User login
Diabetes-Related Outcomes and Costs Have Mostly Improved
TOPLINE:
Over the past 20 years in Denmark, the incidence of type 2 diabetes–related outcomes and many treatment-related harms have both decreased without increased medication expenses despite an aging and more comorbid population; however, challenges remain.
METHODOLOGY:
- Analysis of data from 461,805 individuals in the Danish population with type 2 diabetes between 2002 and 2020.
- Multivariate analyses adjusted for potential confounders, including age, sex, and socioeconomic status.
TAKEAWAY:
- The population grew 2.7-fold from 2002 to 2020 (n = 113,105 to 306,962), the median age increased from 66 to 68 years, and the mean number of diseases per person increased from 5.2 to 8.8, with an increase in Charlson Comorbidity Index from 1.78 to 1.93.
- After adjustments, mortality per 1000 person-years decreased by 28% from 2002 to 2020, with the largest risk reduction, 63%, in acute myocardial infarction.
- The mean number of annually redeemed medications per person increased from 8.1 to 9.0, with statin and antihypertensive use increasing to 65% and 69%, respectively.
- Antiplatelet medication (aspirin and clopidogrel) use peaked at 48% in 2009 and dropped to 31% in 2020.
- Anticoagulant (warfarin and direct-acting oral anticoagulants) use gradually increased from 5% in 2002 to 14% in 2020.
- For glucose-lowering treatment, there was a shift away from using sulfonylureas to metformin and other medications.
- Diagnoses of hypoglycemia, falls, and gastric bleeding decreased over the study period, but incidences of volume depletion, ketoacidosis, infections, and electrolyte imbalances requiring hospitalization increased.
- Cumulative expenses for the population increased from €132,000,000 to €327,000,000 (approximately $144,406,680 to $357,734,730), corresponding to a 148% increase over the study period.
- However, the average medication cost per individual was 8% less in 2020 compared with 2002 despite increasing medication use, mainly driven by reduced costs of antiplatelets, antihypertensives, and statins, among others.
- In contrast, expenses for glucose-lowering medications have gradually increased, with the average more than doubling (138% increase) from €220 ($240) in 2002 to €524 ($573) in 2020.
IN PRACTICE:
“Although these trends suggest improvements in rational pharmacotherapy, they cannot be solely attributed to improved pharmacotherapy and appear to be multifactorial,” the authors wrote.
“Advancements in diabetes management have improved the balance between medication benefits, harms, and costs ... Remaining challenges, such as an increased risk of ketoacidosis and electrolyte imbalances as well as rising costs for glucose-lowering medications, highlight the importance of individualized treatment and continuous risk-benefits evaluations,” they added.
SOURCE:
This study was conducted by Karl Sebastian Johansson, of the Department of Clinical Pharmacology, Copenhagen University Hospital, Copenhagen, Denmark, and colleagues and was published online in Diabetes Care.
LIMITATIONS:
Analysis was confined to events diagnosed in hospital-based inpatient and outpatient settings, not primary healthcare. Only predefined adverse events were analyzed.
DISCLOSURES:
The study was funded by the Capital Region of Denmark. The authors reported no potential conflicts of interest relevant to this article.
A version of this article first appeared on Medscape.com.
TOPLINE:
Over the past 20 years in Denmark, the incidence of type 2 diabetes–related outcomes and many treatment-related harms have both decreased without increased medication expenses despite an aging and more comorbid population; however, challenges remain.
METHODOLOGY:
- Analysis of data from 461,805 individuals in the Danish population with type 2 diabetes between 2002 and 2020.
- Multivariate analyses adjusted for potential confounders, including age, sex, and socioeconomic status.
TAKEAWAY:
- The population grew 2.7-fold from 2002 to 2020 (n = 113,105 to 306,962), the median age increased from 66 to 68 years, and the mean number of diseases per person increased from 5.2 to 8.8, with an increase in Charlson Comorbidity Index from 1.78 to 1.93.
- After adjustments, mortality per 1000 person-years decreased by 28% from 2002 to 2020, with the largest risk reduction, 63%, in acute myocardial infarction.
- The mean number of annually redeemed medications per person increased from 8.1 to 9.0, with statin and antihypertensive use increasing to 65% and 69%, respectively.
- Antiplatelet medication (aspirin and clopidogrel) use peaked at 48% in 2009 and dropped to 31% in 2020.
- Anticoagulant (warfarin and direct-acting oral anticoagulants) use gradually increased from 5% in 2002 to 14% in 2020.
- For glucose-lowering treatment, there was a shift away from using sulfonylureas to metformin and other medications.
- Diagnoses of hypoglycemia, falls, and gastric bleeding decreased over the study period, but incidences of volume depletion, ketoacidosis, infections, and electrolyte imbalances requiring hospitalization increased.
- Cumulative expenses for the population increased from €132,000,000 to €327,000,000 (approximately $144,406,680 to $357,734,730), corresponding to a 148% increase over the study period.
- However, the average medication cost per individual was 8% less in 2020 compared with 2002 despite increasing medication use, mainly driven by reduced costs of antiplatelets, antihypertensives, and statins, among others.
- In contrast, expenses for glucose-lowering medications have gradually increased, with the average more than doubling (138% increase) from €220 ($240) in 2002 to €524 ($573) in 2020.
IN PRACTICE:
“Although these trends suggest improvements in rational pharmacotherapy, they cannot be solely attributed to improved pharmacotherapy and appear to be multifactorial,” the authors wrote.
“Advancements in diabetes management have improved the balance between medication benefits, harms, and costs ... Remaining challenges, such as an increased risk of ketoacidosis and electrolyte imbalances as well as rising costs for glucose-lowering medications, highlight the importance of individualized treatment and continuous risk-benefits evaluations,” they added.
SOURCE:
This study was conducted by Karl Sebastian Johansson, of the Department of Clinical Pharmacology, Copenhagen University Hospital, Copenhagen, Denmark, and colleagues and was published online in Diabetes Care.
LIMITATIONS:
Analysis was confined to events diagnosed in hospital-based inpatient and outpatient settings, not primary healthcare. Only predefined adverse events were analyzed.
DISCLOSURES:
The study was funded by the Capital Region of Denmark. The authors reported no potential conflicts of interest relevant to this article.
A version of this article first appeared on Medscape.com.
TOPLINE:
Over the past 20 years in Denmark, the incidence of type 2 diabetes–related outcomes and many treatment-related harms have both decreased without increased medication expenses despite an aging and more comorbid population; however, challenges remain.
METHODOLOGY:
- Analysis of data from 461,805 individuals in the Danish population with type 2 diabetes between 2002 and 2020.
- Multivariate analyses adjusted for potential confounders, including age, sex, and socioeconomic status.
TAKEAWAY:
- The population grew 2.7-fold from 2002 to 2020 (n = 113,105 to 306,962), the median age increased from 66 to 68 years, and the mean number of diseases per person increased from 5.2 to 8.8, with an increase in Charlson Comorbidity Index from 1.78 to 1.93.
- After adjustments, mortality per 1000 person-years decreased by 28% from 2002 to 2020, with the largest risk reduction, 63%, in acute myocardial infarction.
- The mean number of annually redeemed medications per person increased from 8.1 to 9.0, with statin and antihypertensive use increasing to 65% and 69%, respectively.
- Antiplatelet medication (aspirin and clopidogrel) use peaked at 48% in 2009 and dropped to 31% in 2020.
- Anticoagulant (warfarin and direct-acting oral anticoagulants) use gradually increased from 5% in 2002 to 14% in 2020.
- For glucose-lowering treatment, there was a shift away from using sulfonylureas to metformin and other medications.
- Diagnoses of hypoglycemia, falls, and gastric bleeding decreased over the study period, but incidences of volume depletion, ketoacidosis, infections, and electrolyte imbalances requiring hospitalization increased.
- Cumulative expenses for the population increased from €132,000,000 to €327,000,000 (approximately $144,406,680 to $357,734,730), corresponding to a 148% increase over the study period.
- However, the average medication cost per individual was 8% less in 2020 compared with 2002 despite increasing medication use, mainly driven by reduced costs of antiplatelets, antihypertensives, and statins, among others.
- In contrast, expenses for glucose-lowering medications have gradually increased, with the average more than doubling (138% increase) from €220 ($240) in 2002 to €524 ($573) in 2020.
IN PRACTICE:
“Although these trends suggest improvements in rational pharmacotherapy, they cannot be solely attributed to improved pharmacotherapy and appear to be multifactorial,” the authors wrote.
“Advancements in diabetes management have improved the balance between medication benefits, harms, and costs ... Remaining challenges, such as an increased risk of ketoacidosis and electrolyte imbalances as well as rising costs for glucose-lowering medications, highlight the importance of individualized treatment and continuous risk-benefits evaluations,” they added.
SOURCE:
This study was conducted by Karl Sebastian Johansson, of the Department of Clinical Pharmacology, Copenhagen University Hospital, Copenhagen, Denmark, and colleagues and was published online in Diabetes Care.
LIMITATIONS:
Analysis was confined to events diagnosed in hospital-based inpatient and outpatient settings, not primary healthcare. Only predefined adverse events were analyzed.
DISCLOSURES:
The study was funded by the Capital Region of Denmark. The authors reported no potential conflicts of interest relevant to this article.
A version of this article first appeared on Medscape.com.
Flu May Increase MI Risk Sixfold, More If No CVD History
“Our study results confirm previous findings of an increased risk of MI during or immediately following acute severe flu infection and raises the idea of giving prophylactic anticoagulation to these patients,” reported Patricia Bruijning-Verhagen, MD, University Medical Center Utrecht, the Netherlands, who is the senior author of the study, which was published online in NEJM Evidence.
“Our results also change things — in that we now know the focus should be on people without a history of cardiovascular disease — and highlight the importance of flu vaccination, particularly for this group,” she pointed out.
The observational, self-controlled, case-series study linked laboratory records on respiratory virus polymerase chain reaction (PCR) testing from 16 laboratories in the Netherlands to national mortality, hospitalization, medication, and administrative registries. Investigators compared the incidence of acute MI during the risk period — days 1-7 after influenza infection — with that in the control period — 1 year before and 51 weeks after the risk period.
The researchers found 26,221 positive PCR tests for influenza, constituting 23,405 unique influenza illness episodes. Of the episodes of acute MI occurring in the year before or the year after confirmed influenza infection and included in the analysis, 25 cases of acute MI occurred on days 1-7 after influenza infection and 394 occurred during the control period.
The adjusted relative incidence of acute MI during the risk period compared with during the control period was 6.16 (95% CI, 4.11-9.24).
The relative incidence of acute MI in individuals with no previous hospitalization for coronary artery disease was 16.60 (95% CI, 10.45-26.37); for those with a previous hospital admission for coronary artery disease, the relative incidence was 1.43 (95% CI, 0.53-3.84).
A temporary increase in the risk for MI has been reported in several previous studies. A 2018 Canadian study by Kwong and colleagues showed a sixfold elevation in the risk for acute MI after influenza infection, which was subsequently confirmed in studies from the United States, Denmark, and Scotland.
In their study, Dr. Bruijning-Verhagen and colleagues aimed to further quantify the association between laboratory-confirmed influenza infection and acute MI and to look at specific subgroups that might have the potential to guide a more individualized approach to prevention.
They replicated the Canadian study using a self-controlled case-series design that corrects for time-invariant confounding and found very similar results: A sixfold increase in the risk for acute MI in the first week after laboratory-confirmed influenza infection.
“The fact that we found similar results to Kwong et al. strengthens the finding that acute flu infection is linked to increased MI risk. This is becoming more and more clear now. It also shows that this effect is generalizable to other countries,” Dr. Bruijning-Verhagen said.
People Without Cardiovascular Disease at Highest Risk
The researchers moved the field ahead by also looking at whether there is a difference in risk between individuals with flu who already had cardiovascular disease and those who did not.
“Most previous studies of flu and MI didn’t stratify between individuals with and without existing cardiovascular disease. And the ones that did look at this weren’t able to show a difference with any confidence,” Dr. Bruijning-Verhagen explained. “There have been suggestions before of a higher risk of MI in individuals with acute flu infection who do not have existing known cardiovascular disease, but this was uncertain.”
The current study showed a large difference between the two groups, with a much higher risk for MI linked to flu in individuals without any known cardiovascular disease.
“You would think patients with existing cardiovascular disease would be more at risk of MI with flu infection, so this was a surprising result,” reported Dr. Bruijning-Verhagen. “But I think the result is real. The difference between the two groups was too big for it not to be.”
Influenza can cause a hypercoagulable state, systemic inflammation, and vascular changes that can trigger MI, even in patients not thought to be at risk before, she pointed out. And this is on top of high cardiac demands because of the acute infection.
Patients who already have cardiovascular disease may be protected to some extent by the cardiovascular medications that they are taking, she added.
These results could justify the use of short-term anticoagulation in patients with severe flu infection to cover the high-risk period, Dr. Bruijning-Verhagen suggested. “We give short-term anticoagulation as prophylaxis to patients when they have surgery. This would not be that different. But obviously, this approach would have to be tested.”
Clinical studies looking at such a strategy are currently underway.
‘Get Your Flu Shot’
The results reinforce the need for anyone who is eligible to get the flu vaccine. “These results should give extra weight to the message to get your flu shot,” she said. “Even if you do not consider yourself someone at risk of cardiovascular disease, our study shows that you can still have an increased risk of MI as a result of severe flu infection.”
In many countries, the flu vaccine is recommended for everyone older than 60 or 65 years and for younger people with a history of cardiovascular disease. Data on flu vaccination was not available in the current study, but the average age of patients infected with flu was 74 years, so most patients would have been eligible to receive vaccination, she said.
In the Netherlands where the research took place, flu vaccination is recommended for everyone older than 60 years, and uptake is about 60%.
“There will be some cases in younger people, but the number needed to vaccinate to show a benefit would be much larger in younger people, and that may not be cost-effective,” reported Dr. Bruijning-Verhagen.
Flu vaccination policies vary across the world, with many factors being taken into account; some countries already advocate for universal vaccination every year.
Extend Flu Vaccination to Prevent ACS
This study “provides further impetus to policy makers to review and update guidelines on prevention of acute coronary syndromes,” Raina MacIntyre, MBBS, Zubair Akhtar, MPH, and Aye Moa, MPH, University of New South Wales, Sydney, Australia, wrote in an accompanying editorial.
“Although vaccination to prevent influenza is recommended and funded in many countries for people 65 years of age and older, the additional benefits of prevention of ACS [acute coronary syndromes] have not been adopted universally into policy and practice nor have recommendations considered prevention of ACS in people 50-64 years of age,” they added.
“Vaccination is low-hanging fruit for people at risk of acute myocardial infarction who have not yet had a first event. It is time that we viewed influenza vaccine as a routine preventive measure for ACS and for people with coronary artery disease risk factors, along with statins, blood pressure control, and smoking cessation,” she explained.
The question of whether the link found between elevated MI risk and severe flu infection might be the result of MI being more likely to be detected in patients hospitalized with severe flu infection, who would undergo a thorough workup, was raised in a second editorial by Lori E. Dodd, PhD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
“I think this would be very unlikely to account for the large effect we found,” responded Dr. Bruijning-Verhagen. “There may be the occasional silent MI that gets missed in patients who are not hospitalized, but, in general, acute MI is not something that goes undetected.”
A version of this article appeared on Medscape.com.
“Our study results confirm previous findings of an increased risk of MI during or immediately following acute severe flu infection and raises the idea of giving prophylactic anticoagulation to these patients,” reported Patricia Bruijning-Verhagen, MD, University Medical Center Utrecht, the Netherlands, who is the senior author of the study, which was published online in NEJM Evidence.
