Older Adults Face Higher Cancer Risk From Alcohol, Even at Low or Moderate Levels

Article Type
Changed
Tue, 04/22/2025 - 10:05

This transcript has been edited for clarity. 

Hello. I’m Maurie Markman, from City of Hope. I want to briefly discuss a very interesting paper that is probably a bit controversial, but nevertheless, I want to point out the data. The paper is “Alcohol Consumption Patterns and Mortality Among Older Adults With Health-Related or Socioeconomic Risk Factors,” published in JAMA Network Open

This involved a little over 135,000 individual participants in a large, multiyear [research project] in the UK; it’s part of the UK Biobank. This is a population-based cohort that they were looking at here and is only a small part of this huge effort in the UK. 

The particular participants that they were looking at here were 60 years or older and defined as current drinkers; that could be occasional all the way up to heavy. Again, that’s the 135,000 individuals I’m referring to. 

The data were analyzed from September 2023 to May 2024. They divided the population into four groups, including what they call occasional drinkers, which I guess are social drinkers; it was not clear how they defined that. Then they defined three other categories, which were low risk, moderate risk, and high risk, which was much more clearly defined as it was stated in the paper the amount of alcohol consumption each individual had per day.

The question there was about the relationship between how much alcohol an individual stated they drank compared with the occasional drinker, and the risk for cancer in each group. The answer is that there was no protection from cancer by only being a low-risk or a low-level drinker. 

All of the populations had a higher risk for cancer compared with the occasional drinkers. The low-risk group was not protected. The high-risk group had a hazard ratio of 1.39, which is a 39% increase. For the moderate-risk group, the hazard ratio was 1.15, and for the low-risk group, 1.11. 

The risk was higher the more an individual drank. However, the point to be made is that if someone says, “Oh, I drink a certain amount each day, but there’s no impact on my risk for cancer,” these data do not support that conclusion. 

There is much more to be discussed about this topic. It’s an interesting, large population-based, very carefully controlled analysis being done here, but an important point for future conversation. 

Thank you for your attention.

Maurie Markman, MD, has disclosed the following relevant financial relationships: Received income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity. 

Hello. I’m Maurie Markman, from City of Hope. I want to briefly discuss a very interesting paper that is probably a bit controversial, but nevertheless, I want to point out the data. The paper is “Alcohol Consumption Patterns and Mortality Among Older Adults With Health-Related or Socioeconomic Risk Factors,” published in JAMA Network Open

This involved a little over 135,000 individual participants in a large, multiyear [research project] in the UK; it’s part of the UK Biobank. This is a population-based cohort that they were looking at here and is only a small part of this huge effort in the UK. 

The particular participants that they were looking at here were 60 years or older and defined as current drinkers; that could be occasional all the way up to heavy. Again, that’s the 135,000 individuals I’m referring to. 

The data were analyzed from September 2023 to May 2024. They divided the population into four groups, including what they call occasional drinkers, which I guess are social drinkers; it was not clear how they defined that. Then they defined three other categories, which were low risk, moderate risk, and high risk, which was much more clearly defined as it was stated in the paper the amount of alcohol consumption each individual had per day.

The question there was about the relationship between how much alcohol an individual stated they drank compared with the occasional drinker, and the risk for cancer in each group. The answer is that there was no protection from cancer by only being a low-risk or a low-level drinker. 

All of the populations had a higher risk for cancer compared with the occasional drinkers. The low-risk group was not protected. The high-risk group had a hazard ratio of 1.39, which is a 39% increase. For the moderate-risk group, the hazard ratio was 1.15, and for the low-risk group, 1.11. 

The risk was higher the more an individual drank. However, the point to be made is that if someone says, “Oh, I drink a certain amount each day, but there’s no impact on my risk for cancer,” these data do not support that conclusion. 

There is much more to be discussed about this topic. It’s an interesting, large population-based, very carefully controlled analysis being done here, but an important point for future conversation. 

Thank you for your attention.

Maurie Markman, MD, has disclosed the following relevant financial relationships: Received income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

This transcript has been edited for clarity. 

Hello. I’m Maurie Markman, from City of Hope. I want to briefly discuss a very interesting paper that is probably a bit controversial, but nevertheless, I want to point out the data. The paper is “Alcohol Consumption Patterns and Mortality Among Older Adults With Health-Related or Socioeconomic Risk Factors,” published in JAMA Network Open

This involved a little over 135,000 individual participants in a large, multiyear [research project] in the UK; it’s part of the UK Biobank. This is a population-based cohort that they were looking at here and is only a small part of this huge effort in the UK. 

The particular participants that they were looking at here were 60 years or older and defined as current drinkers; that could be occasional all the way up to heavy. Again, that’s the 135,000 individuals I’m referring to. 

The data were analyzed from September 2023 to May 2024. They divided the population into four groups, including what they call occasional drinkers, which I guess are social drinkers; it was not clear how they defined that. Then they defined three other categories, which were low risk, moderate risk, and high risk, which was much more clearly defined as it was stated in the paper the amount of alcohol consumption each individual had per day.

The question there was about the relationship between how much alcohol an individual stated they drank compared with the occasional drinker, and the risk for cancer in each group. The answer is that there was no protection from cancer by only being a low-risk or a low-level drinker. 

All of the populations had a higher risk for cancer compared with the occasional drinkers. The low-risk group was not protected. The high-risk group had a hazard ratio of 1.39, which is a 39% increase. For the moderate-risk group, the hazard ratio was 1.15, and for the low-risk group, 1.11. 

The risk was higher the more an individual drank. However, the point to be made is that if someone says, “Oh, I drink a certain amount each day, but there’s no impact on my risk for cancer,” these data do not support that conclusion. 

There is much more to be discussed about this topic. It’s an interesting, large population-based, very carefully controlled analysis being done here, but an important point for future conversation. 

Thank you for your attention.

Maurie Markman, MD, has disclosed the following relevant financial relationships: Received income in an amount equal to or greater than $250 from: GlaxoSmithKline; AstraZeneca.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 04/22/2025 - 10:03
Un-Gate On Date
Tue, 04/22/2025 - 10:03
Use ProPublica
CFC Schedule Remove Status
Tue, 04/22/2025 - 10:03
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 04/22/2025 - 10:03

Breast and Uterine Cancer: Screening Guidelines, Genetic Testing, and Mortality Trends

Article Type
Changed
Wed, 04/16/2025 - 10:27
Display Headline

Breast and Uterine Cancer: Screening Guidelines, Genetic Testing, and Mortality Trends

Click to view more from Cancer Data Trends 2025. 

References
  1. Shepherd-Banigan M, Zullig LL, Berkowitz TSZ, et al. Improving Cancer Care
    for Women Seeking Services in the Veterans Health Administration Through the
    Breast and Gynecological Oncology System of Excellence. Mil Med. 2024:usae447.
    doi:10.1093/milmed/usae447
  2. US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening
    for Breast Cancer: US Preventive Services Task Force Recommendation Statement.
    JAMA. 2024;331(22):1918-1930. doi:10.1001/jama.2024.5534
  3. VA announces steps to increase life-saving screening, access to benefits for
    Veterans with cancer. VA News. March 8, 2024. Accessed January 14, 2025. https://
    news.va.gov/press-room/va-expands-health-care-benefits-veterans-cancer/
  4. Rezoug Z, Totten SP, Szlachtycz D, et al. Universal Genetic Testing for Newly
    Diagnosed Invasive Breast Cancer. JAMA Netw Open. 2024;7(9):e2431427.
    doi:10.1001/jamanetworkopen.2024.31427
  5. National Institutes of Health. National Cancer Institute. Surveillance, Epidemiology,
    and End Results Program. Cancer Stat Facts: Uterine Cancer. Accessed January 14,
    2025. https://seer.cancer.gov/statfacts/html/corp.html
  6. Clarke MA, Devesa SS, Hammer A, Wentzensen N. Racial and Ethnic Differences in
    Hysterectomy-Corrected Uterine Corpus Cancer Mortality by Stage and Histologic
    Subtype. JAMA Oncol. 2022;8(6):895-903. doi:10.1001/jamaoncol.2022.0009
  7. Moss HA, Rasmussen, KM, Patil, V, et al. Demographic Characteristics of Veterans
    Diagnosed With Breast and Gynecologic Cancers: A Comparative Analysis With the
    General Population. Abstract presented at: Annual Meeting of the Association of
    VA Hematology/Oncology (AVAHO); September 29–October 1, 2023; Chicago, IL.
    Abstract 47.
  8. Breland JY, Frayne SM, Saechao F, Gujral K, Vashi AA, Shaw JG, Gray KM, Illarmo SS,
    Urech T, Grant N, Berg E, Offer C, Veldanda S, Schoemaker L, Dalton AL, Esmaeili
    A, Phibbs CS, Hayes PM, Haskell S. Sourcebook: Women Veterans in the Veterans
    Health Administration. Volume 5: Longitudinal Trends in Sociodemographics and
    Utilization, Including Type, Modality, and Source of Care. Women’s Health Evaluation
    Initiative, Office of Women’s Health, Veterans Health Administration, Department of
    Veterans Affairs, Washington DC. June 2024.
  9. NCCN: National Comprehensive Cancer Network. Breast Cancer Screening and
    Diagnosis. V2.2024 April 9, 2024. Accessed January 14, 2025. https://www.nccn.
    org/professionals/physician_gls/pdf/breast-screening.pdf
  10. ACS: American Cancer Society. Breast Cancer Early Detection and Diagnosis.
    Revised December 19, 2023. Accessed January 14, 2025. https://www.cancer.org/
    cancer/types/breast-cancer/screening-tests-and-early-detection/american-cancersociety-
    recommendations-for-the-early-detection-of-breast-cancer.html
  11. Somasegar S, Bashi A, Lang SM, et al. Trends in Uterine Cancer Mortality
    in the United States: A 50-Year Population-Based Analysis. Obstet Gynecol.
    2023;142(4):978-986. doi:10.1097/AOG.0000000000005321
Author and Disclosure Information

Haley A. Moss, MD, MBA
Assistant Professor, Department of
Obstetrics and Gynecology
Duke University;
Director, Department of Veterans Affairs
Breast and Gynecologic Oncology System
of Excellence
Durham, North Carolina


Dr. Moss has no relevant financial relationships to disclose.

