Identifying Progression-free Survival in Veterans with Diffuse Large B-Cell Lymphoma Using Electronic Health Care Records

Article Type
Changed
Mon, 09/09/2019 - 16:14

Purpose: To establish a gold-standard methodology for accurately extracting progression-free survival (PFS) following Diffuse Large B-Cell Lymphoma (DLBCL) treatment using real-world electronic healthcare record (EHR) data.

Background: Randomized controlled trials using response evaluation criteria have long served as the gold standard for assessing response to therapy and PFS. However, characteristics of participants in clinical trials do not reflect the overall patient population, and formal response evaluation criteria are not used in realworld contexts. Furthermore, real-world data are often unstructured, preventing accurate comparison of PFS using structured clinical trial data versus real-world data, and existing approaches define PFS inconsistently. Despite the importance of assessing PFS in patients outside of controlled clinical trials, no goldstandard method for collecting and validating PFS from real-world evidence has been established.

Methods: Clinicians, programmers, and data scientists collaborated to develop an R Shiny10 application using Veterans Affairs Corporate Data Warehouse data from the EHR of 352 DLBCL patients. The application takes unstructured data such as clinical notes and facilitates the capture, annotation, and tagging of key words or phrases indicative of progression, thus allowing accurate determination of the date of first identification of progression by a treating clinician.

Data Analysis: In order to refine data-collection techniques and evaluate whether the application can enable calculation of real-world PFS, we conducted an adaptive and iterative process of reviewing EHR documents and capturing and annotating data until a consistent schema and methodology was established. In order to validate annotation schema and methodology, annotations of 50 patient records were performed by 2 annotators and assessed for concordance.

Results: We produced an R Shiny application that can capture, annotate, and transform unstructured EHR data into structured data—specifically, treatment lines, cycles, and response criteria with corresponding dates—ready for analysis of PFS. An annotation schema for capturing real-world data was also developed. Mapping of common phrases used by clinicians in real-world practice to response criteria resulted in a dictionary of these phrases.

Implications: These efforts show that it is possible to convert EHR context reliably into analyzable data such as PFS. Further attempts will be made to establish a gold-standard methodology.

Author and Disclosure Information

Correspondence: Deborah Morreall ([email protected])

Publications
Topics
Sections
Author and Disclosure Information

Correspondence: Deborah Morreall ([email protected])

Author and Disclosure Information

Correspondence: Deborah Morreall ([email protected])

Purpose: To establish a gold-standard methodology for accurately extracting progression-free survival (PFS) following Diffuse Large B-Cell Lymphoma (DLBCL) treatment using real-world electronic healthcare record (EHR) data.

Background: Randomized controlled trials using response evaluation criteria have long served as the gold standard for assessing response to therapy and PFS. However, characteristics of participants in clinical trials do not reflect the overall patient population, and formal response evaluation criteria are not used in realworld contexts. Furthermore, real-world data are often unstructured, preventing accurate comparison of PFS using structured clinical trial data versus real-world data, and existing approaches define PFS inconsistently. Despite the importance of assessing PFS in patients outside of controlled clinical trials, no goldstandard method for collecting and validating PFS from real-world evidence has been established.

Methods: Clinicians, programmers, and data scientists collaborated to develop an R Shiny10 application using Veterans Affairs Corporate Data Warehouse data from the EHR of 352 DLBCL patients. The application takes unstructured data such as clinical notes and facilitates the capture, annotation, and tagging of key words or phrases indicative of progression, thus allowing accurate determination of the date of first identification of progression by a treating clinician.

Data Analysis: In order to refine data-collection techniques and evaluate whether the application can enable calculation of real-world PFS, we conducted an adaptive and iterative process of reviewing EHR documents and capturing and annotating data until a consistent schema and methodology was established. In order to validate annotation schema and methodology, annotations of 50 patient records were performed by 2 annotators and assessed for concordance.