“Our results also change things — in that we now know the focus should be on people without a history of cardiovascular disease — and highlight the importance of flu vaccination, particularly for this group,” she pointed out.
The observational, self-controlled, case-series study linked laboratory records on respiratory virus polymerase chain reaction (PCR) testing from 16 laboratories in the Netherlands to national mortality, hospitalization, medication, and administrative registries. Investigators compared the incidence of acute MI during the risk period — days 1-7 after influenza infection — with that in the control period — 1 year before and 51 weeks after the risk period.
The researchers found 26,221 positive PCR tests for influenza, constituting 23,405 unique influenza illness episodes. Of the episodes of acute MI occurring in the year before or the year after confirmed influenza infection and included in the analysis, 25 cases of acute MI occurred on days 1-7 after influenza infection and 394 occurred during the control period.
The adjusted relative incidence of acute MI during the risk period compared with during the control period was 6.16 (95% CI, 4.11-9.24).
The relative incidence of acute MI in individuals with no previous hospitalization for coronary artery disease was 16.60 (95% CI, 10.45-26.37); for those with a previous hospital admission for coronary artery disease, the relative incidence was 1.43 (95% CI, 0.53-3.84).
A temporary increase in the risk for MI has been reported in several previous studies. A 2018 Canadian study by Kwong and colleagues showed a sixfold elevation in the risk for acute MI after influenza infection, which was subsequently confirmed in studies from the United States, Denmark, and Scotland.
In their study, Dr. Bruijning-Verhagen and colleagues aimed to further quantify the association between laboratory-confirmed influenza infection and acute MI and to look at specific subgroups that might have the potential to guide a more individualized approach to prevention.
They replicated the Canadian study using a self-controlled case-series design that corrects for time-invariant confounding and found very similar results: A sixfold increase in the risk for acute MI in the first week after laboratory-confirmed influenza infection.
“The fact that we found similar results to Kwong et al. strengthens the finding that acute flu infection is linked to increased MI risk. This is becoming more and more clear now. It also shows that this effect is generalizable to other countries,” Dr. Bruijning-Verhagen said.
People Without Cardiovascular Disease at Highest Risk
The researchers moved the field ahead by also looking at whether there is a difference in risk between individuals with flu who already had cardiovascular disease and those who did not.
“Most previous studies of flu and MI didn’t stratify between individuals with and without existing cardiovascular disease. And the ones that did look at this weren’t able to show a difference with any confidence,” Dr. Bruijning-Verhagen explained. “There have been suggestions before of a higher risk of MI in individuals with acute flu infection who do not have existing known cardiovascular disease, but this was uncertain.”
The current study showed a large difference between the two groups, with a much higher risk for MI linked to flu in individuals without any known cardiovascular disease.
“You would think patients with existing cardiovascular disease would be more at risk of MI with flu infection, so this was a surprising result,” reported Dr. Bruijning-Verhagen. “But I think the result is real. The difference between the two groups was too big for it not to be.”
Influenza can cause a hypercoagulable state, systemic inflammation, and vascular changes that can trigger MI, even in patients not thought to be at risk before, she pointed out. And this is on top of high cardiac demands because of the acute infection.
Patients who already have cardiovascular disease may be protected to some extent by the cardiovascular medications that they are taking, she added.
These results could justify the use of short-term anticoagulation in patients with severe flu infection to cover the high-risk period, Dr. Bruijning-Verhagen suggested. “We give short-term anticoagulation as prophylaxis to patients when they have surgery. This would not be that different. But obviously, this approach would have to be tested.”
Clinical studies looking at such a strategy are currently underway.
‘Get Your Flu Shot’
The results reinforce the need for anyone who is eligible to get the flu vaccine. “These results should give extra weight to the message to get your flu shot,” she said. “Even if you do not consider yourself someone at risk of cardiovascular disease, our study shows that you can still have an increased risk of MI as a result of severe flu infection.”
In many countries, the flu vaccine is recommended for everyone older than 60 or 65 years and for younger people with a history of cardiovascular disease. Data on flu vaccination was not available in the current study, but the average age of patients infected with flu was 74 years, so most patients would have been eligible to receive vaccination, she said.
In the Netherlands where the research took place, flu vaccination is recommended for everyone older than 60 years, and uptake is about 60%.
“There will be some cases in younger people, but the number needed to vaccinate to show a benefit would be much larger in younger people, and that may not be cost-effective,” reported Dr. Bruijning-Verhagen.
Flu vaccination policies vary across the world, with many factors being taken into account; some countries already advocate for universal vaccination every year.
Extend Flu Vaccination to Prevent ACS
This study “provides further impetus to policy makers to review and update guidelines on prevention of acute coronary syndromes,” Raina MacIntyre, MBBS, Zubair Akhtar, MPH, and Aye Moa, MPH, University of New South Wales, Sydney, Australia, wrote in an accompanying editorial.
“Although vaccination to prevent influenza is recommended and funded in many countries for people 65 years of age and older, the additional benefits of prevention of ACS [acute coronary syndromes] have not been adopted universally into policy and practice nor have recommendations considered prevention of ACS in people 50-64 years of age,” they added.
“Vaccination is low-hanging fruit for people at risk of acute myocardial infarction who have not yet had a first event. It is time that we viewed influenza vaccine as a routine preventive measure for ACS and for people with coronary artery disease risk factors, along with statins, blood pressure control, and smoking cessation,” she explained.
The question of whether the link found between elevated MI risk and severe flu infection might be the result of MI being more likely to be detected in patients hospitalized with severe flu infection, who would undergo a thorough workup, was raised in a second editorial by Lori E. Dodd, PhD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
“I think this would be very unlikely to account for the large effect we found,” responded Dr. Bruijning-Verhagen. “There may be the occasional silent MI that gets missed in patients who are not hospitalized, but, in general, acute MI is not something that goes undetected.”
A version of this article appeared on Medscape.com.
“Our study results confirm previous findings of an increased risk of MI during or immediately following acute severe flu infection and raises the idea of giving prophylactic anticoagulation to these patients,” reported Patricia Bruijning-Verhagen, MD, University Medical Center Utrecht, the Netherlands, who is the senior author of the study, which was published online in NEJM Evidence.
“Our results also change things — in that we now know the focus should be on people without a history of cardiovascular disease — and highlight the importance of flu vaccination, particularly for this group,” she pointed out.
The observational, self-controlled, case-series study linked laboratory records on respiratory virus polymerase chain reaction (PCR) testing from 16 laboratories in the Netherlands to national mortality, hospitalization, medication, and administrative registries. Investigators compared the incidence of acute MI during the risk period — days 1-7 after influenza infection — with that in the control period — 1 year before and 51 weeks after the risk period.
The researchers found 26,221 positive PCR tests for influenza, constituting 23,405 unique influenza illness episodes. Of the episodes of acute MI occurring in the year before or the year after confirmed influenza infection and included in the analysis, 25 cases of acute MI occurred on days 1-7 after influenza infection and 394 occurred during the control period.
The adjusted relative incidence of acute MI during the risk period compared with during the control period was 6.16 (95% CI, 4.11-9.24).
The relative incidence of acute MI in individuals with no previous hospitalization for coronary artery disease was 16.60 (95% CI, 10.45-26.37); for those with a previous hospital admission for coronary artery disease, the relative incidence was 1.43 (95% CI, 0.53-3.84).
A temporary increase in the risk for MI has been reported in several previous studies. A 2018 Canadian study by Kwong and colleagues showed a sixfold elevation in the risk for acute MI after influenza infection, which was subsequently confirmed in studies from the United States, Denmark, and Scotland.
In their study, Dr. Bruijning-Verhagen and colleagues aimed to further quantify the association between laboratory-confirmed influenza infection and acute MI and to look at specific subgroups that might have the potential to guide a more individualized approach to prevention.
They replicated the Canadian study using a self-controlled case-series design that corrects for time-invariant confounding and found very similar results: A sixfold increase in the risk for acute MI in the first week after laboratory-confirmed influenza infection.
“The fact that we found similar results to Kwong et al. strengthens the finding that acute flu infection is linked to increased MI risk. This is becoming more and more clear now. It also shows that this effect is generalizable to other countries,” Dr. Bruijning-Verhagen said.
People Without Cardiovascular Disease at Highest Risk
The researchers moved the field ahead by also looking at whether there is a difference in risk between individuals with flu who already had cardiovascular disease and those who did not.
“Most previous studies of flu and MI didn’t stratify between individuals with and without existing cardiovascular disease. And the ones that did look at this weren’t able to show a difference with any confidence,” Dr. Bruijning-Verhagen explained. “There have been suggestions before of a higher risk of MI in individuals with acute flu infection who do not have existing known cardiovascular disease, but this was uncertain.”
The current study showed a large difference between the two groups, with a much higher risk for MI linked to flu in individuals without any known cardiovascular disease.
“You would think patients with existing cardiovascular disease would be more at risk of MI with flu infection, so this was a surprising result,” reported Dr. Bruijning-Verhagen. “But I think the result is real. The difference between the two groups was too big for it not to be.”
Influenza can cause a hypercoagulable state, systemic inflammation, and vascular changes that can trigger MI, even in patients not thought to be at risk before, she pointed out. And this is on top of high cardiac demands because of the acute infection.
Patients who already have cardiovascular disease may be protected to some extent by the cardiovascular medications that they are taking, she added.
These results could justify the use of short-term anticoagulation in patients with severe flu infection to cover the high-risk period, Dr. Bruijning-Verhagen suggested. “We give short-term anticoagulation as prophylaxis to patients when they have surgery. This would not be that different. But obviously, this approach would have to be tested.”
Clinical studies looking at such a strategy are currently underway.
‘Get Your Flu Shot’
The results reinforce the need for anyone who is eligible to get the flu vaccine. “These results should give extra weight to the message to get your flu shot,” she said. “Even if you do not consider yourself someone at risk of cardiovascular disease, our study shows that you can still have an increased risk of MI as a result of severe flu infection.”
In many countries, the flu vaccine is recommended for everyone older than 60 or 65 years and for younger people with a history of cardiovascular disease. Data on flu vaccination was not available in the current study, but the average age of patients infected with flu was 74 years, so most patients would have been eligible to receive vaccination, she said.
In the Netherlands where the research took place, flu vaccination is recommended for everyone older than 60 years, and uptake is about 60%.
“There will be some cases in younger people, but the number needed to vaccinate to show a benefit would be much larger in younger people, and that may not be cost-effective,” reported Dr. Bruijning-Verhagen.
Flu vaccination policies vary across the world, with many factors being taken into account; some countries already advocate for universal vaccination every year.
Extend Flu Vaccination to Prevent ACS
This study “provides further impetus to policy makers to review and update guidelines on prevention of acute coronary syndromes,” Raina MacIntyre, MBBS, Zubair Akhtar, MPH, and Aye Moa, MPH, University of New South Wales, Sydney, Australia, wrote in an accompanying editorial.
“Although vaccination to prevent influenza is recommended and funded in many countries for people 65 years of age and older, the additional benefits of prevention of ACS [acute coronary syndromes] have not been adopted universally into policy and practice nor have recommendations considered prevention of ACS in people 50-64 years of age,” they added.
“Vaccination is low-hanging fruit for people at risk of acute myocardial infarction who have not yet had a first event. It is time that we viewed influenza vaccine as a routine preventive measure for ACS and for people with coronary artery disease risk factors, along with statins, blood pressure control, and smoking cessation,” she explained.
The question of whether the link found between elevated MI risk and severe flu infection might be the result of MI being more likely to be detected in patients hospitalized with severe flu infection, who would undergo a thorough workup, was raised in a second editorial by Lori E. Dodd, PhD, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
“I think this would be very unlikely to account for the large effect we found,” responded Dr. Bruijning-Verhagen. “There may be the occasional silent MI that gets missed in patients who are not hospitalized, but, in general, acute MI is not something that goes undetected.”
A version of this article appeared on Medscape.com.
FROM NEJM EVIDENCE
Trial of Impella Heart Pump Stopped
An international trial of the Impella heart pump in patients with ST elevation myocardial infarction (STEMI) and cardiogenic shock has been stopped by the sponsor, Abiomed Inc. The termination followed news that another international trial, DanGer Shock, found that the pump improved survival in these patients.
“I was convinced that the study could not continue,” one of the principal investigators William O’Neill, MD, an interventional cardiologist with the Henry Ford Health in Detroit, said in an interview. After 3.5 years of work and thousands of person-hours, he added, “It’s not a decision that people took lightly.”
The trial already had three sites in Europe and one in the United States up and running, with two more US sites slated to join the trial. It had started enrolling patients, although few to date.
DanGer Shock trial results were expected to have a serious effect on how RECOVER IV would unfold. It was previously uncertain whether the Impella heart pump would save lives vs existing approaches, said O’Neill and co-principal investigator Navin Kapur, MD, an interventional cardiologist at Tufts Medical Center in Boston. Once the DanGer Shock trial showed the benefits of using the heart pump, that equipoise vanished.
Loss of Clinical Equipoise
“The clinicians were challenged in getting consent from patients where they had to say, ‘If you are randomized to the control arm, we are not able to use an Impella,’ ” said Dr. Kapur. He pointed out that patients would be unlikely to agree to participate in a trial where they might not get the treatment already shown to improve survival.
Dr. Kapur and Dr. O’Neill said the clinicians participating in the trial expressed discomfort at continuing. The RECOVER IV trial was expected to take many years to enroll the targeted number of patients. To participate, hospitals had to have the equipment and expertise to use the Impella heart pump, as well as the control treatments — balloon-pump support and extracorporeal membrane oxygenation (ECMO), Dr. Kapur explained. He said most patients with STEMI and cardiogenic shock would present to their nearest community hospitals, many of which would not have these treatments and would be unable to participate in the study.
Patients with STEMI and cardiogenic shock are uncommon. About 80,000 patients in the United States each year present with cardiogenic shock, of whom about 40% are not experiencing a STEMI, said Dr. O’Neill.
But those who do fit into the population of both STEMI and cardiogenic shock are at very high risk, said Dr. Kapur. “One in three or one in two patients with STEMI and cardiogenic shock will die in hospital.”
Getting Hearts Pumping
The Impella heart pump was originally developed by Impella Cardiosystems in Aachen, Germany, which was acquired by Abiomed in 2005, according to the Abiomed website. And Abiomed was acquired by Johnson & Johnson MedTech in 2022. The company has developed a series of models over the years and said that Impella CP — the model used in DanGer Shock and RECOVER IV trials — is the world’s smallest heart pump.
“Impella is the only heart pump that can be introduced percutaneously through the leg,” said Dr. O’Neill, whereas other pumps available are used only in open-heart surgery. While Impella is the first pump to be used this way, he said it won’t be the last. Other, more powerful pumps are being developed.
DanGer Shock: A Leap Forward
Despite leading to the halt of another trial, the DanGer Shock results are a good news story, said the RECOVER IV investigators.
“The DanGer trial is a huge advance,” said Dr. O’Neill. “It’s the first study this century that shows something that improves survival in cardiogenic shock. You treat eight patients, and you save one life.” Dr. O’Neill said this is one of the best outcomes he has seen during his long career.
Dr. Kapur said the DanGer trial is also a leap forward in designing trials for cardiogenic shock. He said previous trials of mechanical support in cardiogenic shock had neutral results, probably due to broad inclusion criteria for patients.
“The DanGer trial was selective in its inclusion and exclusion criteria. That made it more difficult to enroll the population, so it took a lot longer. But it used the right device at the right time in the right patient, and it was successful,” he said.
“The DanGer investigators need to be applauded,” he added. “The lesson is, we have to design the right trials.”