Publications
Topics
Author and Disclosure Information

Haley A. Moss, MD, MBA
Assistant Professor, Department of
Obstetrics and Gynecology
Duke University;
Director, Department of Veterans Affairs
Breast and Gynecologic Oncology System
of Excellence
Durham, North Carolina


Dr. Moss has no relevant financial relationships to disclose.

Author and Disclosure Information

Haley A. Moss, MD, MBA
Assistant Professor, Department of
Obstetrics and Gynecology
Duke University;
Director, Department of Veterans Affairs
Breast and Gynecologic Oncology System
of Excellence
Durham, North Carolina


Dr. Moss has no relevant financial relationships to disclose.

Click to view more from Cancer Data Trends 2025. 

Click to view more from Cancer Data Trends 2025. 

References
  1. Shepherd-Banigan M, Zullig LL, Berkowitz TSZ, et al. Improving Cancer Care
    for Women Seeking Services in the Veterans Health Administration Through the
    Breast and Gynecological Oncology System of Excellence. Mil Med. 2024:usae447.
    doi:10.1093/milmed/usae447
  2. US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening
    for Breast Cancer: US Preventive Services Task Force Recommendation Statement.
    JAMA. 2024;331(22):1918-1930. doi:10.1001/jama.2024.5534
  3. VA announces steps to increase life-saving screening, access to benefits for
    Veterans with cancer. VA News. March 8, 2024. Accessed January 14, 2025. https://
    news.va.gov/press-room/va-expands-health-care-benefits-veterans-cancer/
  4. Rezoug Z, Totten SP, Szlachtycz D, et al. Universal Genetic Testing for Newly
    Diagnosed Invasive Breast Cancer. JAMA Netw Open. 2024;7(9):e2431427.
    doi:10.1001/jamanetworkopen.2024.31427
  5. National Institutes of Health. National Cancer Institute. Surveillance, Epidemiology,
    and End Results Program. Cancer Stat Facts: Uterine Cancer. Accessed January 14,
    2025. https://seer.cancer.gov/statfacts/html/corp.html
  6. Clarke MA, Devesa SS, Hammer A, Wentzensen N. Racial and Ethnic Differences in
    Hysterectomy-Corrected Uterine Corpus Cancer Mortality by Stage and Histologic
    Subtype. JAMA Oncol. 2022;8(6):895-903. doi:10.1001/jamaoncol.2022.0009
  7. Moss HA, Rasmussen, KM, Patil, V, et al. Demographic Characteristics of Veterans
    Diagnosed With Breast and Gynecologic Cancers: A Comparative Analysis With the
    General Population. Abstract presented at: Annual Meeting of the Association of
    VA Hematology/Oncology (AVAHO); September 29–October 1, 2023; Chicago, IL.
    Abstract 47.
  8. Breland JY, Frayne SM, Saechao F, Gujral K, Vashi AA, Shaw JG, Gray KM, Illarmo SS,
    Urech T, Grant N, Berg E, Offer C, Veldanda S, Schoemaker L, Dalton AL, Esmaeili
    A, Phibbs CS, Hayes PM, Haskell S. Sourcebook: Women Veterans in the Veterans
    Health Administration. Volume 5: Longitudinal Trends in Sociodemographics and
    Utilization, Including Type, Modality, and Source of Care. Women’s Health Evaluation
    Initiative, Office of Women’s Health, Veterans Health Administration, Department of
    Veterans Affairs, Washington DC. June 2024.
  9. NCCN: National Comprehensive Cancer Network. Breast Cancer Screening and
    Diagnosis. V2.2024 April 9, 2024. Accessed January 14, 2025. https://www.nccn.
    org/professionals/physician_gls/pdf/breast-screening.pdf
  10. ACS: American Cancer Society. Breast Cancer Early Detection and Diagnosis.
    Revised December 19, 2023. Accessed January 14, 2025. https://www.cancer.org/
    cancer/types/breast-cancer/screening-tests-and-early-detection/american-cancersociety-
    recommendations-for-the-early-detection-of-breast-cancer.html
  11. Somasegar S, Bashi A, Lang SM, et al. Trends in Uterine Cancer Mortality
    in the United States: A 50-Year Population-Based Analysis. Obstet Gynecol.
    2023;142(4):978-986. doi:10.1097/AOG.0000000000005321
References
  1. Shepherd-Banigan M, Zullig LL, Berkowitz TSZ, et al. Improving Cancer Care
    for Women Seeking Services in the Veterans Health Administration Through the
    Breast and Gynecological Oncology System of Excellence. Mil Med. 2024:usae447.
    doi:10.1093/milmed/usae447
  2. US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening
    for Breast Cancer: US Preventive Services Task Force Recommendation Statement.
    JAMA. 2024;331(22):1918-1930. doi:10.1001/jama.2024.5534
  3. VA announces steps to increase life-saving screening, access to benefits for
    Veterans with cancer. VA News. March 8, 2024. Accessed January 14, 2025. https://
    news.va.gov/press-room/va-expands-health-care-benefits-veterans-cancer/
  4. Rezoug Z, Totten SP, Szlachtycz D, et al. Universal Genetic Testing for Newly
    Diagnosed Invasive Breast Cancer. JAMA Netw Open. 2024;7(9):e2431427.
    doi:10.1001/jamanetworkopen.2024.31427
  5. National Institutes of Health. National Cancer Institute. Surveillance, Epidemiology,
    and End Results Program. Cancer Stat Facts: Uterine Cancer. Accessed January 14,
    2025. https://seer.cancer.gov/statfacts/html/corp.html
  6. Clarke MA, Devesa SS, Hammer A, Wentzensen N. Racial and Ethnic Differences in
    Hysterectomy-Corrected Uterine Corpus Cancer Mortality by Stage and Histologic
    Subtype. JAMA Oncol. 2022;8(6):895-903. doi:10.1001/jamaoncol.2022.0009
  7. Moss HA, Rasmussen, KM, Patil, V, et al. Demographic Characteristics of Veterans
    Diagnosed With Breast and Gynecologic Cancers: A Comparative Analysis With the
    General Population. Abstract presented at: Annual Meeting of the Association of
    VA Hematology/Oncology (AVAHO); September 29–October 1, 2023; Chicago, IL.
    Abstract 47.
  8. Breland JY, Frayne SM, Saechao F, Gujral K, Vashi AA, Shaw JG, Gray KM, Illarmo SS,
    Urech T, Grant N, Berg E, Offer C, Veldanda S, Schoemaker L, Dalton AL, Esmaeili
    A, Phibbs CS, Hayes PM, Haskell S. Sourcebook: Women Veterans in the Veterans
    Health Administration. Volume 5: Longitudinal Trends in Sociodemographics and
    Utilization, Including Type, Modality, and Source of Care. Women’s Health Evaluation
    Initiative, Office of Women’s Health, Veterans Health Administration, Department of
    Veterans Affairs, Washington DC. June 2024.
  9. NCCN: National Comprehensive Cancer Network. Breast Cancer Screening and
    Diagnosis. V2.2024 April 9, 2024. Accessed January 14, 2025. https://www.nccn.
    org/professionals/physician_gls/pdf/breast-screening.pdf
  10. ACS: American Cancer Society. Breast Cancer Early Detection and Diagnosis.
    Revised December 19, 2023. Accessed January 14, 2025. https://www.cancer.org/
    cancer/types/breast-cancer/screening-tests-and-early-detection/american-cancersociety-
    recommendations-for-the-early-detection-of-breast-cancer.html
  11. Somasegar S, Bashi A, Lang SM, et al. Trends in Uterine Cancer Mortality
    in the United States: A 50-Year Population-Based Analysis. Obstet Gynecol.
    2023;142(4):978-986. doi:10.1097/AOG.0000000000005321
Publications
Publications
Topics
Article Type
Display Headline

