What Do We Know About Postoperative Cognitive Dysfunction?

Article Type
Changed
Tue, 09/17/2024 - 11:09

 

Postoperative cognitive dysfunction (POCD) is a form of cognitive decline that involves a functional deterioration of activities of the nervous system, such as selective attention, vigilance, perception, learning, memory, executive function, verbal and language abilities, emotion, visuospatial and visuomotor skills. It occurs in the absence of cranial trauma or other brain injuries, and prevalence rates range from 36.6% in young adults to 42.4% in older adults, as a consequence of significant invasive procedures such as cardiac, noncardiac, and carotid surgeries that are lengthy and intensive.

Alzheimer’s disease (AD), the most common form of dementia, accounts for about two thirds of all cases of dementia globally. It is estimated that 41 million patients with dementia remain undiagnosed worldwide, and 25% of patients are diagnosed only when they are fully symptomatic. AD is a neurodegenerative disorder defined by neuropathologic changes, including beta-amyloid (Abeta) plaques composed of aggregated Abeta and neurofibrillary tangles containing aggregated tau proteins.

Patients with AD are unaware of their condition. Dementia, especially in its early stages, is often a hidden disease. Even when suspected, patients and families may believe that the symptoms are part of normal aging and may not report them to the doctor. In these patients, surgery may unmask subclinical dementia.

The complex correlation between POCD and AD has sparked debate following numerous anecdotal reports of how older adults undergoing surgical procedures may experience long-term cognitive decline with clinical characteristics such as those of patients with dementia. Despite advances in knowledge, it is still difficult to establish a priori how much surgery and anesthesia can increase the risk or accelerate the progression of a prodromal and asymptomatic AD condition (stages I-II) to clinically evident stage III AD. The current trend of an aging population poses a challenge for anesthesiology surgery because as the age of patients undergoing surgery increases, so does the likelihood of developing POCD.

Recent research in these fields has improved knowledge of the characteristics, epidemiology, risk factors, pathogenesis, and potential prevention strategies associated with POCD. It has improved the perspectives of future prevention and treatment.
 

Definition and Diagnostic Criteria

POCD, according to the cognitive impairment classification in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, is characterized by mild neurologic disturbance resulting from routine surgical procedures, excluding conditions such as deafness, dementia, or amnesia. The definition of POCD involves prolonged cognitive decline that can last for weeks, months, or even years. POCD may be confused with postoperative delirium, an acute and fluctuating disorder of consciousness that typically occurs within 3 days of surgery.

The diagnosis of POCD is based primarily on neurocognitive function scales. Widely used assessments include the Montreal Cognitive Assessment, the Wechsler Memory Scale, and the Mini-Mental State Examination.
 

Epidemiology

POCD is prevalent among patients undergoing cardiac or orthopedic surgery. In patients undergoing aortic-coronary bypass and cardiopulmonary bypass, 50%-70% develop POCD 1 week after surgery. In addition, 10%-30% experience long-term effects on cognitive function at 6 months after the procedure. In patients undergoing hip arthroplasty, 20%-50% exhibit POCD within 1 week of surgery, with 10%-14% still presenting it after 3 months.

 

Risk Factors

Age

POCD is typically observed in patients older than 65 years. However, after surgery, around 30% of younger patients and about 40% of older patients develop POCD at the time of hospital discharge. Specifically, 12.7% of older patients continue to have POCD 3 months after surgery, compared with 5% of younger patients.

Type of Surgery 

Hip and knee arthroplasty procedures entail a higher risk for POCD than general surgery. The same is true of cardiac surgery, especially aortic-coronary bypass and cardiopulmonary bypass.

Types of Anesthesia 

Initial assessments of postoperative cognitive function in cardiac surgery did not provide significant correlations between observed changes and the type of anesthesia because of the high number of confounding factors involved. A more recent meta-analysis of 28 randomized clinical trials concluded that the incidence of POCD is lower in surgeries using intravenous anesthesia with propofol than in those using inhalation anesthesia with isoflurane or sevoflurane.

Pain

Postoperative pain is a common issue, mainly resulting from substantial surgical trauma or potential wound infection. Patient-controlled postoperative analgesia independently increases the risk for POCD, compared with oral postoperative analgesia. Meta-analyses indicate that persistent pain can lead to a decline in patients’ cognitive abilities, attention, memory, and information processing.

Evolving Scenarios

Current research on POCD has deepened our understanding of its pathogenesis, implicating factors such as central nervous system inflammation, neuronal apoptosis, synaptic plasticity damage, abnormal tau protein modification, chronic pain, and mitochondrial metabolic disorders. Several neuroprotective drugs are currently under study, but none have shown consistent benefits for the prevention and treatment of POCD. The available evidence on the subject does not unambiguously guide the practicing physician. But neither does it exclude the importance of a careful assessment of POCD risk factors and the cognitive status of an older patient before surgery to provide useful information to the patient, family, and doctors when deciding on appropriate and shared procedures.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Postoperative cognitive dysfunction (POCD) is a form of cognitive decline that involves a functional deterioration of activities of the nervous system, such as selective attention, vigilance, perception, learning, memory, executive function, verbal and language abilities, emotion, visuospatial and visuomotor skills. It occurs in the absence of cranial trauma or other brain injuries, and prevalence rates range from 36.6% in young adults to 42.4% in older adults, as a consequence of significant invasive procedures such as cardiac, noncardiac, and carotid surgeries that are lengthy and intensive.

Alzheimer’s disease (AD), the most common form of dementia, accounts for about two thirds of all cases of dementia globally. It is estimated that 41 million patients with dementia remain undiagnosed worldwide, and 25% of patients are diagnosed only when they are fully symptomatic. AD is a neurodegenerative disorder defined by neuropathologic changes, including beta-amyloid (Abeta) plaques composed of aggregated Abeta and neurofibrillary tangles containing aggregated tau proteins.

Patients with AD are unaware of their condition. Dementia, especially in its early stages, is often a hidden disease. Even when suspected, patients and families may believe that the symptoms are part of normal aging and may not report them to the doctor. In these patients, surgery may unmask subclinical dementia.

The complex correlation between POCD and AD has sparked debate following numerous anecdotal reports of how older adults undergoing surgical procedures may experience long-term cognitive decline with clinical characteristics such as those of patients with dementia. Despite advances in knowledge, it is still difficult to establish a priori how much surgery and anesthesia can increase the risk or accelerate the progression of a prodromal and asymptomatic AD condition (stages I-II) to clinically evident stage III AD. The current trend of an aging population poses a challenge for anesthesiology surgery because as the age of patients undergoing surgery increases, so does the likelihood of developing POCD.

Recent research in these fields has improved knowledge of the characteristics, epidemiology, risk factors, pathogenesis, and potential prevention strategies associated with POCD. It has improved the perspectives of future prevention and treatment.
 

Definition and Diagnostic Criteria

POCD, according to the cognitive impairment classification in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, is characterized by mild neurologic disturbance resulting from routine surgical procedures, excluding conditions such as deafness, dementia, or amnesia. The definition of POCD involves prolonged cognitive decline that can last for weeks, months, or even years. POCD may be confused with postoperative delirium, an acute and fluctuating disorder of consciousness that typically occurs within 3 days of surgery.

The diagnosis of POCD is based primarily on neurocognitive function scales. Widely used assessments include the Montreal Cognitive Assessment, the Wechsler Memory Scale, and the Mini-Mental State Examination.
 

Epidemiology

POCD is prevalent among patients undergoing cardiac or orthopedic surgery. In patients undergoing aortic-coronary bypass and cardiopulmonary bypass, 50%-70% develop POCD 1 week after surgery. In addition, 10%-30% experience long-term effects on cognitive function at 6 months after the procedure. In patients undergoing hip arthroplasty, 20%-50% exhibit POCD within 1 week of surgery, with 10%-14% still presenting it after 3 months.

 

Risk Factors

Age

POCD is typically observed in patients older than 65 years. However, after surgery, around 30% of younger patients and about 40% of older patients develop POCD at the time of hospital discharge. Specifically, 12.7% of older patients continue to have POCD 3 months after surgery, compared with 5% of younger patients.

Type of Surgery 

Hip and knee arthroplasty procedures entail a higher risk for POCD than general surgery. The same is true of cardiac surgery, especially aortic-coronary bypass and cardiopulmonary bypass.

Types of Anesthesia 

Initial assessments of postoperative cognitive function in cardiac surgery did not provide significant correlations between observed changes and the type of anesthesia because of the high number of confounding factors involved. A more recent meta-analysis of 28 randomized clinical trials concluded that the incidence of POCD is lower in surgeries using intravenous anesthesia with propofol than in those using inhalation anesthesia with isoflurane or sevoflurane.

Pain

Postoperative pain is a common issue, mainly resulting from substantial surgical trauma or potential wound infection. Patient-controlled postoperative analgesia independently increases the risk for POCD, compared with oral postoperative analgesia. Meta-analyses indicate that persistent pain can lead to a decline in patients’ cognitive abilities, attention, memory, and information processing.

Evolving Scenarios

Current research on POCD has deepened our understanding of its pathogenesis, implicating factors such as central nervous system inflammation, neuronal apoptosis, synaptic plasticity damage, abnormal tau protein modification, chronic pain, and mitochondrial metabolic disorders. Several neuroprotective drugs are currently under study, but none have shown consistent benefits for the prevention and treatment of POCD. The available evidence on the subject does not unambiguously guide the practicing physician. But neither does it exclude the importance of a careful assessment of POCD risk factors and the cognitive status of an older patient before surgery to provide useful information to the patient, family, and doctors when deciding on appropriate and shared procedures.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

Postoperative cognitive dysfunction (POCD) is a form of cognitive decline that involves a functional deterioration of activities of the nervous system, such as selective attention, vigilance, perception, learning, memory, executive function, verbal and language abilities, emotion, visuospatial and visuomotor skills. It occurs in the absence of cranial trauma or other brain injuries, and prevalence rates range from 36.6% in young adults to 42.4% in older adults, as a consequence of significant invasive procedures such as cardiac, noncardiac, and carotid surgeries that are lengthy and intensive.

Alzheimer’s disease (AD), the most common form of dementia, accounts for about two thirds of all cases of dementia globally. It is estimated that 41 million patients with dementia remain undiagnosed worldwide, and 25% of patients are diagnosed only when they are fully symptomatic. AD is a neurodegenerative disorder defined by neuropathologic changes, including beta-amyloid (Abeta) plaques composed of aggregated Abeta and neurofibrillary tangles containing aggregated tau proteins.

Patients with AD are unaware of their condition. Dementia, especially in its early stages, is often a hidden disease. Even when suspected, patients and families may believe that the symptoms are part of normal aging and may not report them to the doctor. In these patients, surgery may unmask subclinical dementia.

The complex correlation between POCD and AD has sparked debate following numerous anecdotal reports of how older adults undergoing surgical procedures may experience long-term cognitive decline with clinical characteristics such as those of patients with dementia. Despite advances in knowledge, it is still difficult to establish a priori how much surgery and anesthesia can increase the risk or accelerate the progression of a prodromal and asymptomatic AD condition (stages I-II) to clinically evident stage III AD. The current trend of an aging population poses a challenge for anesthesiology surgery because as the age of patients undergoing surgery increases, so does the likelihood of developing POCD.

Recent research in these fields has improved knowledge of the characteristics, epidemiology, risk factors, pathogenesis, and potential prevention strategies associated with POCD. It has improved the perspectives of future prevention and treatment.
 

Definition and Diagnostic Criteria

POCD, according to the cognitive impairment classification in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, is characterized by mild neurologic disturbance resulting from routine surgical procedures, excluding conditions such as deafness, dementia, or amnesia. The definition of POCD involves prolonged cognitive decline that can last for weeks, months, or even years. POCD may be confused with postoperative delirium, an acute and fluctuating disorder of consciousness that typically occurs within 3 days of surgery.

The diagnosis of POCD is based primarily on neurocognitive function scales. Widely used assessments include the Montreal Cognitive Assessment, the Wechsler Memory Scale, and the Mini-Mental State Examination.
 

Epidemiology

POCD is prevalent among patients undergoing cardiac or orthopedic surgery. In patients undergoing aortic-coronary bypass and cardiopulmonary bypass, 50%-70% develop POCD 1 week after surgery. In addition, 10%-30% experience long-term effects on cognitive function at 6 months after the procedure. In patients undergoing hip arthroplasty, 20%-50% exhibit POCD within 1 week of surgery, with 10%-14% still presenting it after 3 months.

 

Risk Factors

Age

POCD is typically observed in patients older than 65 years. However, after surgery, around 30% of younger patients and about 40% of older patients develop POCD at the time of hospital discharge. Specifically, 12.7% of older patients continue to have POCD 3 months after surgery, compared with 5% of younger patients.

Type of Surgery 

Hip and knee arthroplasty procedures entail a higher risk for POCD than general surgery. The same is true of cardiac surgery, especially aortic-coronary bypass and cardiopulmonary bypass.

Types of Anesthesia 

Initial assessments of postoperative cognitive function in cardiac surgery did not provide significant correlations between observed changes and the type of anesthesia because of the high number of confounding factors involved. A more recent meta-analysis of 28 randomized clinical trials concluded that the incidence of POCD is lower in surgeries using intravenous anesthesia with propofol than in those using inhalation anesthesia with isoflurane or sevoflurane.

Pain

Postoperative pain is a common issue, mainly resulting from substantial surgical trauma or potential wound infection. Patient-controlled postoperative analgesia independently increases the risk for POCD, compared with oral postoperative analgesia. Meta-analyses indicate that persistent pain can lead to a decline in patients’ cognitive abilities, attention, memory, and information processing.

Evolving Scenarios

Current research on POCD has deepened our understanding of its pathogenesis, implicating factors such as central nervous system inflammation, neuronal apoptosis, synaptic plasticity damage, abnormal tau protein modification, chronic pain, and mitochondrial metabolic disorders. Several neuroprotective drugs are currently under study, but none have shown consistent benefits for the prevention and treatment of POCD. The available evidence on the subject does not unambiguously guide the practicing physician. But neither does it exclude the importance of a careful assessment of POCD risk factors and the cognitive status of an older patient before surgery to provide useful information to the patient, family, and doctors when deciding on appropriate and shared procedures.