New Cardiogenic Shock Trials
Dr. O’Neill and Dr. Kapur said the groundwork they laid for RECOVER IV can be used for new trials.
“We have 50 sites in the US, Germany, and Denmark. They’re interested, and they’re waiting,” said Dr. O’Neill. The researchers are poised to begin new trials once protocols are developed.
What will the next trials investigate?
DanGer Shock results showed higher rates of adverse events following Impella use than after standard care. “We need to come up with strategies to decrease bleeding problems and renal failure,” said Dr. O’Neill, and these could be tested in trials.
Other questions he would like to see investigated are using the Impella heart pump before or after angioplasty, and multi-vessel vs culprit-vessel percutaneous coronary intervention in cardiogenic shock with Impella support.
Dr. Kapur mentioned studying patients excluded from the DanGer Shock trial — such as those needing right ventricular support — because DanGer Shock covered only left ventricular support and those suffering cardiac arrest outside hospital. He said trials could compare differences between models of Impella and investigate the role of ECMO.
“I’m optimistic that we can design more randomized controlled trials with the right patient population and right treatment algorithm,” Dr. Kapur said. This is a critical step toward better outcomes for patients, he added. Another step is optimizing the design of heart pumps, which should decrease the rates of adverse events, he said. “I have a lot of optimism for the future of device design.”
A version of this article first appeared on Medscape.com.
An international trial of the Impella heart pump in patients with ST elevation myocardial infarction (STEMI) and cardiogenic shock has been stopped by the sponsor, Abiomed Inc. The termination followed news that another international trial, DanGer Shock, found that the pump improved survival in these patients.
“I was convinced that the study could not continue,” one of the principal investigators William O’Neill, MD, an interventional cardiologist with the Henry Ford Health in Detroit, said in an interview. After 3.5 years of work and thousands of person-hours, he added, “It’s not a decision that people took lightly.”
The trial already had three sites in Europe and one in the United States up and running, with two more US sites slated to join the trial. It had started enrolling patients, although few to date.
DanGer Shock trial results were expected to have a serious effect on how RECOVER IV would unfold. It was previously uncertain whether the Impella heart pump would save lives vs existing approaches, said O’Neill and co-principal investigator Navin Kapur, MD, an interventional cardiologist at Tufts Medical Center in Boston. Once the DanGer Shock trial showed the benefits of using the heart pump, that equipoise vanished.
Loss of Clinical Equipoise
“The clinicians were challenged in getting consent from patients where they had to say, ‘If you are randomized to the control arm, we are not able to use an Impella,’ ” said Dr. Kapur. He pointed out that patients would be unlikely to agree to participate in a trial where they might not get the treatment already shown to improve survival.
Dr. Kapur and Dr. O’Neill said the clinicians participating in the trial expressed discomfort at continuing. The RECOVER IV trial was expected to take many years to enroll the targeted number of patients. To participate, hospitals had to have the equipment and expertise to use the Impella heart pump, as well as the control treatments — balloon-pump support and extracorporeal membrane oxygenation (ECMO), Dr. Kapur explained. He said most patients with STEMI and cardiogenic shock would present to their nearest community hospitals, many of which would not have these treatments and would be unable to participate in the study.
Patients with STEMI and cardiogenic shock are uncommon. About 80,000 patients in the United States each year present with cardiogenic shock, of whom about 40% are not experiencing a STEMI, said Dr. O’Neill.
But those who do fit into the population of both STEMI and cardiogenic shock are at very high risk, said Dr. Kapur. “One in three or one in two patients with STEMI and cardiogenic shock will die in hospital.”
Getting Hearts Pumping
The Impella heart pump was originally developed by Impella Cardiosystems in Aachen, Germany, which was acquired by Abiomed in 2005, according to the Abiomed website. And Abiomed was acquired by Johnson & Johnson MedTech in 2022. The company has developed a series of models over the years and said that Impella CP — the model used in DanGer Shock and RECOVER IV trials — is the world’s smallest heart pump.
“Impella is the only heart pump that can be introduced percutaneously through the leg,” said Dr. O’Neill, whereas other pumps available are used only in open-heart surgery. While Impella is the first pump to be used this way, he said it won’t be the last. Other, more powerful pumps are being developed.
DanGer Shock: A Leap Forward
Despite leading to the halt of another trial, the DanGer Shock results are a good news story, said the RECOVER IV investigators.
“The DanGer trial is a huge advance,” said Dr. O’Neill. “It’s the first study this century that shows something that improves survival in cardiogenic shock. You treat eight patients, and you save one life.” Dr. O’Neill said this is one of the best outcomes he has seen during his long career.
Dr. Kapur said the DanGer trial is also a leap forward in designing trials for cardiogenic shock. He said previous trials of mechanical support in cardiogenic shock had neutral results, probably due to broad inclusion criteria for patients.
“The DanGer trial was selective in its inclusion and exclusion criteria. That made it more difficult to enroll the population, so it took a lot longer. But it used the right device at the right time in the right patient, and it was successful,” he said.
“The DanGer investigators need to be applauded,” he added. “The lesson is, we have to design the right trials.”
New Cardiogenic Shock Trials
Dr. O’Neill and Dr. Kapur said the groundwork they laid for RECOVER IV can be used for new trials.
“We have 50 sites in the US, Germany, and Denmark. They’re interested, and they’re waiting,” said Dr. O’Neill. The researchers are poised to begin new trials once protocols are developed.
What will the next trials investigate?
DanGer Shock results showed higher rates of adverse events following Impella use than after standard care. “We need to come up with strategies to decrease bleeding problems and renal failure,” said Dr. O’Neill, and these could be tested in trials.
Other questions he would like to see investigated are using the Impella heart pump before or after angioplasty, and multi-vessel vs culprit-vessel percutaneous coronary intervention in cardiogenic shock with Impella support.
Dr. Kapur mentioned studying patients excluded from the DanGer Shock trial — such as those needing right ventricular support — because DanGer Shock covered only left ventricular support and those suffering cardiac arrest outside hospital. He said trials could compare differences between models of Impella and investigate the role of ECMO.
“I’m optimistic that we can design more randomized controlled trials with the right patient population and right treatment algorithm,” Dr. Kapur said. This is a critical step toward better outcomes for patients, he added. Another step is optimizing the design of heart pumps, which should decrease the rates of adverse events, he said. “I have a lot of optimism for the future of device design.”
A version of this article first appeared on Medscape.com.
An international trial of the Impella heart pump in patients with ST elevation myocardial infarction (STEMI) and cardiogenic shock has been stopped by the sponsor, Abiomed Inc. The termination followed news that another international trial, DanGer Shock, found that the pump improved survival in these patients.
“I was convinced that the study could not continue,” one of the principal investigators William O’Neill, MD, an interventional cardiologist with the Henry Ford Health in Detroit, said in an interview. After 3.5 years of work and thousands of person-hours, he added, “It’s not a decision that people took lightly.”
The trial already had three sites in Europe and one in the United States up and running, with two more US sites slated to join the trial. It had started enrolling patients, although few to date.
DanGer Shock trial results were expected to have a serious effect on how RECOVER IV would unfold. It was previously uncertain whether the Impella heart pump would save lives vs existing approaches, said O’Neill and co-principal investigator Navin Kapur, MD, an interventional cardiologist at Tufts Medical Center in Boston. Once the DanGer Shock trial showed the benefits of using the heart pump, that equipoise vanished.
Loss of Clinical Equipoise
“The clinicians were challenged in getting consent from patients where they had to say, ‘If you are randomized to the control arm, we are not able to use an Impella,’ ” said Dr. Kapur. He pointed out that patients would be unlikely to agree to participate in a trial where they might not get the treatment already shown to improve survival.
Dr. Kapur and Dr. O’Neill said the clinicians participating in the trial expressed discomfort at continuing. The RECOVER IV trial was expected to take many years to enroll the targeted number of patients. To participate, hospitals had to have the equipment and expertise to use the Impella heart pump, as well as the control treatments — balloon-pump support and extracorporeal membrane oxygenation (ECMO), Dr. Kapur explained. He said most patients with STEMI and cardiogenic shock would present to their nearest community hospitals, many of which would not have these treatments and would be unable to participate in the study.
Patients with STEMI and cardiogenic shock are uncommon. About 80,000 patients in the United States each year present with cardiogenic shock, of whom about 40% are not experiencing a STEMI, said Dr. O’Neill.
But those who do fit into the population of both STEMI and cardiogenic shock are at very high risk, said Dr. Kapur. “One in three or one in two patients with STEMI and cardiogenic shock will die in hospital.”
Getting Hearts Pumping
The Impella heart pump was originally developed by Impella Cardiosystems in Aachen, Germany, which was acquired by Abiomed in 2005, according to the Abiomed website. And Abiomed was acquired by Johnson & Johnson MedTech in 2022. The company has developed a series of models over the years and said that Impella CP — the model used in DanGer Shock and RECOVER IV trials — is the world’s smallest heart pump.
“Impella is the only heart pump that can be introduced percutaneously through the leg,” said Dr. O’Neill, whereas other pumps available are used only in open-heart surgery. While Impella is the first pump to be used this way, he said it won’t be the last. Other, more powerful pumps are being developed.
DanGer Shock: A Leap Forward
Despite leading to the halt of another trial, the DanGer Shock results are a good news story, said the RECOVER IV investigators.
“The DanGer trial is a huge advance,” said Dr. O’Neill. “It’s the first study this century that shows something that improves survival in cardiogenic shock. You treat eight patients, and you save one life.” Dr. O’Neill said this is one of the best outcomes he has seen during his long career.
Dr. Kapur said the DanGer trial is also a leap forward in designing trials for cardiogenic shock. He said previous trials of mechanical support in cardiogenic shock had neutral results, probably due to broad inclusion criteria for patients.
“The DanGer trial was selective in its inclusion and exclusion criteria. That made it more difficult to enroll the population, so it took a lot longer. But it used the right device at the right time in the right patient, and it was successful,” he said.
“The DanGer investigators need to be applauded,” he added. “The lesson is, we have to design the right trials.”
New Cardiogenic Shock Trials
Dr. O’Neill and Dr. Kapur said the groundwork they laid for RECOVER IV can be used for new trials.
“We have 50 sites in the US, Germany, and Denmark. They’re interested, and they’re waiting,” said Dr. O’Neill. The researchers are poised to begin new trials once protocols are developed.
What will the next trials investigate?
DanGer Shock results showed higher rates of adverse events following Impella use than after standard care. “We need to come up with strategies to decrease bleeding problems and renal failure,” said Dr. O’Neill, and these could be tested in trials.
Other questions he would like to see investigated are using the Impella heart pump before or after angioplasty, and multi-vessel vs culprit-vessel percutaneous coronary intervention in cardiogenic shock with Impella support.
Dr. Kapur mentioned studying patients excluded from the DanGer Shock trial — such as those needing right ventricular support — because DanGer Shock covered only left ventricular support and those suffering cardiac arrest outside hospital. He said trials could compare differences between models of Impella and investigate the role of ECMO.
“I’m optimistic that we can design more randomized controlled trials with the right patient population and right treatment algorithm,” Dr. Kapur said. This is a critical step toward better outcomes for patients, he added. Another step is optimizing the design of heart pumps, which should decrease the rates of adverse events, he said. “I have a lot of optimism for the future of device design.”
A version of this article first appeared on Medscape.com.
The Tyranny of Beta-Blockers
Beta-blockers are excellent drugs. They’re cheap and effective; feature prominently in hypertension guidelines; and remain a sine qua non for coronary artery disease, myocardial infarction, and heart failure treatment. They’ve been around forever, and we know they work. Good luck finding an adult medicine patient who isn’t on one.
Beta-blockers act by slowing resting heart rate (and blunting the heart rate response to exercise. The latter is a pernicious cause of activity intolerance that often goes unchecked. Even when the adverse effects of beta-blockers are appreciated, providers are loath to alter dosing, much less stop the drug. After all, beta-blockers are an integral part of guideline-directed medical therapy (GDMT), and GDMT saves lives.
Balancing Heart Rate and Stroke Volume Effects
chronotropic incompetence (CI). That’s what beta-blockers do ─ they cause CI.
To augment cardiac output and optimize oxygen uptake (VO2) during exercise, we need the heart rate response. In fact, the heart rate response contributes more to cardiac output than augmenting stroke volume (SV) and more to VO2 than the increase in arteriovenous (AV) oxygen difference. An inability to increase the heart rate commensurate with physiologic work is calledPhysiology dictates that CI will cause activity intolerance. That said, it’s hard to quantify the impact from beta-blockers at the individual patient level. Data suggest the heart rate effect is profound. A study in patients without heart failure found that 22% of participants on beta-blockers had CI, and the investigators used a conservative CI definition (≤ 62% of heart rate reserve used). A recent report published in JAMA Cardiology found that stopping beta-blockers in patients with heart failure allowed for an extra 30 beats/min at max exercise.
Wasserman and Whipp’s textbook, the last word on all things exercise, presents a sample subject who undergoes two separate cardiopulmonary exercise tests (CPETs). Before the first, he’s given a placebo, and before the second, he gets an intravenous beta-blocker. He’s a 23-year-old otherwise healthy male — the perfect test case for isolating beta-blocker impact without confounding by comorbid diseases, other medications, or deconditioning. His max heart rate dropped by 30 beats/min after the beta-blocker, identical to what we saw in the JAMA Cardiology study (with the heart rate increasing by 30 beats/min following withdrawal). Case closed. Stop the beta-blockers on your patients so they can meet their exercise goals and get healthy!
Such pithy enthusiasm discounts physiology’s complexities. When blunting our patient’s heart rate response with beta-blockers, we also increase diastolic filling time, which increases SV. For the 23-year-old in Wasserman and Whipp’s physiology textbook, the beta-blocker increased O2 pulse (the product of SV and AV difference). Presumably, this is mediated by the increased SV. There was a net reduction in VO2 peak, but it was nominal, suggesting that the drop in heart rate was largely offset by the increase in O2 pulse. For the patients in the JAMA Cardiology study, the entire group had a small increase in VO2 peak with beta-blocker withdrawal, but the effect differed by left ventricular function. Across different studies, the beta-blocker effect on heart rate is consistent but the change in overall exercise capacity is not.
Patient Variability in Beta-Blocker Response
In addition to left ventricular function, there are other factors likely to drive variability at the patient level. We’ve treated the response to beta-blockers as a class effect — an obvious oversimplification. The impact on exercise and the heart will vary by dose and drug (eg, atenolol vs metoprolol vs carvedilol, and so on). Beta-blockers can also affect the lungs, and we’re still debating how cautious to be in the presence of asthma or chronic obstructive pulmonary disease.
In a world of infinite time, resources, and expertise, we’d CPET everyone before and after beta-blocker use. Our current reality requires the unthinkable: We’ll have to talk to each other and our patients. For example, heart failure guidelines recommend titrating drugs to match the dose from trials that proved efficacy. These doses are quite high. Simple discussion with the cardiologist and the patient may allow for an adjustment back down with careful monitoring and close attention to activity tolerance. With any luck, you’ll preserve the benefits from GDMT while optimizing your patient›s ability to meet their exercise goals.
Dr. Holley, professor in the department of medicine, Uniformed Services University, Bethesda, Maryland, and a pulmonary/sleep and critical care medicine physician at MedStar Washington Hospital Center, Washington, disclosed ties with Metapharm, CHEST College, and WebMD.
A version of this article appeared on Medscape.com.
Beta-blockers are excellent drugs. They’re cheap and effective; feature prominently in hypertension guidelines; and remain a sine qua non for coronary artery disease, myocardial infarction, and heart failure treatment. They’ve been around forever, and we know they work. Good luck finding an adult medicine patient who isn’t on one.