Breast and Uterine Cancer: Screening Guidelines, Genetic Testing, and Mortality Trends

Display Headline

Breast and Uterine Cancer: Screening Guidelines, Genetic Testing, and Mortality Trends

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Mon, 03/17/2025 - 20:54
Un-Gate On Date
Mon, 03/17/2025 - 20:54
Use ProPublica
CFC Schedule Remove Status
Mon, 03/17/2025 - 20:54
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The VHA Breast and Gynecologic Oncology System of Excellence (BGSoE), established in 2021, provides comprehensive, high-quality cancer care tailored to veterans diagnosed with breast and gynecologic cancers and those considered high-risk based on genetic testing or family history.1 Since its inception, the BGSoE has supported more than 7000 patients.1 For breast cancer, new USPSTF guidelines now recommend initiating biennial mammography at age 40, reflecting efforts to address rising incidence in younger populations.2 The VHA recommends genetic testing for all veterans diagnosed with invasive breast cancer in order to expand access to targeted therapies, facilitate risk reduction for secondary cancers, and enable cascade testing for at-risk family members.3,4

Uterine cancer is a growing concern for veterans, with rising incidence and mortality, particularly in aggressive nonendometrioid subtypes.5,6 Black women in particular have higher uterine cancer mortality rates. This is of particular relevance within the VA, as Black women are overrepresented compared to the general population.6,7 This disparity underscores the need to improve outcomes for all patients while prioritizing targeted interventions for Black women.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 03/17/2025 - 20:54
Slide Media

Brain Cancer: Epidemiology, TBI, and New Treatments

Article Type
Changed
Wed, 04/16/2025 - 10:28
Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Click to view more from Cancer Data Trends 2025. 

References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Publications
Topics
Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Author and Disclosure Information

Margaret O. Johnson, MD, MPH
Assistant Professor,
Department of Neurosurgery
Duke University School of Medicine;
Staff Physician
Department of Veterans Affairs
National Tele-Oncology Program
Durham, North Carolina


Dr. Johnson has no relevant financial relationships to disclose. 

Click to view more from Cancer Data Trends 2025. 

Click to view more from Cancer Data Trends 2025. 

References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
References
  1. Bihn JR, Cioffi G, Waite KA, et al. Brain tumors in United States military veterans.
    Neuro Oncol. 2024;26(2):387-396. doi:10.1093/neuonc/noad182
  2. Stewart IJ, Howard JT, Poltavsky E, et al. Traumatic Brain Injury and Subsequent
    Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw
    Open. 2024;7(2):e2354588. doi:10.1001/jamanetworkopen.2023.54588
  3. DoD/USU Brain Tissue Repository. December 15, 2023. Accessed December 11,
    2024. https://researchbraininjury.org/
  4. Munch TN, Gørtz S, Wohlfahrt J, Melbye M. The long-term risk of malignant
    astrocytic tumors after structural brain injury--a nationwide cohort study. Neuro
    Oncol. 2015;17(5):718-724. doi:10.1093/neuonc/nou312
  5. Strowd RE, Dunbar EM, Gan HK, et al. Practical guidance for telemedicine use in
    neuro-oncology. Neurooncol Pract. 2022;9(2):91-104. doi:10.1093/nop/npac002
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(e100042. doi:10.1200/EDBK_100042
  7. Batool SM, Escobedo AK, Hsia T, et al. Clinical utility of a blood based assay for
    the detection of IDH1.R132H-mutant gliomas. Nat Commun. 2024;15(1):7074.
    doi:10.1038/s41467-024-51332-7
  8. Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al; INDIGO Trial Investigators.
    Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med.
    2023;389(7):589-601. doi:10.1056/NEJMoa2304194
  9. FDA. US Food and Drug Administration. FDA approves vorasidenib for Grade 2
    astrocytoma or oligodendroglioma with a susceptible IDH1 or IDH2 mutation.
    Accessed December 11, 2024. https://www.fda.gov/drugs/resourcesinformation-
    approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-oroligodendroglioma-
    susceptible-idh1-or-idh2-mutation
  10. NIH. National Cancer Institute. Tovorafenib Approved for Some Children with Low-
    Grade Glioma. Accessed December 11, 2024. https://www.cancer.gov/news-events/
    cancer-currents-blog/2024/pediatric-low-grade-glioma-tovorafenib-braf
  11. The Veteran Population. Accessed December 11, 2024. https://www.va.gov/vetdata/
    docs/surveysandstudies/vetpop.pdf
  12. Miller AM, Szalontay L, Bouvier N, et al. Next-generation sequencing of
    cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent
    and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763-1772.
    doi:10.1093/neuonc/noac035
Publications
Publications
Topics
Article Type
Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Display Headline

Brain Cancer: Epidemiology, TBI, and New Treatments

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Mon, 03/17/2025 - 20:41
Un-Gate On Date
Mon, 03/17/2025 - 20:41
Use ProPublica
CFC Schedule Remove Status
Mon, 03/17/2025 - 20:41
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Brain cancer represents a notable health challenge for veterans. The first large-scale study on brain tumors in US veterans showed that the most frequently diagnosed tumors were nonmalignant pituitary tumors, nonmalignant meningiomas, and glioblastomas.1 Exposure to combat-related traumatic brain injuries (TBIs) may contribute to the risk for brain tumors, and further research is ongoing.2,3 A 2024 study demonstrated that veterans with moderate/severe and penetrating TBIs had an increased risk of brain cancer, but previous research in civilians has not echoed these findings.2,4 

As our understanding of the connection between TBI and brain cancer evolves, health care initiatives and new research are aiming to serve the veteran population most at risk. Telehealth is being used throughout the VA to help veterans, especially those in rural locations, receive neuro-oncology care.5,6 In terms of research, the DoD and Uniformed Services University have established a Brain Tissue Repository. This program may be better able to explore the TBI/brain cancer connection through veteran brain tissue donation.3

New assays are also being developed to help identify brain cancer faster. Liquid biopsy techniques focused on IDH1 have shown promise.7 In terms of treatment, the IDH1/IDH2 inhibitor vorasidenib prolonged progression free survival in grade 2 IDH-mutant gliomas in clinical trials and was approved by the FDA in 2024.8,9 Although not pertaining directly to the veteran population, a new treatment for pediatric brain tumors also was approved by the FDA in 2024.10 These milestones reflect an encouraging trend in precision medicine, opening doors for more targeted brain tumor therapies and tools across various patient groups.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 03/17/2025 - 20:41
Slide Media

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Article Type
Changed
Wed, 04/16/2025 - 10:27
Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Click here to view more from Cancer Data Trends 2025.

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Publications
Topics
Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Author and Disclosure Information

Vlad C. Sandulache, MD, PhD
Associate Professor;
Department of Otolaryngology,
Head and Neck Surgery
Baylor College of Medicine;
Staff Physician
Michael E. DeBakey VA Medical Center
Houston, Texas
 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: FemtoVox Inc (Consultant; Equity holder); PDS Biotech (consultant).
Received income in an amount equal to or greater than $250 from: FemtoVox Inc; PDS Biotech.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

References

1.       Zevallos JP, Kramer JR, Sandulache VC, et al. National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck. 2021;43(1):108-115. doi:10.1002/hed.26465

2.       Fakhry C, Blackford AL, Neuner G, et al. Association of oral human papillomavirus DNA persistence with cancer progression after primary treatment for oral cavity and oropharyngeal squamous cell carcinoma. JAMA Oncol. 2019;5(7):985-992. doi:10.1001/jamaoncol.2019.0439

3.       Fakhry C, Zhang Q, Gillison ML, et al. Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: implications for risk-based therapeutic intensity trials. Cancer. 2019;125(12):2027-2038. doi:10.1002/cncr.32025

4.       O'Sullivan B, Huang SH, Su J, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17(4):440-451. doi:10.1016/S1470-2045(15)00560-4

5.       Koyuncu CF, Lu C, Bera K, et al. Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. J Clin Invest. 2021;131(8):e145488. doi:10.1172/JCI145488

6.       Lu C, Lewis JS Jr, Dupont WD, Plummer WD Jr, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol. 2017;30(12):1655-1665. doi:10.1038/modpathol.2017.98

7.       Corredor G, Toro P, Koyuncu C, et al. An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. 2022;114(4):609-617. doi:10.1093/jnci/djab215

8.       Cancer stat facts: oral cavity and pharynx cancer. National Cancer Institute, SEER Program. Accessed November 5, 2024. https://seer.cancer.gov/statfacts/html/oralcav.html

9.       Cancers associated with human papillomavirus. Centers for Disease Control and Prevention. September 18, 2024. Accessed November 5, 2024. https://www.cdc.gov/united-states-cancer-statistics/publications/hpv-associated-cancers.html

10.      Chidambaram S, Chang SH, Sandulache VC, Mazul AL, Zevallos JP. Human papillomavirus vaccination prevalence and disproportionate cancer burden among US veterans. JAMA Oncol. 2023;9(5):712-714. doi:10.1001/jamaoncol.2022.7944

