID with CamAPS, which has an option to customize the glucose target in the pregnancy-specific range, appears to be safe and effective in pregnancy and should be offered” to patients in Europe and the United Kingdom.

“Whether other AID systems should be recommended in pregnancy is still unclear, said Dr. Polsky, associate professor of medicine and pediatrics at Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus.

“Around 48% of [global] pregnancies are unplanned,” Dr. Polsky said in an interview. “Many women do indeed become pregnant while using AID systems and many opt to continue use of these systems.

“Off-label use of these products can be beneficial in pregnancy in select cases, but the systems generally need the use of assistive techniques, which we previously published, to help get glucose levels to pregnancy-specific targets,” she noted in an email.
 

 

 

Study rationale, method, and findings

Pregnant women with diabetes are advised to aim for very tight glucose targets throughout pregnancy and avoid hyperglycemia, to reduce risk of preterm delivery, neonatal weight > 90th percentile, and neonatal morbidity, according to Dr. Murphy and colleagues.

“However, despite increased use of [CGM], continuous subcutaneous insulin infusion (CSII), and improved insulin analogs, achieving and maintaining the recommended glucose targets remains challenging for most pregnant women with type 1 diabetes,” they wrote in their abstract.

Researchers randomized 124 women who had type 1 diabetes for at least 12 months, were at < 13 weeks’ to 6 days’ gestation, and had an A1c of 6.5% to < 10% who were taking intensive standard insulin therapy at nine antenatal clinics in the United Kingdom. Half of the women were using CSII and half were receiving multiple daily injections of insulin. 

As explained in the published study protocol, the women were randomized to continue their standard insulin delivery or switch to a closed-loop system consisting of the study insulin pump (Dana Diabecare RS), a CGM transmitter, and an app (CamAPS FX) on an Android smartphone that communicates wirelessly with the insulin pump and CGM transmitter.

Participants in both groups used the same CGM system and received support for insulin dose adjustment from their antenatal clinical care team.

They were a mean age of 31 years, had a mean A1c of 7.7%, and had had type 1 diabetes for 17 years on average. Their body mass index varied; 37% had normal weight, 27% had overweight, and 26% had obesity.

A significantly higher percentage of women in the AID group than in the control group had blood glucose in target range more than 70% of the time (46% vs. 10%; P < .001).

Compared with women in the control group, those in the AID group had larger reductions in hyperglycemia (–11%; P < .001), higher overnight time-in-range (13%; P < .001), and lower A1c (–0.34%; P < .001), without additional insulin, weight gain, or hypoglycemia.

The effect was consistent across clinical sites and maternal age and A1c categories.
 

Ongoing studies, off-label use

Hybrid closed-loop systems “including Tandem Control IQ, the Omnipod 5, and the Medtronic 780G give insulin continuously on the basis of values obtained from a sensor,” Dr. Peters explained in a recent commentary. “These aren’t fully closed-loop systems because the individual still has to interact with the system and give doses for meals, and then adjust doses for exercise.”

There are currently three studies using commercially available AID systems without pregnancy-specific glucose targets, in type 1 diabetes pregnancies, Dr. Polsky noted.

The Pregnancy Intervention With a Closed-Loop System (PICLS) trial used the Medtronic 670G system in pregnancy and was conducted in the United States. The Closed-Loop Insulin Delivery in Pregnant Women With Type 1 Diabetes (CRISTAL) study is using the Medtronic 780G system in pregnancy and is being conducted in Belgium and the Netherlands. And the Closed-Loop Insulin Delivery in Type 1 Diabetes Pregnancies (CIRCUIT) study is using the Tandem Control IQ system in pregnancy and is being conducted in Canada, she explained.

“The decision to continue to use or to initiate (off-label) use of any of these systems in pregnancy should be individualized, and pregnant individuals should make these decisions by working with an experienced endocrine/diabetes team,” Dr. Polsky stressed.

“The hope is that the results of these exciting trials will show safe and effective use of these systems throughout gestation with improvements in glucose control and quality of life,” she concluded.

The study was funded by the UK National Institute for Health Research, JDRF, and Diabetes Research and Wellness Foundation. Dr. Murphy has reported being on the advisory panel for Medtronic and receiving research support from Dexcom. Dr. Peters disclosed that she served as a consultant for Blue Circle Health, Vertex, and Abbott Diabetes Care, received a research grant from Abbott Diabetes Care, and received stock options from Teladoc and Omada Health. Dr. Polsky has disclosed that she is a contributing writer for diaTribe, was on a medical advisory board for Medtronic MiniMed, has received research funding from DexCom, Eli Lilly, JDRF, Leona & Harry Helmsley Charitable Trust, NIDDK, and Sanofi, and has received research support from Diasome Pharmaceuticals, LabStyle Innovation, Lexicon, Medtronic MiniMed, and Sanofi.

A version of this article first appeared on Medscape.com.

In the largest randomized controlled trial of an automated insulin delivery (AID) system (hybrid closed-loop) versus standard insulin delivery in pregnant women with type 1 diabetes, the automated CamAPS FX system prevailed.

The percentage of time spent in the pregnancy-specific target blood glucose range of 63-140 mg/dL (3.5-7.8 mmol/L) from 16 weeks’ gestation to delivery was significantly higher in women in the AID group.

Helen R. Murphy, MD, presented these topline findings from the Automated Insulin Delivery Amongst Pregnant Women With Type 1 Diabetes (AiDAPT) trial during an e-poster session at the annual scientific sessions of the American Diabetes Association.

The “hybrid closed-loop significantly improved maternal glucose and should be offered to all pregnant women with type 1 diabetes,” concluded Dr. Murphy, professor of medicine at the University of East Anglia and a clinician at Norfolk and Norwich University Hospital in the United Kingdom.

CamAPS FX is the only AID system approved in Europe and the United Kingdom for type 1 diabetes from age 1 and during pregnancy. The hybrid closed-loop system is not available in the United States but other systems are available and sometimes used off label in pregnancy. Such systems are sometimes known colloquially as an “artificial pancreas.”

The researchers said their findings provide evidence for the UK National Institute of Clinical Excellence (NICE) to recommend that all pregnant women with type 1 diabetes should be offered the CamAPS FX system.

Asked by an audience member about type 2 diabetes in pregnancy, Dr. Murphy said: “I don’t think we can necessarily extend these data to women with type 2 diabetes. We just don’t have enough data on glucose profiles in type 2 to train an algorithm yet.”  

However, the data provide support for earlier use of closed-loop therapy in type 1 diabetes, she said. “The ideal time to start closed-loop is not necessarily between 8 and 12 weeks. Half of all pregnancies are unplanned,” she noted, “so start [AID] as early as possible [in patients with type 1 diabetes].”
 

Two experts weigh in

Whether pregnant women with type 1 diabetes should be offered hybrid closed-loop therapy “depends,” said Anne L. Peters, MD, who was not involved with the research.

“It is all about being able to set [blood glucose] targets,” according to Dr. Peters, director of the University of Southern California Westside Center for Diabetes in Los Angeles.

USC Westside Center for Diabetes
Dr. Anne L. Peters


“If a woman is on an AID system – except for DIY loop – I have them stop the automation and adjust manually,” she said in an email. “My [patients] do amazingly well in pregnancy – most can get their A1cs below 6%,” she noted. “But if someone can’t do that and their A1cs are higher, automation can help.

“It is always about individualizing care,” said Dr. Peters. “The one thing that helps the most is continuous glucose monitoring (CGM). And I do have patients who remain on [insulin] injections throughout pregnancy.”

And Sarit Polsky, MD, MPH, who was also not involved with the current study, agrees that “AID with CamAPS, which has an option to customize the glucose target in the pregnancy-specific range, appears to be safe and effective in pregnancy and should be offered” to patients in Europe and the United Kingdom.

“Whether other AID systems should be recommended in pregnancy is still unclear, said Dr. Polsky, associate professor of medicine and pediatrics at Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus.

“Around 48% of [global] pregnancies are unplanned,” Dr. Polsky said in an interview. “Many women do indeed become pregnant while using AID systems and many opt to continue use of these systems.

“Off-label use of these products can be beneficial in pregnancy in select cases, but the systems generally need the use of assistive techniques, which we previously published, to help get glucose levels to pregnancy-specific targets,” she noted in an email.
 

 

 

Study rationale, method, and findings

Pregnant women with diabetes are advised to aim for very tight glucose targets throughout pregnancy and avoid hyperglycemia, to reduce risk of preterm delivery, neonatal weight > 90th percentile, and neonatal morbidity, according to Dr. Murphy and colleagues.

“However, despite increased use of [CGM], continuous subcutaneous insulin infusion (CSII), and improved insulin analogs, achieving and maintaining the recommended glucose targets remains challenging for most pregnant women with type 1 diabetes,” they wrote in their abstract.

Researchers randomized 124 women who had type 1 diabetes for at least 12 months, were at < 13 weeks’ to 6 days’ gestation, and had an A1c of 6.5% to < 10% who were taking intensive standard insulin therapy at nine antenatal clinics in the United Kingdom. Half of the women were using CSII and half were receiving multiple daily injections of insulin. 

As explained in the published study protocol, the women were randomized to continue their standard insulin delivery or switch to a closed-loop system consisting of the study insulin pump (Dana Diabecare RS), a CGM transmitter, and an app (CamAPS FX) on an Android smartphone that communicates wirelessly with the insulin pump and CGM transmitter.

Participants in both groups used the same CGM system and received support for insulin dose adjustment from their antenatal clinical care team.

They were a mean age of 31 years, had a mean A1c of 7.7%, and had had type 1 diabetes for 17 years on average. Their body mass index varied; 37% had normal weight, 27% had overweight, and 26% had obesity.

A significantly higher percentage of women in the AID group than in the control group had blood glucose in target range more than 70% of the time (46% vs. 10%; P < .001).

Compared with women in the control group, those in the AID group had larger reductions in hyperglycemia (–11%; P < .001), higher overnight time-in-range (13%; P < .001), and lower A1c (–0.34%; P < .001), without additional insulin, weight gain, or hypoglycemia.

The effect was consistent across clinical sites and maternal age and A1c categories.
 

Ongoing studies, off-label use

Hybrid closed-loop systems “including Tandem Control IQ, the Omnipod 5, and the Medtronic 780G give insulin continuously on the basis of values obtained from a sensor,” Dr. Peters explained in a recent commentary. “These aren’t fully closed-loop systems because the individual still has to interact with the system and give doses for meals, and then adjust doses for exercise.”

There are currently three studies using commercially available AID systems without pregnancy-specific glucose targets, in type 1 diabetes pregnancies, Dr. Polsky noted.

The Pregnancy Intervention With a Closed-Loop System (PICLS) trial used the Medtronic 670G system in pregnancy and was conducted in the United States. The Closed-Loop Insulin Delivery in Pregnant Women With Type 1 Diabetes (CRISTAL) study is using the Medtronic 780G system in pregnancy and is being conducted in Belgium and the Netherlands. And the Closed-Loop Insulin Delivery in Type 1 Diabetes Pregnancies (CIRCUIT) study is using the Tandem Control IQ system in pregnancy and is being conducted in Canada, she explained.

“The decision to continue to use or to initiate (off-label) use of any of these systems in pregnancy should be individualized, and pregnant individuals should make these decisions by working with an experienced endocrine/diabetes team,” Dr. Polsky stressed.

“The hope is that the results of these exciting trials will show safe and effective use of these systems throughout gestation with improvements in glucose control and quality of life,” she concluded.