Beta-blockers act by slowing resting heart rate (and blunting the heart rate response to exercise. The latter is a pernicious cause of activity intolerance that often goes unchecked. Even when the adverse effects of beta-blockers are appreciated, providers are loath to alter dosing, much less stop the drug. After all, beta-blockers are an integral part of guideline-directed medical therapy (GDMT), and GDMT saves lives.
Balancing Heart Rate and Stroke Volume Effects
chronotropic incompetence (CI). That’s what beta-blockers do ─ they cause CI.
To augment cardiac output and optimize oxygen uptake (VO2) during exercise, we need the heart rate response. In fact, the heart rate response contributes more to cardiac output than augmenting stroke volume (SV) and more to VO2 than the increase in arteriovenous (AV) oxygen difference. An inability to increase the heart rate commensurate with physiologic work is calledPhysiology dictates that CI will cause activity intolerance. That said, it’s hard to quantify the impact from beta-blockers at the individual patient level. Data suggest the heart rate effect is profound. A study in patients without heart failure found that 22% of participants on beta-blockers had CI, and the investigators used a conservative CI definition (≤ 62% of heart rate reserve used). A recent report published in JAMA Cardiology found that stopping beta-blockers in patients with heart failure allowed for an extra 30 beats/min at max exercise.
Wasserman and Whipp’s textbook, the last word on all things exercise, presents a sample subject who undergoes two separate cardiopulmonary exercise tests (CPETs). Before the first, he’s given a placebo, and before the second, he gets an intravenous beta-blocker. He’s a 23-year-old otherwise healthy male — the perfect test case for isolating beta-blocker impact without confounding by comorbid diseases, other medications, or deconditioning. His max heart rate dropped by 30 beats/min after the beta-blocker, identical to what we saw in the JAMA Cardiology study (with the heart rate increasing by 30 beats/min following withdrawal). Case closed. Stop the beta-blockers on your patients so they can meet their exercise goals and get healthy!
Such pithy enthusiasm discounts physiology’s complexities. When blunting our patient’s heart rate response with beta-blockers, we also increase diastolic filling time, which increases SV. For the 23-year-old in Wasserman and Whipp’s physiology textbook, the beta-blocker increased O2 pulse (the product of SV and AV difference). Presumably, this is mediated by the increased SV. There was a net reduction in VO2 peak, but it was nominal, suggesting that the drop in heart rate was largely offset by the increase in O2 pulse. For the patients in the JAMA Cardiology study, the entire group had a small increase in VO2 peak with beta-blocker withdrawal, but the effect differed by left ventricular function. Across different studies, the beta-blocker effect on heart rate is consistent but the change in overall exercise capacity is not.
Patient Variability in Beta-Blocker Response
In addition to left ventricular function, there are other factors likely to drive variability at the patient level. We’ve treated the response to beta-blockers as a class effect — an obvious oversimplification. The impact on exercise and the heart will vary by dose and drug (eg, atenolol vs metoprolol vs carvedilol, and so on). Beta-blockers can also affect the lungs, and we’re still debating how cautious to be in the presence of asthma or chronic obstructive pulmonary disease.
In a world of infinite time, resources, and expertise, we’d CPET everyone before and after beta-blocker use. Our current reality requires the unthinkable: We’ll have to talk to each other and our patients. For example, heart failure guidelines recommend titrating drugs to match the dose from trials that proved efficacy. These doses are quite high. Simple discussion with the cardiologist and the patient may allow for an adjustment back down with careful monitoring and close attention to activity tolerance. With any luck, you’ll preserve the benefits from GDMT while optimizing your patient›s ability to meet their exercise goals.
Dr. Holley, professor in the department of medicine, Uniformed Services University, Bethesda, Maryland, and a pulmonary/sleep and critical care medicine physician at MedStar Washington Hospital Center, Washington, disclosed ties with Metapharm, CHEST College, and WebMD.
A version of this article appeared on Medscape.com.
Beta-blockers are excellent drugs. They’re cheap and effective; feature prominently in hypertension guidelines; and remain a sine qua non for coronary artery disease, myocardial infarction, and heart failure treatment. They’ve been around forever, and we know they work. Good luck finding an adult medicine patient who isn’t on one.
Beta-blockers act by slowing resting heart rate (and blunting the heart rate response to exercise. The latter is a pernicious cause of activity intolerance that often goes unchecked. Even when the adverse effects of beta-blockers are appreciated, providers are loath to alter dosing, much less stop the drug. After all, beta-blockers are an integral part of guideline-directed medical therapy (GDMT), and GDMT saves lives.
Balancing Heart Rate and Stroke Volume Effects
chronotropic incompetence (CI). That’s what beta-blockers do ─ they cause CI.
To augment cardiac output and optimize oxygen uptake (VO2) during exercise, we need the heart rate response. In fact, the heart rate response contributes more to cardiac output than augmenting stroke volume (SV) and more to VO2 than the increase in arteriovenous (AV) oxygen difference. An inability to increase the heart rate commensurate with physiologic work is calledPhysiology dictates that CI will cause activity intolerance. That said, it’s hard to quantify the impact from beta-blockers at the individual patient level. Data suggest the heart rate effect is profound. A study in patients without heart failure found that 22% of participants on beta-blockers had CI, and the investigators used a conservative CI definition (≤ 62% of heart rate reserve used). A recent report published in JAMA Cardiology found that stopping beta-blockers in patients with heart failure allowed for an extra 30 beats/min at max exercise.
Wasserman and Whipp’s textbook, the last word on all things exercise, presents a sample subject who undergoes two separate cardiopulmonary exercise tests (CPETs). Before the first, he’s given a placebo, and before the second, he gets an intravenous beta-blocker. He’s a 23-year-old otherwise healthy male — the perfect test case for isolating beta-blocker impact without confounding by comorbid diseases, other medications, or deconditioning. His max heart rate dropped by 30 beats/min after the beta-blocker, identical to what we saw in the JAMA Cardiology study (with the heart rate increasing by 30 beats/min following withdrawal). Case closed. Stop the beta-blockers on your patients so they can meet their exercise goals and get healthy!
Such pithy enthusiasm discounts physiology’s complexities. When blunting our patient’s heart rate response with beta-blockers, we also increase diastolic filling time, which increases SV. For the 23-year-old in Wasserman and Whipp’s physiology textbook, the beta-blocker increased O2 pulse (the product of SV and AV difference). Presumably, this is mediated by the increased SV. There was a net reduction in VO2 peak, but it was nominal, suggesting that the drop in heart rate was largely offset by the increase in O2 pulse. For the patients in the JAMA Cardiology study, the entire group had a small increase in VO2 peak with beta-blocker withdrawal, but the effect differed by left ventricular function. Across different studies, the beta-blocker effect on heart rate is consistent but the change in overall exercise capacity is not.
Patient Variability in Beta-Blocker Response
In addition to left ventricular function, there are other factors likely to drive variability at the patient level. We’ve treated the response to beta-blockers as a class effect — an obvious oversimplification. The impact on exercise and the heart will vary by dose and drug (eg, atenolol vs metoprolol vs carvedilol, and so on). Beta-blockers can also affect the lungs, and we’re still debating how cautious to be in the presence of asthma or chronic obstructive pulmonary disease.
In a world of infinite time, resources, and expertise, we’d CPET everyone before and after beta-blocker use. Our current reality requires the unthinkable: We’ll have to talk to each other and our patients. For example, heart failure guidelines recommend titrating drugs to match the dose from trials that proved efficacy. These doses are quite high. Simple discussion with the cardiologist and the patient may allow for an adjustment back down with careful monitoring and close attention to activity tolerance. With any luck, you’ll preserve the benefits from GDMT while optimizing your patient›s ability to meet their exercise goals.
Dr. Holley, professor in the department of medicine, Uniformed Services University, Bethesda, Maryland, and a pulmonary/sleep and critical care medicine physician at MedStar Washington Hospital Center, Washington, disclosed ties with Metapharm, CHEST College, and WebMD.
A version of this article appeared on Medscape.com.
Narcolepsy an Independent Cardiovascular Disease Risk Factor
HOUSTON — Narcolepsy is associated with a significantly increased risk for cardiovascular disease (CVD) and major adverse cardiac events (MACEs), independent of common comorbid conditions and medications commonly used to treat the chronic sleep disorder, according to two new studies.
A nationwide analysis revealed that people with narcolepsy had a 77% higher risk for CVD and an 82% higher risk for MACE than those without the disorder.
“These findings indicate that it is important for clinicians to regularly monitor patients for cardiovascular disease and take this into consideration when recommending specific treatments for narcolepsy,” study investigators Christopher Kaufmann, PhD; Munaza Riaz, PharmD, MPhil; and Rakesh Bhattacharjee, MD, told this news organization.
“Additionally, physicians should consider monitoring the presence of other health conditions as contributing factors to the risk of CVD,” they said. Dr. Kaufmann and Dr. Riaz are with the University of Florida, Gainesville, Florida, and Dr. Bhattacharjee is with the University of California, San Diego.
They presented their research at SLEEP 2024: 38th Annual Meeting of the Associated Professional Sleep Societies.
Independent Risk Factor
The National Institute of Neurological Disorders and Stroke reports an estimated 125,000 to 200,000 people in the United States live with narcolepsy. The condition often coexists with other common health conditions including obstructive sleep apnea (OSA), diabetes, and other comorbidities, which can all contribute to the risk for CVD.
This raises doubt as to whether narcolepsy itself directly leads to CVD or if it is the result of these comorbid health conditions. Additionally, some medications used to treat narcolepsy carry their own cardiovascular risks.
Using the IBM MarketScan Commercial and Medicare supplemental databases, the researchers identified 34,562 adults with a diagnosis of narcolepsy and a propensity-matched comparison cohort of 100,405 adults without narcolepsy. The patients had a mean age of 40 years, and 62% were women.
Compared with adults without narcolepsy, those with the chronic sleep disorder that causes overwhelming daytime drowsiness had a 77% increased risk for any CVD (hazard ratio [HR], 1.77) and an 82% increased risk for MACE (HR, 1.82).
They also had an increased risk for stroke (HR, 2.04), heart failure or myocardial infarction (MI; HR, 1.64), and atrial fibrillation (HR, 1.58).
The results were similar in a separate analysis of the same population that also controlled for baseline use of stimulants, oxybates, and wake-promoting agents — medications commonly used to treat excessive daytime sleepiness associated with narcolepsy.
In this analysis, narcolepsy was associated with an 89% higher risk for CVD (HR, 1.89) and a 95% increased risk for MACE (HR, 1.95). The risk for any stroke (HR, 2.06), heart failure (HR, 1.90), atrial fibrillation (HR, 1.66), and MI (HR, 1.93) was also higher in those with narcolepsy.
“Our study found that even after considering the presence of health conditions like obstructive sleep apnea, diabetes, hypertension, hyperlipidemia, and even depression, as well as medication use, there still appears to be an independent relationship between narcolepsy and CVD,” the investigators said.
They cautioned that the mechanisms explaining the link between CVD and narcolepsy are unclear and warrant further study.
“Sleep fragmentation is a hallmark of narcolepsy, and it is speculated that this fragmentation, which may trigger disturbances in autonomic function, predisposes individuals to CVD. In rodent models, a possible link has been observed between hypocretin — a central neurotransmitter that is reduced or deficient in patients with narcolepsy — and atherosclerosis.
“However, it remains uncertain whether this is the primary mechanism related to CVD,” they commented.
Compelling Evidence for Higher CVD
Commenting on the findings for this news organization, Shaheen Lakhan, MD, a neurologist and researcher based in Miami, Florida, called for narcolepsy to be recognized as a significant contributor to higher CVD risk.
“Given the compelling evidence linking narcolepsy to a higher incidence of cardiovascular disease, it is crucial that narcolepsy be included in clinical guidelines and risk assessment tools alongside other known risk factors,” said Dr. Lakhan, who was not involved in this research.
“Physicians and health care providers should proactively address the increased cardiovascular risk associated with narcolepsy by incorporating preventive strategies and interventions into the management of patients with this condition,” Dr. Lakhan suggested.
Regular CVD screening, a healthier lifestyle, and targeted therapies could all decrease cardiac risk, Dr. Lakhan added.
“Ultimately, novel disease-modifying therapies for narcolepsy should target the core mechanisms driving the increased cardiovascular risk associated with this condition. By elucidating the specific biological pathways and developing targeted therapies that address the unique challenges faced by narcolepsy patients, we can effectively mitigate the risk,” Dr. Lakhan said.
The studies were funded by the Sleep Research Society Foundation. The authors and Dr. Lakhan had no relevant disclosures.
A version of this article appeared on Medscape.com.
HOUSTON — Narcolepsy is associated with a significantly increased risk for cardiovascular disease (CVD) and major adverse cardiac events (MACEs), independent of common comorbid conditions and medications commonly used to treat the chronic sleep disorder, according to two new studies.
A nationwide analysis revealed that people with narcolepsy had a 77% higher risk for CVD and an 82% higher risk for MACE than those without the disorder.
“These findings indicate that it is important for clinicians to regularly monitor patients for cardiovascular disease and take this into consideration when recommending specific treatments for narcolepsy,” study investigators Christopher Kaufmann, PhD; Munaza Riaz, PharmD, MPhil; and Rakesh Bhattacharjee, MD, told this news organization.
“Additionally, physicians should consider monitoring the presence of other health conditions as contributing factors to the risk of CVD,” they said. Dr. Kaufmann and Dr. Riaz are with the University of Florida, Gainesville, Florida, and Dr. Bhattacharjee is with the University of California, San Diego.
They presented their research at SLEEP 2024: 38th Annual Meeting of the Associated Professional Sleep Societies.
Independent Risk Factor
The National Institute of Neurological Disorders and Stroke reports an estimated 125,000 to 200,000 people in the United States live with narcolepsy. The condition often coexists with other common health conditions including obstructive sleep apnea (OSA), diabetes, and other comorbidities, which can all contribute to the risk for CVD.
This raises doubt as to whether narcolepsy itself directly leads to CVD or if it is the result of these comorbid health conditions. Additionally, some medications used to treat narcolepsy carry their own cardiovascular risks.
Using the IBM MarketScan Commercial and Medicare supplemental databases, the researchers identified 34,562 adults with a diagnosis of narcolepsy and a propensity-matched comparison cohort of 100,405 adults without narcolepsy. The patients had a mean age of 40 years, and 62% were women.
Compared with adults without narcolepsy, those with the chronic sleep disorder that causes overwhelming daytime drowsiness had a 77% increased risk for any CVD (hazard ratio [HR], 1.77) and an 82% increased risk for MACE (HR, 1.82).
They also had an increased risk for stroke (HR, 2.04), heart failure or myocardial infarction (MI; HR, 1.64), and atrial fibrillation (HR, 1.58).
The results were similar in a separate analysis of the same population that also controlled for baseline use of stimulants, oxybates, and wake-promoting agents — medications commonly used to treat excessive daytime sleepiness associated with narcolepsy.
In this analysis, narcolepsy was associated with an 89% higher risk for CVD (HR, 1.89) and a 95% increased risk for MACE (HR, 1.95). The risk for any stroke (HR, 2.06), heart failure (HR, 1.90), atrial fibrillation (HR, 1.66), and MI (HR, 1.93) was also higher in those with narcolepsy.
“Our study found that even after considering the presence of health conditions like obstructive sleep apnea, diabetes, hypertension, hyperlipidemia, and even depression, as well as medication use, there still appears to be an independent relationship between narcolepsy and CVD,” the investigators said.
They cautioned that the mechanisms explaining the link between CVD and narcolepsy are unclear and warrant further study.