11.      Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526-1534. doi:10.1158/1078-0432.CCR-18-2013

12.      Alilou M, Orooji M, Beig N, et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci Rep. 2018;8(1):15290. doi:10.1038/s41598-018-33473-0

13.      Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-99. doi:10.3322/caac.21388

Publications
Publications
Topics
Article Type
Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Display Headline

AI-Based Risk Stratification for Oropharyngeal Carcinomas: AIROC

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Thu, 04/03/2025 - 20:24
Un-Gate On Date
Thu, 04/03/2025 - 20:24
Use ProPublica
CFC Schedule Remove Status
Thu, 04/03/2025 - 20:24
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

In recent years, human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has been on the rise in the veteran population, where smoking rates (a contributor to OPSCC development) have historically been higher than in the general population.1 Variable treatment response rates and survival in patients with OPSCC indicate that whereas some patients may benefit from treatment de-escalation and a concomitant reduction in treatment-related adverse effects, aggressive disease in a subset of patients mandates the use of rigorous chemoradiation treatments.2,3 At present, effective stratification systems identifying these patient subsets are lacking.4

To address this clinical gap, a team of VA clinicians and researchers is developing AIROC (an artificial intelligence [AI]-based risk stratification algorithm for oropharyngeal carcinomas).a AIROC is an AI and machine learning (ML)-based algorithm that may successfully stratify veterans with HPV-associated OPSCC into risk categories that can enable safer de-escalation or escalation of cancer treatments.5-7 By integrating AIROC into clinical practice, the VHA aims to personalize cancer treatment, improve patient outcomes, and establish a new standard of care for veterans with this deadly disease.
 

aThis work is funded by the Veterans Affairs Clinical Science Research and Development (CSRD) Service (grant I01BX006380).

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Thu, 04/03/2025 - 20:24
Slide Media

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Article Type
Changed
Mon, 04/21/2025 - 12:25
Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Click here to view more from Cancer Data Trends 2025.

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Publications
Topics
Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Author and Disclosure Information

Matthew J. Boyer, MD
Medical Instructor, Department of Radiation Oncology
Duke University School of Medicine;
Physician, Department of Radiation Oncology
Durham VA Medical Center
Durham, North Carolina
Dr. Boyer has disclosed no relevant financial relationships.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

References

1. American Cancer Society website. Key Statistics About Kidney Cancer. Revised May 2024. Accessed December 18, 2024. https://www.cancer.org/cancer/types/kidney-cancer/about/key-statistics.html

2. American Cancer Society website. Cancer Facts & Figures 2024. 2024—First Year the US Expects More than 2M New Cases of Cancer. Published January 17, 2024. Accessed December 18, 2024.  https://www.cancer.org/research/acs-research-news/facts-and-figures-2024.html 

3.United States Department of Veterans Affairs factsheet. Pact Act & Gulf War, Post-911 Era Veterans. Published July 2023. Accessed December 18, 2024. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.va.gov/files/2023-08/PACT%20Act%20and%20Gulf%20War%2C%20Post-911%20Veterans%20NEW%20July%202023.pdf 

4. Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023 Feb 21;22(1):37. doi:10.1186/s12943-023-01745-7

5. Bellman NL. Incidental Finding of Renal Cell Carcinoma: Detected by a Thrombus in the Inferior Vena Cava. Journal of Diagnostic Medical Sonography. 2015;31(2):118-121. doi:10.1177/8756479314546691

6. Brown JT. Adjuvant Therapy for Non-Clear Cell Renal Cell Carcinoma—The Ascent Continues. JAMA Network Open. 2024 Aug 1;7(8):e2425251. doi:10.1001/jamanetworkopen.2024.25251

7. Siva S, Louie AV, Kotecha R, et al. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol. 2024 Jan;25(1):e18-e28. doi: 10.1016/S1470-2045(23)00513-2.

8. Choueiri TK, Tomczak P, Park SH, et al; for the KEYNOTE-564 Investigators. Overall Survival with Adjuvant Pembrolizumab in Renal-Cell Carcinoma. N Engl J Med. 2024 Apr 18;390(15):1359-1371. doi:10.1056/NEJMoa2312695

9. Bytnar JA, McGlynn KA, Kern SQ, Shriver CD, Zhu K. Incidence rates of bladder and kidney cancers among US military servicemen: comparison with the rates in the general US population. Eur J Cancer Prev. 2024 Nov 1;33(6):505-511. doi:10.1097/CEJ.0000000000000886

Publications
Publications
Topics
Article Type
Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Display Headline

Rising Kidney Cancer Cases and Emerging Treatments for Veterans

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Thu, 04/03/2025 - 19:46
Un-Gate On Date
Thu, 04/03/2025 - 19:46
Use ProPublica
CFC Schedule Remove Status
Thu, 04/03/2025 - 19:46
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Cases of kidney cancer, also known as renal cell carcinoma (RCC), are increasing, with more than 81,600 expected diagnoses in 2024, largely due to improved imaging and rising rates of risk factors, including obesity, hypertension, and diabetes.1,2 Veterans, particularly those exposed to chemicals and perfluoroalkyl and polyfluoroalkyl substances (PFAS), face a higher risk for RCC. Under the PACT Act, RCC may be recognized as service-related for Gulf War and post-9/11 veterans.3,4

RCC accounts for more than 90% of kidney cancers and is often asymptomatic, making early detection reliant on an incidental finding on imaging.4,5 Treatment for localized RCC typically involves surgery, with adjuvant immunotherapy for high-risk cases, though up to 50% of patients may still experience recurrence.6 Emerging treatments like stereotactic body radiotherapy (SBRT) are gaining attention for managing inoperable or high-risk RCC as it has demonstrated high rates of effectiveness, local control, and strong survival outcomes; however, further comparison with surgical options is needed.7 Advances in adjuvant therapies for kidney cancer emphasize the potential to extend survival for high-risk patients post-surgery, but balancing the benefits with risks of this treatment remains crucial.8

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Thu, 04/03/2025 - 19:46
Slide Media

Advances in Blood Cancer Care for Veterans

Article Type
Changed
Thu, 04/17/2025 - 21:24
Display Headline

Advances in Blood Cancer Care for Veterans

Click to view more from Cancer Data Trends 2025.

References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Publications
Topics
Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Author and Disclosure Information

Thomas Rodgers, MD

Durham VA Medical Center
Durham, North Carolina


Dr. Rodgers has no relevant financial relationships to disclose.

Click to view more from Cancer Data Trends 2025.

Click to view more from Cancer Data Trends 2025.

References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
References
  1. Li W, ed. The 5th Edition of the World Health Organization Classification of
    Hematolymphoid Tumors. In: Leukemia [Internet]. Brisbane (AU): Exon Publications;
    October 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK586208/
  2. Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with
    hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin
    Oncol. 2020;47(1):94-101. doi:10.1053/j.seminoncol.2020.02.010.
  3. Tiu A, McKinnell Z, Liu S, et al. Risk of myeloproliferative neoplasms among
    U.S. Veterans from Korean, Vietnam, and Persian Gulf War eras. Am J Hematol.
    2024;99(10):1969-1978. doi:10.1002/ajh.27438
  4. Ma H, Wan JY, Cortessis VK, Gupta P, Cozen W. Survival in Agent Orange
    exposed and unexposed Vietnam-era veterans who were diagnosed with
    lymphoid malignancies. Blood Adv. 2024;8(4):1037-1041. doi:10.1182/
    bloodadvances.2023011999
  5. Friedman DR, Rodgers TD, Kovalick C, Yellapragada S, Szumita L, Weiss ES. Veterans
    with blood cancers: Clinical trial navigation and the challenge of rurality. J Rural
    Health. 2024;40(1):114-120. doi:10.1111/jrh.12773
  6. Parikh DA, Rodgers TD, Passero VA, et al. Teleoncology in the Veterans Health
    Administration: Models of Care and the Veteran Experience. Am Soc Clin Oncol Educ
    Book. 2024;44(3):e100042. doi:10.1200/EDBK_100042
  7. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological
    advancements in cancer diagnostics: Improvements and limitations. Cancer Rep
    (Hoboken). 2023;6(2):e1764. doi:10.1002/cnr2.1764
Publications
Publications
Topics
Article Type
Display Headline

Advances in Blood Cancer Care for Veterans

Display Headline

Advances in Blood Cancer Care for Veterans

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Mon, 03/17/2025 - 20:10
Un-Gate On Date
Mon, 03/17/2025 - 20:10
Use ProPublica
CFC Schedule Remove Status
Mon, 03/17/2025 - 20:10
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

Hematologic malignancies encompass a broad range of distinct cancers, generally categorized as lymphoid (eg, lymphoma), myeloid (eg, leukemia, myelodysplastic syndromes, myeloproliferative neoplasms [MPNs]), and plasma cell neoplasms (eg, multiple myeloma).1 The veteran population is aging; this, in combination with other potential veteran-specific risk factors, is leading to an increased risk of hematologic malignancies.2 Of note, the risk for MPN diagnosis has recently been studied in veterans who served during the Korean, Vietnam, and Persian Gulf War eras.3 In addition, survival trends for different blood cancers, such as lymphoid malignancies, vary among veterans exposed to Agent Orange.4 Conflicting results have been found that point to the importance of future research.

