Which patients with pulmonary embolism need echocardiography?

Article Type
Changed
Thu, 11/01/2018 - 08:16
Display Headline
Which patients with pulmonary embolism need echocardiography?

Most patients admitted with pulmonary embolism (PE) do not need transthoracic echocardiography (TTE); it should be performed in hemodynamically unstable patients, as well as in hemodynamically stable patients with specific elevated cardiac biomarkers and imaging features.

The decision to perform TTE should be based on clinical presentation, PE burden, and imaging findings (eg, computed tomographic angiography). TTE helps to stratify risk, guide management, monitor response to therapy, and give prognostic information for a subset of patients at increased risk for PE-related adverse events.

RISK STRATIFICATION IN PULMONARY EMBOLISM

PE has a spectrum of presentations ranging from no symptoms to shock. Based on the clinical presentation, PE can be categorized as high, intermediate, or low risk.

High-risk PE, often referred to as “massive” PE, is defined in current American Heart Association guidelines as acute PE with sustained hypotension (systolic blood pressure < 90 mm Hg for at least 15 minutes or requiring inotropic support), persistent profound bradycardia (heart rate < 40 beats per minute with signs or symptoms of shock), syncope, or cardiac arrest.1

Intermediate-risk or “submassive” PE is more challenging to identify because patients are more hemodynamically stable, yet have evidence on electrocardiography, TTE, computed tomography, or cardiac biomarker testing—ie, N-terminal pro-B-type natriuretic peptide (NT-proBNP) or troponin—that indicates myocardial injury or volume overload.1

Low-risk PE is acute PE in the absence of clinical markers of adverse prognosis that define massive or submassive PE.1

Table 1. Pulmonary Embolism Severity Index in risk stratification
Table 2. Bova scoring system for estimating 30-day risk of complications or death in acute pulmonary embolism
Scoring systems to evaluate PE severity include the PE severity index (PESI)2,3 and the Bova grading system.4 The PESI predicts adverse outcomes in acute PE independent of cardiac biomarkers, with risk categorized from lowest to highest as class I to class V (Table 1).4 The Bova score predicts the 30-day risk of PE-related complications in hemodynamically stable patients (Table 2). Points are assigned for each variable, for a maximum of 7. From 0 to 2 points is stage I, 3 to 4 points is stage II, and more than 4 points is stage III. The score is based on 4 variables: heart rate, systolic blood pressure, cardiac troponin level, and a marker of right ventricular dysfunction. The higher the stage, the higher the 30-day risk of PE-related complications.5

ECHOCARDIOGRAPHIC FEATURES OF HIGH-RISK PULMONARY EMBOLISM

Certain TTE findings suggest increased risk of a poor outcome and may warrant therapy that is more invasive and aggressive. High-risk features include the following:

  • Impaired right ventricular function
  • Interventricular septum bulging into the left ventricle (“D-shaped” septum)
  • Dilated proximal pulmonary arteries
  • Increased severity of tricuspid regurgitation
  • Elevated right atrial pressure
  • Elevated pulmonary artery pressure
  • Free-floating right ventricular thrombi, which are associated with a mortality rate of up to 45% and can be detected in 7% to 18% of patients6
  • Tricuspid annular plane systolic excursion, an echocardiographic measure of right ventricular function1; a value less than 17 mm suggests impaired right ventricular systolic function7
  • The McConnell sign, a feature of acute massive PE: akinesia of the mid-free wall of the right ventricle and hypercontractility of the apex.

These TTE findings often lead to treatment with thrombolysis, transfer to the intensive care unit, and activation of the interventional team for catheter-based therapies.1,8 Free-floating right heart thrombi or thrombus straddling the interatrial septum (“thrombus in transit”) through a patent foramen ovale may require surgical embolectomy.8

PATIENT SELECTION AND INDICATIONS FOR ECHOCARDIOGRAPHY

Table 3. Indications for transthoracic echocardiography in pulmonary embolism
TTE is indicated in all patients with high-risk PE who are hemodynamically unstable and present with shock, syncope, cardiac arrest, tachycardia (heart rate > 100 beats per minute), or persistent sinus bradycardia (heart rate < 40 beats per minute) (Table 3).4,9 TTE is also recommended for hemodynamically stable patients with evidence of right ventricular dysfunction or strain on computed tomographic angiography, elevation of troponin or NT-proBNP, or new complete or incomplete right bundle branch block or anteroseptal ST or T-wave changes on electrocardiography.8 A more objective assessment recently developed for risk stratification uses clinically driven scores: a PESI score of 86 to 105 (class III) or a simplified PESI score of 1 or higher warrants TTE.2,3