This story was translated from Univadis Italy, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Surgeon General’s Advisory on Parental Mental Health: Implications for Pediatric Practice

Article Type
Changed
Wed, 09/11/2024 - 14:48

 

As child psychiatrists and pediatricians, our mission extends beyond treating the physical health of children; it encompasses understanding the intricate web of factors that influence a child’s overall well-being. A recent advisory from U.S. Surgeon General Dr. Vivek Murthy has brought to light a critical issue that demands our attention: the declining mental health of parents and its profound impact on children. As providers who depend heavily on parental involvement to manage the needs of our pediatric patients, addressing parental mental health can be a crucial step in safeguarding the mental health of children.

The Surgeon General’s Advisory: A Call to Action

On August 28, 2024, the U.S. Surgeon General issued an advisory highlighting the significant stressors impacting parents and caregivers, and the broader implications for children’s mental health. The advisory emphasizes the bidirectional relationship between parental and child mental health, urging healthcare providers, policymakers, and communities to prioritize support for parents. It stresses that the mental health of parents is not only vital for their well-being but also plays a critical role in shaping the emotional and psychological development of their children.1

The Link Between Parental and Child Mental Health

Research shows that a parent’s mental health directly influences the child’s emotional and behavioral outcomes. Children of parents with untreated mental health conditions, such as depression, anxiety, trauma, or chronic stress, are at a significantly higher risk of developing similar conditions. This risk is mediated through various mechanisms, including genetic predisposition, compromised parent-child interactions, and exposure to adverse environments.

Dr. Misty C. Richards

1. Parental Depression and Child Outcomes: Parental depression, particularly maternal depression, has been extensively studied and is strongly associated with emotional and behavioral problems in children. Children of depressed parents are more likely to experience anxiety, depression, and resulting academic difficulties. Depressed parents may struggle with consistent and positive parenting, which can disrupt the development of secure attachments and emotional regulation in children.2-4

2. Anxiety and Parenting Styles: Parental anxiety can influence parenting styles, often leading to overprotectiveness, inconsistency, or heightened criticism. These behaviors, in turn, can cultivate anxiety in children, creating a cycle that perpetuates mental health challenges across generations. Children raised in environments where anxiety is pervasive may learn to view the world as threatening, contributing to hypervigilance and stress.5

3. Impact of Chronic Stress on Parenting: Chronic stress experienced by parents, often due to financial hardship, lack of social support, or work-life imbalance, can impair their ability to engage in responsive and nurturing parenting. This, in turn, can affect children’s ability to meaningfully engage with parents to form secure attachments. Further, chronic stress can negatively impact the quality of parent-child interactions and fuel the cycle of rupture with limited opportunity for repair. The advisory stresses the need to address these systemic stressors as part of a broader public health strategy to support families.1

 

 

Implications for Pediatric Practice

Pediatricians are often the first point of contact for families navigating mental health challenges. The Surgeon General’s advisory highlights the need for pediatricians to adopt a holistic approach that considers the mental health of the entire family, not just the child. This can be challenging with the average follow-up appointment time of 16 minutes, though many of the recommendations take this logistical hurdle into consideration:

1. Screening for Parental Mental Health: Incorporating routine screening for parental mental health into pediatric visits can be a powerful tool. Questions about parental stress, depression (especially postpartum depression), and anxiety should be integrated into well-child visits, especially in families where children present with emotional or behavioral difficulties. By identifying at-risk parents early, timely referrals to mental health services can be secured.

2. Providing Resources and Referrals: Offering resources and referrals to parents who may be struggling can positively impact the entire family. This includes connecting families with mental health professionals, parenting support groups, or community resources that can alleviate stressors such as food insecurity or lack of childcare. Having a list of local mental health resources available in your practice can empower parents to seek the help they need.

3. Promoting Positive Parenting Practices: Guidance on positive parenting practices, stress management, and self-care can make a significant difference in the mental health of parents and their children. Workshops or educational materials on topics like mindfulness, managing work-life balance, and fostering healthy communication within the family can be valuable and high-yield additions to pediatric care.

4. Collaborative Care Models: Collaborative care models, where pediatricians work closely with child psychiatrists, psychologists, and social workers, can provide comprehensive support to families. This integrated approach ensures that both children and their parents receive the care they need, promoting better outcomes for the entire family unit.
 

Addressing Broader Systemic Issues

The advisory also calls for systemic changes that extend beyond the clinic. Policy changes such as expanding access to paid family leave, affordable childcare, and mental health services are essential to creating an environment where parents can thrive. As pediatricians, advocating for these changes at the local and national level can amplify the overall impact on families.

1. Advocating for Paid Family Leave: Paid family leave allows parents to bond with their children and attend to their own mental health needs without the added pressure of financial instability. Supporting policies that provide adequate paid leave can pave the way for a successful and healthy return to work and have long-term benefits for family health.

2. Expanding Mental Health Services: Increasing access to mental health services, especially in underserved communities, is crucial. Pediatricians can play a role by partnering with local mental health providers to offer integrated care within their practices or community settings.

3. Community Support Programs: The creation of community support programs that offer parenting classes, stress management workshops, and peer support groups can help reduce the isolation and stress that many parents feel. Pediatricians can collaborate with community organizations to promote these resources to families.
 

Conclusion

The Surgeon General’s advisory serves as a timely reminder of the interconnectedness of parental and child mental health. Pediatricians have a unique opportunity to influence not only the health of their pediatric patients, but also the well-being of their families. By recognizing and addressing the mental health needs of parents, we can break the cycle of stress and mental illness that affects so many families, ensuring a healthier future for the next generation.

Let us embrace this call to action and work together to create a supportive environment where all parents and children can thrive.

Dr. Richards is assistant clinical professor in the department of psychiatry and biobehavioral sciences; program director of the child and adolescent psychiatry fellowship; and associate medical director of the perinatal program at the UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles.

References

1. American Hospital Association. Surgeon General Issues Advisory on Mental Health and Well-Being of Parents. American Hospital Association. 2024 Sep 4.

2. Goodman SH, Gotlib IH. Risk for Psychopathology in the Children of Depressed Mothers: A Developmental Model for Understanding Mechanisms of Transmission. Psychol Rev. 1999;106(3):458-490. doi: 10.1037/0033-295X.106.3.458.

3. Lovejoy MC et al. Maternal Depression and Parenting Behavior: A Meta-Analytic Review. Clin Psychol Rev. 2000;20(5):561-592. doi: 10.1016/s0272-7358(98)00100-7.

4. Weissman MM et al. Offspring of Depressed Parents: 20 Years Later. Am J Psychiatry. 2006;163(6):1001-1008. doi: 10.1176/ajp.2006.163.6.1001.

5. Smith KE, Pollak SD. Early Life Stress and Development: Potential Mechanisms for Adverse Outcomes. J Neurodev Disord. 2020;12(1):3-14. doi: 10.1186/s11689-020-09337-y.

Publications
Topics
Sections

 

As child psychiatrists and pediatricians, our mission extends beyond treating the physical health of children; it encompasses understanding the intricate web of factors that influence a child’s overall well-being. A recent advisory from U.S. Surgeon General Dr. Vivek Murthy has brought to light a critical issue that demands our attention: the declining mental health of parents and its profound impact on children. As providers who depend heavily on parental involvement to manage the needs of our pediatric patients, addressing parental mental health can be a crucial step in safeguarding the mental health of children.

The Surgeon General’s Advisory: A Call to Action

On August 28, 2024, the U.S. Surgeon General issued an advisory highlighting the significant stressors impacting parents and caregivers, and the broader implications for children’s mental health. The advisory emphasizes the bidirectional relationship between parental and child mental health, urging healthcare providers, policymakers, and communities to prioritize support for parents. It stresses that the mental health of parents is not only vital for their well-being but also plays a critical role in shaping the emotional and psychological development of their children.1

The Link Between Parental and Child Mental Health

Research shows that a parent’s mental health directly influences the child’s emotional and behavioral outcomes. Children of parents with untreated mental health conditions, such as depression, anxiety, trauma, or chronic stress, are at a significantly higher risk of developing similar conditions. This risk is mediated through various mechanisms, including genetic predisposition, compromised parent-child interactions, and exposure to adverse environments.

Dr. Misty C. Richards

1. Parental Depression and Child Outcomes: Parental depression, particularly maternal depression, has been extensively studied and is strongly associated with emotional and behavioral problems in children. Children of depressed parents are more likely to experience anxiety, depression, and resulting academic difficulties. Depressed parents may struggle with consistent and positive parenting, which can disrupt the development of secure attachments and emotional regulation in children.2-4

2. Anxiety and Parenting Styles: Parental anxiety can influence parenting styles, often leading to overprotectiveness, inconsistency, or heightened criticism. These behaviors, in turn, can cultivate anxiety in children, creating a cycle that perpetuates mental health challenges across generations. Children raised in environments where anxiety is pervasive may learn to view the world as threatening, contributing to hypervigilance and stress.5

3. Impact of Chronic Stress on Parenting: Chronic stress experienced by parents, often due to financial hardship, lack of social support, or work-life imbalance, can impair their ability to engage in responsive and nurturing parenting. This, in turn, can affect children’s ability to meaningfully engage with parents to form secure attachments. Further, chronic stress can negatively impact the quality of parent-child interactions and fuel the cycle of rupture with limited opportunity for repair. The advisory stresses the need to address these systemic stressors as part of a broader public health strategy to support families.1

 

 

Implications for Pediatric Practice

Pediatricians are often the first point of contact for families navigating mental health challenges. The Surgeon General’s advisory highlights the need for pediatricians to adopt a holistic approach that considers the mental health of the entire family, not just the child. This can be challenging with the average follow-up appointment time of 16 minutes, though many of the recommendations take this logistical hurdle into consideration:

1. Screening for Parental Mental Health: Incorporating routine screening for parental mental health into pediatric visits can be a powerful tool. Questions about parental stress, depression (especially postpartum depression), and anxiety should be integrated into well-child visits, especially in families where children present with emotional or behavioral difficulties. By identifying at-risk parents early, timely referrals to mental health services can be secured.

2. Providing Resources and Referrals: Offering resources and referrals to parents who may be struggling can positively impact the entire family. This includes connecting families with mental health professionals, parenting support groups, or community resources that can alleviate stressors such as food insecurity or lack of childcare. Having a list of local mental health resources available in your practice can empower parents to seek the help they need.

3. Promoting Positive Parenting Practices: Guidance on positive parenting practices, stress management, and self-care can make a significant difference in the mental health of parents and their children. Workshops or educational materials on topics like mindfulness, managing work-life balance, and fostering healthy communication within the family can be valuable and high-yield additions to pediatric care.

4. Collaborative Care Models: Collaborative care models, where pediatricians work closely with child psychiatrists, psychologists, and social workers, can provide comprehensive support to families. This integrated approach ensures that both children and their parents receive the care they need, promoting better outcomes for the entire family unit.
 

Addressing Broader Systemic Issues

The advisory also calls for systemic changes that extend beyond the clinic. Policy changes such as expanding access to paid family leave, affordable childcare, and mental health services are essential to creating an environment where parents can thrive. As pediatricians, advocating for these changes at the local and national level can amplify the overall impact on families.

1. Advocating for Paid Family Leave: Paid family leave allows parents to bond with their children and attend to their own mental health needs without the added pressure of financial instability. Supporting policies that provide adequate paid leave can pave the way for a successful and healthy return to work and have long-term benefits for family health.

2. Expanding Mental Health Services: Increasing access to mental health services, especially in underserved communities, is crucial. Pediatricians can play a role by partnering with local mental health providers to offer integrated care within their practices or community settings.

3. Community Support Programs: The creation of community support programs that offer parenting classes, stress management workshops, and peer support groups can help reduce the isolation and stress that many parents feel. Pediatricians can collaborate with community organizations to promote these resources to families.
 

Conclusion

The Surgeon General’s advisory serves as a timely reminder of the interconnectedness of parental and child mental health. Pediatricians have a unique opportunity to influence not only the health of their pediatric patients, but also the well-being of their families. By recognizing and addressing the mental health needs of parents, we can break the cycle of stress and mental illness that affects so many families, ensuring a healthier future for the next generation.

Let us embrace this call to action and work together to create a supportive environment where all parents and children can thrive.

Dr. Richards is assistant clinical professor in the department of psychiatry and biobehavioral sciences; program director of the child and adolescent psychiatry fellowship; and associate medical director of the perinatal program at the UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles.

References

1. American Hospital Association. Surgeon General Issues Advisory on Mental Health and Well-Being of Parents. American Hospital Association. 2024 Sep 4.

2. Goodman SH, Gotlib IH. Risk for Psychopathology in the Children of Depressed Mothers: A Developmental Model for Understanding Mechanisms of Transmission. Psychol Rev. 1999;106(3):458-490. doi: 10.1037/0033-295X.106.3.458.

3. Lovejoy MC et al. Maternal Depression and Parenting Behavior: A Meta-Analytic Review. Clin Psychol Rev. 2000;20(5):561-592. doi: 10.1016/s0272-7358(98)00100-7.

4. Weissman MM et al. Offspring of Depressed Parents: 20 Years Later. Am J Psychiatry. 2006;163(6):1001-1008. doi: 10.1176/ajp.2006.163.6.1001.

5. Smith KE, Pollak SD. Early Life Stress and Development: Potential Mechanisms for Adverse Outcomes. J Neurodev Disord. 2020;12(1):3-14. doi: 10.1186/s11689-020-09337-y.

 

As child psychiatrists and pediatricians, our mission extends beyond treating the physical health of children; it encompasses understanding the intricate web of factors that influence a child’s overall well-being. A recent advisory from U.S. Surgeon General Dr. Vivek Murthy has brought to light a critical issue that demands our attention: the declining mental health of parents and its profound impact on children. As providers who depend heavily on parental involvement to manage the needs of our pediatric patients, addressing parental mental health can be a crucial step in safeguarding the mental health of children.