Veterans in rural areas face barriers to treatment and clinical trial enrollment due to long travel distances and lack of trial availability, creating what are termed “clinical trial deserts.”5 Teleoncology has become crucial in bridging this gap by improving access to blood cancer treatments and clinical trials.5,6 Novel decentralized trial designs involving telehealth can further expand participation in remote areas.5 

Over the past year, there have been advances in the treatment of blood cancers as well as the use of large data sets to better understand cancers trends and new technologies to reduce disparities in access to care.6,7 The availability of greater therapeutic options, new care modalities, and improved risk assessments herald an exciting time in the care of patients with hematologic malignancies, with the expectation that this care will continue to advance through 2025.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Mon, 03/17/2025 - 20:10
Slide Media

HCC Updates: Quality Care Framework and Risk Stratification Data

Article Type
Changed
Mon, 04/21/2025 - 13:32
Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Click here to view more from Cancer Data Trends 2025.

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Publications
Topics
Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Author and Disclosure Information

Janice H. Jou, MD, MHS
Section Chief, Division of Gastroenterology
VA Portland Healthcare System
Portland, Oregon
Disclosures: Received research grant from: Gilead

Cynthia A. Moylan, MD, MHS
Associate Professor of Medicine
Director of Hepatology
Durham VA Medical Center;
Co-Director of GI-HEP Clinical Research Unit, Division of Gastroenterology
Duke University Medical Center
Durham, North Carolina
Disclosures: Received research grant from: GSK; Madrigal; Exact Sciences. 
Received income in an amount equal to or greater than $250 from: Novo Nordisk; Sirtex; Boehringer Ingelheim.

Click here to view more from Cancer Data Trends 2025.

Click here to view more from Cancer Data Trends 2025.

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

References

1Rogal SS, Taddei TH, Monto A, et al. Hepatocellular Carcinoma Diagnosis and Management in 2021: A National Veterans Affairs Quality Improvement Project. Clin Gastroenterol Hepatol. 2024 Feb;22(2):324-338. doi:10.1016/j.cgh.2023.07.002 

2. John BV, Dang Y, Kaplan DE, et al. Liver Stiffness Measurement and Risk Prediction of Hepatocellular Carcinoma After HCV Eradication in Veterans With Cirrhosis. Clin Gastroenterol Hepatol. 2024 Apr;22(4):778-788.e7. doi:10.1016/j.cgh.2023.11.020

Publications
Publications
Topics
Article Type
Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Display Headline

HCC Updates: Quality Care Framework and Risk Stratification Data

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Sun, 04/06/2025 - 18:23
Un-Gate On Date
Sun, 04/06/2025 - 18:23
Use ProPublica
CFC Schedule Remove Status
Sun, 04/06/2025 - 18:23
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The VA National Gastroenterology and Hepatology Program, the largest provider of cirrhosis care in the United States, recently examined factors related to hepatocellular carcinoma (HCC) diagnosis stage, treatment options, and patient survival in veterans in a retrospective study.1 The results emphasize the value of HCC screening and continuous patient engagement for improving diagnosis, treatment, and survival outcomes for veterans. They also demonstrate the practicality of creating a national quality improvement framework for HCC screening, diagnosis, and care.1

Veterans with cirrhosis due to chronic hepatitis C virus (HCV) remain at risk for HCC, even after achieving a sustained virological response (SVR). A 2024 retrospective cohort study of veterans with HCV-related cirrhosis concluded that liver stiffness measurement post-SVR could help stratify HCC risk.2 These data highlight the importance of ongoing HCC screening and active patient engagement to improve survival and, ultimately, quality of life for veterans living with this condition.

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Sun, 04/06/2025 - 18:23
Slide Media

Lung Cancer: Mortality Trends in Veterans and New Treatments

Article Type
Changed
Thu, 04/24/2025 - 20:15
Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Click to view more from Cancer Data Trends 2025.

References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Publications
Topics
Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Author and Disclosure Information

Mille Das, MD
Clinical Professor
Department of Medicine/Oncology 
Stanford University 
Stanford, California;
Chief, Oncology 
Department of Medicine 
VA Palo Alto Health Care System
Palo Alto, California 

 

Disclosures: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for: Sanofi/ Genzyme; Regeneron; Janssen; Astra Zeneca; Gilead; Bristol Myer Squibb; Catalyst Pharmaceuticals; Guardant; Novocure; AbbVie; Daiichi Sankyo. 
Received research grant from: Merck; Genentech; CellSight; Novartis; Varian. 
Received income in an amount equal to or greater than $250 from: Plexus; IDEO; Springer; Medical Educator Consortium; Dedham Group; DAVA Oncology; MJH Healthcare Holdings; Targeted Oncology; OncLive; ANCO; Aptitude Health; MashUp Media; Med Learning Group; Curio; Triptych Health; American Cancer Society.

Click to view more from Cancer Data Trends 2025.

Click to view more from Cancer Data Trends 2025.

References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
References
  1. Tehzeeb J, Mahmood F, Gemoets D, Azem A, Mehdi SA. Epidemiology and survival
    trends of lung carcinoids in the veteran population. J Clin Oncol. 2023;41:e21049.
    doi:10.1200/JCO.2023.41.16_suppl.e21049
  2. Moghanaki D, Taylor J, Bryant AK, et al. Lung Cancer Survival Trends in the Veterans
    Health Administration. Clin Lung Cancer. 2024;25(3):225-232. doi:10.1016/j.
    cllc.2024.02.009
  3. Jalal SI, Guo A, Ahmed S, Kelley MJ. Analysis of actionable genetic alterations in
    lung carcinoma from the VA National Precision Oncology Program. Semin Oncol.
    2022;49(3-4):265-274. doi:10.1053/j.seminoncol.2022.06.014
  4. Cascone T, Awad MM, Spicer JD, et al; for the CheckMate 77T Investigators.
    Perioperative Nivolumab in Resectable Lung Cancer. N Engl J Med.
    2024;390(19):1756-1769. doi:10.1056/NEJMoa2311926
  5. Wakelee H, Liberman M, Kato T, et al; for the KEYNOTE-671 Investigators.
    Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(6):491-503. doi:10.1056/NEJMoa2302983
  6. Heymach JV, Harpole D, Mitsudomi T, et al; for the AEGEAN Investigators.
    Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J
    Med. 2023;389(18):1672-1684. doi:10.1056/NEJMoa2304875
  7. Duncan FC, Al Nasrallah N, Nephew L, et al. Racial disparities in staging, treatment,
    and mortality in non-small cell lung cancer. Transl Lung Cancer Res. 2024;13(1):76-
    94. doi:10.21037/tlcr-23-407
Publications
Publications
Topics
Article Type
Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Display Headline

Lung Cancer: Mortality Trends in Veterans and New Treatments

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
SLIDESHOW
Gate On Date
Tue, 03/18/2025 - 15:03
Un-Gate On Date
Tue, 03/18/2025 - 15:03
Use ProPublica
CFC Schedule Remove Status
Tue, 03/18/2025 - 15:03
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Article Slideshow Optional Introduction

The annual incidence rate of lung cancer among veterans is substantial and increasing, tripling from 2000 to 2017; historically, it was largely due to higher rates of smoking.1 In recent years, the VHA has aimed to improve survival rates of patients with lung cancer across all disease stages and racial/ethnic groups.2  These efforts include providing increased screening, molecular testing, and access to targeted therapies; adopting advanced surgical and biopsy techniques; and implementing nurse navigators to guide care.2

Veterans often have lung cancers that are strongly associated with smoking, which are less likely to harbor specific driver mutations such as EGFR or ALK alterations. This can limit the use of targeted therapies specifically designed for these mutations.1,3 However, newly developed immunotherapy agents, which do not rely on the presence of driver mutations, have shown significant efficacy in patients with non-small cell lung cancer (NSCLC), particularly in cases with high PD-L1 expression.4-6

Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 03/18/2025 - 15:03
Slide Media

FDA Approves Avastin Biosimilar Agent, Jobevne

Article Type
Changed
Tue, 04/15/2025 - 10:31

The United States Food and Drug Administration (FDA) has approved bevacizumab-nwgd (Jobevne, Biocon Biologics Ltd), a biosimilar to bevacizumab (Avastin, Genentech), for intravenous use across multiple cancer types.

Approval was based on “a comprehensive package of comparative pharmacokinetic, safety, efficacy, nonclinical, structural, analytical and functional data, which confirmed the Jobevne is highly similar to Avastin,” according to a Biocon Biologics Ltd press release

“The data demonstrated that there were no clinically meaningful differences between Jobevne and Avastin in terms of pharmacokinetics, safety, efficacy, and immunogenicity,” the company stated.