References
  1. Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation 2011; 123:1788–1830. doi:10.1161/CIR.0b013e318214914f
  2. Jiménez D, Aujesky D, Moores L, et al; RIETE Investigators. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 2010; 170:1383–1389. doi:10.1001/archinternmed.2010.199
  3. Aujesky D, Obrosky DS, Stone RA, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 2005; 172:1041–1046. doi:10.1164/rccm.200506-862OC
  4. Bova C, Pesavento R, Marchiori A, et al; TELESIO Study Group. Risk stratification and outcomes in hemodynamically stable patients with acute pulmonary embolism. J Thromb Haemost 2009; 7:938–944. doi:10.1111/j.1538-7836.2009.03345.x
  5. Fernandez C, Bova C, Sanchez O, et al. Validation of a model for identification of patients at intermediate to high risk for complications associated with acute symptomatic pulmonary embolism. Chest 2015; 148:211–218. doi:10.1378/chest.14-2551
  6. Chartier L, Bera J, Delomez M, et al. Free-floating thrombi in the right heart: diagnosis, management, and prognostic indexes in 38 consecutive patients. Circulation 1999; 99:2779–2783. pmid:10351972
  7. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults. J Am Soc Echocardiogr 2010; 23:685–713. doi:10.1016/j.echo.2010.05.010
  8. Konstantinides S, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35:3033–3069a–k. doi:10.1093/eurheartj/ehu283
  9. Saric M, Armour AC, Arnaout MS, et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr 2016; 29:1–42. doi:10.1016/j.echo.2015.09.011
Article PDF
Author and Disclosure Information

Rama Hritani, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Abdulah Alrifai, MD
Cardiology Department, University of Miami School of Medicine/JFK Medical Center, Atlantis, FL

Mohamad Soud, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Homam Moussa Pacha, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

M. Chadi Alraies, MD
Interventional Cardiology, Detroit Heart Hospital, Detroit Medical Center, Wayne State University, Detroit, MI

Address: M. Chadi Alraies, MD, Interventional Cardiology, DMC Heart Hospital, 311 Mack Avenue, Detroit, MI 48201; [email protected]

Issue
Cleveland Clinic Journal of Medicine - 85(11)
Publications
Topics
Page Number
826-828
Legacy Keywords
pulmonary embolism, PE, echocardiography, echo, transthoracic echocardiography, TTE, risk stratification, PESI, Bova, thrombosis, venous thromboembolism, VTE, B-type natriuretic peptide, BNP, Rama Hritani, Abdulah Alrifai, Mohamad Soud, Homam Pacha, M Chadi Alraies
Sections
Author and Disclosure Information

Rama Hritani, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Abdulah Alrifai, MD
Cardiology Department, University of Miami School of Medicine/JFK Medical Center, Atlantis, FL

Mohamad Soud, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Homam Moussa Pacha, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

M. Chadi Alraies, MD
Interventional Cardiology, Detroit Heart Hospital, Detroit Medical Center, Wayne State University, Detroit, MI

Address: M. Chadi Alraies, MD, Interventional Cardiology, DMC Heart Hospital, 311 Mack Avenue, Detroit, MI 48201; [email protected]

Author and Disclosure Information

Rama Hritani, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Abdulah Alrifai, MD
Cardiology Department, University of Miami School of Medicine/JFK Medical Center, Atlantis, FL

Mohamad Soud, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

Homam Moussa Pacha, MD
Department of Internal Medicine, Medstar Washington Hospital Center, Washington, DC

M. Chadi Alraies, MD
Interventional Cardiology, Detroit Heart Hospital, Detroit Medical Center, Wayne State University, Detroit, MI

Address: M. Chadi Alraies, MD, Interventional Cardiology, DMC Heart Hospital, 311 Mack Avenue, Detroit, MI 48201; [email protected]

Article PDF
Article PDF
Related Articles

Most patients admitted with pulmonary embolism (PE) do not need transthoracic echocardiography (TTE); it should be performed in hemodynamically unstable patients, as well as in hemodynamically stable patients with specific elevated cardiac biomarkers and imaging features.