The study was funded by the UK National Institute for Health Research, JDRF, and Diabetes Research and Wellness Foundation. Dr. Murphy has reported being on the advisory panel for Medtronic and receiving research support from Dexcom. Dr. Peters disclosed that she served as a consultant for Blue Circle Health, Vertex, and Abbott Diabetes Care, received a research grant from Abbott Diabetes Care, and received stock options from Teladoc and Omada Health. Dr. Polsky has disclosed that she is a contributing writer for diaTribe, was on a medical advisory board for Medtronic MiniMed, has received research funding from DexCom, Eli Lilly, JDRF, Leona & Harry Helmsley Charitable Trust, NIDDK, and Sanofi, and has received research support from Diasome Pharmaceuticals, LabStyle Innovation, Lexicon, Medtronic MiniMed, and Sanofi.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ADA 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Thirty-three percent of type 1 diabetes patients insulin free with stem cells

Article Type
Changed
Wed, 07/05/2023 - 07:39

– An investigational allogeneic stem cell–derived pancreatic islet cell replacement therapy (VX-880, Vertex Pharmaceuticals) continues to show promise as a treatment for type 1 diabetes, according to the latest data, from six patients thus far.

Two of the six are insulin-independent beyond 1 year after receiving the VX-880 infusions, and three others who received them more recently are on a similar trajectory. One dropped out because of reasons unrelated to the therapy. The remaining five are continuing to receive immunosuppressive treatment to prevent rejection of the islets. The six all had undetectable insulin secretion, impaired hypoglycemic awareness, and severe hypoglycemia as the criterion to enter the phase 1/2 study.

“These new findings demonstrate the potential of stem cell–derived islets as a future treatment for patients with type 1 diabetes, signaling a new era that could potentially remove the need for exogenously administered insulin to achieve glycemic control,” said lead investigator Trevor W. Reichman, MD, PhD, surgical director of Pancreas and Islet Cell Transplantation at the University of Toronto.

Dr. Reichman presented the data at the annual scientific sessions of the American Diabetes Association, as an update to the report of the first two patients at last year’s ADA meeting. “We are hopeful that this first-of-its-kind research could be a game-changer for the treatment of type 1 diabetes,” he emphasized.

Co-investigator Maria Cristina Nostro, PhD, senior scientist at McEwen Stem Cell Institute, Toronto, told this news organization: “The clinical trial data are extremely exciting ... I think what was very beautiful is the glucose tolerance test where the insulin secretion was almost like a person without type 1 diabetes. For someone who is in the lab doing basic science research ... all the work we’ve put into this, it’s a labor of love. We’ve been trying to generate the cells for so long, and now to see this, it’s fantastic.”  
 

Two meet primary endpoint, three more on the right path

The six patients had a mean age of 44 years and mean 23 years’ diabetes duration. Three each were male and female. Their mean baseline A1c was 8.1%, and fasting C-peptide was undetectable. They had experienced a mean of 3.3 severe hypoglycemia episodes in the year prior to receiving the infusion, which was delivered to the portal vein similarly to the procedure with cadaveric donor islets, Dr. Reichman said.

The first two patients, including the one who dropped out, received half target doses of VX-880 (trial part A), while the rest, enrolled sequentially (part B), were each administered the full target dose of VX-880 given as a single infusion.

Induction with anti-thymocyte globulin and maintenance immunosuppressants, tacrolimus/sirolimus, was used to protect the cells from the recipient’s immune system. After the infusion, all six participants had C-peptide production, reduction in A1c despite reduced insulin use, and no severe hypoglycemia episodes from day 90 onwards.

Both participants with at least a year of follow-up met the criteria for the primary endpoint of A1c less than 7% with no severe hypoglycemic episodes. The first participant had an A1c of 5.3% at month 21, and the second 6.0% at 12 months. Both had sustained glucose-responsive insulin production with a mixed-meal tolerance test and exceeded the ADA target of more than 70% time-in blood glucose range assessed with continuous glucose monitoring.  
 

 

 

Safety: No major concerns thus far

Among all six, adverse events included elevations in the liver enzyme transaminase, occurring shortly after VX-880 infusion that were transient and resolved. No serious adverse events were considered related to the therapy.

Regarding safety, Dr. Nostro said, “With this trial, I have no concerns, because they’re using immunosuppression, so should anything go bad, you remove immunosuppression and the cells would be destroyed by the immune system. So it’s a perfect trial in a way.”

However, she noted, “Moving forward, as we develop something that will be genetically modified ... I think this is the future, because if you’re going to treat people with type 1 diabetes, we have to eliminate the immune suppression. I think the concern would be making sure the genetically modified cells are safe.”

Dr. Nostro, who gave an introductory presentation at the beginning of the symposium where the VX-880 data were presented, explained that in a current trial of genetically modified cells, “they’re placing the product inside a device so that the cells would be retrievable. It might not be perfect, but at least it’s going to tell us whether the genetically modified product is safe, which I think is what we need to use.”

In her talk, Dr. Nostro also summarized ongoing work in this field involving efforts to improve the generation of stem cell–derived islets with no “off target” non-beta cells to ensure consistency, optimization of engraftment, and elimination of immunosuppression. “[VX-880] is the beginning. This is the first product that’s going to be in the clinic, but I can imagine how 5, 10 years from now we will have different and more enhanced solutions for type 1 diabetes and who knows, maybe even for type 2.” 

Based on the data so far, the VX-880 trial is now moving to part C, in which 10 concurrently enrolled participants will receive the full target dose of the product. The trial, previously exclusively in the United States, has now expanded to additional sites in Norway, Switzerland, and the Netherlands. 

The study was funded by Vertex. Dr. Reichman is on advisory boards for Vertex and Sernova. Dr. Nostro was a consultant for Sigilon Therapeutics from 2018-2022, currently receives research support from Universal Cells, and has a patent licensed to Sernova.

A version of this article originally appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

– An investigational allogeneic stem cell–derived pancreatic islet cell replacement therapy (VX-880, Vertex Pharmaceuticals) continues to show promise as a treatment for type 1 diabetes, according to the latest data, from six patients thus far.

Two of the six are insulin-independent beyond 1 year after receiving the VX-880 infusions, and three others who received them more recently are on a similar trajectory. One dropped out because of reasons unrelated to the therapy. The remaining five are continuing to receive immunosuppressive treatment to prevent rejection of the islets. The six all had undetectable insulin secretion, impaired hypoglycemic awareness, and severe hypoglycemia as the criterion to enter the phase 1/2 study.

“These new findings demonstrate the potential of stem cell–derived islets as a future treatment for patients with type 1 diabetes, signaling a new era that could potentially remove the need for exogenously administered insulin to achieve glycemic control,” said lead investigator Trevor W. Reichman, MD, PhD, surgical director of Pancreas and Islet Cell Transplantation at the University of Toronto.

Dr. Reichman presented the data at the annual scientific sessions of the American Diabetes Association, as an update to the report of the first two patients at last year’s ADA meeting. “We are hopeful that this first-of-its-kind research could be a game-changer for the treatment of type 1 diabetes,” he emphasized.

Co-investigator Maria Cristina Nostro, PhD, senior scientist at McEwen Stem Cell Institute, Toronto, told this news organization: “The clinical trial data are extremely exciting ... I think what was very beautiful is the glucose tolerance test where the insulin secretion was almost like a person without type 1 diabetes. For someone who is in the lab doing basic science research ... all the work we’ve put into this, it’s a labor of love. We’ve been trying to generate the cells for so long, and now to see this, it’s fantastic.”  
 

Two meet primary endpoint, three more on the right path

The six patients had a mean age of 44 years and mean 23 years’ diabetes duration. Three each were male and female. Their mean baseline A1c was 8.1%, and fasting C-peptide was undetectable. They had experienced a mean of 3.3 severe hypoglycemia episodes in the year prior to receiving the infusion, which was delivered to the portal vein similarly to the procedure with cadaveric donor islets, Dr. Reichman said.

The first two patients, including the one who dropped out, received half target doses of VX-880 (trial part A), while the rest, enrolled sequentially (part B), were each administered the full target dose of VX-880 given as a single infusion.

Induction with anti-thymocyte globulin and maintenance immunosuppressants, tacrolimus/sirolimus, was used to protect the cells from the recipient’s immune system. After the infusion, all six participants had C-peptide production, reduction in A1c despite reduced insulin use, and no severe hypoglycemia episodes from day 90 onwards.

Both participants with at least a year of follow-up met the criteria for the primary endpoint of A1c less than 7% with no severe hypoglycemic episodes. The first participant had an A1c of 5.3% at month 21, and the second 6.0% at 12 months. Both had sustained glucose-responsive insulin production with a mixed-meal tolerance test and exceeded the ADA target of more than 70% time-in blood glucose range assessed with continuous glucose monitoring.  
 

 

 

Safety: No major concerns thus far

Among all six, adverse events included elevations in the liver enzyme transaminase, occurring shortly after VX-880 infusion that were transient and resolved. No serious adverse events were considered related to the therapy.

Regarding safety, Dr. Nostro said, “With this trial, I have no concerns, because they’re using immunosuppression, so should anything go bad, you remove immunosuppression and the cells would be destroyed by the immune system. So it’s a perfect trial in a way.”

However, she noted, “Moving forward, as we develop something that will be genetically modified ... I think this is the future, because if you’re going to treat people with type 1 diabetes, we have to eliminate the immune suppression. I think the concern would be making sure the genetically modified cells are safe.”

Dr. Nostro, who gave an introductory presentation at the beginning of the symposium where the VX-880 data were presented, explained that in a current trial of genetically modified cells, “they’re placing the product inside a device so that the cells would be retrievable. It might not be perfect, but at least it’s going to tell us whether the genetically modified product is safe, which I think is what we need to use.”

In her talk, Dr. Nostro also summarized ongoing work in this field involving efforts to improve the generation of stem cell–derived islets with no “off target” non-beta cells to ensure consistency, optimization of engraftment, and elimination of immunosuppression. “[VX-880] is the beginning. This is the first product that’s going to be in the clinic, but I can imagine how 5, 10 years from now we will have different and more enhanced solutions for type 1 diabetes and who knows, maybe even for type 2.” 

Based on the data so far, the VX-880 trial is now moving to part C, in which 10 concurrently enrolled participants will receive the full target dose of the product. The trial, previously exclusively in the United States, has now expanded to additional sites in Norway, Switzerland, and the Netherlands. 

The study was funded by Vertex. Dr. Reichman is on advisory boards for Vertex and Sernova. Dr. Nostro was a consultant for Sigilon Therapeutics from 2018-2022, currently receives research support from Universal Cells, and has a patent licensed to Sernova.

A version of this article originally appeared on Medscape.com.

– An investigational allogeneic stem cell–derived pancreatic islet cell replacement therapy (VX-880, Vertex Pharmaceuticals) continues to show promise as a treatment for type 1 diabetes, according to the latest data, from six patients thus far.

Two of the six are insulin-independent beyond 1 year after receiving the VX-880 infusions, and three others who received them more recently are on a similar trajectory. One dropped out because of reasons unrelated to the therapy. The remaining five are continuing to receive immunosuppressive treatment to prevent rejection of the islets. The six all had undetectable insulin secretion, impaired hypoglycemic awareness, and severe hypoglycemia as the criterion to enter the phase 1/2 study.

“These new findings demonstrate the potential of stem cell–derived islets as a future treatment for patients with type 1 diabetes, signaling a new era that could potentially remove the need for exogenously administered insulin to achieve glycemic control,” said lead investigator Trevor W. Reichman, MD, PhD, surgical director of Pancreas and Islet Cell Transplantation at the University of Toronto.

Dr. Reichman presented the data at the annual scientific sessions of the American Diabetes Association, as an update to the report of the first two patients at last year’s ADA meeting. “We are hopeful that this first-of-its-kind research could be a game-changer for the treatment of type 1 diabetes,” he emphasized.

Co-investigator Maria Cristina Nostro, PhD, senior scientist at McEwen Stem Cell Institute, Toronto, told this news organization: “The clinical trial data are extremely exciting ... I think what was very beautiful is the glucose tolerance test where the insulin secretion was almost like a person without type 1 diabetes. For someone who is in the lab doing basic science research ... all the work we’ve put into this, it’s a labor of love. We’ve been trying to generate the cells for so long, and now to see this, it’s fantastic.”  
 