The biosimilar agent is indicated as part of various combinations for the treatment of metastatic colorectal cancer, certain types of non-squamous non–small cell lung cancer, recurrent glioblastoma, metastatic renal cell carcinoma, certain advanced cervical cancers, and epithelial ovarian, fallopian tube, or primary peritoneal cancers, the company noted.

The agent is not indicated for adjuvant treatment of colon cancer, according to the press release, which includes detailed information about the indications, as well as a list of warnings and precautions.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The United States Food and Drug Administration (FDA) has approved bevacizumab-nwgd (Jobevne, Biocon Biologics Ltd), a biosimilar to bevacizumab (Avastin, Genentech), for intravenous use across multiple cancer types.

Approval was based on “a comprehensive package of comparative pharmacokinetic, safety, efficacy, nonclinical, structural, analytical and functional data, which confirmed the Jobevne is highly similar to Avastin,” according to a Biocon Biologics Ltd press release

“The data demonstrated that there were no clinically meaningful differences between Jobevne and Avastin in terms of pharmacokinetics, safety, efficacy, and immunogenicity,” the company stated.

The biosimilar agent is indicated as part of various combinations for the treatment of metastatic colorectal cancer, certain types of non-squamous non–small cell lung cancer, recurrent glioblastoma, metastatic renal cell carcinoma, certain advanced cervical cancers, and epithelial ovarian, fallopian tube, or primary peritoneal cancers, the company noted.

The agent is not indicated for adjuvant treatment of colon cancer, according to the press release, which includes detailed information about the indications, as well as a list of warnings and precautions.

A version of this article first appeared on Medscape.com.

The United States Food and Drug Administration (FDA) has approved bevacizumab-nwgd (Jobevne, Biocon Biologics Ltd), a biosimilar to bevacizumab (Avastin, Genentech), for intravenous use across multiple cancer types.

Approval was based on “a comprehensive package of comparative pharmacokinetic, safety, efficacy, nonclinical, structural, analytical and functional data, which confirmed the Jobevne is highly similar to Avastin,” according to a Biocon Biologics Ltd press release

“The data demonstrated that there were no clinically meaningful differences between Jobevne and Avastin in terms of pharmacokinetics, safety, efficacy, and immunogenicity,” the company stated.

The biosimilar agent is indicated as part of various combinations for the treatment of metastatic colorectal cancer, certain types of non-squamous non–small cell lung cancer, recurrent glioblastoma, metastatic renal cell carcinoma, certain advanced cervical cancers, and epithelial ovarian, fallopian tube, or primary peritoneal cancers, the company noted.

The agent is not indicated for adjuvant treatment of colon cancer, according to the press release, which includes detailed information about the indications, as well as a list of warnings and precautions.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 04/15/2025 - 10:30
Un-Gate On Date
Tue, 04/15/2025 - 10:30
Use ProPublica
CFC Schedule Remove Status
Tue, 04/15/2025 - 10:30
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 04/15/2025 - 10:30

Medical Centers Address Unique Needs of Young Adults With Cancer

Article Type
Changed
Tue, 04/15/2025 - 10:27

Adam DuVall, MD, MPH, is a rare medical oncologist who trained in both adult and pediatric hematology/oncology.

This distinction, which DuVall said he shares with only a handful of oncologists in the world, matches his role at University of Chicago (UChicago) Medicine, Chicago. Since joining UChicago in 2020, DuVall has helped expand its Adolescent and Young Adult (AYA) Oncology Program, which aims to provide comprehensive, one-stop care and support for patients with cancer aged from 15 to 39 years.

Started in 2012, the program is one of the oldest in a growing array of initiatives nationwide that seek to address the specific psychosocial and other support needs of patients with cancer who fall into the gap between young children and the older patients who more typically have cancer. Along with DuVall and other oncologists, UChicago’s AYA Program offers dedicated nurse practitioners, social workers, psychologists, a physical therapist, and a program administrator. A community health worker, who does home visits, helps patients coordinate travel, works with their insurance, and generally navigates the medical system, DuVall added.

The program receives about 1500-2000 visits a year, according to DuVall. What the young adult population with cancer has in common that distinguishes it from other age cohorts, he said, are its members’ particular psychosocial needs. “Going through adolescence and young adulthood without cancer, there’s plenty of things that are hard,” DuVall observed. “Put cancer on top of that, and it impacts every aspect of life.”

 

‘Millennials Have Higher Risk’

The proliferation of AYA programs comes as more and more studies have been published recently showing that young adults are increasingly getting cancer.

According to American Cancer Society research published in December in The Lancet Oncology, incidence rates of colorectal cancer (CRC) among young adults aged 25-49 years rose in the decade through 2017 in more than half of the 50 countries and territories examined. For the past 5 years studied, the incidence rate of early-onset CRC was highest in Australia, Puerto Rico, New Zealand, the United States, and South Korea. At the same time, the study found, rates among older adults in all of those places except South Korea were stable or declining.

Hyuna Sung, PhD, the study’s lead author, said, “Research has shown that Gen X and millennials have higher risk of multiple types of cancer compared to the older generations.”

Some of the cancers found to be increasing among younger adults are linked to “excess body obesity,” Sung said, including not only CRC but also cancers of the uterine corpus, gallbladder, kidney, pancreas, breast, and stomach cardia, as well as myeloma. Early onset of cancers not linked to obesity, such as testicular cancer and small intestinal cancer, has also been shown to be on the rise, Sung noted.

As cancer rates among young adults have risen, nonprofits have stepped in to help medical institutions open programs geared to their needs. Teen Cancer America, founded by members of rock band The Who, has partnered with 64 hospitals in 36 cities to develop AYA-focused programs, funding 85 hospital positions, according to a spokesperson. The Los Angeles–based nonprofit has also provided free consultation to 130 hospitals without formally providing a grant, the spokesperson said.

map on Teen Cancer America’s website illustrates the nationwide spread of AYA programs, from UCLA Santa Monica Medical Center to Memorial Sloan Kettering Cancer Center in New York City, with more in between.

 

‘Setting Them Up for a Life of Meaning’

Michael Roth, MD, co-director of the AYA Program at the University of Texas MD Anderson Cancer Center in Houston, likes to say, “If you’ve seen one AYA Program, you’ve seen one AYA Program.”

In other words, offerings vary. “Most centers do not have comprehensive AYA programs,” Roth said, noting that at many sites the AYA Program might consist of oncofertility support. “That said, programs are doing the best they can, knowing that the AYA population is growing exponentially globally.”

Almost 90,000 AYA patients are diagnosed with cancer each year, and 85% will be at least 5-year survivors, Roth said. There are more than 2 million survivors of AYA cancer, he added, and if the median age of diagnosis is 30, they can live five decades beyond their cancer treatment. “Their life matters,” Roth said. “It matters during treatment. Their life after cancer matters.”

The AYA Program at MD Anderson began in 2017, and it sees more than 2000 AYAs diagnosed with cancer every year, according to Roth. The program is designed to complement the care that patients with cancer aged from 15 to 39 years or older may already be receiving from their primary treatment teams. New patients see a medical provider, a social worker, and a vocational counselor for discussions about their needs and concerns, and they have access to a nutritionist and genetic counselor.

The program offers psychosocial and supportive care for patients who may be facing challenges with school, work, relationships, having young children, and mental health, Roth said. Along with assessments and counseling around fertility risks and genetic predisposition, MD Anderson also provides patients in the program with a long-term survivorship plan.

“It’s not just increasing cures,” Roth observed. “We’re also setting them up for a life of meaning and happiness and productivity and health.”

Almost 40% of visits to the program are conducted virtually, according to Roth. “Our goal is to meet the patients where they are,” he said. “We want to be convenient, not be a burden.”

 

‘The Face of Cancer Has Changed’

Patients with AYA cancer diagnoses may be finishing up school or starting a job, developing their body image and sexual identity, or caring for young children or older parents.

“They feel incredibly isolated,” said Ann LaCasce, MD, MMSc, co-director of the Center for Adolescent and Young Adult Oncology at Dana-Farber Cancer Institute in Boston. “They go into the cancer center or their community practice, and everyone is double, triple their age.”

Last year, Dana-Farber opened a Young Adult Lounge meant for patients aged 18 years or older to be able to relax and, if they wish, interact between appointments. “When you talk to these patients, they want to meet each other,” LaCasce said. “They want to share experiences.”

The Young Adults With Cancer Program at Vanderbilt-Ingram Cancer Center in Nashville, Tennessee, opened its doors in 2019. It recently hired an interim nurse navigator, said Cathy Eng, MD, FACP, FASCO, director of the Program, which concentrates on patients aged 25-45 years.

“The face of cancer has changed,” Eng said.

She advises other oncologists to talk to their young adult patients as much as possible. “Really talk to them as an individual and see what other needs they have,” she said. “Even if they don’t tell you the first time, ask them the second time, ask them the third time.”