The Surgeon General’s Advisory: A Call to Action

On August 28, 2024, the U.S. Surgeon General issued an advisory highlighting the significant stressors impacting parents and caregivers, and the broader implications for children’s mental health. The advisory emphasizes the bidirectional relationship between parental and child mental health, urging healthcare providers, policymakers, and communities to prioritize support for parents. It stresses that the mental health of parents is not only vital for their well-being but also plays a critical role in shaping the emotional and psychological development of their children.1

The Link Between Parental and Child Mental Health

Research shows that a parent’s mental health directly influences the child’s emotional and behavioral outcomes. Children of parents with untreated mental health conditions, such as depression, anxiety, trauma, or chronic stress, are at a significantly higher risk of developing similar conditions. This risk is mediated through various mechanisms, including genetic predisposition, compromised parent-child interactions, and exposure to adverse environments.

Dr. Misty C. Richards

1. Parental Depression and Child Outcomes: Parental depression, particularly maternal depression, has been extensively studied and is strongly associated with emotional and behavioral problems in children. Children of depressed parents are more likely to experience anxiety, depression, and resulting academic difficulties. Depressed parents may struggle with consistent and positive parenting, which can disrupt the development of secure attachments and emotional regulation in children.2-4

2. Anxiety and Parenting Styles: Parental anxiety can influence parenting styles, often leading to overprotectiveness, inconsistency, or heightened criticism. These behaviors, in turn, can cultivate anxiety in children, creating a cycle that perpetuates mental health challenges across generations. Children raised in environments where anxiety is pervasive may learn to view the world as threatening, contributing to hypervigilance and stress.5

3. Impact of Chronic Stress on Parenting: Chronic stress experienced by parents, often due to financial hardship, lack of social support, or work-life imbalance, can impair their ability to engage in responsive and nurturing parenting. This, in turn, can affect children’s ability to meaningfully engage with parents to form secure attachments. Further, chronic stress can negatively impact the quality of parent-child interactions and fuel the cycle of rupture with limited opportunity for repair. The advisory stresses the need to address these systemic stressors as part of a broader public health strategy to support families.1

 

 

Implications for Pediatric Practice

Pediatricians are often the first point of contact for families navigating mental health challenges. The Surgeon General’s advisory highlights the need for pediatricians to adopt a holistic approach that considers the mental health of the entire family, not just the child. This can be challenging with the average follow-up appointment time of 16 minutes, though many of the recommendations take this logistical hurdle into consideration:

1. Screening for Parental Mental Health: Incorporating routine screening for parental mental health into pediatric visits can be a powerful tool. Questions about parental stress, depression (especially postpartum depression), and anxiety should be integrated into well-child visits, especially in families where children present with emotional or behavioral difficulties. By identifying at-risk parents early, timely referrals to mental health services can be secured.

2. Providing Resources and Referrals: Offering resources and referrals to parents who may be struggling can positively impact the entire family. This includes connecting families with mental health professionals, parenting support groups, or community resources that can alleviate stressors such as food insecurity or lack of childcare. Having a list of local mental health resources available in your practice can empower parents to seek the help they need.

3. Promoting Positive Parenting Practices: Guidance on positive parenting practices, stress management, and self-care can make a significant difference in the mental health of parents and their children. Workshops or educational materials on topics like mindfulness, managing work-life balance, and fostering healthy communication within the family can be valuable and high-yield additions to pediatric care.

4. Collaborative Care Models: Collaborative care models, where pediatricians work closely with child psychiatrists, psychologists, and social workers, can provide comprehensive support to families. This integrated approach ensures that both children and their parents receive the care they need, promoting better outcomes for the entire family unit.
 

Addressing Broader Systemic Issues

The advisory also calls for systemic changes that extend beyond the clinic. Policy changes such as expanding access to paid family leave, affordable childcare, and mental health services are essential to creating an environment where parents can thrive. As pediatricians, advocating for these changes at the local and national level can amplify the overall impact on families.

1. Advocating for Paid Family Leave: Paid family leave allows parents to bond with their children and attend to their own mental health needs without the added pressure of financial instability. Supporting policies that provide adequate paid leave can pave the way for a successful and healthy return to work and have long-term benefits for family health.

2. Expanding Mental Health Services: Increasing access to mental health services, especially in underserved communities, is crucial. Pediatricians can play a role by partnering with local mental health providers to offer integrated care within their practices or community settings.

3. Community Support Programs: The creation of community support programs that offer parenting classes, stress management workshops, and peer support groups can help reduce the isolation and stress that many parents feel. Pediatricians can collaborate with community organizations to promote these resources to families.
 

Conclusion

The Surgeon General’s advisory serves as a timely reminder of the interconnectedness of parental and child mental health. Pediatricians have a unique opportunity to influence not only the health of their pediatric patients, but also the well-being of their families. By recognizing and addressing the mental health needs of parents, we can break the cycle of stress and mental illness that affects so many families, ensuring a healthier future for the next generation.

Let us embrace this call to action and work together to create a supportive environment where all parents and children can thrive.

Dr. Richards is assistant clinical professor in the department of psychiatry and biobehavioral sciences; program director of the child and adolescent psychiatry fellowship; and associate medical director of the perinatal program at the UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles.

References

1. American Hospital Association. Surgeon General Issues Advisory on Mental Health and Well-Being of Parents. American Hospital Association. 2024 Sep 4.

2. Goodman SH, Gotlib IH. Risk for Psychopathology in the Children of Depressed Mothers: A Developmental Model for Understanding Mechanisms of Transmission. Psychol Rev. 1999;106(3):458-490. doi: 10.1037/0033-295X.106.3.458.

3. Lovejoy MC et al. Maternal Depression and Parenting Behavior: A Meta-Analytic Review. Clin Psychol Rev. 2000;20(5):561-592. doi: 10.1016/s0272-7358(98)00100-7.

4. Weissman MM et al. Offspring of Depressed Parents: 20 Years Later. Am J Psychiatry. 2006;163(6):1001-1008. doi: 10.1176/ajp.2006.163.6.1001.

5. Smith KE, Pollak SD. Early Life Stress and Development: Potential Mechanisms for Adverse Outcomes. J Neurodev Disord. 2020;12(1):3-14. doi: 10.1186/s11689-020-09337-y.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Wide Regional Variation in Dementia Risk Across the United States

Article Type
Changed
Wed, 09/11/2024 - 12:10

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The likelihood of receiving a dementia diagnosis in older adults varies significantly by region across the United States, a new study suggests. Rates ranged from 1.7% to 5.4%, with variations more pronounced in those aged 66-74 years and Black or Hispanic individuals.

METHODOLOGY:

  • Researchers analyzed newly diagnosed cases of Alzheimer’s disease and related dementias (ADRD) using the 2018-2019 Medicare claims data for 4.8 million older adults across 306 hospital referral regions (HRRs).
  • Participants were categorized by age and race or ethnicity to examine variations in diagnosis rates.
  • Regional characteristics such as education level and prevalence of obesity, smoking, and diabetes were included to adjust for population risk factors.
  • ADRD-specific diagnostic intensity was calculated as the ratio of the observed-to-expected new cases of ADRD in each HRR.

TAKEAWAY:

  • Unadjusted analysis for that overall, 3% of older adults received a new ADRD diagnosis in 2019, with rates ranging from 1.7 to 5.4 per 100 individuals across HRRs and varied by age category.
  • Regions in the South had the highest unadjusted ADRD case concentration, and the areas in the West/Northwest had the lowest.
  • The ADRD-specific diagnosis intensity was 0.69-1.47 and varied the most in Black and Hispanic individuals and those aged 66-74 years.
  • Regional differences in ADRD diagnosis rates are not fully explained by population risk factors, indicating potential health system-level differences.

IN PRACTICE:

“From place to place, the likelihood of getting your dementia diagnosed varies, and that may happen because of everything from practice norms for healthcare providers to individual patients’ knowledge and care-seeking behavior. These findings go beyond demographic and population-level differences in risk and indicate that there are health system-level differences that could be targeted and remediated,” lead author Julie P.W. Bynum, MD, MPH, said in a press release.

SOURCE:

The study was led by Dr. Bynum, professor of internal medicine, University of Michigan Medical School, Ann Arbor, Michigan, and published online in Alzheimer’s & Dementia.

LIMITATIONS:

The results may not be generalizable to other groups. The observational design of the study cannot completely negate residual confounding. The measures of population risks are coarser than those used in well-characterized epidemiologic studies, leading to potential imprecision. Finally, the study was not designed to determine whether regional differences in the likelihood of ADRD diagnosis resulted in differences in the population health outcomes.

DISCLOSURES:

The study was supported by a grant from the National Institute on Aging. The authors reported no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA Rejects MDMA-AT for PTSD, but Lykos, Others, Vow to Push on

Article Type
Changed
Mon, 09/09/2024 - 15:02

 

The Food and Drug Administration’s (FDA) decision not to approve midomafetamine-assisted therapy (MDMA-AT) for posttraumatic stress disorder (PTSD) puts the therapy’s near-term future in doubt, but officials say the rejection may not knock it out of contention as an eventual therapeutic tool for a variety of conditions.

In August the agency declined to approve the drug with currently available study data and requested that the company conduct an additional phase 3 trial. The agency’s action had potentially devastating consequences for MDMA-AT’s sponsor, Lykos Therapeutics, and was a huge disappointment for researchers, clinicians, and patients who were optimistic that it would be a new option for a condition that affects 13-17 million Americans.

For now, no other company is poised to imminently seek FDA approval for MDMA.

Despite the setback, research into MDMA that combines different psychotherapeutic approaches continues. Currently, there are seven US studies actively recruiting participants, and another 13 are registered with an eye toward starting recruitment, as reported on ClinicalTrials.gov.

The lack of FDA approval “actually increases the opportunity now for us to do trials,” said Michael Ostacher, MD, professor of psychiatry and behavioral sciences at Stanford Medicine in California. Researchers won’t have to be sponsored by Lykos to get access to MDMA.

“There’s a lot of energy and interest in doing these studies,” he said in an interview, adding that philanthropic organizations and Veterans Affairs (VA) are contributing funds to support such studies.

The VA provided a statement saying that it “intends to gather rigorous scientific evidence on the potential efficacy and safety of psychedelic compounds when used in conjunction with psychotherapy.” It also noted that “these studies will be conducted under stringent safety protocols and will mark the first time since the 1960’s that VA is funding research on such compounds.”

Rachel Yehuda, PhD, director of the Center for Psychedelic Therapy Research at Icahn School of Medicine at Mount Sinai in New York City, said in an interview that the FDA rejection “raises questions about how to keep the work going.”

Without the FDA’s imprimatur, MDMA remains a schedule 1 drug, which means it has no valid medical use.

“It’s a lot more complicated and expensive to work with a scheduled compound than to work with a compound that has been approved,” Dr. Yehuda said.

Also, without Lykos or another drug company sponsor, investigators have to find an acceptable MDMA source on their own, said Dr. Yehuda, who was an investigator on a study in which Lykos provided MDMA but was not involved in study design, data collection, analysis, or manuscript preparation.
 

Lykos in Disarray

Within a week of the FDA’s decision, Lykos announced it was cutting its staff by 75% and that Rick Doblin, PhD, the founder and president of the Multidisciplinary Association for Psychedelic Studies (MAPS) that gave rise to Lykos, had resigned from the Lykos board.

A frequently controversial figure, Doblin has been attempting to legitimize MDMA as a therapy since the mid-1980s. He formed a public benefit corporation (PBC) in 2014 with an eye toward FDA approval. The PBC fully separated from MAPS in 2024 and became Lykos.

Although the FDA has left the door open to approval, Lykos has not released the agency’s complete response letter, so it’s not clear exactly what the FDA is seeking. In a statement, the company said it believes the issues “can be addressed with existing data, postapproval requirements, or through reference to the scientific literature.”

Lykos said in an email that it is working on “securing the meeting with the FDA” and that it “will work with the agency to determine what needs to be done to fulfill their requests.”

Soon after the FDA decision, Lykos was hit with another blow. The journal Psychopharmacology retracted an article that pooled six Lykos phase 2 studies, claiming the paper’s authors knew about unethical conduct before submission but did not inform the publisher.

Lykos said the issues could have been addressed through a correction and that it has filed a complaint with the Committee on Publication Ethics. It also noted that the misconduct at issue was reported to the FDA and Health Canada.

“However, we did not disclose the violations to the journal itself, an additional step we should have taken and regret not doing,” the company said. It added that the efficacy data in the paper were not part of the FDA submission.

Author Allison A. Feduccia, PhD, cofounder of Psychedelic Support, agreed with the retraction but disagreed with the wording. In a post on LinkedIn, she said she and other authors were not informed about the misconduct until years after the study’s submission.

Four authors — including Dr. Doblin — disagreed with the retraction.

Dr. Doblin said in a statement that he’d resigned from Lykos to escape the restrictions that came with being a fiduciary. “Now I can advocate and speak freely,” he said, adding that he could also return to his activist roots.

He predicted that Lykos would eventually gain FDA approval. But if Lykos can’t convince the agency, it have the necessary data already in hand; “potential FDA approval is now at least 2 years away, possibly more,” Dr. Doblin said in his statement.
 

Research Continues

Lykos is not the only company hoping to commercialize MDMA. Toronto-based Awakn Life Sciences has an MDMA preclinical development program for addiction. In addition, some companies are offering MDMA therapy through clinics, such as Numinus in Utah and Sunstone Therapies in Rockville, Maryland.

But Lykos was the closest to bringing a product to market. The company is still a sponsor of four MDMA-related clinical trials, three of which appear to be on hold. One study at the VA San Diego Healthcare System, San Diego, that is actively recruiting is an open-label trial to assess MDMA-AT in combination with brief Cognitive-Behavioral Conjoint Therapy for PTSD.

Those studies are among 13 US trials listed in ClinicalTrials.gov that have not yet begun recruiting and 7 that are actively recruiting.

Among them is a study of MDMA plus exposure therapy, funded by and conducted at Emory University in Atlanta. One of the Emory principal investigators, Barbara Rothbaum, MD, has also been named to a Lykos’ panel that would help ensure oversight of MDMA-AT post FDA approval.

Dr. Ostacher is an investigator in a study planned at VA Palo Alto Health Care System in California, that will compare MDMA-AT with cognitive processing therapy in veterans with severe PTSD. He said it will be open label in an effort to minimize expectation bias and issues with blinding — both problems that tripped up the Lykos application. Although placebo-controlled trials are the gold standard, it’s not ideal when “the purpose of the drug is for it to change how you see the world and yourself,” Dr. Ostacher said.