“Sleep fragmentation is a hallmark of narcolepsy, and it is speculated that this fragmentation, which may trigger disturbances in autonomic function, predisposes individuals to CVD. In rodent models, a possible link has been observed between hypocretin — a central neurotransmitter that is reduced or deficient in patients with narcolepsy — and atherosclerosis.
“However, it remains uncertain whether this is the primary mechanism related to CVD,” they commented.
Compelling Evidence for Higher CVD
Commenting on the findings for this news organization, Shaheen Lakhan, MD, a neurologist and researcher based in Miami, Florida, called for narcolepsy to be recognized as a significant contributor to higher CVD risk.
“Given the compelling evidence linking narcolepsy to a higher incidence of cardiovascular disease, it is crucial that narcolepsy be included in clinical guidelines and risk assessment tools alongside other known risk factors,” said Dr. Lakhan, who was not involved in this research.
“Physicians and health care providers should proactively address the increased cardiovascular risk associated with narcolepsy by incorporating preventive strategies and interventions into the management of patients with this condition,” Dr. Lakhan suggested.
Regular CVD screening, a healthier lifestyle, and targeted therapies could all decrease cardiac risk, Dr. Lakhan added.
“Ultimately, novel disease-modifying therapies for narcolepsy should target the core mechanisms driving the increased cardiovascular risk associated with this condition. By elucidating the specific biological pathways and developing targeted therapies that address the unique challenges faced by narcolepsy patients, we can effectively mitigate the risk,” Dr. Lakhan said.
The studies were funded by the Sleep Research Society Foundation. The authors and Dr. Lakhan had no relevant disclosures.
A version of this article appeared on Medscape.com.
HOUSTON — Narcolepsy is associated with a significantly increased risk for cardiovascular disease (CVD) and major adverse cardiac events (MACEs), independent of common comorbid conditions and medications commonly used to treat the chronic sleep disorder, according to two new studies.
A nationwide analysis revealed that people with narcolepsy had a 77% higher risk for CVD and an 82% higher risk for MACE than those without the disorder.
“These findings indicate that it is important for clinicians to regularly monitor patients for cardiovascular disease and take this into consideration when recommending specific treatments for narcolepsy,” study investigators Christopher Kaufmann, PhD; Munaza Riaz, PharmD, MPhil; and Rakesh Bhattacharjee, MD, told this news organization.
“Additionally, physicians should consider monitoring the presence of other health conditions as contributing factors to the risk of CVD,” they said. Dr. Kaufmann and Dr. Riaz are with the University of Florida, Gainesville, Florida, and Dr. Bhattacharjee is with the University of California, San Diego.
They presented their research at SLEEP 2024: 38th Annual Meeting of the Associated Professional Sleep Societies.
Independent Risk Factor
The National Institute of Neurological Disorders and Stroke reports an estimated 125,000 to 200,000 people in the United States live with narcolepsy. The condition often coexists with other common health conditions including obstructive sleep apnea (OSA), diabetes, and other comorbidities, which can all contribute to the risk for CVD.
This raises doubt as to whether narcolepsy itself directly leads to CVD or if it is the result of these comorbid health conditions. Additionally, some medications used to treat narcolepsy carry their own cardiovascular risks.
Using the IBM MarketScan Commercial and Medicare supplemental databases, the researchers identified 34,562 adults with a diagnosis of narcolepsy and a propensity-matched comparison cohort of 100,405 adults without narcolepsy. The patients had a mean age of 40 years, and 62% were women.
Compared with adults without narcolepsy, those with the chronic sleep disorder that causes overwhelming daytime drowsiness had a 77% increased risk for any CVD (hazard ratio [HR], 1.77) and an 82% increased risk for MACE (HR, 1.82).
They also had an increased risk for stroke (HR, 2.04), heart failure or myocardial infarction (MI; HR, 1.64), and atrial fibrillation (HR, 1.58).
The results were similar in a separate analysis of the same population that also controlled for baseline use of stimulants, oxybates, and wake-promoting agents — medications commonly used to treat excessive daytime sleepiness associated with narcolepsy.
In this analysis, narcolepsy was associated with an 89% higher risk for CVD (HR, 1.89) and a 95% increased risk for MACE (HR, 1.95). The risk for any stroke (HR, 2.06), heart failure (HR, 1.90), atrial fibrillation (HR, 1.66), and MI (HR, 1.93) was also higher in those with narcolepsy.
“Our study found that even after considering the presence of health conditions like obstructive sleep apnea, diabetes, hypertension, hyperlipidemia, and even depression, as well as medication use, there still appears to be an independent relationship between narcolepsy and CVD,” the investigators said.
They cautioned that the mechanisms explaining the link between CVD and narcolepsy are unclear and warrant further study.
“Sleep fragmentation is a hallmark of narcolepsy, and it is speculated that this fragmentation, which may trigger disturbances in autonomic function, predisposes individuals to CVD. In rodent models, a possible link has been observed between hypocretin — a central neurotransmitter that is reduced or deficient in patients with narcolepsy — and atherosclerosis.
“However, it remains uncertain whether this is the primary mechanism related to CVD,” they commented.
Compelling Evidence for Higher CVD
Commenting on the findings for this news organization, Shaheen Lakhan, MD, a neurologist and researcher based in Miami, Florida, called for narcolepsy to be recognized as a significant contributor to higher CVD risk.
“Given the compelling evidence linking narcolepsy to a higher incidence of cardiovascular disease, it is crucial that narcolepsy be included in clinical guidelines and risk assessment tools alongside other known risk factors,” said Dr. Lakhan, who was not involved in this research.
“Physicians and health care providers should proactively address the increased cardiovascular risk associated with narcolepsy by incorporating preventive strategies and interventions into the management of patients with this condition,” Dr. Lakhan suggested.
Regular CVD screening, a healthier lifestyle, and targeted therapies could all decrease cardiac risk, Dr. Lakhan added.
“Ultimately, novel disease-modifying therapies for narcolepsy should target the core mechanisms driving the increased cardiovascular risk associated with this condition. By elucidating the specific biological pathways and developing targeted therapies that address the unique challenges faced by narcolepsy patients, we can effectively mitigate the risk,” Dr. Lakhan said.
The studies were funded by the Sleep Research Society Foundation. The authors and Dr. Lakhan had no relevant disclosures.
A version of this article appeared on Medscape.com.
FROM SLEEP 2024
Sugar Substitute Tied to Higher Risk for Heart Attack, Stroke
High levels of xylitol, a low-calorie sweetener used in many reduced-sugar foods as well as gum and toothpaste, are linked to an increased risk of heart attacks, strokes, and death, says a new study published in the European Heart Journal.
The research team studied more than 3000 people in the US and Europe over 3 years and found that people with the highest amount of xylitol in their plasma were more likely to have a problem with their heart or blood vessels.
To show the early effects of xylitol, researchers studied platelet activity in volunteers who consumed a xylitol-sweetened drink and a glucose-sweetened drink. The xylitol levels went up by 1000 times in people after the xylitol drink but not after the glucose-sweetened drink.
Xylitol is naturally found in small amounts in fruit and vegetables, and it’s been used more as a sugar substitute over the past decade in processed foods, toothpaste, chewing gum, and other products.
“This study again shows the immediate need for investigating sugar alcohols and artificial sweeteners, especially as they continue to be recommended in combating conditions like obesity or diabetes,” Stanley Hazen, MD, chair of the Department of Cardiovascular and Metabolic Sciences at Cleveland Clinic’s Lerner Research Institute, Cleveland, Ohio, said in a news release.
“It does not mean throw out your toothpaste if it has xylitol in it, but we should be aware that consumption of a product containing high levels could increase the risk of blood clot-related events.”
A similar link between erythritol, another sugar substance, and problems with the heart and blood vessels was found last year by the same research team, the release said.
In a response to the study, the Calorie Control Council, a trade association representing the low- and reduced-calorie food and beverage industry, said xylitol has been approved for decades by government agencies. The study results may not apply to the general population because some people in the study already had a higher risk of having problems with their heart and blood vessels, it said.
A version of this article first appeared on WebMD.com.
High levels of xylitol, a low-calorie sweetener used in many reduced-sugar foods as well as gum and toothpaste, are linked to an increased risk of heart attacks, strokes, and death, says a new study published in the European Heart Journal.
The research team studied more than 3000 people in the US and Europe over 3 years and found that people with the highest amount of xylitol in their plasma were more likely to have a problem with their heart or blood vessels.
To show the early effects of xylitol, researchers studied platelet activity in volunteers who consumed a xylitol-sweetened drink and a glucose-sweetened drink. The xylitol levels went up by 1000 times in people after the xylitol drink but not after the glucose-sweetened drink.
Xylitol is naturally found in small amounts in fruit and vegetables, and it’s been used more as a sugar substitute over the past decade in processed foods, toothpaste, chewing gum, and other products.
“This study again shows the immediate need for investigating sugar alcohols and artificial sweeteners, especially as they continue to be recommended in combating conditions like obesity or diabetes,” Stanley Hazen, MD, chair of the Department of Cardiovascular and Metabolic Sciences at Cleveland Clinic’s Lerner Research Institute, Cleveland, Ohio, said in a news release.
“It does not mean throw out your toothpaste if it has xylitol in it, but we should be aware that consumption of a product containing high levels could increase the risk of blood clot-related events.”
A similar link between erythritol, another sugar substance, and problems with the heart and blood vessels was found last year by the same research team, the release said.
In a response to the study, the Calorie Control Council, a trade association representing the low- and reduced-calorie food and beverage industry, said xylitol has been approved for decades by government agencies. The study results may not apply to the general population because some people in the study already had a higher risk of having problems with their heart and blood vessels, it said.
A version of this article first appeared on WebMD.com.
High levels of xylitol, a low-calorie sweetener used in many reduced-sugar foods as well as gum and toothpaste, are linked to an increased risk of heart attacks, strokes, and death, says a new study published in the European Heart Journal.
The research team studied more than 3000 people in the US and Europe over 3 years and found that people with the highest amount of xylitol in their plasma were more likely to have a problem with their heart or blood vessels.
To show the early effects of xylitol, researchers studied platelet activity in volunteers who consumed a xylitol-sweetened drink and a glucose-sweetened drink. The xylitol levels went up by 1000 times in people after the xylitol drink but not after the glucose-sweetened drink.
Xylitol is naturally found in small amounts in fruit and vegetables, and it’s been used more as a sugar substitute over the past decade in processed foods, toothpaste, chewing gum, and other products.
“This study again shows the immediate need for investigating sugar alcohols and artificial sweeteners, especially as they continue to be recommended in combating conditions like obesity or diabetes,” Stanley Hazen, MD, chair of the Department of Cardiovascular and Metabolic Sciences at Cleveland Clinic’s Lerner Research Institute, Cleveland, Ohio, said in a news release.
“It does not mean throw out your toothpaste if it has xylitol in it, but we should be aware that consumption of a product containing high levels could increase the risk of blood clot-related events.”
A similar link between erythritol, another sugar substance, and problems with the heart and blood vessels was found last year by the same research team, the release said.
In a response to the study, the Calorie Control Council, a trade association representing the low- and reduced-calorie food and beverage industry, said xylitol has been approved for decades by government agencies. The study results may not apply to the general population because some people in the study already had a higher risk of having problems with their heart and blood vessels, it said.
A version of this article first appeared on WebMD.com.
Is Semaglutide the ‘New Statin’? Not So Fast
There has been much hyperbole since the presentation of results from the SELECT cardiovascular outcomes trial (CVOT) at this year’s European Congress on Obesity, which led many to herald semaglutide as the “new statin.”
In the SELECT CVOT, participants with overweight or obesity (body mass index [BMI] ≥ 27), established cardiovascular disease (CVD), and no history of type 2 diabetes were administered the injectable glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide (Wegovy) at a 2.4-mg dose weekly. Treatment resulted in a significant 20% relative risk reduction in major adverse CV events (a composite endpoint comprising CV death, nonfatal myocardial infarction, or nonfatal stroke). Importantly, SELECT was a trial on secondary prevention of CVD.
The CV benefits of semaglutide were notably independent of baseline weight or amount of weight lost. This suggests that the underlying driver of improved CV outcomes with semaglutide extends beyond simple reduction in obesity and perhaps indicates a direct effect on vasculature and reduction in atherosclerosis, although this remains unproven.
Not All Risk Reduction Is Equal
Much of the sensationalist coverage in the lay press focused on the 20% relative risk reduction figure. This endpoint is often more impressive and headline-grabbing than the absolute risk reduction, which provides a clearer view of a treatment’s real-world impact.
In SELECT, the absolute risk reduction was 1.5 percentage points, which translated into a number needed to treat (NNT) of 67 over 34 months to prevent one primary outcome of a major adverse CV event.
Lower NNTs suggest more effective treatments because fewer people need to be treated to prevent one clinical event, such as the major adverse CV events used in SELECT.
Semaglutide vs Statins
How does the clinical effectiveness observed in the SELECT trial compare with that observed in statin trials when it comes to the secondary prevention of CVD?
The seminal 4S study published in 1994 explored the impact of simvastatin on all-cause mortality among people with previous myocardial infarction or angina and hyperlipidemia (mean baseline BMI, 26). After 5.4 years of follow-up, the trial was stopped early owing to a 3.3-percentage point absolute risk reduction in all-cause mortality (NNT, 30; relative risk reduction, 28%). The NNT to prevent one death from CV causes was 31, and the NNT to prevent one major coronary event was lower, at 15.
Other statin secondary prevention trials, such as the LIPID and MIRACL studies, demonstrated similarly low NNTs.
So, you can see that the NNTs for statins in secondary prevention are much lower than with semaglutide in SELECT. Furthermore, the benefits of semaglutide in preventing CVD in people living with overweight/obesity have yet to be elucidated.
In contrast, we already have published evidence showing the benefits of statins in the primary prevention of CVD, albeit with higher and more variable NNTs than in the statin secondary prevention studies.
The benefits of statins are also postulated to extend beyond their impact on lowering low-density lipoprotein cholesterol. Statins have been suggested to have anti-inflammatory and plaque-stabilizing effects, among other pleiotropic benefits.
We also currently lack evidence for the cost-effectiveness of semaglutide for CV risk reduction. Assessing economic viability and use in health care systems, such as the UK’s National Health Service, involves comparing the cost of semaglutide against the health care savings from prevented CV events. Health economic studies are vital to determine whether the benefits justify the expense. In contrast, the cost-effectiveness of statins is well established, particularly for high-risk individuals.
Advantages of GLP-1s Should Not Be Overlooked
Of course, statins don’t provide the significant weight loss benefits of semaglutide.
Additional data from SELECT presented at the 2024 European Congress on Obesity demonstrated that participants lost a mean of 10.2% body weight and 7.7 cm from their waist circumference after 4 years. Moreover, after 2 years, 12% of individuals randomized to semaglutide had returned to a normal BMI, and nearly half were no longer living with obesity.
Although the CV benefits of semaglutide were independent of weight reduction, this level of weight loss is clinically meaningful and will reduce the risk of many other cardiometabolic conditions including type 2 diabetes, metabolic dysfunction–associated steatotic liver disease, and obstructive sleep apnea/hypopnea syndrome, as well as improve low mood, depression, and overall quality of life. Additionally, obesity is now a risk factor for 13 different types of cancer, including bowel, breast, and pancreatic cancer, so facilitating a return to a healthier body weight will also mitigate future risk for cancer.
Sticking With Our Cornerstone Therapy, For Now
In conclusion, I do not believe that semaglutide is the “new statin.” Statins are the cornerstone of primary and secondary prevention of CVD in a wide range of comorbidities, as evidenced in multiple large and high-quality trials dating back over 30 years.