Christopher Cann, MD, executive director of the Young Adult Cancer Program at Fox Chase Cancer Center in Philadelphia, did his fellowship under Eng. He joined Fox Chase in 2023, and the Young Adult Cancer Program started accepting patients around the end of last year, zeroing in on patients aged 18-39 years.

Following the implementation of a new best practice advisory that pops up in the medical records system, he said, oncofertility referrals increased by 400% within 6 months.

“My hope is that if every institution throughout the country can have a young adult program, even something small like this can provide a large impact for patients,” Cann said.

The University of North Carolina (UNC) AYA Cancer Program, part of the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, formed in 2015. It has expanded into a team of about 12 including a nurse practitioner, fertility counselor, and psychologist, said Jacob Stein, MD, MPH, the program’s AYA oncology liaison. UNC sees about 400 AYA patients with cancer annually, and the program interacts with slightly more than 100 of them, according to Stein.

“Our program has taken a very different approach, to target services, contact, and engagement with AYAs who we perceive to be at the highest need, either clinically or socially, for support,” he said.

Stein was the lead author on research presented last year at the ASCO Quality Care Symposium in San Francisco finding that patients engaged in the program were more likely to participate in clinical trials and received higher rates of fertility preservation and palliative care than AYA patients at UNC without program contact.

Andrew Smitherman, MD, MS, medical director of the UNC AYA Cancer Center Program, said the AYA field has grown impressively since a progress review group was started in 2005, which was backed by the National Cancer Institute and LIVESTRONG Young Adult Alliance. The group developed recommendations to address AYA oncology nationwide, in hopes of acting as a catalyst for future initiatives. Clearly, others caring for patients with cancer heard the message.

“If a colleague comes to me and says, ‘Where do I start, how do I make this change at my institution,’ I usually lead with changing the culture,” Smitherman said. “Educating hospital leadership about the importance of this population, educating colleagues, finding partners. And then start thinking about ways to make structural changes, like creating space. That’s worked really well for us.”

DuVall, Sung, Roth, LaCasce, Eng, Cann, Stein, and Smitherman declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Adam DuVall, MD, MPH, is a rare medical oncologist who trained in both adult and pediatric hematology/oncology.

This distinction, which DuVall said he shares with only a handful of oncologists in the world, matches his role at University of Chicago (UChicago) Medicine, Chicago. Since joining UChicago in 2020, DuVall has helped expand its Adolescent and Young Adult (AYA) Oncology Program, which aims to provide comprehensive, one-stop care and support for patients with cancer aged from 15 to 39 years.

Started in 2012, the program is one of the oldest in a growing array of initiatives nationwide that seek to address the specific psychosocial and other support needs of patients with cancer who fall into the gap between young children and the older patients who more typically have cancer. Along with DuVall and other oncologists, UChicago’s AYA Program offers dedicated nurse practitioners, social workers, psychologists, a physical therapist, and a program administrator. A community health worker, who does home visits, helps patients coordinate travel, works with their insurance, and generally navigates the medical system, DuVall added.

The program receives about 1500-2000 visits a year, according to DuVall. What the young adult population with cancer has in common that distinguishes it from other age cohorts, he said, are its members’ particular psychosocial needs. “Going through adolescence and young adulthood without cancer, there’s plenty of things that are hard,” DuVall observed. “Put cancer on top of that, and it impacts every aspect of life.”

 

‘Millennials Have Higher Risk’

The proliferation of AYA programs comes as more and more studies have been published recently showing that young adults are increasingly getting cancer.

According to American Cancer Society research published in December in The Lancet Oncology, incidence rates of colorectal cancer (CRC) among young adults aged 25-49 years rose in the decade through 2017 in more than half of the 50 countries and territories examined. For the past 5 years studied, the incidence rate of early-onset CRC was highest in Australia, Puerto Rico, New Zealand, the United States, and South Korea. At the same time, the study found, rates among older adults in all of those places except South Korea were stable or declining.

Hyuna Sung, PhD, the study’s lead author, said, “Research has shown that Gen X and millennials have higher risk of multiple types of cancer compared to the older generations.”

Some of the cancers found to be increasing among younger adults are linked to “excess body obesity,” Sung said, including not only CRC but also cancers of the uterine corpus, gallbladder, kidney, pancreas, breast, and stomach cardia, as well as myeloma. Early onset of cancers not linked to obesity, such as testicular cancer and small intestinal cancer, has also been shown to be on the rise, Sung noted.

As cancer rates among young adults have risen, nonprofits have stepped in to help medical institutions open programs geared to their needs. Teen Cancer America, founded by members of rock band The Who, has partnered with 64 hospitals in 36 cities to develop AYA-focused programs, funding 85 hospital positions, according to a spokesperson. The Los Angeles–based nonprofit has also provided free consultation to 130 hospitals without formally providing a grant, the spokesperson said.

map on Teen Cancer America’s website illustrates the nationwide spread of AYA programs, from UCLA Santa Monica Medical Center to Memorial Sloan Kettering Cancer Center in New York City, with more in between.

 

‘Setting Them Up for a Life of Meaning’

Michael Roth, MD, co-director of the AYA Program at the University of Texas MD Anderson Cancer Center in Houston, likes to say, “If you’ve seen one AYA Program, you’ve seen one AYA Program.”

In other words, offerings vary. “Most centers do not have comprehensive AYA programs,” Roth said, noting that at many sites the AYA Program might consist of oncofertility support. “That said, programs are doing the best they can, knowing that the AYA population is growing exponentially globally.”

Almost 90,000 AYA patients are diagnosed with cancer each year, and 85% will be at least 5-year survivors, Roth said. There are more than 2 million survivors of AYA cancer, he added, and if the median age of diagnosis is 30, they can live five decades beyond their cancer treatment. “Their life matters,” Roth said. “It matters during treatment. Their life after cancer matters.”

The AYA Program at MD Anderson began in 2017, and it sees more than 2000 AYAs diagnosed with cancer every year, according to Roth. The program is designed to complement the care that patients with cancer aged from 15 to 39 years or older may already be receiving from their primary treatment teams. New patients see a medical provider, a social worker, and a vocational counselor for discussions about their needs and concerns, and they have access to a nutritionist and genetic counselor.

The program offers psychosocial and supportive care for patients who may be facing challenges with school, work, relationships, having young children, and mental health, Roth said. Along with assessments and counseling around fertility risks and genetic predisposition, MD Anderson also provides patients in the program with a long-term survivorship plan.

“It’s not just increasing cures,” Roth observed. “We’re also setting them up for a life of meaning and happiness and productivity and health.”

Almost 40% of visits to the program are conducted virtually, according to Roth. “Our goal is to meet the patients where they are,” he said. “We want to be convenient, not be a burden.”

 

‘The Face of Cancer Has Changed’

Patients with AYA cancer diagnoses may be finishing up school or starting a job, developing their body image and sexual identity, or caring for young children or older parents.

“They feel incredibly isolated,” said Ann LaCasce, MD, MMSc, co-director of the Center for Adolescent and Young Adult Oncology at Dana-Farber Cancer Institute in Boston. “They go into the cancer center or their community practice, and everyone is double, triple their age.”

Last year, Dana-Farber opened a Young Adult Lounge meant for patients aged 18 years or older to be able to relax and, if they wish, interact between appointments. “When you talk to these patients, they want to meet each other,” LaCasce said. “They want to share experiences.”

The Young Adults With Cancer Program at Vanderbilt-Ingram Cancer Center in Nashville, Tennessee, opened its doors in 2019. It recently hired an interim nurse navigator, said Cathy Eng, MD, FACP, FASCO, director of the Program, which concentrates on patients aged 25-45 years.

“The face of cancer has changed,” Eng said.

She advises other oncologists to talk to their young adult patients as much as possible. “Really talk to them as an individual and see what other needs they have,” she said. “Even if they don’t tell you the first time, ask them the second time, ask them the third time.”

Christopher Cann, MD, executive director of the Young Adult Cancer Program at Fox Chase Cancer Center in Philadelphia, did his fellowship under Eng. He joined Fox Chase in 2023, and the Young Adult Cancer Program started accepting patients around the end of last year, zeroing in on patients aged 18-39 years.

Following the implementation of a new best practice advisory that pops up in the medical records system, he said, oncofertility referrals increased by 400% within 6 months.

“My hope is that if every institution throughout the country can have a young adult program, even something small like this can provide a large impact for patients,” Cann said.

The University of North Carolina (UNC) AYA Cancer Program, part of the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, formed in 2015. It has expanded into a team of about 12 including a nurse practitioner, fertility counselor, and psychologist, said Jacob Stein, MD, MPH, the program’s AYA oncology liaison. UNC sees about 400 AYA patients with cancer annually, and the program interacts with slightly more than 100 of them, according to Stein.

“Our program has taken a very different approach, to target services, contact, and engagement with AYAs who we perceive to be at the highest need, either clinically or socially, for support,” he said.

Stein was the lead author on research presented last year at the ASCO Quality Care Symposium in San Francisco finding that patients engaged in the program were more likely to participate in clinical trials and received higher rates of fertility preservation and palliative care than AYA patients at UNC without program contact.