The study aims to see whether MDMA-AT is better than “a much shorter, less onerous, but quite evidence-based psychotherapy for PTSD,” he said.

The FDA’s decision is not the end of the road, said Dr. Ostacher. “Even though I think this makes for an obvious delay, I don’t think that it’s a permanent one,” he said.

Dr. Yehuda also said she is not ready to give up.

“We don’t plan on stopping — we plan on finding a way,” she said.

“In our experience, this is a very powerful approach that helps a lot of people that haven’t found help using other approaches, and when it’s in the hands of really trusted, experienced, ethical clinicians in a trusted environment, this could be a real game changer for people who have not been able to find belief by traditional methods,” she said.

Dr. Ostacher reported no relevant financial relationships. Dr. Yahuda is the principal investigator on clinical trials for the Center for Psychedelic Psychotherapy and Trauma Research that are sponsored by the Multidisciplinary Association for Psychedelic Studies and COMPASS Pathways.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

The Food and Drug Administration’s (FDA) decision not to approve midomafetamine-assisted therapy (MDMA-AT) for posttraumatic stress disorder (PTSD) puts the therapy’s near-term future in doubt, but officials say the rejection may not knock it out of contention as an eventual therapeutic tool for a variety of conditions.

In August the agency declined to approve the drug with currently available study data and requested that the company conduct an additional phase 3 trial. The agency’s action had potentially devastating consequences for MDMA-AT’s sponsor, Lykos Therapeutics, and was a huge disappointment for researchers, clinicians, and patients who were optimistic that it would be a new option for a condition that affects 13-17 million Americans.

For now, no other company is poised to imminently seek FDA approval for MDMA.

Despite the setback, research into MDMA that combines different psychotherapeutic approaches continues. Currently, there are seven US studies actively recruiting participants, and another 13 are registered with an eye toward starting recruitment, as reported on ClinicalTrials.gov.

The lack of FDA approval “actually increases the opportunity now for us to do trials,” said Michael Ostacher, MD, professor of psychiatry and behavioral sciences at Stanford Medicine in California. Researchers won’t have to be sponsored by Lykos to get access to MDMA.

“There’s a lot of energy and interest in doing these studies,” he said in an interview, adding that philanthropic organizations and Veterans Affairs (VA) are contributing funds to support such studies.

The VA provided a statement saying that it “intends to gather rigorous scientific evidence on the potential efficacy and safety of psychedelic compounds when used in conjunction with psychotherapy.” It also noted that “these studies will be conducted under stringent safety protocols and will mark the first time since the 1960’s that VA is funding research on such compounds.”

Rachel Yehuda, PhD, director of the Center for Psychedelic Therapy Research at Icahn School of Medicine at Mount Sinai in New York City, said in an interview that the FDA rejection “raises questions about how to keep the work going.”

Without the FDA’s imprimatur, MDMA remains a schedule 1 drug, which means it has no valid medical use.

“It’s a lot more complicated and expensive to work with a scheduled compound than to work with a compound that has been approved,” Dr. Yehuda said.

Also, without Lykos or another drug company sponsor, investigators have to find an acceptable MDMA source on their own, said Dr. Yehuda, who was an investigator on a study in which Lykos provided MDMA but was not involved in study design, data collection, analysis, or manuscript preparation.
 

Lykos in Disarray

Within a week of the FDA’s decision, Lykos announced it was cutting its staff by 75% and that Rick Doblin, PhD, the founder and president of the Multidisciplinary Association for Psychedelic Studies (MAPS) that gave rise to Lykos, had resigned from the Lykos board.

A frequently controversial figure, Doblin has been attempting to legitimize MDMA as a therapy since the mid-1980s. He formed a public benefit corporation (PBC) in 2014 with an eye toward FDA approval. The PBC fully separated from MAPS in 2024 and became Lykos.

Although the FDA has left the door open to approval, Lykos has not released the agency’s complete response letter, so it’s not clear exactly what the FDA is seeking. In a statement, the company said it believes the issues “can be addressed with existing data, postapproval requirements, or through reference to the scientific literature.”

Lykos said in an email that it is working on “securing the meeting with the FDA” and that it “will work with the agency to determine what needs to be done to fulfill their requests.”

Soon after the FDA decision, Lykos was hit with another blow. The journal Psychopharmacology retracted an article that pooled six Lykos phase 2 studies, claiming the paper’s authors knew about unethical conduct before submission but did not inform the publisher.

Lykos said the issues could have been addressed through a correction and that it has filed a complaint with the Committee on Publication Ethics. It also noted that the misconduct at issue was reported to the FDA and Health Canada.

“However, we did not disclose the violations to the journal itself, an additional step we should have taken and regret not doing,” the company said. It added that the efficacy data in the paper were not part of the FDA submission.

Author Allison A. Feduccia, PhD, cofounder of Psychedelic Support, agreed with the retraction but disagreed with the wording. In a post on LinkedIn, she said she and other authors were not informed about the misconduct until years after the study’s submission.

Four authors — including Dr. Doblin — disagreed with the retraction.

Dr. Doblin said in a statement that he’d resigned from Lykos to escape the restrictions that came with being a fiduciary. “Now I can advocate and speak freely,” he said, adding that he could also return to his activist roots.

He predicted that Lykos would eventually gain FDA approval. But if Lykos can’t convince the agency, it have the necessary data already in hand; “potential FDA approval is now at least 2 years away, possibly more,” Dr. Doblin said in his statement.
 

Research Continues

Lykos is not the only company hoping to commercialize MDMA. Toronto-based Awakn Life Sciences has an MDMA preclinical development program for addiction. In addition, some companies are offering MDMA therapy through clinics, such as Numinus in Utah and Sunstone Therapies in Rockville, Maryland.

But Lykos was the closest to bringing a product to market. The company is still a sponsor of four MDMA-related clinical trials, three of which appear to be on hold. One study at the VA San Diego Healthcare System, San Diego, that is actively recruiting is an open-label trial to assess MDMA-AT in combination with brief Cognitive-Behavioral Conjoint Therapy for PTSD.

Those studies are among 13 US trials listed in ClinicalTrials.gov that have not yet begun recruiting and 7 that are actively recruiting.

Among them is a study of MDMA plus exposure therapy, funded by and conducted at Emory University in Atlanta. One of the Emory principal investigators, Barbara Rothbaum, MD, has also been named to a Lykos’ panel that would help ensure oversight of MDMA-AT post FDA approval.

Dr. Ostacher is an investigator in a study planned at VA Palo Alto Health Care System in California, that will compare MDMA-AT with cognitive processing therapy in veterans with severe PTSD. He said it will be open label in an effort to minimize expectation bias and issues with blinding — both problems that tripped up the Lykos application. Although placebo-controlled trials are the gold standard, it’s not ideal when “the purpose of the drug is for it to change how you see the world and yourself,” Dr. Ostacher said.

The study aims to see whether MDMA-AT is better than “a much shorter, less onerous, but quite evidence-based psychotherapy for PTSD,” he said.

The FDA’s decision is not the end of the road, said Dr. Ostacher. “Even though I think this makes for an obvious delay, I don’t think that it’s a permanent one,” he said.

Dr. Yehuda also said she is not ready to give up.

“We don’t plan on stopping — we plan on finding a way,” she said.

“In our experience, this is a very powerful approach that helps a lot of people that haven’t found help using other approaches, and when it’s in the hands of really trusted, experienced, ethical clinicians in a trusted environment, this could be a real game changer for people who have not been able to find belief by traditional methods,” she said.

Dr. Ostacher reported no relevant financial relationships. Dr. Yahuda is the principal investigator on clinical trials for the Center for Psychedelic Psychotherapy and Trauma Research that are sponsored by the Multidisciplinary Association for Psychedelic Studies and COMPASS Pathways.

A version of this article first appeared on Medscape.com.

 

The Food and Drug Administration’s (FDA) decision not to approve midomafetamine-assisted therapy (MDMA-AT) for posttraumatic stress disorder (PTSD) puts the therapy’s near-term future in doubt, but officials say the rejection may not knock it out of contention as an eventual therapeutic tool for a variety of conditions.

In August the agency declined to approve the drug with currently available study data and requested that the company conduct an additional phase 3 trial. The agency’s action had potentially devastating consequences for MDMA-AT’s sponsor, Lykos Therapeutics, and was a huge disappointment for researchers, clinicians, and patients who were optimistic that it would be a new option for a condition that affects 13-17 million Americans.

For now, no other company is poised to imminently seek FDA approval for MDMA.

Despite the setback, research into MDMA that combines different psychotherapeutic approaches continues. Currently, there are seven US studies actively recruiting participants, and another 13 are registered with an eye toward starting recruitment, as reported on ClinicalTrials.gov.

The lack of FDA approval “actually increases the opportunity now for us to do trials,” said Michael Ostacher, MD, professor of psychiatry and behavioral sciences at Stanford Medicine in California. Researchers won’t have to be sponsored by Lykos to get access to MDMA.

“There’s a lot of energy and interest in doing these studies,” he said in an interview, adding that philanthropic organizations and Veterans Affairs (VA) are contributing funds to support such studies.

The VA provided a statement saying that it “intends to gather rigorous scientific evidence on the potential efficacy and safety of psychedelic compounds when used in conjunction with psychotherapy.” It also noted that “these studies will be conducted under stringent safety protocols and will mark the first time since the 1960’s that VA is funding research on such compounds.”

Rachel Yehuda, PhD, director of the Center for Psychedelic Therapy Research at Icahn School of Medicine at Mount Sinai in New York City, said in an interview that the FDA rejection “raises questions about how to keep the work going.”

Without the FDA’s imprimatur, MDMA remains a schedule 1 drug, which means it has no valid medical use.

“It’s a lot more complicated and expensive to work with a scheduled compound than to work with a compound that has been approved,” Dr. Yehuda said.

Also, without Lykos or another drug company sponsor, investigators have to find an acceptable MDMA source on their own, said Dr. Yehuda, who was an investigator on a study in which Lykos provided MDMA but was not involved in study design, data collection, analysis, or manuscript preparation.
 

Lykos in Disarray

Within a week of the FDA’s decision, Lykos announced it was cutting its staff by 75% and that Rick Doblin, PhD, the founder and president of the Multidisciplinary Association for Psychedelic Studies (MAPS) that gave rise to Lykos, had resigned from the Lykos board.

A frequently controversial figure, Doblin has been attempting to legitimize MDMA as a therapy since the mid-1980s. He formed a public benefit corporation (PBC) in 2014 with an eye toward FDA approval. The PBC fully separated from MAPS in 2024 and became Lykos.

Although the FDA has left the door open to approval, Lykos has not released the agency’s complete response letter, so it’s not clear exactly what the FDA is seeking. In a statement, the company said it believes the issues “can be addressed with existing data, postapproval requirements, or through reference to the scientific literature.”

Lykos said in an email that it is working on “securing the meeting with the FDA” and that it “will work with the agency to determine what needs to be done to fulfill their requests.”

Soon after the FDA decision, Lykos was hit with another blow. The journal Psychopharmacology retracted an article that pooled six Lykos phase 2 studies, claiming the paper’s authors knew about unethical conduct before submission but did not inform the publisher.

Lykos said the issues could have been addressed through a correction and that it has filed a complaint with the Committee on Publication Ethics. It also noted that the misconduct at issue was reported to the FDA and Health Canada.

“However, we did not disclose the violations to the journal itself, an additional step we should have taken and regret not doing,” the company said. It added that the efficacy data in the paper were not part of the FDA submission.

Author Allison A. Feduccia, PhD, cofounder of Psychedelic Support, agreed with the retraction but disagreed with the wording. In a post on LinkedIn, she said she and other authors were not informed about the misconduct until years after the study’s submission.

Four authors — including Dr. Doblin — disagreed with the retraction.

Dr. Doblin said in a statement that he’d resigned from Lykos to escape the restrictions that came with being a fiduciary. “Now I can advocate and speak freely,” he said, adding that he could also return to his activist roots.

He predicted that Lykos would eventually gain FDA approval. But if Lykos can’t convince the agency, it have the necessary data already in hand; “potential FDA approval is now at least 2 years away, possibly more,” Dr. Doblin said in his statement.
 

Research Continues

Lykos is not the only company hoping to commercialize MDMA. Toronto-based Awakn Life Sciences has an MDMA preclinical development program for addiction. In addition, some companies are offering MDMA therapy through clinics, such as Numinus in Utah and Sunstone Therapies in Rockville, Maryland.

But Lykos was the closest to bringing a product to market. The company is still a sponsor of four MDMA-related clinical trials, three of which appear to be on hold. One study at the VA San Diego Healthcare System, San Diego, that is actively recruiting is an open-label trial to assess MDMA-AT in combination with brief Cognitive-Behavioral Conjoint Therapy for PTSD.

Those studies are among 13 US trials listed in ClinicalTrials.gov that have not yet begun recruiting and 7 that are actively recruiting.

Among them is a study of MDMA plus exposure therapy, funded by and conducted at Emory University in Atlanta. One of the Emory principal investigators, Barbara Rothbaum, MD, has also been named to a Lykos’ panel that would help ensure oversight of MDMA-AT post FDA approval.

Dr. Ostacher is an investigator in a study planned at VA Palo Alto Health Care System in California, that will compare MDMA-AT with cognitive processing therapy in veterans with severe PTSD. He said it will be open label in an effort to minimize expectation bias and issues with blinding — both problems that tripped up the Lykos application. Although placebo-controlled trials are the gold standard, it’s not ideal when “the purpose of the drug is for it to change how you see the world and yourself,” Dr. Ostacher said.

The study aims to see whether MDMA-AT is better than “a much shorter, less onerous, but quite evidence-based psychotherapy for PTSD,” he said.

The FDA’s decision is not the end of the road, said Dr. Ostacher. “Even though I think this makes for an obvious delay, I don’t think that it’s a permanent one,” he said.

Dr. Yehuda also said she is not ready to give up.

“We don’t plan on stopping — we plan on finding a way,” she said.

“In our experience, this is a very powerful approach that helps a lot of people that haven’t found help using other approaches, and when it’s in the hands of really trusted, experienced, ethical clinicians in a trusted environment, this could be a real game changer for people who have not been able to find belief by traditional methods,” she said.