However, there is no doubt that the GLP-1 receptor agonist class is the most significant therapeutic advance for the management of obesity and comorbidities to date.
The SELECT CVOT data uniquely position semaglutide as a secondary CVD prevention agent on top of guideline-driven management for people living with overweight/obesity and established CVD. Additionally, the clinically meaningful weight loss achieved with semaglutide will impact the risk of developing many other cardiometabolic conditions, as well as improve mental health and overall quality of life.
Dr. Fernando, GP Partner, North Berwick Health Centre, North Berwick, Scotland, creates concise clinical aide-mémoire for primary and secondary care to make life easier for health care professionals and ultimately to improve the lives of patients. He is very active on social media (X handle @drkevinfernando), where he posts hot topics in type 2 diabetes and CVRM. He recently has forayed into YouTube (@DrKevinFernando) and TikTok (@drkevinfernando) with patient-facing video content. Dr. Fernando has been elected to Fellowship of the Royal College of General Practitioners, the Royal College of Physicians of Edinburgh, and the Academy of Medical Educators for his work in diabetes and medical education. He has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo; received income in an amount equal to or greater than $250 from AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo.
A version of this article first appeared on Medscape.com.
There has been much hyperbole since the presentation of results from the SELECT cardiovascular outcomes trial (CVOT) at this year’s European Congress on Obesity, which led many to herald semaglutide as the “new statin.”
In the SELECT CVOT, participants with overweight or obesity (body mass index [BMI] ≥ 27), established cardiovascular disease (CVD), and no history of type 2 diabetes were administered the injectable glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide (Wegovy) at a 2.4-mg dose weekly. Treatment resulted in a significant 20% relative risk reduction in major adverse CV events (a composite endpoint comprising CV death, nonfatal myocardial infarction, or nonfatal stroke). Importantly, SELECT was a trial on secondary prevention of CVD.
The CV benefits of semaglutide were notably independent of baseline weight or amount of weight lost. This suggests that the underlying driver of improved CV outcomes with semaglutide extends beyond simple reduction in obesity and perhaps indicates a direct effect on vasculature and reduction in atherosclerosis, although this remains unproven.
Not All Risk Reduction Is Equal
Much of the sensationalist coverage in the lay press focused on the 20% relative risk reduction figure. This endpoint is often more impressive and headline-grabbing than the absolute risk reduction, which provides a clearer view of a treatment’s real-world impact.
In SELECT, the absolute risk reduction was 1.5 percentage points, which translated into a number needed to treat (NNT) of 67 over 34 months to prevent one primary outcome of a major adverse CV event.
Lower NNTs suggest more effective treatments because fewer people need to be treated to prevent one clinical event, such as the major adverse CV events used in SELECT.
Semaglutide vs Statins
How does the clinical effectiveness observed in the SELECT trial compare with that observed in statin trials when it comes to the secondary prevention of CVD?
The seminal 4S study published in 1994 explored the impact of simvastatin on all-cause mortality among people with previous myocardial infarction or angina and hyperlipidemia (mean baseline BMI, 26). After 5.4 years of follow-up, the trial was stopped early owing to a 3.3-percentage point absolute risk reduction in all-cause mortality (NNT, 30; relative risk reduction, 28%). The NNT to prevent one death from CV causes was 31, and the NNT to prevent one major coronary event was lower, at 15.
Other statin secondary prevention trials, such as the LIPID and MIRACL studies, demonstrated similarly low NNTs.
So, you can see that the NNTs for statins in secondary prevention are much lower than with semaglutide in SELECT. Furthermore, the benefits of semaglutide in preventing CVD in people living with overweight/obesity have yet to be elucidated.
In contrast, we already have published evidence showing the benefits of statins in the primary prevention of CVD, albeit with higher and more variable NNTs than in the statin secondary prevention studies.
The benefits of statins are also postulated to extend beyond their impact on lowering low-density lipoprotein cholesterol. Statins have been suggested to have anti-inflammatory and plaque-stabilizing effects, among other pleiotropic benefits.
We also currently lack evidence for the cost-effectiveness of semaglutide for CV risk reduction. Assessing economic viability and use in health care systems, such as the UK’s National Health Service, involves comparing the cost of semaglutide against the health care savings from prevented CV events. Health economic studies are vital to determine whether the benefits justify the expense. In contrast, the cost-effectiveness of statins is well established, particularly for high-risk individuals.
Advantages of GLP-1s Should Not Be Overlooked
Of course, statins don’t provide the significant weight loss benefits of semaglutide.
Additional data from SELECT presented at the 2024 European Congress on Obesity demonstrated that participants lost a mean of 10.2% body weight and 7.7 cm from their waist circumference after 4 years. Moreover, after 2 years, 12% of individuals randomized to semaglutide had returned to a normal BMI, and nearly half were no longer living with obesity.
Although the CV benefits of semaglutide were independent of weight reduction, this level of weight loss is clinically meaningful and will reduce the risk of many other cardiometabolic conditions including type 2 diabetes, metabolic dysfunction–associated steatotic liver disease, and obstructive sleep apnea/hypopnea syndrome, as well as improve low mood, depression, and overall quality of life. Additionally, obesity is now a risk factor for 13 different types of cancer, including bowel, breast, and pancreatic cancer, so facilitating a return to a healthier body weight will also mitigate future risk for cancer.
Sticking With Our Cornerstone Therapy, For Now
In conclusion, I do not believe that semaglutide is the “new statin.” Statins are the cornerstone of primary and secondary prevention of CVD in a wide range of comorbidities, as evidenced in multiple large and high-quality trials dating back over 30 years.
However, there is no doubt that the GLP-1 receptor agonist class is the most significant therapeutic advance for the management of obesity and comorbidities to date.
The SELECT CVOT data uniquely position semaglutide as a secondary CVD prevention agent on top of guideline-driven management for people living with overweight/obesity and established CVD. Additionally, the clinically meaningful weight loss achieved with semaglutide will impact the risk of developing many other cardiometabolic conditions, as well as improve mental health and overall quality of life.
Dr. Fernando, GP Partner, North Berwick Health Centre, North Berwick, Scotland, creates concise clinical aide-mémoire for primary and secondary care to make life easier for health care professionals and ultimately to improve the lives of patients. He is very active on social media (X handle @drkevinfernando), where he posts hot topics in type 2 diabetes and CVRM. He recently has forayed into YouTube (@DrKevinFernando) and TikTok (@drkevinfernando) with patient-facing video content. Dr. Fernando has been elected to Fellowship of the Royal College of General Practitioners, the Royal College of Physicians of Edinburgh, and the Academy of Medical Educators for his work in diabetes and medical education. He has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo; received income in an amount equal to or greater than $250 from AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo.
A version of this article first appeared on Medscape.com.
There has been much hyperbole since the presentation of results from the SELECT cardiovascular outcomes trial (CVOT) at this year’s European Congress on Obesity, which led many to herald semaglutide as the “new statin.”
In the SELECT CVOT, participants with overweight or obesity (body mass index [BMI] ≥ 27), established cardiovascular disease (CVD), and no history of type 2 diabetes were administered the injectable glucagon-like peptide 1 (GLP-1) receptor agonist semaglutide (Wegovy) at a 2.4-mg dose weekly. Treatment resulted in a significant 20% relative risk reduction in major adverse CV events (a composite endpoint comprising CV death, nonfatal myocardial infarction, or nonfatal stroke). Importantly, SELECT was a trial on secondary prevention of CVD.
The CV benefits of semaglutide were notably independent of baseline weight or amount of weight lost. This suggests that the underlying driver of improved CV outcomes with semaglutide extends beyond simple reduction in obesity and perhaps indicates a direct effect on vasculature and reduction in atherosclerosis, although this remains unproven.
Not All Risk Reduction Is Equal
Much of the sensationalist coverage in the lay press focused on the 20% relative risk reduction figure. This endpoint is often more impressive and headline-grabbing than the absolute risk reduction, which provides a clearer view of a treatment’s real-world impact.
In SELECT, the absolute risk reduction was 1.5 percentage points, which translated into a number needed to treat (NNT) of 67 over 34 months to prevent one primary outcome of a major adverse CV event.
Lower NNTs suggest more effective treatments because fewer people need to be treated to prevent one clinical event, such as the major adverse CV events used in SELECT.
Semaglutide vs Statins
How does the clinical effectiveness observed in the SELECT trial compare with that observed in statin trials when it comes to the secondary prevention of CVD?
The seminal 4S study published in 1994 explored the impact of simvastatin on all-cause mortality among people with previous myocardial infarction or angina and hyperlipidemia (mean baseline BMI, 26). After 5.4 years of follow-up, the trial was stopped early owing to a 3.3-percentage point absolute risk reduction in all-cause mortality (NNT, 30; relative risk reduction, 28%). The NNT to prevent one death from CV causes was 31, and the NNT to prevent one major coronary event was lower, at 15.
Other statin secondary prevention trials, such as the LIPID and MIRACL studies, demonstrated similarly low NNTs.
So, you can see that the NNTs for statins in secondary prevention are much lower than with semaglutide in SELECT. Furthermore, the benefits of semaglutide in preventing CVD in people living with overweight/obesity have yet to be elucidated.
In contrast, we already have published evidence showing the benefits of statins in the primary prevention of CVD, albeit with higher and more variable NNTs than in the statin secondary prevention studies.
The benefits of statins are also postulated to extend beyond their impact on lowering low-density lipoprotein cholesterol. Statins have been suggested to have anti-inflammatory and plaque-stabilizing effects, among other pleiotropic benefits.
We also currently lack evidence for the cost-effectiveness of semaglutide for CV risk reduction. Assessing economic viability and use in health care systems, such as the UK’s National Health Service, involves comparing the cost of semaglutide against the health care savings from prevented CV events. Health economic studies are vital to determine whether the benefits justify the expense. In contrast, the cost-effectiveness of statins is well established, particularly for high-risk individuals.
Advantages of GLP-1s Should Not Be Overlooked
Of course, statins don’t provide the significant weight loss benefits of semaglutide.
Additional data from SELECT presented at the 2024 European Congress on Obesity demonstrated that participants lost a mean of 10.2% body weight and 7.7 cm from their waist circumference after 4 years. Moreover, after 2 years, 12% of individuals randomized to semaglutide had returned to a normal BMI, and nearly half were no longer living with obesity.
Although the CV benefits of semaglutide were independent of weight reduction, this level of weight loss is clinically meaningful and will reduce the risk of many other cardiometabolic conditions including type 2 diabetes, metabolic dysfunction–associated steatotic liver disease, and obstructive sleep apnea/hypopnea syndrome, as well as improve low mood, depression, and overall quality of life. Additionally, obesity is now a risk factor for 13 different types of cancer, including bowel, breast, and pancreatic cancer, so facilitating a return to a healthier body weight will also mitigate future risk for cancer.
Sticking With Our Cornerstone Therapy, For Now
In conclusion, I do not believe that semaglutide is the “new statin.” Statins are the cornerstone of primary and secondary prevention of CVD in a wide range of comorbidities, as evidenced in multiple large and high-quality trials dating back over 30 years.
However, there is no doubt that the GLP-1 receptor agonist class is the most significant therapeutic advance for the management of obesity and comorbidities to date.
The SELECT CVOT data uniquely position semaglutide as a secondary CVD prevention agent on top of guideline-driven management for people living with overweight/obesity and established CVD. Additionally, the clinically meaningful weight loss achieved with semaglutide will impact the risk of developing many other cardiometabolic conditions, as well as improve mental health and overall quality of life.
Dr. Fernando, GP Partner, North Berwick Health Centre, North Berwick, Scotland, creates concise clinical aide-mémoire for primary and secondary care to make life easier for health care professionals and ultimately to improve the lives of patients. He is very active on social media (X handle @drkevinfernando), where he posts hot topics in type 2 diabetes and CVRM. He recently has forayed into YouTube (@DrKevinFernando) and TikTok (@drkevinfernando) with patient-facing video content. Dr. Fernando has been elected to Fellowship of the Royal College of General Practitioners, the Royal College of Physicians of Edinburgh, and the Academy of Medical Educators for his work in diabetes and medical education. He has disclosed the following relevant financial relationships: Serve(d) as a speaker or a member of a speakers bureau for AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo; received income in an amount equal to or greater than $250 from AstraZeneca; Boehringer Ingelheim; Lilly; Menarini; Bayer; Dexcom; Novartis; Novo Nordisk; Amgen; and Daiichi Sankyo.
A version of this article first appeared on Medscape.com.
Arterial Stiffness May Predict Risk for Glaucoma
TOPLINE:
Arterial stiffness increases the risk for developing glaucoma, a new study found.
METHODOLOGY:
- To study the link between arterial stiffness and glaucoma, the researchers evaluated 4713 individuals (mean age, 66 years; 58% men) without the eye condition at baseline between April 2011 and November 2012.
- They assessed arterial stiffness by measuring aortic pulse wave velocity, estimated carotid-femoral pulse wave velocity, and aortic pulse pressure.
- The primary outcome was incident glaucoma, identified from prescriptions for eye drops or hospital records.
TAKEAWAY:
- Overall, 301 people in the study developed glaucoma over a mean follow-up period of 10.5 years.
- Incident glaucoma increased across all quartiles of arterial stiffness, with the highest risk observed in the fourth quartile for aortic pulse wave velocity (HR, 2.41; 95% CI, 1.36-4.26), estimated carotid-femoral pulse wave velocity (HR, 2.29; 95% CI, 1.27-4.13), and aortic pulse pressure (HR, 1.76; 95% CI, 1.10-2.82).
- The cumulative incidence of glaucoma rose with increases in arterial stiffness. This trend was statistically significant for both aortic and estimated pulse wave velocity (P < .0001) and aortic pulse pressure (P = .02).
IN PRACTICE:
“Arterial stiffness…which can be easily and accurately measured, could be used as a tool in clinical practice [as part of routine blood pressure measurement] to help identify people at risk of glaucoma and as a therapeutic target to prevent glaucoma progression,” the authors wrote.
SOURCE:
This study was led by Angela L. Beros, MPH, of the School of Population Health at the University of Auckland, Auckland, New Zealand, and published online in the American Journal of Ophthalmology.
LIMITATIONS:
The cohort study did not clinically assess for glaucoma, potentially leading to the inclusion of individuals with the condition. Not all participants with incident glaucoma, particularly those unaware of their diagnosis, may have been identified. Intraocular pressure and central corneal thickness, which are common risk factors for glaucoma, were not included in the multivariate analysis.
DISCLOSURES:
The study did not receive any funding. The authors declared no conflicts of interest.
A version of this article appeared on Medscape.com.
TOPLINE:
Arterial stiffness increases the risk for developing glaucoma, a new study found.
METHODOLOGY:
- To study the link between arterial stiffness and glaucoma, the researchers evaluated 4713 individuals (mean age, 66 years; 58% men) without the eye condition at baseline between April 2011 and November 2012.
- They assessed arterial stiffness by measuring aortic pulse wave velocity, estimated carotid-femoral pulse wave velocity, and aortic pulse pressure.
- The primary outcome was incident glaucoma, identified from prescriptions for eye drops or hospital records.
TAKEAWAY:
- Overall, 301 people in the study developed glaucoma over a mean follow-up period of 10.5 years.
- Incident glaucoma increased across all quartiles of arterial stiffness, with the highest risk observed in the fourth quartile for aortic pulse wave velocity (HR, 2.41; 95% CI, 1.36-4.26), estimated carotid-femoral pulse wave velocity (HR, 2.29; 95% CI, 1.27-4.13), and aortic pulse pressure (HR, 1.76; 95% CI, 1.10-2.82).