Two meet primary endpoint, three more on the right path

The six patients had a mean age of 44 years and mean 23 years’ diabetes duration. Three each were male and female. Their mean baseline A1c was 8.1%, and fasting C-peptide was undetectable. They had experienced a mean of 3.3 severe hypoglycemia episodes in the year prior to receiving the infusion, which was delivered to the portal vein similarly to the procedure with cadaveric donor islets, Dr. Reichman said.

The first two patients, including the one who dropped out, received half target doses of VX-880 (trial part A), while the rest, enrolled sequentially (part B), were each administered the full target dose of VX-880 given as a single infusion.

Induction with anti-thymocyte globulin and maintenance immunosuppressants, tacrolimus/sirolimus, was used to protect the cells from the recipient’s immune system. After the infusion, all six participants had C-peptide production, reduction in A1c despite reduced insulin use, and no severe hypoglycemia episodes from day 90 onwards.

Both participants with at least a year of follow-up met the criteria for the primary endpoint of A1c less than 7% with no severe hypoglycemic episodes. The first participant had an A1c of 5.3% at month 21, and the second 6.0% at 12 months. Both had sustained glucose-responsive insulin production with a mixed-meal tolerance test and exceeded the ADA target of more than 70% time-in blood glucose range assessed with continuous glucose monitoring.  
 

 

 

Safety: No major concerns thus far

Among all six, adverse events included elevations in the liver enzyme transaminase, occurring shortly after VX-880 infusion that were transient and resolved. No serious adverse events were considered related to the therapy.

Regarding safety, Dr. Nostro said, “With this trial, I have no concerns, because they’re using immunosuppression, so should anything go bad, you remove immunosuppression and the cells would be destroyed by the immune system. So it’s a perfect trial in a way.”

However, she noted, “Moving forward, as we develop something that will be genetically modified ... I think this is the future, because if you’re going to treat people with type 1 diabetes, we have to eliminate the immune suppression. I think the concern would be making sure the genetically modified cells are safe.”

Dr. Nostro, who gave an introductory presentation at the beginning of the symposium where the VX-880 data were presented, explained that in a current trial of genetically modified cells, “they’re placing the product inside a device so that the cells would be retrievable. It might not be perfect, but at least it’s going to tell us whether the genetically modified product is safe, which I think is what we need to use.”

In her talk, Dr. Nostro also summarized ongoing work in this field involving efforts to improve the generation of stem cell–derived islets with no “off target” non-beta cells to ensure consistency, optimization of engraftment, and elimination of immunosuppression. “[VX-880] is the beginning. This is the first product that’s going to be in the clinic, but I can imagine how 5, 10 years from now we will have different and more enhanced solutions for type 1 diabetes and who knows, maybe even for type 2.” 

Based on the data so far, the VX-880 trial is now moving to part C, in which 10 concurrently enrolled participants will receive the full target dose of the product. The trial, previously exclusively in the United States, has now expanded to additional sites in Norway, Switzerland, and the Netherlands. 

The study was funded by Vertex. Dr. Reichman is on advisory boards for Vertex and Sernova. Dr. Nostro was a consultant for Sigilon Therapeutics from 2018-2022, currently receives research support from Universal Cells, and has a patent licensed to Sernova.

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

AT ADA 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

WHO plans to declare common sweetener as possible carcinogen

Article Type
Changed
Mon, 07/03/2023 - 09:57

The World Health Organization is set to list the artificial sweetener aspartame as a possible carcinogen.

The move, reported by multiple media sources, is expected during a July 14 meeting of WHO research experts – the International Agency for Research on Cancer. Reuters cited two unnamed sources “with knowledge of the process,” noting that aspartame is one of the world’s most commonly used sweeteners. 

Aspartame is 200 times sweeter than sugar and was first approved by the Food and Drug Administration in 1974 for use as a tabletop sweetener and in chewing gum and cold breakfast cereals, as well as instant coffee, gelatins, puddings and fillings, and dairy products. Up to 95% of carbonated soft drinks that have a sweetener use aspartame, and the substance is often added by consumers to beverages (it’s the blue packet of sweetener in the array of packets that appear on diner and restaurant tables),  The Washington Post  reported. 

The WHO currently lists 126 agents as known to be carcinogenic to humans, ranging from alcohol and tobacco to outdoor air pollution. The WHO also lists 94 agents as “probably” carcinogenic to humans and 322 agents as “possibly” carcinogenic to humans. Aspartame would join the “possibly” group, which includes gasoline engine exhaust and working as a dry cleaner.

Earlier this year, the WHO warned that people should not use nonsugar sweeteners to control their weight because of potential health risks. 
 

A version of this article originally appeared on WebMD.com.

Publications
Topics
Sections

The World Health Organization is set to list the artificial sweetener aspartame as a possible carcinogen.

The move, reported by multiple media sources, is expected during a July 14 meeting of WHO research experts – the International Agency for Research on Cancer. Reuters cited two unnamed sources “with knowledge of the process,” noting that aspartame is one of the world’s most commonly used sweeteners. 

Aspartame is 200 times sweeter than sugar and was first approved by the Food and Drug Administration in 1974 for use as a tabletop sweetener and in chewing gum and cold breakfast cereals, as well as instant coffee, gelatins, puddings and fillings, and dairy products. Up to 95% of carbonated soft drinks that have a sweetener use aspartame, and the substance is often added by consumers to beverages (it’s the blue packet of sweetener in the array of packets that appear on diner and restaurant tables),  The Washington Post  reported. 

The WHO currently lists 126 agents as known to be carcinogenic to humans, ranging from alcohol and tobacco to outdoor air pollution. The WHO also lists 94 agents as “probably” carcinogenic to humans and 322 agents as “possibly” carcinogenic to humans. Aspartame would join the “possibly” group, which includes gasoline engine exhaust and working as a dry cleaner.

Earlier this year, the WHO warned that people should not use nonsugar sweeteners to control their weight because of potential health risks. 
 

A version of this article originally appeared on WebMD.com.

The World Health Organization is set to list the artificial sweetener aspartame as a possible carcinogen.

The move, reported by multiple media sources, is expected during a July 14 meeting of WHO research experts – the International Agency for Research on Cancer. Reuters cited two unnamed sources “with knowledge of the process,” noting that aspartame is one of the world’s most commonly used sweeteners. 

Aspartame is 200 times sweeter than sugar and was first approved by the Food and Drug Administration in 1974 for use as a tabletop sweetener and in chewing gum and cold breakfast cereals, as well as instant coffee, gelatins, puddings and fillings, and dairy products. Up to 95% of carbonated soft drinks that have a sweetener use aspartame, and the substance is often added by consumers to beverages (it’s the blue packet of sweetener in the array of packets that appear on diner and restaurant tables),  The Washington Post  reported. 

The WHO currently lists 126 agents as known to be carcinogenic to humans, ranging from alcohol and tobacco to outdoor air pollution. The WHO also lists 94 agents as “probably” carcinogenic to humans and 322 agents as “possibly” carcinogenic to humans. Aspartame would join the “possibly” group, which includes gasoline engine exhaust and working as a dry cleaner.

Earlier this year, the WHO warned that people should not use nonsugar sweeteners to control their weight because of potential health risks. 
 

A version of this article originally appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Tirzepatide: Therapeutic titan or costly cure?

Article Type
Changed
Thu, 06/29/2023 - 16:37

As a general practitioner with a specialist interest in diabetes, I am increasingly diagnosing younger people living with type 2 diabetes and obesity. Sadly, my youngest patient living with type 2 diabetes and obesity is only in her early 20s.
 

In fact, in England, there are now more people under the age of 40 years living with type 2 diabetes than type 1 diabetes. These younger individuals tend to present with very high hemoglobin A1c levels; I am routinely seeing double-digit A1c percentage levels in my practice. Indeed, the patient mentioned above presented with an A1c of more than 13%.

The lifetime cardiometabolic risk of individuals like her is considerable and very worrying: Younger adults with type 2 diabetes often have adverse cardiometabolic risk profiles at diagnosis, with higher body mass indices, marked dyslipidemia, hypertension, and abnormal liver profiles suggesting nonalcoholic fatty liver disease. The cumulative impact of this risk profile is a significant impact on quality and quantity of life. Evidence tells us that a younger age of diagnosis with type 2 diabetes is associated with an increased risk for premature death, especially from cardiovascular disease.

Early treatment intensification is warranted in younger individuals living with type 2 diabetes and obesity. My patient above is now on triple therapy with metformin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and a glucagonlike peptide–1 (GLP-1) receptor agonist. I gave her an urgent referral to my local weight management service for weight, nutritional, and psychological support. I have also issued her a real-time continuous glucose monitoring (rt-CGM) device: Whilst she does not meet any current U.K. criteria for using rt-CGM, I feel that the role of CGM as an educational tool for her is invaluable and equally important to her pharmacologic therapies. We are in desperate need of effective pharmacologic and lifestyle interventions to tackle this epidemic of cardiometabolic disease in the young.

I attended the recent ADA 2023 congress in San Diego, including the presentation of the SURMOUNT-2 trial data. SURMOUNT-2 explored the efficacy and safety of the dual GLP-GIP agonist tirzepatide for weight management in patients with obesity and type 2 diabetes. Tirzepatide was associated with significant reductions in weight (average weight loss, 14-16 kg after 72 weeks) and glycemia (2.1% reduction in A1c after 72 weeks), as well as reductions in clinically meaningful cardiometabolic risk factors, including systolic blood pressure, liver enzymes, and fasting non–HDL cholesterol levels. The overall safety profile of tirzepatide was also reassuring and consistent with the GLP-1 class. Most adverse effects were gastrointestinal and of mild to moderate severity. These adverse effects decreased over time.

These results perfectly position tirzepatide for my younger patients like the young woman mentioned above. The significant improvements in weight, glycemia, and cardiometabolic risk factors will not only help mitigate her future cardiometabolic risk but also help the sustainability of the U.K.’s National Health System. The cost of diabetes to the NHS in the United Kingdom is more than 10% of the entire NHS budget for England and Wales. More than 80% of this cost, however, is related not to the medications and devices we prescribe for diabetes but to the downstream complications of diabetes, such as hospital admissions for cardiovascular events and amputations, as well as regular hospital attendance for dialysis for end-stage kidney disease.

There is no doubt, however, that modern obesity medications such as semaglutide and tirzepatide are expensive, and demand has been astronomical. This demand has been driven by private weight-management services and celebrity influencers, and has resulted in major U.K.-wide GLP-1 shortages.

This situation is tragically widening health inequalities, as many of my patients who have been on GLP-1 receptor agonists for many years are unable to obtain them. I am having to consider switching therapies, often to less efficacious options without the compelling cardiorenal benefits. Furthermore, the GLP-1 shortages have prevented GLP-1 initiation for my other high-risk younger patients, potentially increasing future cardiometabolic risk.

There remain unanswered questions for tirzepatide: What is the durability of effect of tirzepatide after 72 weeks (that is, the trial duration of SURMOUNT-2)? Crucially, what is the effect of withdrawal of tirzepatide on weight loss maintenance? Previous evidence has suggested weight regain after discontinuation of a GLP-1 receptor agonist for obesity. This, of course, has further financial and sustainability implications for health care systems such as the NHS.

Finally, we are increasingly seeing younger women of childbearing age with or at risk for cardiometabolic disease. Again, my patient above is one example. Many of the therapies we use for cardiometabolic disease management, including GLP-1 receptor agonists and tirzepatide, have not been studied, and hence have not been licensed in pregnant women. Therefore, frank discussions are required with patients about future family plans and the importance of contraception. Often, the significant weight loss seen with GLP-1 receptor agonists can improve hormonal profiles and fertility in women and result in unexpected pregnancies if robust contraception is not in place.