Dr. Ostacher reported no relevant financial relationships. Dr. Yahuda is the principal investigator on clinical trials for the Center for Psychedelic Psychotherapy and Trauma Research that are sponsored by the Multidisciplinary Association for Psychedelic Studies and COMPASS Pathways.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Being An Outsider

Article Type
Changed
Fri, 09/06/2024 - 16:44

Our son works for a Maine-based company that produces and sells clothing and outdoor recreation equipment. One of its tag lines is “Be an Outsider.” In his role as chief marketing officer, he was recently given an app for his phone that can calculate how many minutes he spends outside each day. He assured me: “Dad, you don’t need one of these on your phone. Your weather-beaten skin says you are already logging in way more than enough minutes outdoors.”

But, it got me thinking about several avenues of research where an app like that would be useful. As luck would have it, the following week I stumbled across a paper describing just such a study.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Researchers in Shanghai, China, placed smartwatches with technology similar to my son’s phone on nearly 3000 children and found “that outdoor exposure patterns characterized by a continuous period of at least 15 minutes, accompanied by a sunlight intensity of more than 2000 lux, were associated with less myopic shift.” In other words, children getting more time outside were less likely to become nearsighted.” Whether this was an effect of being outside instead of staring at a screen indoors is an interesting question.

I have alway suspected that being outdoors was important for wellness and this paper meshed nicely with an article I had recently read in The Washington Post titled, “How time in nature builds happier, healthier and more social children” (Jamie Friedlander Serrano, 2024 Aug 4). The reporter quotes numerous experts in child health and includes links to several articles that tout the benefits of outdoor experiences, particularly ones in a natural environment. There are the vitamin D effects on growth and bone health. There are studies suggesting that being out in nature can reduce stress, anxiety, and aggression, and improve working memory and attention.

In this country there is a small but growing group of schools modeling themselves after the “Forest kindergartens” that have become popular in Europe in which a large portion of the students’ days are spent outside surrounded by nature. It will be interesting to see how robustly this trend grows here in the United States. However, in a nation like ours in which the Environmental Protection Agency estimates that the average American spends 90% of his day indoors, it’s going to require a seismic shift in our societal norms.

I think my mother always knew that being outdoors was healthy for children. I also suspect that she and most my friends’ mothers were primarily motivated by a desire to have the house to themselves. This was primarily to allow them to get the housework done unimpeded by pestering children. But, there may have been times when a busy housewife simply needed to sit down with a book in the peace and quiet of a childless environment. We kids were told to get out of the house and return for lunch and dinner, hopefully not in the tow of a police officer. There were few rules and for the most part we were left to invent our own amusement.

Yes, you’ve heard this old-fogey legend before. But it was true. Those were the halcyon days of the 1950s in a small suburban town of 5000 of a little more than 1 square mile with its own swimming pool. My particular idyll was aptly named Pleasantville but I know we were not alone as the only community where children were allowed – or let’s say “encouraged” – to be outdoors if they weren’t in school. It was a different time.

I am not so naive to believe that we will ever return to those good old days when children roamed free, but it is worth considering what has changed to drive children inside and away from all the health benefits of being outdoors. Is there anything we can do to reverse this unfortunate trend?

First, we must first face up to the reality that our society has become so focused on the potential downsides of everything that we seem to be driven primarily by risk avoidance. We hear how things can go terribly wrong in the world outside, a world we can’t control. Although the data from the pandemic don’t support it, more of us believe children are safer indoors. Parents in particular seem to worry more now than they did 75 years ago. I don’t think we can point to a single event such as the tragedies of September 11 to explain the shift.

While bad news has always traveled fast, today (with communication being almost instantaneous) a story about a child abduction at 6 in the morning in Nevada can be on my local TV channel by lunchtime here in Maine. Parents worry that if bad stuff can happen to a child in Mount Elsewhere, it could happen to my child playing in the backyard across the street.

I think we pediatricians should consider how large a role we may be playing in driving parental anxiety with our frequent warnings about the dangers a child can encounter outdoors whether they come in the form of accidents or exposure to the elements.

While parents have grown more hesitant to send their children outside to play, as a society we have failed to adequately acknowledge and respond to the role that unhealthy attraction of indoor alternatives to outdoor play may be contributing to indoorism. Here we’re talking about television, smartphones, and the internet.

So, what can we do as pediatricians to get our patients outside? First, we can set an example and cover our office walls with pictures of ourselves and our families enjoying the outdoors. We can be vocal advocates for creating and maintaining accessible outdoor spaces in our community. We can advocate for more outside time during recess in school and encourage the school officials to consider having more courses taught outside.

We can be more diligent in asking families about their screen use and not be afraid to express our concern when we hear how little outdoor time their child is getting. Finally, we can strive for more balance in our messaging. For example for every warning we give about playing outside on poor air quality days there should be a reminder of the health benefits of being outdoors on the other days. Every message about the importance of sunscreen should be preceded by a few sentences promoting outdoor activities in wooded environments where sun exposure is less of a concern.

We should all be looking for ways in which our communities can remove the barriers that prevent our patients for reaping the health benefits of being outdoors. Being an outsider is just as important as getting enough sleep, eating the right food and staying physically active.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

Publications
Topics
Sections

Our son works for a Maine-based company that produces and sells clothing and outdoor recreation equipment. One of its tag lines is “Be an Outsider.” In his role as chief marketing officer, he was recently given an app for his phone that can calculate how many minutes he spends outside each day. He assured me: “Dad, you don’t need one of these on your phone. Your weather-beaten skin says you are already logging in way more than enough minutes outdoors.”

But, it got me thinking about several avenues of research where an app like that would be useful. As luck would have it, the following week I stumbled across a paper describing just such a study.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Researchers in Shanghai, China, placed smartwatches with technology similar to my son’s phone on nearly 3000 children and found “that outdoor exposure patterns characterized by a continuous period of at least 15 minutes, accompanied by a sunlight intensity of more than 2000 lux, were associated with less myopic shift.” In other words, children getting more time outside were less likely to become nearsighted.” Whether this was an effect of being outside instead of staring at a screen indoors is an interesting question.

I have alway suspected that being outdoors was important for wellness and this paper meshed nicely with an article I had recently read in The Washington Post titled, “How time in nature builds happier, healthier and more social children” (Jamie Friedlander Serrano, 2024 Aug 4). The reporter quotes numerous experts in child health and includes links to several articles that tout the benefits of outdoor experiences, particularly ones in a natural environment. There are the vitamin D effects on growth and bone health. There are studies suggesting that being out in nature can reduce stress, anxiety, and aggression, and improve working memory and attention.

In this country there is a small but growing group of schools modeling themselves after the “Forest kindergartens” that have become popular in Europe in which a large portion of the students’ days are spent outside surrounded by nature. It will be interesting to see how robustly this trend grows here in the United States. However, in a nation like ours in which the Environmental Protection Agency estimates that the average American spends 90% of his day indoors, it’s going to require a seismic shift in our societal norms.

I think my mother always knew that being outdoors was healthy for children. I also suspect that she and most my friends’ mothers were primarily motivated by a desire to have the house to themselves. This was primarily to allow them to get the housework done unimpeded by pestering children. But, there may have been times when a busy housewife simply needed to sit down with a book in the peace and quiet of a childless environment. We kids were told to get out of the house and return for lunch and dinner, hopefully not in the tow of a police officer. There were few rules and for the most part we were left to invent our own amusement.

Yes, you’ve heard this old-fogey legend before. But it was true. Those were the halcyon days of the 1950s in a small suburban town of 5000 of a little more than 1 square mile with its own swimming pool. My particular idyll was aptly named Pleasantville but I know we were not alone as the only community where children were allowed – or let’s say “encouraged” – to be outdoors if they weren’t in school. It was a different time.

I am not so naive to believe that we will ever return to those good old days when children roamed free, but it is worth considering what has changed to drive children inside and away from all the health benefits of being outdoors. Is there anything we can do to reverse this unfortunate trend?

First, we must first face up to the reality that our society has become so focused on the potential downsides of everything that we seem to be driven primarily by risk avoidance. We hear how things can go terribly wrong in the world outside, a world we can’t control. Although the data from the pandemic don’t support it, more of us believe children are safer indoors. Parents in particular seem to worry more now than they did 75 years ago. I don’t think we can point to a single event such as the tragedies of September 11 to explain the shift.

While bad news has always traveled fast, today (with communication being almost instantaneous) a story about a child abduction at 6 in the morning in Nevada can be on my local TV channel by lunchtime here in Maine. Parents worry that if bad stuff can happen to a child in Mount Elsewhere, it could happen to my child playing in the backyard across the street.

I think we pediatricians should consider how large a role we may be playing in driving parental anxiety with our frequent warnings about the dangers a child can encounter outdoors whether they come in the form of accidents or exposure to the elements.

While parents have grown more hesitant to send their children outside to play, as a society we have failed to adequately acknowledge and respond to the role that unhealthy attraction of indoor alternatives to outdoor play may be contributing to indoorism. Here we’re talking about television, smartphones, and the internet.

So, what can we do as pediatricians to get our patients outside? First, we can set an example and cover our office walls with pictures of ourselves and our families enjoying the outdoors. We can be vocal advocates for creating and maintaining accessible outdoor spaces in our community. We can advocate for more outside time during recess in school and encourage the school officials to consider having more courses taught outside.

We can be more diligent in asking families about their screen use and not be afraid to express our concern when we hear how little outdoor time their child is getting. Finally, we can strive for more balance in our messaging. For example for every warning we give about playing outside on poor air quality days there should be a reminder of the health benefits of being outdoors on the other days. Every message about the importance of sunscreen should be preceded by a few sentences promoting outdoor activities in wooded environments where sun exposure is less of a concern.

We should all be looking for ways in which our communities can remove the barriers that prevent our patients for reaping the health benefits of being outdoors. Being an outsider is just as important as getting enough sleep, eating the right food and staying physically active.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

Our son works for a Maine-based company that produces and sells clothing and outdoor recreation equipment. One of its tag lines is “Be an Outsider.” In his role as chief marketing officer, he was recently given an app for his phone that can calculate how many minutes he spends outside each day. He assured me: “Dad, you don’t need one of these on your phone. Your weather-beaten skin says you are already logging in way more than enough minutes outdoors.”

But, it got me thinking about several avenues of research where an app like that would be useful. As luck would have it, the following week I stumbled across a paper describing just such a study.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Researchers in Shanghai, China, placed smartwatches with technology similar to my son’s phone on nearly 3000 children and found “that outdoor exposure patterns characterized by a continuous period of at least 15 minutes, accompanied by a sunlight intensity of more than 2000 lux, were associated with less myopic shift.” In other words, children getting more time outside were less likely to become nearsighted.” Whether this was an effect of being outside instead of staring at a screen indoors is an interesting question.

I have alway suspected that being outdoors was important for wellness and this paper meshed nicely with an article I had recently read in The Washington Post titled, “How time in nature builds happier, healthier and more social children” (Jamie Friedlander Serrano, 2024 Aug 4). The reporter quotes numerous experts in child health and includes links to several articles that tout the benefits of outdoor experiences, particularly ones in a natural environment. There are the vitamin D effects on growth and bone health. There are studies suggesting that being out in nature can reduce stress, anxiety, and aggression, and improve working memory and attention.

In this country there is a small but growing group of schools modeling themselves after the “Forest kindergartens” that have become popular in Europe in which a large portion of the students’ days are spent outside surrounded by nature. It will be interesting to see how robustly this trend grows here in the United States. However, in a nation like ours in which the Environmental Protection Agency estimates that the average American spends 90% of his day indoors, it’s going to require a seismic shift in our societal norms.

I think my mother always knew that being outdoors was healthy for children. I also suspect that she and most my friends’ mothers were primarily motivated by a desire to have the house to themselves. This was primarily to allow them to get the housework done unimpeded by pestering children. But, there may have been times when a busy housewife simply needed to sit down with a book in the peace and quiet of a childless environment. We kids were told to get out of the house and return for lunch and dinner, hopefully not in the tow of a police officer. There were few rules and for the most part we were left to invent our own amusement.

Yes, you’ve heard this old-fogey legend before. But it was true. Those were the halcyon days of the 1950s in a small suburban town of 5000 of a little more than 1 square mile with its own swimming pool. My particular idyll was aptly named Pleasantville but I know we were not alone as the only community where children were allowed – or let’s say “encouraged” – to be outdoors if they weren’t in school. It was a different time.

I am not so naive to believe that we will ever return to those good old days when children roamed free, but it is worth considering what has changed to drive children inside and away from all the health benefits of being outdoors. Is there anything we can do to reverse this unfortunate trend?

First, we must first face up to the reality that our society has become so focused on the potential downsides of everything that we seem to be driven primarily by risk avoidance. We hear how things can go terribly wrong in the world outside, a world we can’t control. Although the data from the pandemic don’t support it, more of us believe children are safer indoors. Parents in particular seem to worry more now than they did 75 years ago. I don’t think we can point to a single event such as the tragedies of September 11 to explain the shift.

While bad news has always traveled fast, today (with communication being almost instantaneous) a story about a child abduction at 6 in the morning in Nevada can be on my local TV channel by lunchtime here in Maine. Parents worry that if bad stuff can happen to a child in Mount Elsewhere, it could happen to my child playing in the backyard across the street.

I think we pediatricians should consider how large a role we may be playing in driving parental anxiety with our frequent warnings about the dangers a child can encounter outdoors whether they come in the form of accidents or exposure to the elements.

While parents have grown more hesitant to send their children outside to play, as a society we have failed to adequately acknowledge and respond to the role that unhealthy attraction of indoor alternatives to outdoor play may be contributing to indoorism. Here we’re talking about television, smartphones, and the internet.

So, what can we do as pediatricians to get our patients outside? First, we can set an example and cover our office walls with pictures of ourselves and our families enjoying the outdoors. We can be vocal advocates for creating and maintaining accessible outdoor spaces in our community. We can advocate for more outside time during recess in school and encourage the school officials to consider having more courses taught outside.

We can be more diligent in asking families about their screen use and not be afraid to express our concern when we hear how little outdoor time their child is getting. Finally, we can strive for more balance in our messaging. For example for every warning we give about playing outside on poor air quality days there should be a reminder of the health benefits of being outdoors on the other days. Every message about the importance of sunscreen should be preceded by a few sentences promoting outdoor activities in wooded environments where sun exposure is less of a concern.