- The cumulative incidence of glaucoma rose with increases in arterial stiffness. This trend was statistically significant for both aortic and estimated pulse wave velocity (P < .0001) and aortic pulse pressure (P = .02).
IN PRACTICE:
“Arterial stiffness…which can be easily and accurately measured, could be used as a tool in clinical practice [as part of routine blood pressure measurement] to help identify people at risk of glaucoma and as a therapeutic target to prevent glaucoma progression,” the authors wrote.
SOURCE:
This study was led by Angela L. Beros, MPH, of the School of Population Health at the University of Auckland, Auckland, New Zealand, and published online in the American Journal of Ophthalmology.
LIMITATIONS:
The cohort study did not clinically assess for glaucoma, potentially leading to the inclusion of individuals with the condition. Not all participants with incident glaucoma, particularly those unaware of their diagnosis, may have been identified. Intraocular pressure and central corneal thickness, which are common risk factors for glaucoma, were not included in the multivariate analysis.
DISCLOSURES:
The study did not receive any funding. The authors declared no conflicts of interest.
A version of this article appeared on Medscape.com.
TOPLINE:
Arterial stiffness increases the risk for developing glaucoma, a new study found.
METHODOLOGY:
- To study the link between arterial stiffness and glaucoma, the researchers evaluated 4713 individuals (mean age, 66 years; 58% men) without the eye condition at baseline between April 2011 and November 2012.
- They assessed arterial stiffness by measuring aortic pulse wave velocity, estimated carotid-femoral pulse wave velocity, and aortic pulse pressure.
- The primary outcome was incident glaucoma, identified from prescriptions for eye drops or hospital records.
TAKEAWAY:
- Overall, 301 people in the study developed glaucoma over a mean follow-up period of 10.5 years.
- Incident glaucoma increased across all quartiles of arterial stiffness, with the highest risk observed in the fourth quartile for aortic pulse wave velocity (HR, 2.41; 95% CI, 1.36-4.26), estimated carotid-femoral pulse wave velocity (HR, 2.29; 95% CI, 1.27-4.13), and aortic pulse pressure (HR, 1.76; 95% CI, 1.10-2.82).
- The cumulative incidence of glaucoma rose with increases in arterial stiffness. This trend was statistically significant for both aortic and estimated pulse wave velocity (P < .0001) and aortic pulse pressure (P = .02).
IN PRACTICE:
“Arterial stiffness…which can be easily and accurately measured, could be used as a tool in clinical practice [as part of routine blood pressure measurement] to help identify people at risk of glaucoma and as a therapeutic target to prevent glaucoma progression,” the authors wrote.
SOURCE:
This study was led by Angela L. Beros, MPH, of the School of Population Health at the University of Auckland, Auckland, New Zealand, and published online in the American Journal of Ophthalmology.
LIMITATIONS:
The cohort study did not clinically assess for glaucoma, potentially leading to the inclusion of individuals with the condition. Not all participants with incident glaucoma, particularly those unaware of their diagnosis, may have been identified. Intraocular pressure and central corneal thickness, which are common risk factors for glaucoma, were not included in the multivariate analysis.
DISCLOSURES:
The study did not receive any funding. The authors declared no conflicts of interest.
A version of this article appeared on Medscape.com.
Risk Screening Tool Helped Identify Pregnant Patients Previously Undiagnosed With CVD
SAN FRANCISCO — More than a quarter of pregnant or postpartum patients who screened positive for cardiovascular disease ended up with a cardiovascular disease diagnosis when providers used a risk screening tool built into the electronic medical records system for all patients, according to research presented at the annual clinical and scientific meeting of the American College of Obstetricians and Gynecologists. “Timely diagnosis of cardiovascular disease is critical, though challenging, since pregnancy is a state of hemodynamic stress with symptoms that are like those of cardiovascular disease, and healthcare providers may not suspect cardiovascular disease in pregnant patients with symptoms of it,” Kevin Flatley, MD, a resident ob.gyn. at Montefiore Health System and the Albert Einstein College of Medicine in New York City, told attendees at the conference. “The cardiovascular risk assessment tool proved valuable for identifying and providing individualized care for cardio-obstetric patients.”
The study senior author, Diana S. Wolfe, MD, MPH, associate division director of Maternal Fetal Medicine at Montefiore Health System and associate professor of medicine in cardiology at Albert Einstein College of Medicine, said in an interview that cardiovascular risk in Montefiore’s urban population is significant.
“Cardiovascular disease risk screening identifies true cardiac disease in this population and can change the medical management and outcome of pregnant and postpartum patients,” Dr. Wolfe said. Screening has the potential to decrease maternal morbidity and mortality in our country, she said.
Dawnette Lewis, MD, MPH, director of the Center for Maternal Health at Northwell Health and an ob.gyn. and maternal fetal medicine specialist who was not involved in the study, was impressed with the research.
“We know that cardiovascular disease is one of the leading causes of maternal mortality,” Dr. Lewis said in an interview. “It is important to have an accurate risk assessment score, so I think what is being presented in this abstract is great.” She said she’s aware that other cardio-obstetric programs across the country are also implementing cardiovascular risk assessment tools during pregnancy.
The researchers built into their electronic health records a screening algorithm developed by the California Maternal Quality Care Initiative that had been based on a retrospective review of cardiovascular maternal deaths in California from 2002 to 2006. Their study aimed to identify the true positives — those who actually had cardiovascular disease — of those determined to be at risk by the screening toolkit.
The institution’s goal was for all patients to undergo a screening risk assessment at least once during prenatal and/or postpartum visits. Patients were considered to screen positive if they had at least one symptom, at least one vital sign abnormality, and at least one risk factor, or any combination of these that added up to 4.
Symptoms in the screening tool included shortness of breath, shortness of breath while lying flat, a rapid heart rate, asthma that was unresponsive to therapy, palpitations, fainting or other loss of consciousness, and chest pain. Abnormal vital signs included a resting heart rate of 110 bpm or greater, systolic blood pressure of 140 mm Hg or higher, a respiratory rate of 24 or higher, and an oxygen saturation of 96% or lower.
Risk factors included being 40 or older, being Black, having a pre-pregnancy BMI of 35 or greater, preexisting diabetes, hypertension, substance use, and a history of cancer, chemotherapy, or chest radiation. “Current practice acknowledges that the risk factor currently included in the algorithm of self-identified as Black actually represents racism, bias, and social determinants of health, known risk factors for CVD,” Wolfe said.
Patients who screened positive underwent an echocardiogram, a cardio-obstetric consultation, and an additional work-up.
During the June 2022–September 2023 study period, 148 out of 1877 screened patients (7.9%) had a positive screen. Of these, 108 were false positives and 40 (27%) were true positives. The number of true false positives is not known because many women did not come for their workups.* The true positives mostly included patients with mild valvular disease, but about a quarter had mild, moderate, or severe ventricular dilation or hypertrophy and a little less than a quarter were positive for systolic or diastolic dysfunction.
Most (72.5%) of the 40 true-positive cases needed a multidisciplinary cardio-obstetrics team plan, and 11 patients (27.5%) needed follow-up and had multiple visits with the cardio-obstetrics team. Six of the true-positive cases (15%) “were deemed to be of higher risk for decompensation during labor and required detailed plans for intrapartum and postpartum management,” the researchers reported. Nine patients (22.5%) began new cardiovascular medications.
This research is a validation study of the current algorithm, Wolfe said, and the algorithm will be revised based on the results of the completed validation study.
“The objective is universal cardiovascular risk screening for all pregnant and postpartum persons in the US,” Wolfe said. “Once the data collection from this validation study is concluded, our goal is to disseminate a revised CVD risk screening tool that can be implemented into the electronic medical records of all institutions in our country.”
*The study partially funded by the National Institute of Child Health and Human Development award #5R21HD101783. All the authors and Dr. Lewis had no disclosures. Dr. Afshan B. Hameed of the University of California at Irvine was a partner in the study.
*This study was updated on May 30, 2024.
SAN FRANCISCO — More than a quarter of pregnant or postpartum patients who screened positive for cardiovascular disease ended up with a cardiovascular disease diagnosis when providers used a risk screening tool built into the electronic medical records system for all patients, according to research presented at the annual clinical and scientific meeting of the American College of Obstetricians and Gynecologists. “Timely diagnosis of cardiovascular disease is critical, though challenging, since pregnancy is a state of hemodynamic stress with symptoms that are like those of cardiovascular disease, and healthcare providers may not suspect cardiovascular disease in pregnant patients with symptoms of it,” Kevin Flatley, MD, a resident ob.gyn. at Montefiore Health System and the Albert Einstein College of Medicine in New York City, told attendees at the conference. “The cardiovascular risk assessment tool proved valuable for identifying and providing individualized care for cardio-obstetric patients.”
The study senior author, Diana S. Wolfe, MD, MPH, associate division director of Maternal Fetal Medicine at Montefiore Health System and associate professor of medicine in cardiology at Albert Einstein College of Medicine, said in an interview that cardiovascular risk in Montefiore’s urban population is significant.
“Cardiovascular disease risk screening identifies true cardiac disease in this population and can change the medical management and outcome of pregnant and postpartum patients,” Dr. Wolfe said. Screening has the potential to decrease maternal morbidity and mortality in our country, she said.
Dawnette Lewis, MD, MPH, director of the Center for Maternal Health at Northwell Health and an ob.gyn. and maternal fetal medicine specialist who was not involved in the study, was impressed with the research.
“We know that cardiovascular disease is one of the leading causes of maternal mortality,” Dr. Lewis said in an interview. “It is important to have an accurate risk assessment score, so I think what is being presented in this abstract is great.” She said she’s aware that other cardio-obstetric programs across the country are also implementing cardiovascular risk assessment tools during pregnancy.
The researchers built into their electronic health records a screening algorithm developed by the California Maternal Quality Care Initiative that had been based on a retrospective review of cardiovascular maternal deaths in California from 2002 to 2006. Their study aimed to identify the true positives — those who actually had cardiovascular disease — of those determined to be at risk by the screening toolkit.
The institution’s goal was for all patients to undergo a screening risk assessment at least once during prenatal and/or postpartum visits. Patients were considered to screen positive if they had at least one symptom, at least one vital sign abnormality, and at least one risk factor, or any combination of these that added up to 4.
Symptoms in the screening tool included shortness of breath, shortness of breath while lying flat, a rapid heart rate, asthma that was unresponsive to therapy, palpitations, fainting or other loss of consciousness, and chest pain. Abnormal vital signs included a resting heart rate of 110 bpm or greater, systolic blood pressure of 140 mm Hg or higher, a respiratory rate of 24 or higher, and an oxygen saturation of 96% or lower.
Risk factors included being 40 or older, being Black, having a pre-pregnancy BMI of 35 or greater, preexisting diabetes, hypertension, substance use, and a history of cancer, chemotherapy, or chest radiation. “Current practice acknowledges that the risk factor currently included in the algorithm of self-identified as Black actually represents racism, bias, and social determinants of health, known risk factors for CVD,” Wolfe said.
Patients who screened positive underwent an echocardiogram, a cardio-obstetric consultation, and an additional work-up.
During the June 2022–September 2023 study period, 148 out of 1877 screened patients (7.9%) had a positive screen. Of these, 108 were false positives and 40 (27%) were true positives. The number of true false positives is not known because many women did not come for their workups.* The true positives mostly included patients with mild valvular disease, but about a quarter had mild, moderate, or severe ventricular dilation or hypertrophy and a little less than a quarter were positive for systolic or diastolic dysfunction.
Most (72.5%) of the 40 true-positive cases needed a multidisciplinary cardio-obstetrics team plan, and 11 patients (27.5%) needed follow-up and had multiple visits with the cardio-obstetrics team. Six of the true-positive cases (15%) “were deemed to be of higher risk for decompensation during labor and required detailed plans for intrapartum and postpartum management,” the researchers reported. Nine patients (22.5%) began new cardiovascular medications.
This research is a validation study of the current algorithm, Wolfe said, and the algorithm will be revised based on the results of the completed validation study.
“The objective is universal cardiovascular risk screening for all pregnant and postpartum persons in the US,” Wolfe said. “Once the data collection from this validation study is concluded, our goal is to disseminate a revised CVD risk screening tool that can be implemented into the electronic medical records of all institutions in our country.”
*The study partially funded by the National Institute of Child Health and Human Development award #5R21HD101783. All the authors and Dr. Lewis had no disclosures. Dr. Afshan B. Hameed of the University of California at Irvine was a partner in the study.
*This study was updated on May 30, 2024.
SAN FRANCISCO — More than a quarter of pregnant or postpartum patients who screened positive for cardiovascular disease ended up with a cardiovascular disease diagnosis when providers used a risk screening tool built into the electronic medical records system for all patients, according to research presented at the annual clinical and scientific meeting of the American College of Obstetricians and Gynecologists. “Timely diagnosis of cardiovascular disease is critical, though challenging, since pregnancy is a state of hemodynamic stress with symptoms that are like those of cardiovascular disease, and healthcare providers may not suspect cardiovascular disease in pregnant patients with symptoms of it,” Kevin Flatley, MD, a resident ob.gyn. at Montefiore Health System and the Albert Einstein College of Medicine in New York City, told attendees at the conference. “The cardiovascular risk assessment tool proved valuable for identifying and providing individualized care for cardio-obstetric patients.”
The study senior author, Diana S. Wolfe, MD, MPH, associate division director of Maternal Fetal Medicine at Montefiore Health System and associate professor of medicine in cardiology at Albert Einstein College of Medicine, said in an interview that cardiovascular risk in Montefiore’s urban population is significant.
“Cardiovascular disease risk screening identifies true cardiac disease in this population and can change the medical management and outcome of pregnant and postpartum patients,” Dr. Wolfe said. Screening has the potential to decrease maternal morbidity and mortality in our country, she said.
Dawnette Lewis, MD, MPH, director of the Center for Maternal Health at Northwell Health and an ob.gyn. and maternal fetal medicine specialist who was not involved in the study, was impressed with the research.
“We know that cardiovascular disease is one of the leading causes of maternal mortality,” Dr. Lewis said in an interview. “It is important to have an accurate risk assessment score, so I think what is being presented in this abstract is great.” She said she’s aware that other cardio-obstetric programs across the country are also implementing cardiovascular risk assessment tools during pregnancy.
The researchers built into their electronic health records a screening algorithm developed by the California Maternal Quality Care Initiative that had been based on a retrospective review of cardiovascular maternal deaths in California from 2002 to 2006. Their study aimed to identify the true positives — those who actually had cardiovascular disease — of those determined to be at risk by the screening toolkit.
The institution’s goal was for all patients to undergo a screening risk assessment at least once during prenatal and/or postpartum visits. Patients were considered to screen positive if they had at least one symptom, at least one vital sign abnormality, and at least one risk factor, or any combination of these that added up to 4.
Symptoms in the screening tool included shortness of breath, shortness of breath while lying flat, a rapid heart rate, asthma that was unresponsive to therapy, palpitations, fainting or other loss of consciousness, and chest pain. Abnormal vital signs included a resting heart rate of 110 bpm or greater, systolic blood pressure of 140 mm Hg or higher, a respiratory rate of 24 or higher, and an oxygen saturation of 96% or lower.
Risk factors included being 40 or older, being Black, having a pre-pregnancy BMI of 35 or greater, preexisting diabetes, hypertension, substance use, and a history of cancer, chemotherapy, or chest radiation. “Current practice acknowledges that the risk factor currently included in the algorithm of self-identified as Black actually represents racism, bias, and social determinants of health, known risk factors for CVD,” Wolfe said.
Patients who screened positive underwent an echocardiogram, a cardio-obstetric consultation, and an additional work-up.
