When Babies ‘Stop Breathing,’ Who Needs Admission and a Workup?

Article Type
Changed
Mon, 02/12/2024 - 13:34

Many infants have experienced an episode of apnea, defined as a pause in respiration of 20 seconds or more. Most episodes remain unexplained, and no underlying cause can be found. Historically, these were referred to as “near-miss SIDS,” episodes, but that label suggested that all of these events would have ended in death had someone not intervened. New descriptive terminology was needed.

In the mid-1980s, the term “apparent life-threatening event” (ALTE) was adopted. But that term, too, was an overstatement, because although scary for parents, these brief apnea episodes were not, in most cases, truly life-threatening.

In 2013, authors of a systematic review coined the term “brief resolved unexplained event” (BRUE). This review also addressed the history and physical exam features associated with risk for a subsequent episode. It was felt that hospitalization and testing might be warranted if certain infants could be identified as high risk for recurrence.

What Is Considered a BRUE?

In the current working definition of BRUE, the child must be < 1 year old. The episode must be a sudden, brief, and resolved, with one or more of these characteristics:

  • Cyanosis or pallor (but not turning red)
  • A change in breathing (absent, decreased, or irregular)
  • A change in tone (hypertonia or hypotonia)
  • A change in responsiveness.

Furthermore, to qualify as a BRUE, no explanation can be found for the event based on the history and physical examination but before any laboratory testing is done. The definition also excludes children with known potential explanatory diagnoses (such as gastroesophageal reflux or bronchiolitis) and those who are otherwise symptomatically ill at the time of the event.
 

Decision to Admit and Recurrence Risk

An apnea event in an otherwise healthy infant, regardless of what it’s called, puts providers and parents in a difficult position. Should the infant be hospitalized for further monitoring and potentially more invasive testing to determine the cause of the episode? And what are the chances that the episode will be repeated?

clinical practice guideline (CPG) for BRUE, widely adopted in 2016, resulted in significant reductions in healthcare utilization. The CPG attempted to identify low-risk infants who could safely be discharged from the emergency department. Although the CPG improved outcomes, experts acknowledged that an underlying problem was not likely to be identified even among infants deemed high risk, and these infants would be hospitalized unnecessarily.

Available data were simply insufficient to support this decision. So, with the goal of identifying factors that could help predict recurrent BRUE risk, a 15-hospital collaborative study was undertaken, followed by the development and validation of a clinical decision rule for predicting the risk for a serious underlying diagnosis or event recurrence among infants presenting with BRUE.

Here’s what we learned from more than 3000 cases of BRUE.

First, it turns out that it’s not easy to determine whether an infant is at low or high risk for recurrence of BRUE. Initially, 91.5% of patients enrolled in the study would have been labeled high risk.

Furthermore, a BRUE recurred in 14.3% of the cohort, and 4.8% of high-risk infants were found to have a serious undiagnosed condition. Seizures, airway anomalies, and gastroesophageal reflux were the top three causes of BRUE, but the spectrum of underlying pathology was quite considerable.

The problem was that 4.6% of the entire cohort were found to have a serious underlying condition, nearly identical to the proportion of high-risk infants with these conditions. This prompted the question of whether simply labeling infants “high risk” was really appropriate any longer. 
 

 

 

Revised BRUE Management

Although it hasn’t been possible to group infants neatly in low and high-risk categories, the data from that large cohort led to the development of the BRUE 2.0 criteria, which enabled more focused risk assessment of an infant who experienced a BRUE. With an app on MDCalc, these criteria allow providers to ascertain, and show families, a visual representation of their infant’s individualized risk for a subsequent BRUE and of having a serious underlying condition.

The cohort study also identified red flags from the history or physical exam of infants who experienced a BRUE: weight loss, failure to thrive, or a history of feeding problems. Exam findings such as a bulging fontanelle, forceful or bilious emesis, and evidence of gastrointestinal (GI) bleeding suggest a medical diagnosis rather than a BRUE. If GI-related causes are high on the differential, a feeding evaluation can be helpful. A feeding evaluation can be done in the outpatient setting and does not require hospitalization.

For suspicion of an underlying neurological condition (such as seizures), experts recommend obtaining a short EEG, which is highly sensitive for detecting infantile spasms and encephalopathy. They recommend reserving MRI for infants with abnormalities on EEG or physical exam. Metabolic or genetic testing should be done only if the infant looks ill, because most patients with genetic or inborn errors of metabolism will continue to have symptoms as they become older.

The approach to BRUE has moved into the realm of shared decision-making with families. The likelihood of identifying a serious diagnosis is low for most of these children. And unfortunately, no single test can diagnose the full spectrum of potential explanatory diagnoses. For example, data from 2023 demonstrate that only 1.1% of lab tests following a BRUE contributed to a diagnosis, and most of the time that was a positive viral test. Similarly, imaging was helpful in only 1.5% of cases. So, explaining the evidence and deciding along with parents what is reasonable to do (or not do) is the current state of affairs.
 