Tirzepatide has yet to be made commercially available in the United Kingdom, and its price has also yet to be set. But I already envision a clear role for tirzepatide in my treatment armamentarium. I will be positioning tirzepatide as my first injectable of choice after oral treatment escalation with metformin and an SGLT2 inhibitor in all my patients who require treatment intensification – not just my younger, higher-risk individuals. This may remain an aspirational goal until supply chains and cost are defined. There is no doubt, however, that the compelling weight and glycemic benefits of tirzepatide alongside individualized lifestyle interventions can help improve the quality and quantity of life of my patients living with type 2 diabetes and obesity.

Dr. Fernando is a general practitioner near Edinburgh. He reported receiving speaker fees from Eli Lilly and Novo Nordisk..

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

As a general practitioner with a specialist interest in diabetes, I am increasingly diagnosing younger people living with type 2 diabetes and obesity. Sadly, my youngest patient living with type 2 diabetes and obesity is only in her early 20s.
 

In fact, in England, there are now more people under the age of 40 years living with type 2 diabetes than type 1 diabetes. These younger individuals tend to present with very high hemoglobin A1c levels; I am routinely seeing double-digit A1c percentage levels in my practice. Indeed, the patient mentioned above presented with an A1c of more than 13%.

The lifetime cardiometabolic risk of individuals like her is considerable and very worrying: Younger adults with type 2 diabetes often have adverse cardiometabolic risk profiles at diagnosis, with higher body mass indices, marked dyslipidemia, hypertension, and abnormal liver profiles suggesting nonalcoholic fatty liver disease. The cumulative impact of this risk profile is a significant impact on quality and quantity of life. Evidence tells us that a younger age of diagnosis with type 2 diabetes is associated with an increased risk for premature death, especially from cardiovascular disease.

Early treatment intensification is warranted in younger individuals living with type 2 diabetes and obesity. My patient above is now on triple therapy with metformin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and a glucagonlike peptide–1 (GLP-1) receptor agonist. I gave her an urgent referral to my local weight management service for weight, nutritional, and psychological support. I have also issued her a real-time continuous glucose monitoring (rt-CGM) device: Whilst she does not meet any current U.K. criteria for using rt-CGM, I feel that the role of CGM as an educational tool for her is invaluable and equally important to her pharmacologic therapies. We are in desperate need of effective pharmacologic and lifestyle interventions to tackle this epidemic of cardiometabolic disease in the young.

I attended the recent ADA 2023 congress in San Diego, including the presentation of the SURMOUNT-2 trial data. SURMOUNT-2 explored the efficacy and safety of the dual GLP-GIP agonist tirzepatide for weight management in patients with obesity and type 2 diabetes. Tirzepatide was associated with significant reductions in weight (average weight loss, 14-16 kg after 72 weeks) and glycemia (2.1% reduction in A1c after 72 weeks), as well as reductions in clinically meaningful cardiometabolic risk factors, including systolic blood pressure, liver enzymes, and fasting non–HDL cholesterol levels. The overall safety profile of tirzepatide was also reassuring and consistent with the GLP-1 class. Most adverse effects were gastrointestinal and of mild to moderate severity. These adverse effects decreased over time.

These results perfectly position tirzepatide for my younger patients like the young woman mentioned above. The significant improvements in weight, glycemia, and cardiometabolic risk factors will not only help mitigate her future cardiometabolic risk but also help the sustainability of the U.K.’s National Health System. The cost of diabetes to the NHS in the United Kingdom is more than 10% of the entire NHS budget for England and Wales. More than 80% of this cost, however, is related not to the medications and devices we prescribe for diabetes but to the downstream complications of diabetes, such as hospital admissions for cardiovascular events and amputations, as well as regular hospital attendance for dialysis for end-stage kidney disease.

There is no doubt, however, that modern obesity medications such as semaglutide and tirzepatide are expensive, and demand has been astronomical. This demand has been driven by private weight-management services and celebrity influencers, and has resulted in major U.K.-wide GLP-1 shortages.

This situation is tragically widening health inequalities, as many of my patients who have been on GLP-1 receptor agonists for many years are unable to obtain them. I am having to consider switching therapies, often to less efficacious options without the compelling cardiorenal benefits. Furthermore, the GLP-1 shortages have prevented GLP-1 initiation for my other high-risk younger patients, potentially increasing future cardiometabolic risk.

There remain unanswered questions for tirzepatide: What is the durability of effect of tirzepatide after 72 weeks (that is, the trial duration of SURMOUNT-2)? Crucially, what is the effect of withdrawal of tirzepatide on weight loss maintenance? Previous evidence has suggested weight regain after discontinuation of a GLP-1 receptor agonist for obesity. This, of course, has further financial and sustainability implications for health care systems such as the NHS.

Finally, we are increasingly seeing younger women of childbearing age with or at risk for cardiometabolic disease. Again, my patient above is one example. Many of the therapies we use for cardiometabolic disease management, including GLP-1 receptor agonists and tirzepatide, have not been studied, and hence have not been licensed in pregnant women. Therefore, frank discussions are required with patients about future family plans and the importance of contraception. Often, the significant weight loss seen with GLP-1 receptor agonists can improve hormonal profiles and fertility in women and result in unexpected pregnancies if robust contraception is not in place.

Tirzepatide has yet to be made commercially available in the United Kingdom, and its price has also yet to be set. But I already envision a clear role for tirzepatide in my treatment armamentarium. I will be positioning tirzepatide as my first injectable of choice after oral treatment escalation with metformin and an SGLT2 inhibitor in all my patients who require treatment intensification – not just my younger, higher-risk individuals. This may remain an aspirational goal until supply chains and cost are defined. There is no doubt, however, that the compelling weight and glycemic benefits of tirzepatide alongside individualized lifestyle interventions can help improve the quality and quantity of life of my patients living with type 2 diabetes and obesity.

Dr. Fernando is a general practitioner near Edinburgh. He reported receiving speaker fees from Eli Lilly and Novo Nordisk..

A version of this article first appeared on Medscape.com.

As a general practitioner with a specialist interest in diabetes, I am increasingly diagnosing younger people living with type 2 diabetes and obesity. Sadly, my youngest patient living with type 2 diabetes and obesity is only in her early 20s.
 

In fact, in England, there are now more people under the age of 40 years living with type 2 diabetes than type 1 diabetes. These younger individuals tend to present with very high hemoglobin A1c levels; I am routinely seeing double-digit A1c percentage levels in my practice. Indeed, the patient mentioned above presented with an A1c of more than 13%.

The lifetime cardiometabolic risk of individuals like her is considerable and very worrying: Younger adults with type 2 diabetes often have adverse cardiometabolic risk profiles at diagnosis, with higher body mass indices, marked dyslipidemia, hypertension, and abnormal liver profiles suggesting nonalcoholic fatty liver disease. The cumulative impact of this risk profile is a significant impact on quality and quantity of life. Evidence tells us that a younger age of diagnosis with type 2 diabetes is associated with an increased risk for premature death, especially from cardiovascular disease.

Early treatment intensification is warranted in younger individuals living with type 2 diabetes and obesity. My patient above is now on triple therapy with metformin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and a glucagonlike peptide–1 (GLP-1) receptor agonist. I gave her an urgent referral to my local weight management service for weight, nutritional, and psychological support. I have also issued her a real-time continuous glucose monitoring (rt-CGM) device: Whilst she does not meet any current U.K. criteria for using rt-CGM, I feel that the role of CGM as an educational tool for her is invaluable and equally important to her pharmacologic therapies. We are in desperate need of effective pharmacologic and lifestyle interventions to tackle this epidemic of cardiometabolic disease in the young.

I attended the recent ADA 2023 congress in San Diego, including the presentation of the SURMOUNT-2 trial data. SURMOUNT-2 explored the efficacy and safety of the dual GLP-GIP agonist tirzepatide for weight management in patients with obesity and type 2 diabetes. Tirzepatide was associated with significant reductions in weight (average weight loss, 14-16 kg after 72 weeks) and glycemia (2.1% reduction in A1c after 72 weeks), as well as reductions in clinically meaningful cardiometabolic risk factors, including systolic blood pressure, liver enzymes, and fasting non–HDL cholesterol levels. The overall safety profile of tirzepatide was also reassuring and consistent with the GLP-1 class. Most adverse effects were gastrointestinal and of mild to moderate severity. These adverse effects decreased over time.

These results perfectly position tirzepatide for my younger patients like the young woman mentioned above. The significant improvements in weight, glycemia, and cardiometabolic risk factors will not only help mitigate her future cardiometabolic risk but also help the sustainability of the U.K.’s National Health System. The cost of diabetes to the NHS in the United Kingdom is more than 10% of the entire NHS budget for England and Wales. More than 80% of this cost, however, is related not to the medications and devices we prescribe for diabetes but to the downstream complications of diabetes, such as hospital admissions for cardiovascular events and amputations, as well as regular hospital attendance for dialysis for end-stage kidney disease.

There is no doubt, however, that modern obesity medications such as semaglutide and tirzepatide are expensive, and demand has been astronomical. This demand has been driven by private weight-management services and celebrity influencers, and has resulted in major U.K.-wide GLP-1 shortages.

This situation is tragically widening health inequalities, as many of my patients who have been on GLP-1 receptor agonists for many years are unable to obtain them. I am having to consider switching therapies, often to less efficacious options without the compelling cardiorenal benefits. Furthermore, the GLP-1 shortages have prevented GLP-1 initiation for my other high-risk younger patients, potentially increasing future cardiometabolic risk.

There remain unanswered questions for tirzepatide: What is the durability of effect of tirzepatide after 72 weeks (that is, the trial duration of SURMOUNT-2)? Crucially, what is the effect of withdrawal of tirzepatide on weight loss maintenance? Previous evidence has suggested weight regain after discontinuation of a GLP-1 receptor agonist for obesity. This, of course, has further financial and sustainability implications for health care systems such as the NHS.

Finally, we are increasingly seeing younger women of childbearing age with or at risk for cardiometabolic disease. Again, my patient above is one example. Many of the therapies we use for cardiometabolic disease management, including GLP-1 receptor agonists and tirzepatide, have not been studied, and hence have not been licensed in pregnant women. Therefore, frank discussions are required with patients about future family plans and the importance of contraception. Often, the significant weight loss seen with GLP-1 receptor agonists can improve hormonal profiles and fertility in women and result in unexpected pregnancies if robust contraception is not in place.

Tirzepatide has yet to be made commercially available in the United Kingdom, and its price has also yet to be set. But I already envision a clear role for tirzepatide in my treatment armamentarium. I will be positioning tirzepatide as my first injectable of choice after oral treatment escalation with metformin and an SGLT2 inhibitor in all my patients who require treatment intensification – not just my younger, higher-risk individuals. This may remain an aspirational goal until supply chains and cost are defined. There is no doubt, however, that the compelling weight and glycemic benefits of tirzepatide alongside individualized lifestyle interventions can help improve the quality and quantity of life of my patients living with type 2 diabetes and obesity.

Dr. Fernando is a general practitioner near Edinburgh. He reported receiving speaker fees from Eli Lilly and Novo Nordisk..

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

CGM alarm fatigue in youth?

Article Type
Changed
Thu, 06/29/2023 - 16:38

Teenagers with diabetes who use a continuous glucose monitor (CGM) employ a wide variety of alarm settings to alert them when their blood sugar may be too high or too low. But sometimes those thresholds generate too many alarms – which in turn might lead patients to ignore the devices, according to a study presented at the 2023 annual meeting of the Endocrine Society.

“These alarms alert people with diabetes and their caregivers of pending glycemic changes. However, little work has been done studying CGM alarm settings in pediatric clinical populations,” said Victoria Ochs, BS, a medical student at the Indiana University, Indianapolis, who helped conduct the study.

Ms. Ochs and colleagues analyzed 2 weeks of real-time CGM alarm settings from 150 children with diabetes treated at Indiana. Their average age was 14 years; 47% were female, 89% of were White, 9.5% were Black, and 1.5% were Asian. Approximately half the patients used insulin pumps (51%) in addition to the monitoring devices.  