Andrew Smitherman, MD, MS, medical director of the UNC AYA Cancer Center Program, said the AYA field has grown impressively since a progress review group was started in 2005, which was backed by the National Cancer Institute and LIVESTRONG Young Adult Alliance. The group developed recommendations to address AYA oncology nationwide, in hopes of acting as a catalyst for future initiatives. Clearly, others caring for patients with cancer heard the message.

“If a colleague comes to me and says, ‘Where do I start, how do I make this change at my institution,’ I usually lead with changing the culture,” Smitherman said. “Educating hospital leadership about the importance of this population, educating colleagues, finding partners. And then start thinking about ways to make structural changes, like creating space. That’s worked really well for us.”

DuVall, Sung, Roth, LaCasce, Eng, Cann, Stein, and Smitherman declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

Adam DuVall, MD, MPH, is a rare medical oncologist who trained in both adult and pediatric hematology/oncology.

This distinction, which DuVall said he shares with only a handful of oncologists in the world, matches his role at University of Chicago (UChicago) Medicine, Chicago. Since joining UChicago in 2020, DuVall has helped expand its Adolescent and Young Adult (AYA) Oncology Program, which aims to provide comprehensive, one-stop care and support for patients with cancer aged from 15 to 39 years.

Started in 2012, the program is one of the oldest in a growing array of initiatives nationwide that seek to address the specific psychosocial and other support needs of patients with cancer who fall into the gap between young children and the older patients who more typically have cancer. Along with DuVall and other oncologists, UChicago’s AYA Program offers dedicated nurse practitioners, social workers, psychologists, a physical therapist, and a program administrator. A community health worker, who does home visits, helps patients coordinate travel, works with their insurance, and generally navigates the medical system, DuVall added.

The program receives about 1500-2000 visits a year, according to DuVall. What the young adult population with cancer has in common that distinguishes it from other age cohorts, he said, are its members’ particular psychosocial needs. “Going through adolescence and young adulthood without cancer, there’s plenty of things that are hard,” DuVall observed. “Put cancer on top of that, and it impacts every aspect of life.”

 

‘Millennials Have Higher Risk’

The proliferation of AYA programs comes as more and more studies have been published recently showing that young adults are increasingly getting cancer.

According to American Cancer Society research published in December in The Lancet Oncology, incidence rates of colorectal cancer (CRC) among young adults aged 25-49 years rose in the decade through 2017 in more than half of the 50 countries and territories examined. For the past 5 years studied, the incidence rate of early-onset CRC was highest in Australia, Puerto Rico, New Zealand, the United States, and South Korea. At the same time, the study found, rates among older adults in all of those places except South Korea were stable or declining.

Hyuna Sung, PhD, the study’s lead author, said, “Research has shown that Gen X and millennials have higher risk of multiple types of cancer compared to the older generations.”

Some of the cancers found to be increasing among younger adults are linked to “excess body obesity,” Sung said, including not only CRC but also cancers of the uterine corpus, gallbladder, kidney, pancreas, breast, and stomach cardia, as well as myeloma. Early onset of cancers not linked to obesity, such as testicular cancer and small intestinal cancer, has also been shown to be on the rise, Sung noted.

As cancer rates among young adults have risen, nonprofits have stepped in to help medical institutions open programs geared to their needs. Teen Cancer America, founded by members of rock band The Who, has partnered with 64 hospitals in 36 cities to develop AYA-focused programs, funding 85 hospital positions, according to a spokesperson. The Los Angeles–based nonprofit has also provided free consultation to 130 hospitals without formally providing a grant, the spokesperson said.

map on Teen Cancer America’s website illustrates the nationwide spread of AYA programs, from UCLA Santa Monica Medical Center to Memorial Sloan Kettering Cancer Center in New York City, with more in between.

 

‘Setting Them Up for a Life of Meaning’

Michael Roth, MD, co-director of the AYA Program at the University of Texas MD Anderson Cancer Center in Houston, likes to say, “If you’ve seen one AYA Program, you’ve seen one AYA Program.”

In other words, offerings vary. “Most centers do not have comprehensive AYA programs,” Roth said, noting that at many sites the AYA Program might consist of oncofertility support. “That said, programs are doing the best they can, knowing that the AYA population is growing exponentially globally.”

Almost 90,000 AYA patients are diagnosed with cancer each year, and 85% will be at least 5-year survivors, Roth said. There are more than 2 million survivors of AYA cancer, he added, and if the median age of diagnosis is 30, they can live five decades beyond their cancer treatment. “Their life matters,” Roth said. “It matters during treatment. Their life after cancer matters.”

The AYA Program at MD Anderson began in 2017, and it sees more than 2000 AYAs diagnosed with cancer every year, according to Roth. The program is designed to complement the care that patients with cancer aged from 15 to 39 years or older may already be receiving from their primary treatment teams. New patients see a medical provider, a social worker, and a vocational counselor for discussions about their needs and concerns, and they have access to a nutritionist and genetic counselor.

The program offers psychosocial and supportive care for patients who may be facing challenges with school, work, relationships, having young children, and mental health, Roth said. Along with assessments and counseling around fertility risks and genetic predisposition, MD Anderson also provides patients in the program with a long-term survivorship plan.

“It’s not just increasing cures,” Roth observed. “We’re also setting them up for a life of meaning and happiness and productivity and health.”

Almost 40% of visits to the program are conducted virtually, according to Roth. “Our goal is to meet the patients where they are,” he said. “We want to be convenient, not be a burden.”

 

‘The Face of Cancer Has Changed’

Patients with AYA cancer diagnoses may be finishing up school or starting a job, developing their body image and sexual identity, or caring for young children or older parents.

“They feel incredibly isolated,” said Ann LaCasce, MD, MMSc, co-director of the Center for Adolescent and Young Adult Oncology at Dana-Farber Cancer Institute in Boston. “They go into the cancer center or their community practice, and everyone is double, triple their age.”

Last year, Dana-Farber opened a Young Adult Lounge meant for patients aged 18 years or older to be able to relax and, if they wish, interact between appointments. “When you talk to these patients, they want to meet each other,” LaCasce said. “They want to share experiences.”

The Young Adults With Cancer Program at Vanderbilt-Ingram Cancer Center in Nashville, Tennessee, opened its doors in 2019. It recently hired an interim nurse navigator, said Cathy Eng, MD, FACP, FASCO, director of the Program, which concentrates on patients aged 25-45 years.

“The face of cancer has changed,” Eng said.

She advises other oncologists to talk to their young adult patients as much as possible. “Really talk to them as an individual and see what other needs they have,” she said. “Even if they don’t tell you the first time, ask them the second time, ask them the third time.”

Christopher Cann, MD, executive director of the Young Adult Cancer Program at Fox Chase Cancer Center in Philadelphia, did his fellowship under Eng. He joined Fox Chase in 2023, and the Young Adult Cancer Program started accepting patients around the end of last year, zeroing in on patients aged 18-39 years.

Following the implementation of a new best practice advisory that pops up in the medical records system, he said, oncofertility referrals increased by 400% within 6 months.

“My hope is that if every institution throughout the country can have a young adult program, even something small like this can provide a large impact for patients,” Cann said.

The University of North Carolina (UNC) AYA Cancer Program, part of the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, formed in 2015. It has expanded into a team of about 12 including a nurse practitioner, fertility counselor, and psychologist, said Jacob Stein, MD, MPH, the program’s AYA oncology liaison. UNC sees about 400 AYA patients with cancer annually, and the program interacts with slightly more than 100 of them, according to Stein.

“Our program has taken a very different approach, to target services, contact, and engagement with AYAs who we perceive to be at the highest need, either clinically or socially, for support,” he said.

Stein was the lead author on research presented last year at the ASCO Quality Care Symposium in San Francisco finding that patients engaged in the program were more likely to participate in clinical trials and received higher rates of fertility preservation and palliative care than AYA patients at UNC without program contact.

Andrew Smitherman, MD, MS, medical director of the UNC AYA Cancer Center Program, said the AYA field has grown impressively since a progress review group was started in 2005, which was backed by the National Cancer Institute and LIVESTRONG Young Adult Alliance. The group developed recommendations to address AYA oncology nationwide, in hopes of acting as a catalyst for future initiatives. Clearly, others caring for patients with cancer heard the message.

“If a colleague comes to me and says, ‘Where do I start, how do I make this change at my institution,’ I usually lead with changing the culture,” Smitherman said. “Educating hospital leadership about the importance of this population, educating colleagues, finding partners. And then start thinking about ways to make structural changes, like creating space. That’s worked really well for us.”

DuVall, Sung, Roth, LaCasce, Eng, Cann, Stein, and Smitherman declared no conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 04/15/2025 - 10:25
Un-Gate On Date
Tue, 04/15/2025 - 10:25
Use ProPublica
CFC Schedule Remove Status
Tue, 04/15/2025 - 10:25
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 04/15/2025 - 10:25