We should all be looking for ways in which our communities can remove the barriers that prevent our patients for reaping the health benefits of being outdoors. Being an outsider is just as important as getting enough sleep, eating the right food and staying physically active.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cell Phone Use Linked to Higher Heart Disease Risk

Article Type
Changed
Fri, 09/06/2024 - 15:38

Using a cell phone for at least one call per week is linked to a higher risk for cardiovascular disease (CVD), especially among smokers and patients with diabetes, according to a new UK Biobank analysis.

“We found that a poor sleep pattern, psychological distress, and neuroticism significantly mediated the positive association between weekly mobile phone usage time and the risk for incident CVD, with a mediating proportion of 5.11%, 11.50%, and 2.25%, respectively,” said principal investigator Xianhui Qin, MD, professor of nephrology at Southern Medical University, Guangzhou, China.

Poor sleep patterns and poor mental health could disrupt circadian rhythms and endocrine and metabolic functions, as well as increase inflammation, he explained.

In addition, chronic exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from cell phones could lead to oxidative stress and an inflammatory response. Combined with smoking and diabetes, this exposure “may have a synergistic effect in increasing CVD risk,” Dr. Qin suggested.

The study was published online in the Canadian Journal of Cardiology.
 

Risk Underestimated?

The researchers aimed to examine the association of regular cell phone use with incident CVD and explore the mediating effects of sleep and mental health using linked hospital and mortality records.

Their analysis included 444,027 participants (mean age, 56 years; 44% men) without a history of CVD from the UK Biobank. A total of 378,161 participants were regular cell phone users.

Regular cell phone use was defined as at least one call per week. Weekly use was self-reported as the average time of calls per week during the previous 3 months.

The primary outcome was incident CVD. Secondary outcomes were each component of CVD (ie, coronary heart disease, stroke, atrial fibrillation, and heart failure) and increased carotid intima media thickness (CIMT).

Compared with nonregular cell phone users, regular users were younger, had higher proportions of current smokers and urban residents, and had lower proportions of history of hypertension and diabetes. They also had higher income, Townsend deprivation index, and body mass index, and lower education levels.

During a median follow-up of 12.3 years, 56,181 participants developed incident CVD. Compared with nonregular cell phone users, regular users had a significantly higher risk for incident CVD (hazard ratio, 1.04) and increased CIMT (odds ratio, 1.11).

Among regular cell phone users, the duration of cell phone use and hands-free device/speakerphone use during calls was not significantly associated with incident CVD. Yet a significant and positive dose-response relationship was seen between weekly cell phone usage time and the risk for CVD. The positive association was stronger in current vs noncurrent smokers and people with vs without diabetes.

To different extents, sleep patterns (5.11%), psychologic distress (11.5%), and neuroticism (2.25%) mediated the relationship between weekly cell phone usage time and the risk for incident CVD.

“Our study suggests that despite the advantages of mobile phone use, we should also pay attention to the potential harm of mobile phone use to cardiovascular health,” Dr. Qin said. “Future studies to assess the risk-benefit balance will help promote mobile phone use patterns that are conducive to cardiovascular health.”

Meanwhile, he added, “We encourage measures to reduce time spent on mobile phones to promote the primary prevention of CVD. On the other hand, improving sleep and mental health status may help reduce the higher risk of CVD associated with mobile phone use.”

There are several limitations to the study in addition to its observational nature, which cannot show cause and effect. The questionnaires on cell phone use were restricted to phone calls; other use patterns of cell phones (eg, messaging, watching videos, and browsing the web) were not considered. Although the researchers adjusted for many potential confounders, unmeasured confounding bias (eg, the type of cell phone used and other sources of RF-EMF) cannot be eliminated.
 

 

 

Weak Link?

In a comment, Nicholas Grubic, MSc, a PhD student in epidemiology at the University of Toronto, Ontario, Canada, and coauthor of a related editorial, said, “I found it interesting that there was a connection observed between mobile phone use and CVD. However, it is crucial to understand that this link appeared to be much weaker compared with other well-known cardiovascular risk factors, such as smoking, diabetes, and high blood pressure. For now, mobile phone use should not be a major concern for most people.”

Nevertheless, clinicians should encourage patients to practice healthy habits around their screen time, he advised. “This could include limiting mobile phone use before bedtime and taking regular breaks to engage in activities that promote heart health, such as exercising or spending time outdoors.

“For the time being, we probably won’t see mobile phone use included in standard assessments for cardiovascular risk or as a focal point of cardiovascular health promotion initiatives,” he added. Instead, clinicians should “focus on established risk factors that have a stronger impact on patients’ cardiovascular health.”

Nieca Goldberg, MD, a clinical associate professor of medicine at NYU Grossman School of Medicine in New York City and American Heart Association volunteer expert, had a similar message. “You don’t have to go back to using a landline,” she said. “Instead, patients should be more mindful of how much phone use is taking away from their physical activity, keeping them from sleeping, and causing them stress.” Clinicians should also remember to counsel smokers on smoking cessation.

“It would be important for future studies to look at time spent on the phone and the type of activities patients are doing on their phones, such as social media, calls, texts, movies, or streaming TV shows,” she said. “It would be important to see how phone use is leading to a sedentary lifestyle” and what that means for a larger, more diverse population.

The study was supported by the National Key R&D Program, the National Natural Science Foundation of China, and the Outstanding Youth Development Scheme of Nanfang Hospital, Southern Medical University. Dr. Qin, Dr. Grubic, and Dr. Goldberg reported having no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Using a cell phone for at least one call per week is linked to a higher risk for cardiovascular disease (CVD), especially among smokers and patients with diabetes, according to a new UK Biobank analysis.

“We found that a poor sleep pattern, psychological distress, and neuroticism significantly mediated the positive association between weekly mobile phone usage time and the risk for incident CVD, with a mediating proportion of 5.11%, 11.50%, and 2.25%, respectively,” said principal investigator Xianhui Qin, MD, professor of nephrology at Southern Medical University, Guangzhou, China.

Poor sleep patterns and poor mental health could disrupt circadian rhythms and endocrine and metabolic functions, as well as increase inflammation, he explained.

In addition, chronic exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from cell phones could lead to oxidative stress and an inflammatory response. Combined with smoking and diabetes, this exposure “may have a synergistic effect in increasing CVD risk,” Dr. Qin suggested.

The study was published online in the Canadian Journal of Cardiology.
 

Risk Underestimated?

The researchers aimed to examine the association of regular cell phone use with incident CVD and explore the mediating effects of sleep and mental health using linked hospital and mortality records.

Their analysis included 444,027 participants (mean age, 56 years; 44% men) without a history of CVD from the UK Biobank. A total of 378,161 participants were regular cell phone users.

Regular cell phone use was defined as at least one call per week. Weekly use was self-reported as the average time of calls per week during the previous 3 months.

The primary outcome was incident CVD. Secondary outcomes were each component of CVD (ie, coronary heart disease, stroke, atrial fibrillation, and heart failure) and increased carotid intima media thickness (CIMT).

Compared with nonregular cell phone users, regular users were younger, had higher proportions of current smokers and urban residents, and had lower proportions of history of hypertension and diabetes. They also had higher income, Townsend deprivation index, and body mass index, and lower education levels.

During a median follow-up of 12.3 years, 56,181 participants developed incident CVD. Compared with nonregular cell phone users, regular users had a significantly higher risk for incident CVD (hazard ratio, 1.04) and increased CIMT (odds ratio, 1.11).

Among regular cell phone users, the duration of cell phone use and hands-free device/speakerphone use during calls was not significantly associated with incident CVD. Yet a significant and positive dose-response relationship was seen between weekly cell phone usage time and the risk for CVD. The positive association was stronger in current vs noncurrent smokers and people with vs without diabetes.

To different extents, sleep patterns (5.11%), psychologic distress (11.5%), and neuroticism (2.25%) mediated the relationship between weekly cell phone usage time and the risk for incident CVD.

“Our study suggests that despite the advantages of mobile phone use, we should also pay attention to the potential harm of mobile phone use to cardiovascular health,” Dr. Qin said. “Future studies to assess the risk-benefit balance will help promote mobile phone use patterns that are conducive to cardiovascular health.”

Meanwhile, he added, “We encourage measures to reduce time spent on mobile phones to promote the primary prevention of CVD. On the other hand, improving sleep and mental health status may help reduce the higher risk of CVD associated with mobile phone use.”

There are several limitations to the study in addition to its observational nature, which cannot show cause and effect. The questionnaires on cell phone use were restricted to phone calls; other use patterns of cell phones (eg, messaging, watching videos, and browsing the web) were not considered. Although the researchers adjusted for many potential confounders, unmeasured confounding bias (eg, the type of cell phone used and other sources of RF-EMF) cannot be eliminated.
 

 

 

Weak Link?

In a comment, Nicholas Grubic, MSc, a PhD student in epidemiology at the University of Toronto, Ontario, Canada, and coauthor of a related editorial, said, “I found it interesting that there was a connection observed between mobile phone use and CVD. However, it is crucial to understand that this link appeared to be much weaker compared with other well-known cardiovascular risk factors, such as smoking, diabetes, and high blood pressure. For now, mobile phone use should not be a major concern for most people.”

Nevertheless, clinicians should encourage patients to practice healthy habits around their screen time, he advised. “This could include limiting mobile phone use before bedtime and taking regular breaks to engage in activities that promote heart health, such as exercising or spending time outdoors.

“For the time being, we probably won’t see mobile phone use included in standard assessments for cardiovascular risk or as a focal point of cardiovascular health promotion initiatives,” he added. Instead, clinicians should “focus on established risk factors that have a stronger impact on patients’ cardiovascular health.”

Nieca Goldberg, MD, a clinical associate professor of medicine at NYU Grossman School of Medicine in New York City and American Heart Association volunteer expert, had a similar message. “You don’t have to go back to using a landline,” she said. “Instead, patients should be more mindful of how much phone use is taking away from their physical activity, keeping them from sleeping, and causing them stress.” Clinicians should also remember to counsel smokers on smoking cessation.

“It would be important for future studies to look at time spent on the phone and the type of activities patients are doing on their phones, such as social media, calls, texts, movies, or streaming TV shows,” she said. “It would be important to see how phone use is leading to a sedentary lifestyle” and what that means for a larger, more diverse population.

The study was supported by the National Key R&D Program, the National Natural Science Foundation of China, and the Outstanding Youth Development Scheme of Nanfang Hospital, Southern Medical University. Dr. Qin, Dr. Grubic, and Dr. Goldberg reported having no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Using a cell phone for at least one call per week is linked to a higher risk for cardiovascular disease (CVD), especially among smokers and patients with diabetes, according to a new UK Biobank analysis.

“We found that a poor sleep pattern, psychological distress, and neuroticism significantly mediated the positive association between weekly mobile phone usage time and the risk for incident CVD, with a mediating proportion of 5.11%, 11.50%, and 2.25%, respectively,” said principal investigator Xianhui Qin, MD, professor of nephrology at Southern Medical University, Guangzhou, China.

Poor sleep patterns and poor mental health could disrupt circadian rhythms and endocrine and metabolic functions, as well as increase inflammation, he explained.

In addition, chronic exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from cell phones could lead to oxidative stress and an inflammatory response. Combined with smoking and diabetes, this exposure “may have a synergistic effect in increasing CVD risk,” Dr. Qin suggested.

The study was published online in the Canadian Journal of Cardiology.
 

Risk Underestimated?

The researchers aimed to examine the association of regular cell phone use with incident CVD and explore the mediating effects of sleep and mental health using linked hospital and mortality records.

Their analysis included 444,027 participants (mean age, 56 years; 44% men) without a history of CVD from the UK Biobank. A total of 378,161 participants were regular cell phone users.

Regular cell phone use was defined as at least one call per week. Weekly use was self-reported as the average time of calls per week during the previous 3 months.

The primary outcome was incident CVD. Secondary outcomes were each component of CVD (ie, coronary heart disease, stroke, atrial fibrillation, and heart failure) and increased carotid intima media thickness (CIMT).

Compared with nonregular cell phone users, regular users were younger, had higher proportions of current smokers and urban residents, and had lower proportions of history of hypertension and diabetes. They also had higher income, Townsend deprivation index, and body mass index, and lower education levels.

During a median follow-up of 12.3 years, 56,181 participants developed incident CVD. Compared with nonregular cell phone users, regular users had a significantly higher risk for incident CVD (hazard ratio, 1.04) and increased CIMT (odds ratio, 1.11).

Among regular cell phone users, the duration of cell phone use and hands-free device/speakerphone use during calls was not significantly associated with incident CVD. Yet a significant and positive dose-response relationship was seen between weekly cell phone usage time and the risk for CVD. The positive association was stronger in current vs noncurrent smokers and people with vs without diabetes.

To different extents, sleep patterns (5.11%), psychologic distress (11.5%), and neuroticism (2.25%) mediated the relationship between weekly cell phone usage time and the risk for incident CVD.

“Our study suggests that despite the advantages of mobile phone use, we should also pay attention to the potential harm of mobile phone use to cardiovascular health,” Dr. Qin said. “Future studies to assess the risk-benefit balance will help promote mobile phone use patterns that are conducive to cardiovascular health.”

Meanwhile, he added, “We encourage measures to reduce time spent on mobile phones to promote the primary prevention of CVD. On the other hand, improving sleep and mental health status may help reduce the higher risk of CVD associated with mobile phone use.”

There are several limitations to the study in addition to its observational nature, which cannot show cause and effect. The questionnaires on cell phone use were restricted to phone calls; other use patterns of cell phones (eg, messaging, watching videos, and browsing the web) were not considered. Although the researchers adjusted for many potential confounders, unmeasured confounding bias (eg, the type of cell phone used and other sources of RF-EMF) cannot be eliminated.
 

 

 

Weak Link?

In a comment, Nicholas Grubic, MSc, a PhD student in epidemiology at the University of Toronto, Ontario, Canada, and coauthor of a related editorial, said, “I found it interesting that there was a connection observed between mobile phone use and CVD. However, it is crucial to understand that this link appeared to be much weaker compared with other well-known cardiovascular risk factors, such as smoking, diabetes, and high blood pressure. For now, mobile phone use should not be a major concern for most people.”