For both alarms that indicated blood sugar was too low or too high, settings among the children often varied widely from thresholds recommended by the University of Colorado’s Barbara Davis Center for Diabetes, Aurora. Those thresholds are 70 mg/dL of glucose for low and 180 mg/dL for high glucose. At Indiana, the median alert level for low was set to 74 mg/dL (range: 60-100), while the median for high was 242 mg/dL (range: 120-400). 

“If we have it set at 100, what exactly is the purpose of that? Is it just to make you more anxious that you’re going to drop low at some point?” asked Cari Berget, MPH, RN, CDE, who specializes in pediatric diabetes at the University of Colorado, speaking of the low blood sugar alarm. Setting this alarm at 70 md/dL instead could lead to concrete action when it does go off – such as consuming carbohydrates to boost blood sugar, she said. 

“Alarms should result in action most of the time,” said Ms. Berget, associate director of Colorado’s PANTHER program, which established the alarm thresholds used in the Indiana study. Alarm setting is not one-size-fits-all, Ms. Berget noted: Some people might want 70 mg/dL to warn of low blood sugar, whereas others prefer 75 or 80 mg/dL. 

As for alerts about hyperglycemia, Ms. Berget said patients often exceed the high range of 180 mg/dL immediately after a meal. Ideally these sugars will subside on their own within 3 hours, a process aided by insulin shots or pumps. Setting a threshold for high blood sugar too low, such as 120 mg/dL, could result in ceaseless alarms even if the person is not at risk for harm.

“If you receive an alarm and there’s no action for you to take, then we need to change how we’re setting these alarms,” Ms. Berget said. She advised parents and children to be thoughtful about setting their CGM alarm thresholds to be most useful to them.

Ms. Ochs said in some cases families have CGM devices shipped directly to their homes and never consult with anyone about optimal alarm settings.

“It would be useful to talk to families about what baseline information they had,” Ms. Ochs told this news organization. “It would be nice to talk to diabetes educators, and I think it would be nice to talk to physicians.”

Ms. Ochs reports no relevant financial relationships. Ms. Berget has consulted for Dexcom and Insulet.
 

A version of this article originally appeared on Medscape.com.

Publications
Topics
Sections

Teenagers with diabetes who use a continuous glucose monitor (CGM) employ a wide variety of alarm settings to alert them when their blood sugar may be too high or too low. But sometimes those thresholds generate too many alarms – which in turn might lead patients to ignore the devices, according to a study presented at the 2023 annual meeting of the Endocrine Society.

“These alarms alert people with diabetes and their caregivers of pending glycemic changes. However, little work has been done studying CGM alarm settings in pediatric clinical populations,” said Victoria Ochs, BS, a medical student at the Indiana University, Indianapolis, who helped conduct the study.

Ms. Ochs and colleagues analyzed 2 weeks of real-time CGM alarm settings from 150 children with diabetes treated at Indiana. Their average age was 14 years; 47% were female, 89% of were White, 9.5% were Black, and 1.5% were Asian. Approximately half the patients used insulin pumps (51%) in addition to the monitoring devices.  

For both alarms that indicated blood sugar was too low or too high, settings among the children often varied widely from thresholds recommended by the University of Colorado’s Barbara Davis Center for Diabetes, Aurora. Those thresholds are 70 mg/dL of glucose for low and 180 mg/dL for high glucose. At Indiana, the median alert level for low was set to 74 mg/dL (range: 60-100), while the median for high was 242 mg/dL (range: 120-400). 

“If we have it set at 100, what exactly is the purpose of that? Is it just to make you more anxious that you’re going to drop low at some point?” asked Cari Berget, MPH, RN, CDE, who specializes in pediatric diabetes at the University of Colorado, speaking of the low blood sugar alarm. Setting this alarm at 70 md/dL instead could lead to concrete action when it does go off – such as consuming carbohydrates to boost blood sugar, she said. 

“Alarms should result in action most of the time,” said Ms. Berget, associate director of Colorado’s PANTHER program, which established the alarm thresholds used in the Indiana study. Alarm setting is not one-size-fits-all, Ms. Berget noted: Some people might want 70 mg/dL to warn of low blood sugar, whereas others prefer 75 or 80 mg/dL. 

As for alerts about hyperglycemia, Ms. Berget said patients often exceed the high range of 180 mg/dL immediately after a meal. Ideally these sugars will subside on their own within 3 hours, a process aided by insulin shots or pumps. Setting a threshold for high blood sugar too low, such as 120 mg/dL, could result in ceaseless alarms even if the person is not at risk for harm.

“If you receive an alarm and there’s no action for you to take, then we need to change how we’re setting these alarms,” Ms. Berget said. She advised parents and children to be thoughtful about setting their CGM alarm thresholds to be most useful to them.

Ms. Ochs said in some cases families have CGM devices shipped directly to their homes and never consult with anyone about optimal alarm settings.

“It would be useful to talk to families about what baseline information they had,” Ms. Ochs told this news organization. “It would be nice to talk to diabetes educators, and I think it would be nice to talk to physicians.”

Ms. Ochs reports no relevant financial relationships. Ms. Berget has consulted for Dexcom and Insulet.
 

A version of this article originally appeared on Medscape.com.

Teenagers with diabetes who use a continuous glucose monitor (CGM) employ a wide variety of alarm settings to alert them when their blood sugar may be too high or too low. But sometimes those thresholds generate too many alarms – which in turn might lead patients to ignore the devices, according to a study presented at the 2023 annual meeting of the Endocrine Society.

“These alarms alert people with diabetes and their caregivers of pending glycemic changes. However, little work has been done studying CGM alarm settings in pediatric clinical populations,” said Victoria Ochs, BS, a medical student at the Indiana University, Indianapolis, who helped conduct the study.

Ms. Ochs and colleagues analyzed 2 weeks of real-time CGM alarm settings from 150 children with diabetes treated at Indiana. Their average age was 14 years; 47% were female, 89% of were White, 9.5% were Black, and 1.5% were Asian. Approximately half the patients used insulin pumps (51%) in addition to the monitoring devices.  

For both alarms that indicated blood sugar was too low or too high, settings among the children often varied widely from thresholds recommended by the University of Colorado’s Barbara Davis Center for Diabetes, Aurora. Those thresholds are 70 mg/dL of glucose for low and 180 mg/dL for high glucose. At Indiana, the median alert level for low was set to 74 mg/dL (range: 60-100), while the median for high was 242 mg/dL (range: 120-400). 

“If we have it set at 100, what exactly is the purpose of that? Is it just to make you more anxious that you’re going to drop low at some point?” asked Cari Berget, MPH, RN, CDE, who specializes in pediatric diabetes at the University of Colorado, speaking of the low blood sugar alarm. Setting this alarm at 70 md/dL instead could lead to concrete action when it does go off – such as consuming carbohydrates to boost blood sugar, she said. 

“Alarms should result in action most of the time,” said Ms. Berget, associate director of Colorado’s PANTHER program, which established the alarm thresholds used in the Indiana study. Alarm setting is not one-size-fits-all, Ms. Berget noted: Some people might want 70 mg/dL to warn of low blood sugar, whereas others prefer 75 or 80 mg/dL. 

As for alerts about hyperglycemia, Ms. Berget said patients often exceed the high range of 180 mg/dL immediately after a meal. Ideally these sugars will subside on their own within 3 hours, a process aided by insulin shots or pumps. Setting a threshold for high blood sugar too low, such as 120 mg/dL, could result in ceaseless alarms even if the person is not at risk for harm.

“If you receive an alarm and there’s no action for you to take, then we need to change how we’re setting these alarms,” Ms. Berget said. She advised parents and children to be thoughtful about setting their CGM alarm thresholds to be most useful to them.

Ms. Ochs said in some cases families have CGM devices shipped directly to their homes and never consult with anyone about optimal alarm settings.

“It would be useful to talk to families about what baseline information they had,” Ms. Ochs told this news organization. “It would be nice to talk to diabetes educators, and I think it would be nice to talk to physicians.”

Ms. Ochs reports no relevant financial relationships. Ms. Berget has consulted for Dexcom and Insulet.
 

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Beta cells from stem cells: Nearing a cure for type 1 diabetes?

Article Type
Changed
Thu, 06/29/2023 - 13:11

 

This transcript has been edited for clarity.

Those of us in the field of diabetes have long wanted to cure type 1 diabetes, and there are little steps making me feel like this might be a possibility. One of those steps is that a company named Vertex – I’m actually on the steering committee for Vertex in terms of this project – has made beta cells from stem cells. Now, instead of waiting for a cadaveric donor, we can make little beta cells. They started giving them to people in human trials. The Food and Drug Administration has been cautious because it’s new, and I get that.

In the first part of these trials, we could only give half a dose of these beta cells. The doses were determined based on what we know from giving beta-cell transplants from cadaveric donors. We gave half a dose of these stem cell–derived beta cells to two people who were having episodes of severe hypoglycemia.

In patient 1, these beta cells worked incredibly well. He became insulin independent, and now after over a year, he’s basically free of his type 1 diabetes. Patient 2 received half a dose, and she did get some activity of the beta cells, but not enough to achieve insulin independence, so she got a second dose. Shortly after the second dose, she decided she didn’t want to participate in the trial anymore and she was lost to follow-up.

Patient 2 didn’t get the same response as patient 1, but then we moved on to four more patients who got a full dose to start with. Now, there’s a total of six patients. Of those additional four patients, one of them has now been followed for a year. Just like patient 1, he’s off insulin. It’s as though his body has normal beta cells and he’s doing great. For the next three patients, we don’t have enough follow-up data to tell you what’s going to happen to them at a year.

I can tell you that, in all six patients, the beta cells worked. They basically were producing insulin, they had positive C-peptide levels, and it showed that these beta cells work when given to human beings. Now the trial is going to start giving more patients these stem cell–derived beta cells.

One of the things that’s important to realize is that this is a very small sample size, at just six individuals. Even within those six individuals, there was variation in terms of the response to the treatment. Probably, just like with all things in medicine, there will be different doses, different ways in which people do respond, people who get off of insulin completely, and people who may require some ongoing insulin therapy. I have no idea what this is going to look like as we test this in more people.

Everybody did start making C-peptide, they were having an effect of these beta cells, and it was working. We’ll have to see how well it works, how well it works in whom, and how we’re going to be able to use these types of therapies in the future.

In terms of side effects, they were really related to immunosuppression. There were no real surprises, but again, this is a very small sample size.

In summary, I think this is really hopeful. I don’t like to give false hope, but each step of this development process has shown that these beta cells derived from stem cells do seem to work in human beings as native beta cells might. Hopefully, this portends a future of newer therapies in the treatment of people with type 1 diabetes. Thank you.
 

Dr. Peters is professor of medicine at the University of Southern California, Los Angeles, and director of the USC clinical diabetes programs. She has published more than 200 articles, reviews, and abstracts, and three books, on diabetes, and has been an investigator for more than 40 research studies. She has spoken internationally at over 400 programs and serves on many committees of several professional organizations She disclosed ties with Abbott Diabetes Care, AstraZeneca, Becton Dickinson, Boehringer Ingelheim Pharmaceuticals, Dexcom, Eli Lilly, Lexicon Pharmaceuticals, Livongo, MannKind Corporation, Medscape, Merck, Novo Nordisk, Omada Health, OptumHealth, Sanofi, and Zafgen.

A version of this article originally appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

Those of us in the field of diabetes have long wanted to cure type 1 diabetes, and there are little steps making me feel like this might be a possibility. One of those steps is that a company named Vertex – I’m actually on the steering committee for Vertex in terms of this project – has made beta cells from stem cells. Now, instead of waiting for a cadaveric donor, we can make little beta cells. They started giving them to people in human trials. The Food and Drug Administration has been cautious because it’s new, and I get that.

In the first part of these trials, we could only give half a dose of these beta cells. The doses were determined based on what we know from giving beta-cell transplants from cadaveric donors. We gave half a dose of these stem cell–derived beta cells to two people who were having episodes of severe hypoglycemia.