The decision to perform TTE should be based on clinical presentation, PE burden, and imaging findings (eg, computed tomographic angiography). TTE helps to stratify risk, guide management, monitor response to therapy, and give prognostic information for a subset of patients at increased risk for PE-related adverse events.

RISK STRATIFICATION IN PULMONARY EMBOLISM

PE has a spectrum of presentations ranging from no symptoms to shock. Based on the clinical presentation, PE can be categorized as high, intermediate, or low risk.

High-risk PE, often referred to as “massive” PE, is defined in current American Heart Association guidelines as acute PE with sustained hypotension (systolic blood pressure < 90 mm Hg for at least 15 minutes or requiring inotropic support), persistent profound bradycardia (heart rate < 40 beats per minute with signs or symptoms of shock), syncope, or cardiac arrest.1

Intermediate-risk or “submassive” PE is more challenging to identify because patients are more hemodynamically stable, yet have evidence on electrocardiography, TTE, computed tomography, or cardiac biomarker testing—ie, N-terminal pro-B-type natriuretic peptide (NT-proBNP) or troponin—that indicates myocardial injury or volume overload.1

Low-risk PE is acute PE in the absence of clinical markers of adverse prognosis that define massive or submassive PE.1

Table 1. Pulmonary Embolism Severity Index in risk stratification
Table 2. Bova scoring system for estimating 30-day risk of complications or death in acute pulmonary embolism
Scoring systems to evaluate PE severity include the PE severity index (PESI)2,3 and the Bova grading system.4 The PESI predicts adverse outcomes in acute PE independent of cardiac biomarkers, with risk categorized from lowest to highest as class I to class V (Table 1).4 The Bova score predicts the 30-day risk of PE-related complications in hemodynamically stable patients (Table 2). Points are assigned for each variable, for a maximum of 7. From 0 to 2 points is stage I, 3 to 4 points is stage II, and more than 4 points is stage III. The score is based on 4 variables: heart rate, systolic blood pressure, cardiac troponin level, and a marker of right ventricular dysfunction. The higher the stage, the higher the 30-day risk of PE-related complications.5

ECHOCARDIOGRAPHIC FEATURES OF HIGH-RISK PULMONARY EMBOLISM

Certain TTE findings suggest increased risk of a poor outcome and may warrant therapy that is more invasive and aggressive. High-risk features include the following:

  • Impaired right ventricular function
  • Interventricular septum bulging into the left ventricle (“D-shaped” septum)
  • Dilated proximal pulmonary arteries
  • Increased severity of tricuspid regurgitation
  • Elevated right atrial pressure
  • Elevated pulmonary artery pressure
  • Free-floating right ventricular thrombi, which are associated with a mortality rate of up to 45% and can be detected in 7% to 18% of patients6
  • Tricuspid annular plane systolic excursion, an echocardiographic measure of right ventricular function1; a value less than 17 mm suggests impaired right ventricular systolic function7
  • The McConnell sign, a feature of acute massive PE: akinesia of the mid-free wall of the right ventricle and hypercontractility of the apex.

These TTE findings often lead to treatment with thrombolysis, transfer to the intensive care unit, and activation of the interventional team for catheter-based therapies.1,8 Free-floating right heart thrombi or thrombus straddling the interatrial septum (“thrombus in transit”) through a patent foramen ovale may require surgical embolectomy.8

PATIENT SELECTION AND INDICATIONS FOR ECHOCARDIOGRAPHY

Table 3. Indications for transthoracic echocardiography in pulmonary embolism
TTE is indicated in all patients with high-risk PE who are hemodynamically unstable and present with shock, syncope, cardiac arrest, tachycardia (heart rate > 100 beats per minute), or persistent sinus bradycardia (heart rate < 40 beats per minute) (Table 3).4,9 TTE is also recommended for hemodynamically stable patients with evidence of right ventricular dysfunction or strain on computed tomographic angiography, elevation of troponin or NT-proBNP, or new complete or incomplete right bundle branch block or anteroseptal ST or T-wave changes on electrocardiography.8 A more objective assessment recently developed for risk stratification uses clinically driven scores: a PESI score of 86 to 105 (class III) or a simplified PESI score of 1 or higher warrants TTE.2,3

Most patients admitted with pulmonary embolism (PE) do not need transthoracic echocardiography (TTE); it should be performed in hemodynamically unstable patients, as well as in hemodynamically stable patients with specific elevated cardiac biomarkers and imaging features.