Nevertheless, clinicians should encourage patients to practice healthy habits around their screen time, he advised. “This could include limiting mobile phone use before bedtime and taking regular breaks to engage in activities that promote heart health, such as exercising or spending time outdoors.

“For the time being, we probably won’t see mobile phone use included in standard assessments for cardiovascular risk or as a focal point of cardiovascular health promotion initiatives,” he added. Instead, clinicians should “focus on established risk factors that have a stronger impact on patients’ cardiovascular health.”

Nieca Goldberg, MD, a clinical associate professor of medicine at NYU Grossman School of Medicine in New York City and American Heart Association volunteer expert, had a similar message. “You don’t have to go back to using a landline,” she said. “Instead, patients should be more mindful of how much phone use is taking away from their physical activity, keeping them from sleeping, and causing them stress.” Clinicians should also remember to counsel smokers on smoking cessation.

“It would be important for future studies to look at time spent on the phone and the type of activities patients are doing on their phones, such as social media, calls, texts, movies, or streaming TV shows,” she said. “It would be important to see how phone use is leading to a sedentary lifestyle” and what that means for a larger, more diverse population.

The study was supported by the National Key R&D Program, the National Natural Science Foundation of China, and the Outstanding Youth Development Scheme of Nanfang Hospital, Southern Medical University. Dr. Qin, Dr. Grubic, and Dr. Goldberg reported having no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE CANADIAN JOURNAL OF CARDIOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Brain Network Significantly Larger in People With Depression, Even in Childhood

Article Type
Changed
Fri, 09/06/2024 - 13:35

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Researchers have discovered that a brain network involved in reward processing and attention to stimuli is markedly bigger in people with depression, remains stable over time, is unaffected by mood changes, and can be detected in children before onset of depression symptoms.

Using a novel brain-mapping technique, researchers found that the frontostriatal salience network was expanded nearly twofold in the brains of most individuals studied with depression compared with controls.

“This expansion in cortex was trait-like, meaning it was stable over time and did not change as symptoms changed over time,” said lead author Charles Lynch, PhD, assistant professor of neuroscience, Department of Psychiatry, Weill Cornell Medicine in New York.

It could also be detected in children who later developed depression, suggesting it may serve as a biomarker of depression risk. Investigators said the findings could aid in prevention and early detection of depression, as well as the development of more personalized treatment.

The study was published online in Nature.
 

Prewired for Depression?

Precision functional mapping is a relatively new approach to brain mapping in individuals that uses large amounts of fMRI data from hours of scans per person. The technique has been used to show differences in brain networks between and in healthy individuals but had not been used to study brain networks in people with depression.

“We leveraged our large longitudinal datasets — with many hours of functional MRI scanning per subject — to construct individual-specific maps of functional brain networks in each patient using precision functional mapping, instead of relying on group average,” Dr. Lynch said.

In the primary analysis of 141 adults with major depression and 37 healthy controls, the frontostriatal salience network — which is involved in reward processing and attention to internal and external stimuli — was markedly larger in these individuals with depression.

“This is one of the first times these kinds of personalized maps have been created in individuals with depression, and this is how we first observed of the salience network being larger in individuals with depression,” Dr. Lynch said.

In four of the six individuals, the salience network was expanded more than twofold, outside the range observed in all 37 healthy controls. On average, the salience network occupied 73% more of the cortical surface relative to the average in healthy controls.

The findings were replicated using independent samples of repeatedly sampled individuals with depression and in large-scale group average data.

The expansion of the salience network did not change over time and was unaffected by changes in mood state.

“These observations led us to propose that instead of driving changes in depressive symptoms over time, salience network expansion may be a stable marker of risk for developing depression,” the study team wrote.

An analysis of brain scans from 57 children who went on to develop depressive symptoms during adolescence and an equal number of children who did not develop depressive symptoms supports this theory.

On average, the salience network occupied roughly 36% more of cortex in the children with no current or previous symptoms of depression at the time of their fMRI scans but who subsequently developed clinically significant symptoms of depression, relative to children with no depressive symptoms at any study time point, the researchers found.
 

 

 

Immediate Clinical Impact?

Reached for comment, Shaheen Lakhan, MD, PhD, neurologist and researcher based in Miami, said this research “exemplifies the promising intersection of neurology and digital health, where advanced neuroimaging and data-driven approaches can transform mental health care into a more precise and individualized practice,” Dr. Lakhan said. “By identifying this brain network expansion, we’re unlocking new possibilities for precision medicine in mental health.”

Dr. Lakhan, who wasn’t involved in this research, said identifying the expansion of the frontostriatal salience network in individuals with depression opens new avenues for developing novel therapeutics.

“By targeting this network through neuromodulation techniques like deep brain stimulation, transcranial magnetic stimulation, and prescription digital therapeutics, treatments can be more precisely tailored to individual neurobiological profiles,” Dr. Lakhan said. “Additionally, this network expansion could serve as a biomarker for early detection, allowing for preventive strategies or personalized treatment plans, particularly for those at risk of developing depression.”

In addition, a greater understanding of the mechanisms driving salience network expansion offers potential for discovering new pharmacological targets, Dr. Lakhan noted.

“Drugs that modulate synaptic plasticity or network connectivity might be developed to reverse or mitigate these neural changes. The findings also support the use of longitudinal monitoring to predict and preempt symptom emergence, improving outcomes through timely intervention. This research paves the way for more personalized, precise, and proactive approaches in treating depression,” Dr. Lakhan concluded.

Also weighing in, Teddy Akiki, MD, with the Department of Psychiatry and Behavioral Sciences at Stanford Medicine in California, noted that the effect size of the frontostriatal salience network difference in depression is “remarkably larger than typically seen in neuroimaging studies of depression, which often describe subtle differences. The consistency across multiple datasets and across time at the individual level adds significant weight to these findings, suggesting that it is a trait marker rather than a state-dependent marker.”

“The observation that this expansion is present even before the onset of depressive symptoms in adolescence suggests its potential as a biomarker for depression risk,” Dr. Akiki said. “This approach could lead to earlier identification of at-risk individuals and potentially inform the development of targeted preventive interventions.”

He cautioned that it remains to be seen whether interventions targeting the salience network can effectively prevent or treat depression.

This research was supported in part by the National Institute of Mental Health, the National Institute on Drug Addiction, the Hope for Depression Research Foundation, and the Foundation for OCD Research. Dr. Lynch and a coauthor are listed as inventors for Cornell University patent applications on neuroimaging biomarkers for depression which are pending or in preparation. Dr. Liston has served as a scientific advisor or consultant to Compass Pathways PLC, Delix Therapeutics, and Brainify.AI. Dr. Lakhan and Dr. Akiki had no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NATURE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Promising Results With CBT App in Young Adults With Anxiety

Article Type
Changed
Fri, 09/06/2024 - 12:40

 

TOPLINE:

A self-guided mobile application for cognitive behavioral therapy (CBT) is associated with significant reductions in anxiety in young adults with anxiety disorders after 3 weeks, with continued improvement through week 12, a new randomized clinical trial shows.

METHODOLOGY:

  • The study included 59 adults aged 18-25 years (mean age, 23 years; 78% women) with anxiety disorders (56% with generalized anxiety disorder; 41% with social anxiety disorder).
  • Participants received a 6-week CBT program with a self-guided mobile application called Maya and were assigned to one of three incentive strategies to encourage engagement: Loss-framed (lose points for incomplete sessions), gain-framed (earn points for completed sessions), or gain-social support (gain points with added social support from a designated person).
  • The primary end point was change in anxiety at week 6, measured with the Hamilton Anxiety Rating Scale.
  • The researchers also evaluated change in anxiety at 3 and 12 weeks, change in anxiety sensitivity, social anxiety symptoms, and engagement and satisfaction with the app.

TAKEAWAY:

  • Anxiety decreased significantly from baseline at week 3, 6, and 12 (mean differences, −3.20, −5.64, and −5.67, respectively; all P < .001), with similar reductions in anxiety among the three incentive conditions.
  • Use of the CBT app was also associated with significant reductions in anxiety sensitivity and social anxiety symptoms over time, with moderate to large effect sizes.
  • A total of 98% of participants completed the 6-week assessment and 93% the 12-week follow-up. On average, the participants completed 10.8 of 12 sessions and 64% completed all sessions.
  • The participants reported high satisfaction with the app across all time points, with no significant differences based on time or incentive condition.

IN PRACTICE:

“We hear a lot about the negative impact of technology use on mental health in this age group,” senior study author Faith M. Gunning, PhD, said in a press release. “But the ubiquitous use of cell phones for information may provide a way of addressing anxiety for some people who, even if they have access to mental health providers, may not go. If the app helps reduce symptoms, they may then be able to take the next step of seeing a mental health professional when needed.”

SOURCE:

The study was led by Jennifer N. Bress, PhD, Department of Psychiatry, Weill Cornell Medicine, New York City. It was published online in JAMA Network Open.

LIMITATIONS:

This study lacked a control group, and the unbalanced allocation of participants to the three incentive groups due to the COVID-19 pandemic may have influenced the results. The study sample, which predominantly consisted of female and college-educated participants, may not have accurately represented the broader population of young adults with anxiety.

DISCLOSURES:

This study was funded by the NewYork-Presbyterian Center for Youth Mental Health, the Khoury Foundation, the Paul and Jenna Segal Family Foundation, the Saks Fifth Avenue Foundation, Mary and Jonathan Rather, Weill Cornell Medicine, the Pritzker Neuropsychiatric Disorders Research Consortium, and the National Institutes of Health. Some authors reported obtaining grants, receiving personal fees, serving on speaker’s bureaus, and having other ties with multiple pharmaceutical companies and institutions. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A self-guided mobile application for cognitive behavioral therapy (CBT) is associated with significant reductions in anxiety in young adults with anxiety disorders after 3 weeks, with continued improvement through week 12, a new randomized clinical trial shows.

METHODOLOGY:

  • The study included 59 adults aged 18-25 years (mean age, 23 years; 78% women) with anxiety disorders (56% with generalized anxiety disorder; 41% with social anxiety disorder).
  • Participants received a 6-week CBT program with a self-guided mobile application called Maya and were assigned to one of three incentive strategies to encourage engagement: Loss-framed (lose points for incomplete sessions), gain-framed (earn points for completed sessions), or gain-social support (gain points with added social support from a designated person).
  • The primary end point was change in anxiety at week 6, measured with the Hamilton Anxiety Rating Scale.
  • The researchers also evaluated change in anxiety at 3 and 12 weeks, change in anxiety sensitivity, social anxiety symptoms, and engagement and satisfaction with the app.

TAKEAWAY:

  • Anxiety decreased significantly from baseline at week 3, 6, and 12 (mean differences, −3.20, −5.64, and −5.67, respectively; all P < .001), with similar reductions in anxiety among the three incentive conditions.
  • Use of the CBT app was also associated with significant reductions in anxiety sensitivity and social anxiety symptoms over time, with moderate to large effect sizes.
  • A total of 98% of participants completed the 6-week assessment and 93% the 12-week follow-up. On average, the participants completed 10.8 of 12 sessions and 64% completed all sessions.
  • The participants reported high satisfaction with the app across all time points, with no significant differences based on time or incentive condition.

IN PRACTICE:

“We hear a lot about the negative impact of technology use on mental health in this age group,” senior study author Faith M. Gunning, PhD, said in a press release. “But the ubiquitous use of cell phones for information may provide a way of addressing anxiety for some people who, even if they have access to mental health providers, may not go. If the app helps reduce symptoms, they may then be able to take the next step of seeing a mental health professional when needed.”

SOURCE:

The study was led by Jennifer N. Bress, PhD, Department of Psychiatry, Weill Cornell Medicine, New York City. It was published online in JAMA Network Open.

LIMITATIONS:

This study lacked a control group, and the unbalanced allocation of participants to the three incentive groups due to the COVID-19 pandemic may have influenced the results. The study sample, which predominantly consisted of female and college-educated participants, may not have accurately represented the broader population of young adults with anxiety.

DISCLOSURES:

This study was funded by the NewYork-Presbyterian Center for Youth Mental Health, the Khoury Foundation, the Paul and Jenna Segal Family Foundation, the Saks Fifth Avenue Foundation, Mary and Jonathan Rather, Weill Cornell Medicine, the Pritzker Neuropsychiatric Disorders Research Consortium, and the National Institutes of Health. Some authors reported obtaining grants, receiving personal fees, serving on speaker’s bureaus, and having other ties with multiple pharmaceutical companies and institutions. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

A self-guided mobile application for cognitive behavioral therapy (CBT) is associated with significant reductions in anxiety in young adults with anxiety disorders after 3 weeks, with continued improvement through week 12, a new randomized clinical trial shows.

METHODOLOGY:

  • The study included 59 adults aged 18-25 years (mean age, 23 years; 78% women) with anxiety disorders (56% with generalized anxiety disorder; 41% with social anxiety disorder).
  • Participants received a 6-week CBT program with a self-guided mobile application called Maya and were assigned to one of three incentive strategies to encourage engagement: Loss-framed (lose points for incomplete sessions), gain-framed (earn points for completed sessions), or gain-social support (gain points with added social support from a designated person).
  • The primary end point was change in anxiety at week 6, measured with the Hamilton Anxiety Rating Scale.
  • The researchers also evaluated change in anxiety at 3 and 12 weeks, change in anxiety sensitivity, social anxiety symptoms, and engagement and satisfaction with the app.

TAKEAWAY:

  • Anxiety decreased significantly from baseline at week 3, 6, and 12 (mean differences, −3.20, −5.64, and −5.67, respectively; all P < .001), with similar reductions in anxiety among the three incentive conditions.
  • Use of the CBT app was also associated with significant reductions in anxiety sensitivity and social anxiety symptoms over time, with moderate to large effect sizes.
  • A total of 98% of participants completed the 6-week assessment and 93% the 12-week follow-up. On average, the participants completed 10.8 of 12 sessions and 64% completed all sessions.
  • The participants reported high satisfaction with the app across all time points, with no significant differences based on time or incentive condition.