In patient 1, these beta cells worked incredibly well. He became insulin independent, and now after over a year, he’s basically free of his type 1 diabetes. Patient 2 received half a dose, and she did get some activity of the beta cells, but not enough to achieve insulin independence, so she got a second dose. Shortly after the second dose, she decided she didn’t want to participate in the trial anymore and she was lost to follow-up.

Patient 2 didn’t get the same response as patient 1, but then we moved on to four more patients who got a full dose to start with. Now, there’s a total of six patients. Of those additional four patients, one of them has now been followed for a year. Just like patient 1, he’s off insulin. It’s as though his body has normal beta cells and he’s doing great. For the next three patients, we don’t have enough follow-up data to tell you what’s going to happen to them at a year.

I can tell you that, in all six patients, the beta cells worked. They basically were producing insulin, they had positive C-peptide levels, and it showed that these beta cells work when given to human beings. Now the trial is going to start giving more patients these stem cell–derived beta cells.

One of the things that’s important to realize is that this is a very small sample size, at just six individuals. Even within those six individuals, there was variation in terms of the response to the treatment. Probably, just like with all things in medicine, there will be different doses, different ways in which people do respond, people who get off of insulin completely, and people who may require some ongoing insulin therapy. I have no idea what this is going to look like as we test this in more people.

Everybody did start making C-peptide, they were having an effect of these beta cells, and it was working. We’ll have to see how well it works, how well it works in whom, and how we’re going to be able to use these types of therapies in the future.

In terms of side effects, they were really related to immunosuppression. There were no real surprises, but again, this is a very small sample size.

In summary, I think this is really hopeful. I don’t like to give false hope, but each step of this development process has shown that these beta cells derived from stem cells do seem to work in human beings as native beta cells might. Hopefully, this portends a future of newer therapies in the treatment of people with type 1 diabetes. Thank you.
 

Dr. Peters is professor of medicine at the University of Southern California, Los Angeles, and director of the USC clinical diabetes programs. She has published more than 200 articles, reviews, and abstracts, and three books, on diabetes, and has been an investigator for more than 40 research studies. She has spoken internationally at over 400 programs and serves on many committees of several professional organizations She disclosed ties with Abbott Diabetes Care, AstraZeneca, Becton Dickinson, Boehringer Ingelheim Pharmaceuticals, Dexcom, Eli Lilly, Lexicon Pharmaceuticals, Livongo, MannKind Corporation, Medscape, Merck, Novo Nordisk, Omada Health, OptumHealth, Sanofi, and Zafgen.

A version of this article originally appeared on Medscape.com.

 

This transcript has been edited for clarity.

Those of us in the field of diabetes have long wanted to cure type 1 diabetes, and there are little steps making me feel like this might be a possibility. One of those steps is that a company named Vertex – I’m actually on the steering committee for Vertex in terms of this project – has made beta cells from stem cells. Now, instead of waiting for a cadaveric donor, we can make little beta cells. They started giving them to people in human trials. The Food and Drug Administration has been cautious because it’s new, and I get that.

In the first part of these trials, we could only give half a dose of these beta cells. The doses were determined based on what we know from giving beta-cell transplants from cadaveric donors. We gave half a dose of these stem cell–derived beta cells to two people who were having episodes of severe hypoglycemia.

In patient 1, these beta cells worked incredibly well. He became insulin independent, and now after over a year, he’s basically free of his type 1 diabetes. Patient 2 received half a dose, and she did get some activity of the beta cells, but not enough to achieve insulin independence, so she got a second dose. Shortly after the second dose, she decided she didn’t want to participate in the trial anymore and she was lost to follow-up.

Patient 2 didn’t get the same response as patient 1, but then we moved on to four more patients who got a full dose to start with. Now, there’s a total of six patients. Of those additional four patients, one of them has now been followed for a year. Just like patient 1, he’s off insulin. It’s as though his body has normal beta cells and he’s doing great. For the next three patients, we don’t have enough follow-up data to tell you what’s going to happen to them at a year.

I can tell you that, in all six patients, the beta cells worked. They basically were producing insulin, they had positive C-peptide levels, and it showed that these beta cells work when given to human beings. Now the trial is going to start giving more patients these stem cell–derived beta cells.

One of the things that’s important to realize is that this is a very small sample size, at just six individuals. Even within those six individuals, there was variation in terms of the response to the treatment. Probably, just like with all things in medicine, there will be different doses, different ways in which people do respond, people who get off of insulin completely, and people who may require some ongoing insulin therapy. I have no idea what this is going to look like as we test this in more people.

Everybody did start making C-peptide, they were having an effect of these beta cells, and it was working. We’ll have to see how well it works, how well it works in whom, and how we’re going to be able to use these types of therapies in the future.

In terms of side effects, they were really related to immunosuppression. There were no real surprises, but again, this is a very small sample size.

In summary, I think this is really hopeful. I don’t like to give false hope, but each step of this development process has shown that these beta cells derived from stem cells do seem to work in human beings as native beta cells might. Hopefully, this portends a future of newer therapies in the treatment of people with type 1 diabetes. Thank you.
 

Dr. Peters is professor of medicine at the University of Southern California, Los Angeles, and director of the USC clinical diabetes programs. She has published more than 200 articles, reviews, and abstracts, and three books, on diabetes, and has been an investigator for more than 40 research studies. She has spoken internationally at over 400 programs and serves on many committees of several professional organizations She disclosed ties with Abbott Diabetes Care, AstraZeneca, Becton Dickinson, Boehringer Ingelheim Pharmaceuticals, Dexcom, Eli Lilly, Lexicon Pharmaceuticals, Livongo, MannKind Corporation, Medscape, Merck, Novo Nordisk, Omada Health, OptumHealth, Sanofi, and Zafgen.

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA OKs pancreatic islet cell therapy for type 1 diabetes

Article Type
Changed
Thu, 06/29/2023 - 16:40

The Food and Drug Administration has approved donislecel (Lantidra, CellTrans), a pancreatic islet cell therapy developed from cadaver donors, for the treatment of people with type 1 diabetes who are unable to achieve target glucose levels owing to severe hypoglycemic episodes.

The product is given as a single infusion via the hepatic portal vein into the liver. A second infusion is given if necessary. Immunosuppression is required to maintain cell viability, just as it is required to support a transplanted kidney or other organ, as these all represent “foreign” tissues to the recipient.

“Today’s approval, the first-ever cell therapy to treat patients with type 1 diabetes, provides individuals living with type 1 diabetes and recurrent severe hypoglycemia an additional treatment option to help achieve target blood glucose levels,” said Peter Marks, MD, PhD, director of the FDA’s Center for Biologics Evaluation and Research, in an FDA statement.

The product was approved despite concerns from the American Society of Transplant Surgeons, the American Society of Transplantation, and an organization of more than 50 transplant surgeons – the Islets for U.S. Collaborative – whose members argue that cadaver-derived (allogeneic) pancreatic islets should be regulated as transplanted organs rather than as biologic drugs, as is done in many other parts of the world.

Lantidra differs from stem cell therapy being developed by Vertex Pharmaceuticals. In the latter, beta cells are grown from allogeneic stem cells using a proprietary technology. So far, six patients have received the therapy, and it has been successful in all of them to varying degrees, as reported at last week’s American Diabetes Association meeting. So while this is a promising technology, with talk of a “cure” for type 1 diabetes, it’s important to remember that this is very early in the development phase, says Anne Peters, MD, of the University of California, Los Angeles.
 

Approval based on small studies, with adverse events

The approval of Lantidra, following a 12-4 vote in favor by the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee in April 2021, was based on two nonrandomized, single-arm studies that included a total of 30 individuals with type 1 diabetes who had hypoglycemic unawareness and who received between one and three infusions of donislecel.

Insulin independence was achieved at 1 year by 21 participants; 11 were still insulin independent at 5 years, and 10 remained so more than 5 years. Five participants were unable to discontinue insulin treatment at all.

Adverse events included nausea, fatigue, anemiadiarrhea, and abdominal pain. Most of the participants experienced at least one serious adverse reaction related to the method of infusion and/or the use of immunosuppression. Some of these reactions required discontinuation of the immunosuppressive medications, resulting in the loss of islet cell function and return to insulin dependence.

“These adverse events should be considered when assessing the benefits and risks of Lantidra for each patient. Lantidra is approved with patient-directed labeling to inform patients with type 1 diabetes about benefits and risks of Lantidra,” according to the FDA statement.
 

U.S. transplant physicians had expressed concern, bill introduced

The transplant surgery organizations had written letters to the FDA, as well as to several other government agencies, to ask that the regulatory framework for Lantidra be shifted from the FDA to the Organ Procurement and Transplantation Network and the United Network for Organ Sharing.

They also wrote to members of Congress. On June 22, 2023, U.S. Senators Mike Lee (R-UT), Ted Budd (R-NC), and Marsha Blackburn (R-TN) introduced the Islet Transplantation Bill, which would shift the regulatory framework for cadaveric islets from that of biologic drugs to transplanted organs.

Asked for comment, Piotr Witkowski, MD, PhD, the leader of the Islets for U.S. Collaborative, told this news organization: “We were really happy about the introduction of the islet bill. Now, we’re concerned about negative downstream effects of granting a licence to a private company for distribution of the cadaveric islets.”

During the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee’s discussion in 2021, several panel members noted that the target patient population for this treatment with the current indication will likely be smaller today than it was when the two studies were initiated, in 2004 and 2007, given current automated diabetes technology – such as insulin pumps, continuous glucose monitors, and hybrid closed-loop systems in which the two are linked together as a so-called artificial pancreas – that reduces hypoglycemia risk.

A version of this article originally appeared on Medscape.com.

Publications
Topics
Sections

The Food and Drug Administration has approved donislecel (Lantidra, CellTrans), a pancreatic islet cell therapy developed from cadaver donors, for the treatment of people with type 1 diabetes who are unable to achieve target glucose levels owing to severe hypoglycemic episodes.

The product is given as a single infusion via the hepatic portal vein into the liver. A second infusion is given if necessary. Immunosuppression is required to maintain cell viability, just as it is required to support a transplanted kidney or other organ, as these all represent “foreign” tissues to the recipient.

“Today’s approval, the first-ever cell therapy to treat patients with type 1 diabetes, provides individuals living with type 1 diabetes and recurrent severe hypoglycemia an additional treatment option to help achieve target blood glucose levels,” said Peter Marks, MD, PhD, director of the FDA’s Center for Biologics Evaluation and Research, in an FDA statement.

The product was approved despite concerns from the American Society of Transplant Surgeons, the American Society of Transplantation, and an organization of more than 50 transplant surgeons – the Islets for U.S. Collaborative – whose members argue that cadaver-derived (allogeneic) pancreatic islets should be regulated as transplanted organs rather than as biologic drugs, as is done in many other parts of the world.

Lantidra differs from stem cell therapy being developed by Vertex Pharmaceuticals. In the latter, beta cells are grown from allogeneic stem cells using a proprietary technology. So far, six patients have received the therapy, and it has been successful in all of them to varying degrees, as reported at last week’s American Diabetes Association meeting. So while this is a promising technology, with talk of a “cure” for type 1 diabetes, it’s important to remember that this is very early in the development phase, says Anne Peters, MD, of the University of California, Los Angeles.
 

Approval based on small studies, with adverse events

The approval of Lantidra, following a 12-4 vote in favor by the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee in April 2021, was based on two nonrandomized, single-arm studies that included a total of 30 individuals with type 1 diabetes who had hypoglycemic unawareness and who received between one and three infusions of donislecel.

Insulin independence was achieved at 1 year by 21 participants; 11 were still insulin independent at 5 years, and 10 remained so more than 5 years. Five participants were unable to discontinue insulin treatment at all.

Adverse events included nausea, fatigue, anemiadiarrhea, and abdominal pain. Most of the participants experienced at least one serious adverse reaction related to the method of infusion and/or the use of immunosuppression. Some of these reactions required discontinuation of the immunosuppressive medications, resulting in the loss of islet cell function and return to insulin dependence.