During the June 2022–September 2023 study period, 148 out of 1877 screened patients (7.9%) had a positive screen. Of these, 108 were false positives and 40 (27%) were true positives. The number of true false positives is not known because many women did not come for their workups.* The true positives mostly included patients with mild valvular disease, but about a quarter had mild, moderate, or severe ventricular dilation or hypertrophy and a little less than a quarter were positive for systolic or diastolic dysfunction.
Most (72.5%) of the 40 true-positive cases needed a multidisciplinary cardio-obstetrics team plan, and 11 patients (27.5%) needed follow-up and had multiple visits with the cardio-obstetrics team. Six of the true-positive cases (15%) “were deemed to be of higher risk for decompensation during labor and required detailed plans for intrapartum and postpartum management,” the researchers reported. Nine patients (22.5%) began new cardiovascular medications.
This research is a validation study of the current algorithm, Wolfe said, and the algorithm will be revised based on the results of the completed validation study.
“The objective is universal cardiovascular risk screening for all pregnant and postpartum persons in the US,” Wolfe said. “Once the data collection from this validation study is concluded, our goal is to disseminate a revised CVD risk screening tool that can be implemented into the electronic medical records of all institutions in our country.”
*The study partially funded by the National Institute of Child Health and Human Development award #5R21HD101783. All the authors and Dr. Lewis had no disclosures. Dr. Afshan B. Hameed of the University of California at Irvine was a partner in the study.
*This study was updated on May 30, 2024.
FROM ACOG 2024
RSV Infection Raises Risk for Acute Cardiovascular Events
According to a US cross-sectional study, every fifth hospital patient with a respiratory syncytial virus (RSV) infection develops an acute cardiovascular event. For patients with a preexisting cardiovascular condition, an acute cardiovascular event occurs in every third patient, as shown by data published in JAMA Internal Medicine.
RSV attacks the respiratory tract, especially the mucous membranes of the upper airways and the ciliated epithelium of the trachea and bronchi. It is not the first respiratory virus with devastating consequences for the cardiovascular system.
“In the COVID-19 pandemic, we painfully learned that patients with preexisting cardiovascular conditions have significantly higher mortality rates and that cardiovascular causes are essential in COVID-19 mortality,” said Stephan Baldus, MD, director of Clinic III for Internal Medicine at the Heart Center of the University Hospital Cologne in Cologne, Germany.
“A direct link between the virus and the development of acute coronary events has also been demonstrated for influenza. Studies have shown that in the early days of an influenza infection, the rates of heart attacks and subsequent deaths increase significantly,” Dr. Baldus added. “And now, this study shows that patients with cardiovascular diseases have a critically increased risk for an acute cardiovascular event during an RSV infection.”
RSV Surveillance
Rebecca C. Woodruff, PhD, of the Centers for Disease Control and Prevention in Atlanta, and her colleagues analyzed data from an RSV surveillance program involving hospitals in 12 US states. The data covered hospitalized adults aged 50 years and older from five RSV seasons (from 2014/2015 to 2017/2018 and 2022/2023).
The 6248 patients were hospitalized for various reasons. They had a mean age of 73 years, and 60% of them were women. RSV infection was detected through a physician-ordered test within 14 days of admission. Slightly more than half (56.4%) of the patients had a preexisting cardiovascular condition that did not necessitate hospital treatment.
The researchers reported that more than a fifth (22.4%) of the patients with RSV had an acute cardiovascular event. Acute heart failure was most common (15.8%), but there were also acute ischemic heart disease in 7.5%, hypertensive crisis in 1.3%, ventricular tachycardia in 1.1%, and cardiogenic shock in 0.6%.
Acute Cardiovascular Events
Among the study population, 8.5% had no documented cardiovascular preexisting conditions. However, the risk was particularly elevated in patients with cardiovascular preexisting conditions. Overall, 33.0% of them had an acute cardiovascular event during the RSV infection.
Patients with acute cardiovascular events were almost twice as likely to have a severe course as those without acute cardiovascular events. The researchers considered treatment in the intensive care unit, the need for invasive mechanical ventilation, or the patient’s death in the hospital as severe outcomes.
Of all hospitalized patients with RSV, 18.6% required intensive care unit treatment, and 4.9% died during hospitalization. Compared with those without acute cardiovascular events, those with acute cardiovascular events had a significantly higher risk for intensive care treatment (25.8% vs 16.5%) and death in the hospital (8.1% vs 4.0%).
Although the analysis is not a prospective controlled study, according to Dr. Baldus, the results strongly suggest that RSV has cardiovascular effects. “When one in five hospitalized patients develops a cardiovascular event, that’s very suggestive,” he said.
More Testing Needed?
The results add to the evidence that RSV infections in older patients are associated with considerable morbidity and mortality. Unlike for COVID-19 and influenza, however, there is hardly any surveillance for RSV infections. RSV testing in hospitals is rare. Many doctors opt against testing for RSV because they are not aware of the importance of RSV as a pathogen in adults, but also because the diagnosis of RSV has no therapeutic consequences, wrote Dr. Woodruff and her colleagues.
Because there is no targeted therapy for an RSV infection, the detection of RSV can only be used as a marker for a risk for the development of an acute cardiovascular event, according to Dr. Baldus. Even considering the new study data, he emphasized, “Not every patient with a cardiovascular preexisting condition needs to be tested for RSV.”
The crucial factor is the clinical presentation. “If there is a clinical indication of pulmonary impairment (shortness of breath, tachypnea, subfebrile temperatures, or a diminished general condition) it would be desirable to perform an RSV test. This is especially true for patients requiring intensive care who need respiratory support,” said Dr. Baldus.
Benefits of Vaccination
The results highlight the basic epidemiology of potential cardiovascular complications of RSV infections, but before RSV vaccination became available, wrote Dr. Woodruff and her colleagues.
In 2023, the first RSV vaccine for adults aged 60 years and older was approved. “Here, a door to additional possibilities opens,” said Dr. Baldus. Although there are currently no official vaccination recommendations from Germany’s Standing Vaccination Commission, medical societies of oncologists and pulmonologists recommend vaccination against RSV. “Given the relevance of cardiovascular diseases for the prognosis of patients, but also for the occurrence of an acute cardiovascular event upon detection of RSV, the corresponding recommendation is expected to come,” said Dr. Baldus.
This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
According to a US cross-sectional study, every fifth hospital patient with a respiratory syncytial virus (RSV) infection develops an acute cardiovascular event. For patients with a preexisting cardiovascular condition, an acute cardiovascular event occurs in every third patient, as shown by data published in JAMA Internal Medicine.
RSV attacks the respiratory tract, especially the mucous membranes of the upper airways and the ciliated epithelium of the trachea and bronchi. It is not the first respiratory virus with devastating consequences for the cardiovascular system.
“In the COVID-19 pandemic, we painfully learned that patients with preexisting cardiovascular conditions have significantly higher mortality rates and that cardiovascular causes are essential in COVID-19 mortality,” said Stephan Baldus, MD, director of Clinic III for Internal Medicine at the Heart Center of the University Hospital Cologne in Cologne, Germany.
“A direct link between the virus and the development of acute coronary events has also been demonstrated for influenza. Studies have shown that in the early days of an influenza infection, the rates of heart attacks and subsequent deaths increase significantly,” Dr. Baldus added. “And now, this study shows that patients with cardiovascular diseases have a critically increased risk for an acute cardiovascular event during an RSV infection.”
RSV Surveillance
Rebecca C. Woodruff, PhD, of the Centers for Disease Control and Prevention in Atlanta, and her colleagues analyzed data from an RSV surveillance program involving hospitals in 12 US states. The data covered hospitalized adults aged 50 years and older from five RSV seasons (from 2014/2015 to 2017/2018 and 2022/2023).
The 6248 patients were hospitalized for various reasons. They had a mean age of 73 years, and 60% of them were women. RSV infection was detected through a physician-ordered test within 14 days of admission. Slightly more than half (56.4%) of the patients had a preexisting cardiovascular condition that did not necessitate hospital treatment.
The researchers reported that more than a fifth (22.4%) of the patients with RSV had an acute cardiovascular event. Acute heart failure was most common (15.8%), but there were also acute ischemic heart disease in 7.5%, hypertensive crisis in 1.3%, ventricular tachycardia in 1.1%, and cardiogenic shock in 0.6%.
Acute Cardiovascular Events
Among the study population, 8.5% had no documented cardiovascular preexisting conditions. However, the risk was particularly elevated in patients with cardiovascular preexisting conditions. Overall, 33.0% of them had an acute cardiovascular event during the RSV infection.
Patients with acute cardiovascular events were almost twice as likely to have a severe course as those without acute cardiovascular events. The researchers considered treatment in the intensive care unit, the need for invasive mechanical ventilation, or the patient’s death in the hospital as severe outcomes.
Of all hospitalized patients with RSV, 18.6% required intensive care unit treatment, and 4.9% died during hospitalization. Compared with those without acute cardiovascular events, those with acute cardiovascular events had a significantly higher risk for intensive care treatment (25.8% vs 16.5%) and death in the hospital (8.1% vs 4.0%).
Although the analysis is not a prospective controlled study, according to Dr. Baldus, the results strongly suggest that RSV has cardiovascular effects. “When one in five hospitalized patients develops a cardiovascular event, that’s very suggestive,” he said.
More Testing Needed?
The results add to the evidence that RSV infections in older patients are associated with considerable morbidity and mortality. Unlike for COVID-19 and influenza, however, there is hardly any surveillance for RSV infections. RSV testing in hospitals is rare. Many doctors opt against testing for RSV because they are not aware of the importance of RSV as a pathogen in adults, but also because the diagnosis of RSV has no therapeutic consequences, wrote Dr. Woodruff and her colleagues.
Because there is no targeted therapy for an RSV infection, the detection of RSV can only be used as a marker for a risk for the development of an acute cardiovascular event, according to Dr. Baldus. Even considering the new study data, he emphasized, “Not every patient with a cardiovascular preexisting condition needs to be tested for RSV.”
The crucial factor is the clinical presentation. “If there is a clinical indication of pulmonary impairment (shortness of breath, tachypnea, subfebrile temperatures, or a diminished general condition) it would be desirable to perform an RSV test. This is especially true for patients requiring intensive care who need respiratory support,” said Dr. Baldus.
Benefits of Vaccination
The results highlight the basic epidemiology of potential cardiovascular complications of RSV infections, but before RSV vaccination became available, wrote Dr. Woodruff and her colleagues.
In 2023, the first RSV vaccine for adults aged 60 years and older was approved. “Here, a door to additional possibilities opens,” said Dr. Baldus. Although there are currently no official vaccination recommendations from Germany’s Standing Vaccination Commission, medical societies of oncologists and pulmonologists recommend vaccination against RSV. “Given the relevance of cardiovascular diseases for the prognosis of patients, but also for the occurrence of an acute cardiovascular event upon detection of RSV, the corresponding recommendation is expected to come,” said Dr. Baldus.
This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
According to a US cross-sectional study, every fifth hospital patient with a respiratory syncytial virus (RSV) infection develops an acute cardiovascular event. For patients with a preexisting cardiovascular condition, an acute cardiovascular event occurs in every third patient, as shown by data published in JAMA Internal Medicine.
RSV attacks the respiratory tract, especially the mucous membranes of the upper airways and the ciliated epithelium of the trachea and bronchi. It is not the first respiratory virus with devastating consequences for the cardiovascular system.
“In the COVID-19 pandemic, we painfully learned that patients with preexisting cardiovascular conditions have significantly higher mortality rates and that cardiovascular causes are essential in COVID-19 mortality,” said Stephan Baldus, MD, director of Clinic III for Internal Medicine at the Heart Center of the University Hospital Cologne in Cologne, Germany.
“A direct link between the virus and the development of acute coronary events has also been demonstrated for influenza. Studies have shown that in the early days of an influenza infection, the rates of heart attacks and subsequent deaths increase significantly,” Dr. Baldus added. “And now, this study shows that patients with cardiovascular diseases have a critically increased risk for an acute cardiovascular event during an RSV infection.”
RSV Surveillance
Rebecca C. Woodruff, PhD, of the Centers for Disease Control and Prevention in Atlanta, and her colleagues analyzed data from an RSV surveillance program involving hospitals in 12 US states. The data covered hospitalized adults aged 50 years and older from five RSV seasons (from 2014/2015 to 2017/2018 and 2022/2023).
The 6248 patients were hospitalized for various reasons. They had a mean age of 73 years, and 60% of them were women. RSV infection was detected through a physician-ordered test within 14 days of admission. Slightly more than half (56.4%) of the patients had a preexisting cardiovascular condition that did not necessitate hospital treatment.
The researchers reported that more than a fifth (22.4%) of the patients with RSV had an acute cardiovascular event. Acute heart failure was most common (15.8%), but there were also acute ischemic heart disease in 7.5%, hypertensive crisis in 1.3%, ventricular tachycardia in 1.1%, and cardiogenic shock in 0.6%.
Acute Cardiovascular Events
Among the study population, 8.5% had no documented cardiovascular preexisting conditions. However, the risk was particularly elevated in patients with cardiovascular preexisting conditions. Overall, 33.0% of them had an acute cardiovascular event during the RSV infection.
Patients with acute cardiovascular events were almost twice as likely to have a severe course as those without acute cardiovascular events. The researchers considered treatment in the intensive care unit, the need for invasive mechanical ventilation, or the patient’s death in the hospital as severe outcomes.
Of all hospitalized patients with RSV, 18.6% required intensive care unit treatment, and 4.9% died during hospitalization. Compared with those without acute cardiovascular events, those with acute cardiovascular events had a significantly higher risk for intensive care treatment (25.8% vs 16.5%) and death in the hospital (8.1% vs 4.0%).
Although the analysis is not a prospective controlled study, according to Dr. Baldus, the results strongly suggest that RSV has cardiovascular effects. “When one in five hospitalized patients develops a cardiovascular event, that’s very suggestive,” he said.
More Testing Needed?
The results add to the evidence that RSV infections in older patients are associated with considerable morbidity and mortality. Unlike for COVID-19 and influenza, however, there is hardly any surveillance for RSV infections. RSV testing in hospitals is rare. Many doctors opt against testing for RSV because they are not aware of the importance of RSV as a pathogen in adults, but also because the diagnosis of RSV has no therapeutic consequences, wrote Dr. Woodruff and her colleagues.
Because there is no targeted therapy for an RSV infection, the detection of RSV can only be used as a marker for a risk for the development of an acute cardiovascular event, according to Dr. Baldus. Even considering the new study data, he emphasized, “Not every patient with a cardiovascular preexisting condition needs to be tested for RSV.”
The crucial factor is the clinical presentation. “If there is a clinical indication of pulmonary impairment (shortness of breath, tachypnea, subfebrile temperatures, or a diminished general condition) it would be desirable to perform an RSV test. This is especially true for patients requiring intensive care who need respiratory support,” said Dr. Baldus.
Benefits of Vaccination
The results highlight the basic epidemiology of potential cardiovascular complications of RSV infections, but before RSV vaccination became available, wrote Dr. Woodruff and her colleagues.
In 2023, the first RSV vaccine for adults aged 60 years and older was approved. “Here, a door to additional possibilities opens,” said Dr. Baldus. Although there are currently no official vaccination recommendations from Germany’s Standing Vaccination Commission, medical societies of oncologists and pulmonologists recommend vaccination against RSV. “Given the relevance of cardiovascular diseases for the prognosis of patients, but also for the occurrence of an acute cardiovascular event upon detection of RSV, the corresponding recommendation is expected to come,” said Dr. Baldus.
This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
FROM JAMA INTERNAL MEDICINE