Results: We produced an R Shiny application that can capture, annotate, and transform unstructured EHR data into structured data—specifically, treatment lines, cycles, and response criteria with corresponding dates—ready for analysis of PFS. An annotation schema for capturing real-world data was also developed. Mapping of common phrases used by clinicians in real-world practice to response criteria resulted in a dictionary of these phrases.

Implications: These efforts show that it is possible to convert EHR context reliably into analyzable data such as PFS. Further attempts will be made to establish a gold-standard methodology.

Purpose: To establish a gold-standard methodology for accurately extracting progression-free survival (PFS) following Diffuse Large B-Cell Lymphoma (DLBCL) treatment using real-world electronic healthcare record (EHR) data.

Background: Randomized controlled trials using response evaluation criteria have long served as the gold standard for assessing response to therapy and PFS. However, characteristics of participants in clinical trials do not reflect the overall patient population, and formal response evaluation criteria are not used in realworld contexts. Furthermore, real-world data are often unstructured, preventing accurate comparison of PFS using structured clinical trial data versus real-world data, and existing approaches define PFS inconsistently. Despite the importance of assessing PFS in patients outside of controlled clinical trials, no goldstandard method for collecting and validating PFS from real-world evidence has been established.

Methods: Clinicians, programmers, and data scientists collaborated to develop an R Shiny10 application using Veterans Affairs Corporate Data Warehouse data from the EHR of 352 DLBCL patients. The application takes unstructured data such as clinical notes and facilitates the capture, annotation, and tagging of key words or phrases indicative of progression, thus allowing accurate determination of the date of first identification of progression by a treating clinician.

Data Analysis: In order to refine data-collection techniques and evaluate whether the application can enable calculation of real-world PFS, we conducted an adaptive and iterative process of reviewing EHR documents and capturing and annotating data until a consistent schema and methodology was established. In order to validate annotation schema and methodology, annotations of 50 patient records were performed by 2 annotators and assessed for concordance.

Results: We produced an R Shiny application that can capture, annotate, and transform unstructured EHR data into structured data—specifically, treatment lines, cycles, and response criteria with corresponding dates—ready for analysis of PFS. An annotation schema for capturing real-world data was also developed. Mapping of common phrases used by clinicians in real-world practice to response criteria resulted in a dictionary of these phrases.

Implications: These efforts show that it is possible to convert EHR context reliably into analyzable data such as PFS. Further attempts will be made to establish a gold-standard methodology.

Publications
Publications
Topics
Article Type
Sections
Citation Override
Abstract Presented at the 2019 Association of VA Hematology/Oncology Annual Meeting
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Mon, 09/09/2019 - 16:15
Un-Gate On Date
Mon, 09/09/2019 - 16:15
Use ProPublica
CFC Schedule Remove Status
Mon, 09/09/2019 - 16:15
Hide sidebar & use full width
render the right sidebar.

The Effect of Vehicle Formulation on Acne Medication Tolerability

Article Type
Changed
Thu, 01/10/2019 - 12:15
Display Headline
The Effect of Vehicle Formulation on Acne Medication Tolerability

Article PDF
Author and Disclosure Information

Draelos ZD, Callender V, Young C, Dhawan SS

Issue
Cutis - 82(4)
Publications
Topics
Page Number
281-284
Sections
Author and Disclosure Information

Draelos ZD, Callender V, Young C, Dhawan SS

Author and Disclosure Information

Draelos ZD, Callender V, Young C, Dhawan SS

Article PDF
Article PDF

Issue
Cutis - 82(4)
Issue
Cutis - 82(4)
Page Number
281-284
Page Number
281-284
Publications
Publications
Topics
Article Type
Display Headline
The Effect of Vehicle Formulation on Acne Medication Tolerability
Display Headline
The Effect of Vehicle Formulation on Acne Medication Tolerability
Sections
Article Source

PURLs Copyright

Inside the Article

Article PDF Media