“These adverse events should be considered when assessing the benefits and risks of Lantidra for each patient. Lantidra is approved with patient-directed labeling to inform patients with type 1 diabetes about benefits and risks of Lantidra,” according to the FDA statement.
 

U.S. transplant physicians had expressed concern, bill introduced

The transplant surgery organizations had written letters to the FDA, as well as to several other government agencies, to ask that the regulatory framework for Lantidra be shifted from the FDA to the Organ Procurement and Transplantation Network and the United Network for Organ Sharing.

They also wrote to members of Congress. On June 22, 2023, U.S. Senators Mike Lee (R-UT), Ted Budd (R-NC), and Marsha Blackburn (R-TN) introduced the Islet Transplantation Bill, which would shift the regulatory framework for cadaveric islets from that of biologic drugs to transplanted organs.

Asked for comment, Piotr Witkowski, MD, PhD, the leader of the Islets for U.S. Collaborative, told this news organization: “We were really happy about the introduction of the islet bill. Now, we’re concerned about negative downstream effects of granting a licence to a private company for distribution of the cadaveric islets.”

During the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee’s discussion in 2021, several panel members noted that the target patient population for this treatment with the current indication will likely be smaller today than it was when the two studies were initiated, in 2004 and 2007, given current automated diabetes technology – such as insulin pumps, continuous glucose monitors, and hybrid closed-loop systems in which the two are linked together as a so-called artificial pancreas – that reduces hypoglycemia risk.

A version of this article originally appeared on Medscape.com.

The Food and Drug Administration has approved donislecel (Lantidra, CellTrans), a pancreatic islet cell therapy developed from cadaver donors, for the treatment of people with type 1 diabetes who are unable to achieve target glucose levels owing to severe hypoglycemic episodes.

The product is given as a single infusion via the hepatic portal vein into the liver. A second infusion is given if necessary. Immunosuppression is required to maintain cell viability, just as it is required to support a transplanted kidney or other organ, as these all represent “foreign” tissues to the recipient.

“Today’s approval, the first-ever cell therapy to treat patients with type 1 diabetes, provides individuals living with type 1 diabetes and recurrent severe hypoglycemia an additional treatment option to help achieve target blood glucose levels,” said Peter Marks, MD, PhD, director of the FDA’s Center for Biologics Evaluation and Research, in an FDA statement.

The product was approved despite concerns from the American Society of Transplant Surgeons, the American Society of Transplantation, and an organization of more than 50 transplant surgeons – the Islets for U.S. Collaborative – whose members argue that cadaver-derived (allogeneic) pancreatic islets should be regulated as transplanted organs rather than as biologic drugs, as is done in many other parts of the world.

Lantidra differs from stem cell therapy being developed by Vertex Pharmaceuticals. In the latter, beta cells are grown from allogeneic stem cells using a proprietary technology. So far, six patients have received the therapy, and it has been successful in all of them to varying degrees, as reported at last week’s American Diabetes Association meeting. So while this is a promising technology, with talk of a “cure” for type 1 diabetes, it’s important to remember that this is very early in the development phase, says Anne Peters, MD, of the University of California, Los Angeles.
 

Approval based on small studies, with adverse events

The approval of Lantidra, following a 12-4 vote in favor by the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee in April 2021, was based on two nonrandomized, single-arm studies that included a total of 30 individuals with type 1 diabetes who had hypoglycemic unawareness and who received between one and three infusions of donislecel.

Insulin independence was achieved at 1 year by 21 participants; 11 were still insulin independent at 5 years, and 10 remained so more than 5 years. Five participants were unable to discontinue insulin treatment at all.

Adverse events included nausea, fatigue, anemiadiarrhea, and abdominal pain. Most of the participants experienced at least one serious adverse reaction related to the method of infusion and/or the use of immunosuppression. Some of these reactions required discontinuation of the immunosuppressive medications, resulting in the loss of islet cell function and return to insulin dependence.

“These adverse events should be considered when assessing the benefits and risks of Lantidra for each patient. Lantidra is approved with patient-directed labeling to inform patients with type 1 diabetes about benefits and risks of Lantidra,” according to the FDA statement.
 

U.S. transplant physicians had expressed concern, bill introduced

The transplant surgery organizations had written letters to the FDA, as well as to several other government agencies, to ask that the regulatory framework for Lantidra be shifted from the FDA to the Organ Procurement and Transplantation Network and the United Network for Organ Sharing.

They also wrote to members of Congress. On June 22, 2023, U.S. Senators Mike Lee (R-UT), Ted Budd (R-NC), and Marsha Blackburn (R-TN) introduced the Islet Transplantation Bill, which would shift the regulatory framework for cadaveric islets from that of biologic drugs to transplanted organs.

Asked for comment, Piotr Witkowski, MD, PhD, the leader of the Islets for U.S. Collaborative, told this news organization: “We were really happy about the introduction of the islet bill. Now, we’re concerned about negative downstream effects of granting a licence to a private company for distribution of the cadaveric islets.”

During the FDA’s Cellular, Tissue, and Gene Therapies Advisory Committee’s discussion in 2021, several panel members noted that the target patient population for this treatment with the current indication will likely be smaller today than it was when the two studies were initiated, in 2004 and 2007, given current automated diabetes technology – such as insulin pumps, continuous glucose monitors, and hybrid closed-loop systems in which the two are linked together as a so-called artificial pancreas – that reduces hypoglycemia risk.

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Once-weekly basal insulin nears market for type 2 diabetes

Article Type
Changed
Tue, 06/27/2023 - 16:15

The investigational once-weekly insulin icodec provided superior glucose control, compared with the once-daily basal insulins degludec and glargine in type 2 diabetes, results from two new phase 3a studies suggest.

Data from Novo Nordisk’s ONWARDS 1, comparing once-weekly icodec with once-daily glargine, and ONWARDS 3, comparing once-weekly icodec with daily degludec (Tresiba, Novo Nordisk), both in insulin-naive patients with type 2 diabetes, were presented at the annual scientific sessions of the American Diabetes Association.

In both trials, primary endpoints of superiority and noninferiority in A1c reduction were achieved, and in ONWARDS 1, patients spent more time in target blood glucose range.

“I feel that weekly insulins have the potential to become transformational as preferred options for basal insulin replacement in people with type 2 diabetes in need of initiation of insulin therapy,” said Julio Rosenstock, MD, the lead author of ONWARDS 1.

Asked to comment, independent diabetes industry consultant Charles Alexander, MD, said: “The data certainly support approval of Icodec.”

Dr. Alexander said that an ideal candidate for once-weekly insulin “is someone who’s already on once-weekly [glucagon-like peptide-1 (GLP-1) agonist]. Then, taking your GLP-1 [agonist] and your basal insulin at the same time once a week makes a lot of sense ... Since they’re taking a weekly injection anyway, it’s relatively easy for a person to remember ‘When I take my weekly GLP-1 [agonist], I’ll take my weekly basal insulin.’ ”

However, he also pointed out: “Payers may say they don’t care about the convenience of once-weekly and they prefer to pay for the cheaper daily basal [insulin] ... I think a lot of people will continue to use [insulin] glargine because it is cheaper than either degludec or icodec.”

The data from ONWARDS 1 was published in the New England Journal of Medicine, and the data from ONWARDS 3 was published in JAMA.

Six ONWARDS trials make up Novo Nordisk’s phase 3a clinical development program comparing the efficacy and safety of once-weekly insulin icodec with once-daily basal insulin comparators.

Previously, findings from ONWARDS 2, in which patients with type 2 diabetes taking basal insulin had improved A1c after being switched to once-weekly icodec or once-daily degludec, were presented at the annual meeting of the European Association for the Study of Diabetes.    

Insulin icodec has been submitted for regulatory review in the United States, Canada, Europe, China, Australia, Switzerland, and Brazil, with decisions anticipated starting in the first half of 2024.
 

Hypoglycemia: Is the slight increase clinically significant?

One concern about the once-weekly insulins is that they might result in higher rates of hypoglycemia because they stay active in the body for so long.

Differences in rates of combined level 2 (clinically significant) and level 3 (severe) hypoglycemia were increased with borderline significance in ONWARDS 1.

In ONWARDS 3 there was a threefold significant difference, but the overall risk was still low, equating to one episode per patient per 3 years, said Ildiko Lingvay, MD, of University of Texas Southwestern Medical Center, Dallas, who is lead author for ONWARDS 1 and a co-author for ONWARDS 3.

Dr. Ildiko Lingvay


“Insulin is insulin. When we use insulin there will always be hypoglycemia. But we only have less than one event per year,” added Dr. Rosenstock, of Velocity Clinical Research at Medical City, Dallas.

Dr. Alexander pointed out that in ONWARDS 3 just under half of both groups were taking a sulfonylurea, although the trial design allowed for cutting the dose in half when the basal insulin was added.

In ONWARDS 1, in contrast, sulfonylureas and glinides were stopped at the time of randomization. “That’s not definitive, but I would argue that’s the explanation, to be proven by formal testing.”

Indeed, an audience member asked about that during the discussion, and Dr. Lingvay said they were still analyzing those data. “We’re working on that. It’s very important.”

Dr. Alexander noted, “I think the message here is don’t continue sulfonylureas or glinides in someone you’re giving insulin to because you’re going to get hypoglycemia.”
 

 

 

Better glycemic control, with fewer injections

ONWARDS 1 was a 78-week, randomized, open-label, treat-to-target trial, with a main 52-week phase and a 26-week extension phase. A total of 984 patients with type 2 diabetes and A1c 7%-11% with no prior insulin treatment were randomized 1:1 to once-weekly icodec or daily insulin glargine. All baseline medications except sulfonylureas and glinides were continued.

The primary endpoint was change in A1c from baseline to week 52, and this dropped from 8.5% to 6.9% with icodec, versus 8.4% to 7.1% with glargine, a significant difference, confirming both noninferiority (P < .001) and superiority (P = .02) of icodec, Dr. Rosenstock said.

The percentage of time in blood glucose range (70-180 mg/dL) was also significantly higher with icodec than glargine (71.9% vs. 66.9%; P < .001), also confirming superiority.

Rates of combined clinically significant or severe hypoglycemia at 83 weeks were 0.30 versus 0.16 events per person-year of exposure at week 83 (P = .043). No new safety signals were identified, and incidences of adverse events were similar in the two groups.

A significantly higher proportion of participants achieved an A1c of less than 7% without clinically significant or severe hypoglycemia with once-weekly basal insulin icodec versus once-daily basal insulin glargine (52.6% vs. 42.6%).

ONWARDS 3 randomized 588 patients each to once-weekly insulin icodec plus once-weekly placebo or once-daily insulin degludec plus once-weekly placebo. The primary endpoint, change in A1c from baseline to week 26, fell from 8.6% to 7.0% with icodec and from 8.5% to 7.2% with degludec, confirming both noninferiority (P < .001) and superiority (P = .002).

There were no significant differences between the two insulins in change in fasting plasma glucose, mean weekly insulin dose, or body weight.

Combined level 2 or 3 hypoglycemia rates were numerically higher in the icodec group than in the degludec group from week 0 to 31 (0.31 vs. 0.15 events per patient-year exposure; P = .11) and statistically higher in the icodec group from week 0 to 26 (0.35 vs. 0.12 events per patient-year exposure; P = .01).  

The percentage of patients achieving an A1c of less than 7% without level 2 or 3 hypoglycemia was 52.1% with icodec versus 39.9% with degludec.

Dr. Lingvay and Dr. Rosenstock have reported financial relationships with multiple companies.

A version of this article originally appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

The investigational once-weekly insulin icodec provided superior glucose control, compared with the once-daily basal insulins degludec and glargine in type 2 diabetes, results from two new phase 3a studies suggest.