The decision to perform TTE should be based on clinical presentation, PE burden, and imaging findings (eg, computed tomographic angiography). TTE helps to stratify risk, guide management, monitor response to therapy, and give prognostic information for a subset of patients at increased risk for PE-related adverse events.

RISK STRATIFICATION IN PULMONARY EMBOLISM

PE has a spectrum of presentations ranging from no symptoms to shock. Based on the clinical presentation, PE can be categorized as high, intermediate, or low risk.

High-risk PE, often referred to as “massive” PE, is defined in current American Heart Association guidelines as acute PE with sustained hypotension (systolic blood pressure < 90 mm Hg for at least 15 minutes or requiring inotropic support), persistent profound bradycardia (heart rate < 40 beats per minute with signs or symptoms of shock), syncope, or cardiac arrest.1

Intermediate-risk or “submassive” PE is more challenging to identify because patients are more hemodynamically stable, yet have evidence on electrocardiography, TTE, computed tomography, or cardiac biomarker testing—ie, N-terminal pro-B-type natriuretic peptide (NT-proBNP) or troponin—that indicates myocardial injury or volume overload.1

Low-risk PE is acute PE in the absence of clinical markers of adverse prognosis that define massive or submassive PE.1

Table 1. Pulmonary Embolism Severity Index in risk stratification
Table 2. Bova scoring system for estimating 30-day risk of complications or death in acute pulmonary embolism
Scoring systems to evaluate PE severity include the PE severity index (PESI)2,3 and the Bova grading system.4 The PESI predicts adverse outcomes in acute PE independent of cardiac biomarkers, with risk categorized from lowest to highest as class I to class V (Table 1).4 The Bova score predicts the 30-day risk of PE-related complications in hemodynamically stable patients (Table 2). Points are assigned for each variable, for a maximum of 7. From 0 to 2 points is stage I, 3 to 4 points is stage II, and more than 4 points is stage III. The score is based on 4 variables: heart rate, systolic blood pressure, cardiac troponin level, and a marker of right ventricular dysfunction. The higher the stage, the higher the 30-day risk of PE-related complications.5

ECHOCARDIOGRAPHIC FEATURES OF HIGH-RISK PULMONARY EMBOLISM

Certain TTE findings suggest increased risk of a poor outcome and may warrant therapy that is more invasive and aggressive. High-risk features include the following:

  • Impaired right ventricular function
  • Interventricular septum bulging into the left ventricle (“D-shaped” septum)
  • Dilated proximal pulmonary arteries
  • Increased severity of tricuspid regurgitation
  • Elevated right atrial pressure
  • Elevated pulmonary artery pressure
  • Free-floating right ventricular thrombi, which are associated with a mortality rate of up to 45% and can be detected in 7% to 18% of patients6
  • Tricuspid annular plane systolic excursion, an echocardiographic measure of right ventricular function1; a value less than 17 mm suggests impaired right ventricular systolic function7
  • The McConnell sign, a feature of acute massive PE: akinesia of the mid-free wall of the right ventricle and hypercontractility of the apex.

These TTE findings often lead to treatment with thrombolysis, transfer to the intensive care unit, and activation of the interventional team for catheter-based therapies.1,8 Free-floating right heart thrombi or thrombus straddling the interatrial septum (“thrombus in transit”) through a patent foramen ovale may require surgical embolectomy.8

PATIENT SELECTION AND INDICATIONS FOR ECHOCARDIOGRAPHY

Table 3. Indications for transthoracic echocardiography in pulmonary embolism
TTE is indicated in all patients with high-risk PE who are hemodynamically unstable and present with shock, syncope, cardiac arrest, tachycardia (heart rate > 100 beats per minute), or persistent sinus bradycardia (heart rate < 40 beats per minute) (Table 3).4,9 TTE is also recommended for hemodynamically stable patients with evidence of right ventricular dysfunction or strain on computed tomographic angiography, elevation of troponin or NT-proBNP, or new complete or incomplete right bundle branch block or anteroseptal ST or T-wave changes on electrocardiography.8 A more objective assessment recently developed for risk stratification uses clinically driven scores: a PESI score of 86 to 105 (class III) or a simplified PESI score of 1 or higher warrants TTE.2,3