IN PRACTICE:

“We hear a lot about the negative impact of technology use on mental health in this age group,” senior study author Faith M. Gunning, PhD, said in a press release. “But the ubiquitous use of cell phones for information may provide a way of addressing anxiety for some people who, even if they have access to mental health providers, may not go. If the app helps reduce symptoms, they may then be able to take the next step of seeing a mental health professional when needed.”

SOURCE:

The study was led by Jennifer N. Bress, PhD, Department of Psychiatry, Weill Cornell Medicine, New York City. It was published online in JAMA Network Open.

LIMITATIONS:

This study lacked a control group, and the unbalanced allocation of participants to the three incentive groups due to the COVID-19 pandemic may have influenced the results. The study sample, which predominantly consisted of female and college-educated participants, may not have accurately represented the broader population of young adults with anxiety.

DISCLOSURES:

This study was funded by the NewYork-Presbyterian Center for Youth Mental Health, the Khoury Foundation, the Paul and Jenna Segal Family Foundation, the Saks Fifth Avenue Foundation, Mary and Jonathan Rather, Weill Cornell Medicine, the Pritzker Neuropsychiatric Disorders Research Consortium, and the National Institutes of Health. Some authors reported obtaining grants, receiving personal fees, serving on speaker’s bureaus, and having other ties with multiple pharmaceutical companies and institutions. Full disclosures are available in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Breast Cancer Hormone Therapy May Protect Against Dementia

Article Type
Changed
Fri, 09/06/2024 - 11:14

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Hormone-modulating therapy for breast cancer may protect older women from Alzheimer’s disease and related dementias, although the protective effect varies by age and race, with the greatest benefit seen in younger Black women.

METHODOLOGY:

  • Hormone-modulating therapy is widely used to treat hormone receptor–positive breast cancer, but the cognitive effects of the treatment, including a potential link to dementia, remain unclear.
  • To investigate, researchers used the SEER-Medicare linked database to identify women aged 65 years or older with breast cancer who did and did not receive hormone-modulating therapy within 3 years following their diagnosis.
  • The researchers excluded women with preexisting Alzheimer’s disease/dementia diagnoses or those who had received hormone-modulating therapy before their breast cancer diagnosis.
  • Analyses were adjusted for demographic, sociocultural, and clinical variables, and subgroup analyses evaluated the impact of age, race, and type of hormone-modulating therapy on Alzheimer’s disease/dementia risk.

TAKEAWAY:

  • Among the 18,808 women included in the analysis, 66% received hormone-modulating therapy and 34% did not. During the mean follow-up of 12 years, 24% of hormone-modulating therapy users and 28% of nonusers developed Alzheimer’s disease/dementia.
  • Overall, hormone-modulating therapy use (vs nonuse) was associated with a significant 7% lower risk for Alzheimer’s disease/dementia (hazard ratio [HR], 0.93; P = .005), with notable age and racial differences.
  • Hormone-modulating therapy use was associated with a 24% lower risk for Alzheimer’s disease/dementia in Black women aged 65-74 years (HR, 0.76), but that protective effect decreased to 19% in Black women aged 75 years or older (HR, 0.81). White women aged 65-74 years who received hormone-modulating therapy (vs those who did not) had an 11% lower risk for Alzheimer’s disease/dementia (HR, 0.89), but the association disappeared among those aged 75 years or older (HR, 0.96; 95% CI, 0.90-1.02). Other races demonstrated no significant association between hormone-modulating therapy use and Alzheimer’s disease/dementia.
  • Overall, the use of an aromatase inhibitor or a selective estrogen receptor modulator was associated with a significantly lower risk for Alzheimer’s disease/dementia (HR, 0.93 and HR, 0.89, respectively).

IN PRACTICE:

Overall, the retrospective study found that “hormone therapy was associated with protection against [Alzheimer’s/dementia] in women aged 65 years or older with newly diagnosed breast cancer,” with the decrease in risk relatively greater for Black women and women younger than 75 years, the authors concluded.

“The results highlight the critical need for personalized breast cancer treatment plans that are tailored to the individual characteristics of each patient, particularly given the significantly higher likelihood (two to three times more) of Black women developing [Alzheimer’s/dementia], compared with their White counterparts,” the researchers added.
 

SOURCE:

The study, with first author Chao Cai, PhD, Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, Columbia, was published online on July 16 in JAMA Network Open.

LIMITATIONS:

The study included only women aged 65 years or older, limiting generalizability to younger women. The dataset lacked genetic information and laboratory data related to dementia. The duration of hormone-modulating therapy use beyond 3 years and specific formulations were not assessed. Potential confounders such as variations in chemotherapy, radiation, and surgery were not fully addressed.

DISCLOSURES:

Support for the study was provided by the National Institutes of Health; Carolina Center on Alzheimer’s Disease and Minority Research pilot project; and the Dean’s Faculty Advancement Fund, University of Pittsburgh, Pennsylvania. The authors reported no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Technoference

Article Type
Changed
Wed, 09/04/2024 - 16:04

You see it all the time. It’s the family at the table next to you in the restaurant where the two teenage children are texting away on their phones. Or the playground, where a 3-year-old is playing with his toy truck and bulldozer in the sand and his father, immersed in his laptop, hasn’t said a word to his child.

It may trouble you when you witness social situations like that in which an electronic device is preventing or certainly interfering with interpersonal interactions. Or at least I hope it troubles you. Maybe it is so ubiquitous that you have come to accept it as the norm. It’s likely you may even be a participant. But, do you have a name for it?

It’s called “technoference,” a word coined by a doctoral student in human development and family studies at Penn State a decade ago “to describe the everyday intrusions and interruptions in couple interactions that take place due to technology devices and their always-on, ever-present nature.” Although, the original research that triggered the coinage was about couples, obviously the phenomenon occurs whenever people of any age are together in social situations.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

While the word may not have crept into common parlance, we all know it when we see it. Technoference may not appear in the paper’s title, but it is a subject being investigated across a broad array of disciplines. One phone tracking study found that parents of young infants spend more than 5 hours each day on their smartphones. More than a quarter of that time the infant is engaged with the parent’s digital device. Technoference has been associated with decreased parent-child interaction during early childhood. It has been associated with more negative responses to children’s behavior, as well as an increased risk of child injury.

There are numerous studies suggesting an association between parental technoference and mental health difficulties in children. I have recently reviewed one of these studies that looks at the relationship of perceived parental technoference and the mental health of children entering adolescents. The authors collected longitudinal data of more than 1300 emerging adolescents, hoping to determine if the relationship between parental distraction and mental health was bidirectional. In other words, could a child’s mental health be contributing to his parents’ perceived distraction? Or was it primarily the parents’ technoference that was playing a role in the child’s mental health problems?

What investigators found was that higher levels of parental distraction were associated with higher levels of inattention and hyperactivity in the emerging adolescents, but not vice versa. On the other hand, higher levels of adolescent anxiety was associated with higher levels of perceived parental technoference, but not vice versa.

I know this sounds a bit confusing and a bit chicken-egg-chicken-eggish. The study was not designed to determine causation in these associations. However, the authors offer some possible scenarios that may provide a bit of clarity. It could be that parents who are concerned about their anxious child respond by retreating into the cyberspace to avoid tense situations or for support or information.

On the other hand, emerging adolescents who are exhibiting hyperactivity and inattention may be responding to an environment infused with their parents’ higher level of technoference. This explanation meshes with other studies demonstrating an association between parental distraction and aggression and attention problems in early childhood.

While one could spend more time imagining other factors that could be driving these bidirectional relationships, I’m not sure that it makes a heckuva lot of difference. Whether the child’s mental illness is the primary driver or the parent’s device-associated distraction is the dominant force isn’t the point. These are bidirectional relationships. If we are interested in pointing fingers, the common denominator is the device and our failure as a society to keep it in proper perspective. We all know that smartphones, tablets, and computers create an unhealthy distraction in personal relationships. The parents know and most of the children know. It’s time for us all to demonstrate some self-discipline. And that can begin for us as health care providers as we sit behind our computers spending more time looking at the screen than we do engaging the patient with our eyes.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

Publications
Topics
Sections

You see it all the time. It’s the family at the table next to you in the restaurant where the two teenage children are texting away on their phones. Or the playground, where a 3-year-old is playing with his toy truck and bulldozer in the sand and his father, immersed in his laptop, hasn’t said a word to his child.

It may trouble you when you witness social situations like that in which an electronic device is preventing or certainly interfering with interpersonal interactions. Or at least I hope it troubles you. Maybe it is so ubiquitous that you have come to accept it as the norm. It’s likely you may even be a participant. But, do you have a name for it?

It’s called “technoference,” a word coined by a doctoral student in human development and family studies at Penn State a decade ago “to describe the everyday intrusions and interruptions in couple interactions that take place due to technology devices and their always-on, ever-present nature.” Although, the original research that triggered the coinage was about couples, obviously the phenomenon occurs whenever people of any age are together in social situations.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

While the word may not have crept into common parlance, we all know it when we see it. Technoference may not appear in the paper’s title, but it is a subject being investigated across a broad array of disciplines. One phone tracking study found that parents of young infants spend more than 5 hours each day on their smartphones. More than a quarter of that time the infant is engaged with the parent’s digital device. Technoference has been associated with decreased parent-child interaction during early childhood. It has been associated with more negative responses to children’s behavior, as well as an increased risk of child injury.

There are numerous studies suggesting an association between parental technoference and mental health difficulties in children. I have recently reviewed one of these studies that looks at the relationship of perceived parental technoference and the mental health of children entering adolescents. The authors collected longitudinal data of more than 1300 emerging adolescents, hoping to determine if the relationship between parental distraction and mental health was bidirectional. In other words, could a child’s mental health be contributing to his parents’ perceived distraction? Or was it primarily the parents’ technoference that was playing a role in the child’s mental health problems?

What investigators found was that higher levels of parental distraction were associated with higher levels of inattention and hyperactivity in the emerging adolescents, but not vice versa. On the other hand, higher levels of adolescent anxiety was associated with higher levels of perceived parental technoference, but not vice versa.

I know this sounds a bit confusing and a bit chicken-egg-chicken-eggish. The study was not designed to determine causation in these associations. However, the authors offer some possible scenarios that may provide a bit of clarity. It could be that parents who are concerned about their anxious child respond by retreating into the cyberspace to avoid tense situations or for support or information.

On the other hand, emerging adolescents who are exhibiting hyperactivity and inattention may be responding to an environment infused with their parents’ higher level of technoference. This explanation meshes with other studies demonstrating an association between parental distraction and aggression and attention problems in early childhood.

While one could spend more time imagining other factors that could be driving these bidirectional relationships, I’m not sure that it makes a heckuva lot of difference. Whether the child’s mental illness is the primary driver or the parent’s device-associated distraction is the dominant force isn’t the point. These are bidirectional relationships. If we are interested in pointing fingers, the common denominator is the device and our failure as a society to keep it in proper perspective. We all know that smartphones, tablets, and computers create an unhealthy distraction in personal relationships. The parents know and most of the children know. It’s time for us all to demonstrate some self-discipline. And that can begin for us as health care providers as we sit behind our computers spending more time looking at the screen than we do engaging the patient with our eyes.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

You see it all the time. It’s the family at the table next to you in the restaurant where the two teenage children are texting away on their phones. Or the playground, where a 3-year-old is playing with his toy truck and bulldozer in the sand and his father, immersed in his laptop, hasn’t said a word to his child.

It may trouble you when you witness social situations like that in which an electronic device is preventing or certainly interfering with interpersonal interactions. Or at least I hope it troubles you. Maybe it is so ubiquitous that you have come to accept it as the norm. It’s likely you may even be a participant. But, do you have a name for it?

It’s called “technoference,” a word coined by a doctoral student in human development and family studies at Penn State a decade ago “to describe the everyday intrusions and interruptions in couple interactions that take place due to technology devices and their always-on, ever-present nature.” Although, the original research that triggered the coinage was about couples, obviously the phenomenon occurs whenever people of any age are together in social situations.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

While the word may not have crept into common parlance, we all know it when we see it. Technoference may not appear in the paper’s title, but it is a subject being investigated across a broad array of disciplines. One phone tracking study found that parents of young infants spend more than 5 hours each day on their smartphones. More than a quarter of that time the infant is engaged with the parent’s digital device. Technoference has been associated with decreased parent-child interaction during early childhood. It has been associated with more negative responses to children’s behavior, as well as an increased risk of child injury.

There are numerous studies suggesting an association between parental technoference and mental health difficulties in children. I have recently reviewed one of these studies that looks at the relationship of perceived parental technoference and the mental health of children entering adolescents. The authors collected longitudinal data of more than 1300 emerging adolescents, hoping to determine if the relationship between parental distraction and mental health was bidirectional. In other words, could a child’s mental health be contributing to his parents’ perceived distraction? Or was it primarily the parents’ technoference that was playing a role in the child’s mental health problems?

What investigators found was that higher levels of parental distraction were associated with higher levels of inattention and hyperactivity in the emerging adolescents, but not vice versa. On the other hand, higher levels of adolescent anxiety was associated with higher levels of perceived parental technoference, but not vice versa.

I know this sounds a bit confusing and a bit chicken-egg-chicken-eggish. The study was not designed to determine causation in these associations. However, the authors offer some possible scenarios that may provide a bit of clarity. It could be that parents who are concerned about their anxious child respond by retreating into the cyberspace to avoid tense situations or for support or information.

On the other hand, emerging adolescents who are exhibiting hyperactivity and inattention may be responding to an environment infused with their parents’ higher level of technoference. This explanation meshes with other studies demonstrating an association between parental distraction and aggression and attention problems in early childhood.

While one could spend more time imagining other factors that could be driving these bidirectional relationships, I’m not sure that it makes a heckuva lot of difference. Whether the child’s mental illness is the primary driver or the parent’s device-associated distraction is the dominant force isn’t the point. These are bidirectional relationships. If we are interested in pointing fingers, the common denominator is the device and our failure as a society to keep it in proper perspective. We all know that smartphones, tablets, and computers create an unhealthy distraction in personal relationships. The parents know and most of the children know. It’s time for us all to demonstrate some self-discipline. And that can begin for us as health care providers as we sit behind our computers spending more time looking at the screen than we do engaging the patient with our eyes.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at [email protected].

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article