Data from Novo Nordisk’s ONWARDS 1, comparing once-weekly icodec with once-daily glargine, and ONWARDS 3, comparing once-weekly icodec with daily degludec (Tresiba, Novo Nordisk), both in insulin-naive patients with type 2 diabetes, were presented at the annual scientific sessions of the American Diabetes Association.

In both trials, primary endpoints of superiority and noninferiority in A1c reduction were achieved, and in ONWARDS 1, patients spent more time in target blood glucose range.

“I feel that weekly insulins have the potential to become transformational as preferred options for basal insulin replacement in people with type 2 diabetes in need of initiation of insulin therapy,” said Julio Rosenstock, MD, the lead author of ONWARDS 1.

Asked to comment, independent diabetes industry consultant Charles Alexander, MD, said: “The data certainly support approval of Icodec.”

Dr. Alexander said that an ideal candidate for once-weekly insulin “is someone who’s already on once-weekly [glucagon-like peptide-1 (GLP-1) agonist]. Then, taking your GLP-1 [agonist] and your basal insulin at the same time once a week makes a lot of sense ... Since they’re taking a weekly injection anyway, it’s relatively easy for a person to remember ‘When I take my weekly GLP-1 [agonist], I’ll take my weekly basal insulin.’ ”

However, he also pointed out: “Payers may say they don’t care about the convenience of once-weekly and they prefer to pay for the cheaper daily basal [insulin] ... I think a lot of people will continue to use [insulin] glargine because it is cheaper than either degludec or icodec.”

The data from ONWARDS 1 was published in the New England Journal of Medicine, and the data from ONWARDS 3 was published in JAMA.

Six ONWARDS trials make up Novo Nordisk’s phase 3a clinical development program comparing the efficacy and safety of once-weekly insulin icodec with once-daily basal insulin comparators.

Previously, findings from ONWARDS 2, in which patients with type 2 diabetes taking basal insulin had improved A1c after being switched to once-weekly icodec or once-daily degludec, were presented at the annual meeting of the European Association for the Study of Diabetes.    

Insulin icodec has been submitted for regulatory review in the United States, Canada, Europe, China, Australia, Switzerland, and Brazil, with decisions anticipated starting in the first half of 2024.
 

Hypoglycemia: Is the slight increase clinically significant?

One concern about the once-weekly insulins is that they might result in higher rates of hypoglycemia because they stay active in the body for so long.

Differences in rates of combined level 2 (clinically significant) and level 3 (severe) hypoglycemia were increased with borderline significance in ONWARDS 1.

In ONWARDS 3 there was a threefold significant difference, but the overall risk was still low, equating to one episode per patient per 3 years, said Ildiko Lingvay, MD, of University of Texas Southwestern Medical Center, Dallas, who is lead author for ONWARDS 1 and a co-author for ONWARDS 3.

Dr. Ildiko Lingvay


“Insulin is insulin. When we use insulin there will always be hypoglycemia. But we only have less than one event per year,” added Dr. Rosenstock, of Velocity Clinical Research at Medical City, Dallas.

Dr. Alexander pointed out that in ONWARDS 3 just under half of both groups were taking a sulfonylurea, although the trial design allowed for cutting the dose in half when the basal insulin was added.

In ONWARDS 1, in contrast, sulfonylureas and glinides were stopped at the time of randomization. “That’s not definitive, but I would argue that’s the explanation, to be proven by formal testing.”

Indeed, an audience member asked about that during the discussion, and Dr. Lingvay said they were still analyzing those data. “We’re working on that. It’s very important.”

Dr. Alexander noted, “I think the message here is don’t continue sulfonylureas or glinides in someone you’re giving insulin to because you’re going to get hypoglycemia.”
 

 

 

Better glycemic control, with fewer injections

ONWARDS 1 was a 78-week, randomized, open-label, treat-to-target trial, with a main 52-week phase and a 26-week extension phase. A total of 984 patients with type 2 diabetes and A1c 7%-11% with no prior insulin treatment were randomized 1:1 to once-weekly icodec or daily insulin glargine. All baseline medications except sulfonylureas and glinides were continued.

The primary endpoint was change in A1c from baseline to week 52, and this dropped from 8.5% to 6.9% with icodec, versus 8.4% to 7.1% with glargine, a significant difference, confirming both noninferiority (P < .001) and superiority (P = .02) of icodec, Dr. Rosenstock said.

The percentage of time in blood glucose range (70-180 mg/dL) was also significantly higher with icodec than glargine (71.9% vs. 66.9%; P < .001), also confirming superiority.

Rates of combined clinically significant or severe hypoglycemia at 83 weeks were 0.30 versus 0.16 events per person-year of exposure at week 83 (P = .043). No new safety signals were identified, and incidences of adverse events were similar in the two groups.

A significantly higher proportion of participants achieved an A1c of less than 7% without clinically significant or severe hypoglycemia with once-weekly basal insulin icodec versus once-daily basal insulin glargine (52.6% vs. 42.6%).

ONWARDS 3 randomized 588 patients each to once-weekly insulin icodec plus once-weekly placebo or once-daily insulin degludec plus once-weekly placebo. The primary endpoint, change in A1c from baseline to week 26, fell from 8.6% to 7.0% with icodec and from 8.5% to 7.2% with degludec, confirming both noninferiority (P < .001) and superiority (P = .002).

There were no significant differences between the two insulins in change in fasting plasma glucose, mean weekly insulin dose, or body weight.

Combined level 2 or 3 hypoglycemia rates were numerically higher in the icodec group than in the degludec group from week 0 to 31 (0.31 vs. 0.15 events per patient-year exposure; P = .11) and statistically higher in the icodec group from week 0 to 26 (0.35 vs. 0.12 events per patient-year exposure; P = .01).  

The percentage of patients achieving an A1c of less than 7% without level 2 or 3 hypoglycemia was 52.1% with icodec versus 39.9% with degludec.

Dr. Lingvay and Dr. Rosenstock have reported financial relationships with multiple companies.

A version of this article originally appeared on Medscape.com.

The investigational once-weekly insulin icodec provided superior glucose control, compared with the once-daily basal insulins degludec and glargine in type 2 diabetes, results from two new phase 3a studies suggest.

Data from Novo Nordisk’s ONWARDS 1, comparing once-weekly icodec with once-daily glargine, and ONWARDS 3, comparing once-weekly icodec with daily degludec (Tresiba, Novo Nordisk), both in insulin-naive patients with type 2 diabetes, were presented at the annual scientific sessions of the American Diabetes Association.

In both trials, primary endpoints of superiority and noninferiority in A1c reduction were achieved, and in ONWARDS 1, patients spent more time in target blood glucose range.

“I feel that weekly insulins have the potential to become transformational as preferred options for basal insulin replacement in people with type 2 diabetes in need of initiation of insulin therapy,” said Julio Rosenstock, MD, the lead author of ONWARDS 1.

Asked to comment, independent diabetes industry consultant Charles Alexander, MD, said: “The data certainly support approval of Icodec.”

Dr. Alexander said that an ideal candidate for once-weekly insulin “is someone who’s already on once-weekly [glucagon-like peptide-1 (GLP-1) agonist]. Then, taking your GLP-1 [agonist] and your basal insulin at the same time once a week makes a lot of sense ... Since they’re taking a weekly injection anyway, it’s relatively easy for a person to remember ‘When I take my weekly GLP-1 [agonist], I’ll take my weekly basal insulin.’ ”

However, he also pointed out: “Payers may say they don’t care about the convenience of once-weekly and they prefer to pay for the cheaper daily basal [insulin] ... I think a lot of people will continue to use [insulin] glargine because it is cheaper than either degludec or icodec.”

The data from ONWARDS 1 was published in the New England Journal of Medicine, and the data from ONWARDS 3 was published in JAMA.

Six ONWARDS trials make up Novo Nordisk’s phase 3a clinical development program comparing the efficacy and safety of once-weekly insulin icodec with once-daily basal insulin comparators.

Previously, findings from ONWARDS 2, in which patients with type 2 diabetes taking basal insulin had improved A1c after being switched to once-weekly icodec or once-daily degludec, were presented at the annual meeting of the European Association for the Study of Diabetes.    

Insulin icodec has been submitted for regulatory review in the United States, Canada, Europe, China, Australia, Switzerland, and Brazil, with decisions anticipated starting in the first half of 2024.
 

Hypoglycemia: Is the slight increase clinically significant?

One concern about the once-weekly insulins is that they might result in higher rates of hypoglycemia because they stay active in the body for so long.

Differences in rates of combined level 2 (clinically significant) and level 3 (severe) hypoglycemia were increased with borderline significance in ONWARDS 1.

In ONWARDS 3 there was a threefold significant difference, but the overall risk was still low, equating to one episode per patient per 3 years, said Ildiko Lingvay, MD, of University of Texas Southwestern Medical Center, Dallas, who is lead author for ONWARDS 1 and a co-author for ONWARDS 3.

Dr. Ildiko Lingvay


“Insulin is insulin. When we use insulin there will always be hypoglycemia. But we only have less than one event per year,” added Dr. Rosenstock, of Velocity Clinical Research at Medical City, Dallas.

Dr. Alexander pointed out that in ONWARDS 3 just under half of both groups were taking a sulfonylurea, although the trial design allowed for cutting the dose in half when the basal insulin was added.

In ONWARDS 1, in contrast, sulfonylureas and glinides were stopped at the time of randomization. “That’s not definitive, but I would argue that’s the explanation, to be proven by formal testing.”

Indeed, an audience member asked about that during the discussion, and Dr. Lingvay said they were still analyzing those data. “We’re working on that. It’s very important.”

Dr. Alexander noted, “I think the message here is don’t continue sulfonylureas or glinides in someone you’re giving insulin to because you’re going to get hypoglycemia.”
 

 

 

Better glycemic control, with fewer injections

ONWARDS 1 was a 78-week, randomized, open-label, treat-to-target trial, with a main 52-week phase and a 26-week extension phase. A total of 984 patients with type 2 diabetes and A1c 7%-11% with no prior insulin treatment were randomized 1:1 to once-weekly icodec or daily insulin glargine. All baseline medications except sulfonylureas and glinides were continued.

The primary endpoint was change in A1c from baseline to week 52, and this dropped from 8.5% to 6.9% with icodec, versus 8.4% to 7.1% with glargine, a significant difference, confirming both noninferiority (P < .001) and superiority (P = .02) of icodec, Dr. Rosenstock said.

The percentage of time in blood glucose range (70-180 mg/dL) was also significantly higher with icodec than glargine (71.9% vs. 66.9%; P < .001), also confirming superiority.

Rates of combined clinically significant or severe hypoglycemia at 83 weeks were 0.30 versus 0.16 events per person-year of exposure at week 83 (P = .043). No new safety signals were identified, and incidences of adverse events were similar in the two groups.

A significantly higher proportion of participants achieved an A1c of less than 7% without clinically significant or severe hypoglycemia with once-weekly basal insulin icodec versus once-daily basal insulin glargine (52.6% vs. 42.6%).

ONWARDS 3 randomized 588 patients each to once-weekly insulin icodec plus once-weekly placebo or once-daily insulin degludec plus once-weekly placebo. The primary endpoint, change in A1c from baseline to week 26, fell from 8.6% to 7.0% with icodec and from 8.5% to 7.2% with degludec, confirming both noninferiority (P < .001) and superiority (P = .002).

There were no significant differences between the two insulins in change in fasting plasma glucose, mean weekly insulin dose, or body weight.

Combined level 2 or 3 hypoglycemia rates were numerically higher in the icodec group than in the degludec group from week 0 to 31 (0.31 vs. 0.15 events per patient-year exposure; P = .11) and statistically higher in the icodec group from week 0 to 26 (0.35 vs. 0.12 events per patient-year exposure; P = .01).  

The percentage of patients achieving an A1c of less than 7% without level 2 or 3 hypoglycemia was 52.1% with icodec versus 39.9% with degludec.

Dr. Lingvay and Dr. Rosenstock have reported financial relationships with multiple companies.

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

AT ADA 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article