References
  1. Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation 2011; 123:1788–1830. doi:10.1161/CIR.0b013e318214914f
  2. Jiménez D, Aujesky D, Moores L, et al; RIETE Investigators. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 2010; 170:1383–1389. doi:10.1001/archinternmed.2010.199
  3. Aujesky D, Obrosky DS, Stone RA, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 2005; 172:1041–1046. doi:10.1164/rccm.200506-862OC
  4. Bova C, Pesavento R, Marchiori A, et al; TELESIO Study Group. Risk stratification and outcomes in hemodynamically stable patients with acute pulmonary embolism. J Thromb Haemost 2009; 7:938–944. doi:10.1111/j.1538-7836.2009.03345.x
  5. Fernandez C, Bova C, Sanchez O, et al. Validation of a model for identification of patients at intermediate to high risk for complications associated with acute symptomatic pulmonary embolism. Chest 2015; 148:211–218. doi:10.1378/chest.14-2551
  6. Chartier L, Bera J, Delomez M, et al. Free-floating thrombi in the right heart: diagnosis, management, and prognostic indexes in 38 consecutive patients. Circulation 1999; 99:2779–2783. pmid:10351972
  7. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults. J Am Soc Echocardiogr 2010; 23:685–713. doi:10.1016/j.echo.2010.05.010
  8. Konstantinides S, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35:3033–3069a–k. doi:10.1093/eurheartj/ehu283
  9. Saric M, Armour AC, Arnaout MS, et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr 2016; 29:1–42. doi:10.1016/j.echo.2015.09.011
References
  1. Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation 2011; 123:1788–1830. doi:10.1161/CIR.0b013e318214914f
  2. Jiménez D, Aujesky D, Moores L, et al; RIETE Investigators. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 2010; 170:1383–1389. doi:10.1001/archinternmed.2010.199
  3. Aujesky D, Obrosky DS, Stone RA, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 2005; 172:1041–1046. doi:10.1164/rccm.200506-862OC
  4. Bova C, Pesavento R, Marchiori A, et al; TELESIO Study Group. Risk stratification and outcomes in hemodynamically stable patients with acute pulmonary embolism. J Thromb Haemost 2009; 7:938–944. doi:10.1111/j.1538-7836.2009.03345.x
  5. Fernandez C, Bova C, Sanchez O, et al. Validation of a model for identification of patients at intermediate to high risk for complications associated with acute symptomatic pulmonary embolism. Chest 2015; 148:211–218. doi:10.1378/chest.14-2551
  6. Chartier L, Bera J, Delomez M, et al. Free-floating thrombi in the right heart: diagnosis, management, and prognostic indexes in 38 consecutive patients. Circulation 1999; 99:2779–2783. pmid:10351972
  7. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults. J Am Soc Echocardiogr 2010; 23:685–713. doi:10.1016/j.echo.2010.05.010
  8. Konstantinides S, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35:3033–3069a–k. doi:10.1093/eurheartj/ehu283
  9. Saric M, Armour AC, Arnaout MS, et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr 2016; 29:1–42. doi:10.1016/j.echo.2015.09.011
Issue
Cleveland Clinic Journal of Medicine - 85(11)
Issue
Cleveland Clinic Journal of Medicine - 85(11)
Page Number
826-828
Page Number
826-828
Publications
Publications
Topics
Article Type
Display Headline
Which patients with pulmonary embolism need echocardiography?
Display Headline
Which patients with pulmonary embolism need echocardiography?
Legacy Keywords
pulmonary embolism, PE, echocardiography, echo, transthoracic echocardiography, TTE, risk stratification, PESI, Bova, thrombosis, venous thromboembolism, VTE, B-type natriuretic peptide, BNP, Rama Hritani, Abdulah Alrifai, Mohamad Soud, Homam Pacha, M Chadi Alraies
Legacy Keywords
pulmonary embolism, PE, echocardiography, echo, transthoracic echocardiography, TTE, risk stratification, PESI, Bova, thrombosis, venous thromboembolism, VTE, B-type natriuretic peptide, BNP, Rama Hritani, Abdulah Alrifai, Mohamad Soud, Homam Pacha, M Chadi Alraies
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 10/26/2018 - 06:30
Un-Gate On Date
Fri, 10/26/2018 - 06:30
Use ProPublica
CFC Schedule Remove Status
Fri, 10/26/2018 - 06:30
Article PDF Media