My Take

As I reflect back on two and a half decades of caring for these patients, I believe that recent data have helped us a great deal. We do less testing and admit fewer infants to the hospital than we did 20 years ago, and that’s a good thing. Nevertheless, looking for a few red flags, having a high index of suspicion when the clinical exam is abnormal, and engaging in shared decision-making with families can help make the caring for these challenging patients more bearable and lead to better outcomes for all involved.

Dr. Basco is Professor, Department of Pediatrics, Medical University of South Carolina (MUSC); Director, Division of General Pediatrics, Department of Pediatrics, MUSC Children’s Hospital, Charleston, South Carolina. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Many infants have experienced an episode of apnea, defined as a pause in respiration of 20 seconds or more. Most episodes remain unexplained, and no underlying cause can be found. Historically, these were referred to as “near-miss SIDS,” episodes, but that label suggested that all of these events would have ended in death had someone not intervened. New descriptive terminology was needed.

In the mid-1980s, the term “apparent life-threatening event” (ALTE) was adopted. But that term, too, was an overstatement, because although scary for parents, these brief apnea episodes were not, in most cases, truly life-threatening.

In 2013, authors of a systematic review coined the term “brief resolved unexplained event” (BRUE). This review also addressed the history and physical exam features associated with risk for a subsequent episode. It was felt that hospitalization and testing might be warranted if certain infants could be identified as high risk for recurrence.

What Is Considered a BRUE?

In the current working definition of BRUE, the child must be < 1 year old. The episode must be a sudden, brief, and resolved, with one or more of these characteristics:

  • Cyanosis or pallor (but not turning red)
  • A change in breathing (absent, decreased, or irregular)
  • A change in tone (hypertonia or hypotonia)
  • A change in responsiveness.

Furthermore, to qualify as a BRUE, no explanation can be found for the event based on the history and physical examination but before any laboratory testing is done. The definition also excludes children with known potential explanatory diagnoses (such as gastroesophageal reflux or bronchiolitis) and those who are otherwise symptomatically ill at the time of the event.
 

Decision to Admit and Recurrence Risk

An apnea event in an otherwise healthy infant, regardless of what it’s called, puts providers and parents in a difficult position. Should the infant be hospitalized for further monitoring and potentially more invasive testing to determine the cause of the episode? And what are the chances that the episode will be repeated?

clinical practice guideline (CPG) for BRUE, widely adopted in 2016, resulted in significant reductions in healthcare utilization. The CPG attempted to identify low-risk infants who could safely be discharged from the emergency department. Although the CPG improved outcomes, experts acknowledged that an underlying problem was not likely to be identified even among infants deemed high risk, and these infants would be hospitalized unnecessarily.

Available data were simply insufficient to support this decision. So, with the goal of identifying factors that could help predict recurrent BRUE risk, a 15-hospital collaborative study was undertaken, followed by the development and validation of a clinical decision rule for predicting the risk for a serious underlying diagnosis or event recurrence among infants presenting with BRUE.

Here’s what we learned from more than 3000 cases of BRUE.

First, it turns out that it’s not easy to determine whether an infant is at low or high risk for recurrence of BRUE. Initially, 91.5% of patients enrolled in the study would have been labeled high risk.

Furthermore, a BRUE recurred in 14.3% of the cohort, and 4.8% of high-risk infants were found to have a serious undiagnosed condition. Seizures, airway anomalies, and gastroesophageal reflux were the top three causes of BRUE, but the spectrum of underlying pathology was quite considerable.

The problem was that 4.6% of the entire cohort were found to have a serious underlying condition, nearly identical to the proportion of high-risk infants with these conditions. This prompted the question of whether simply labeling infants “high risk” was really appropriate any longer. 
 

 

 

Revised BRUE Management

Although it hasn’t been possible to group infants neatly in low and high-risk categories, the data from that large cohort led to the development of the BRUE 2.0 criteria, which enabled more focused risk assessment of an infant who experienced a BRUE. With an app on MDCalc, these criteria allow providers to ascertain, and show families, a visual representation of their infant’s individualized risk for a subsequent BRUE and of having a serious underlying condition.

The cohort study also identified red flags from the history or physical exam of infants who experienced a BRUE: weight loss, failure to thrive, or a history of feeding problems. Exam findings such as a bulging fontanelle, forceful or bilious emesis, and evidence of gastrointestinal (GI) bleeding suggest a medical diagnosis rather than a BRUE. If GI-related causes are high on the differential, a feeding evaluation can be helpful. A feeding evaluation can be done in the outpatient setting and does not require hospitalization.

For suspicion of an underlying neurological condition (such as seizures), experts recommend obtaining a short EEG, which is highly sensitive for detecting infantile spasms and encephalopathy. They recommend reserving MRI for infants with abnormalities on EEG or physical exam. Metabolic or genetic testing should be done only if the infant looks ill, because most patients with genetic or inborn errors of metabolism will continue to have symptoms as they become older.

The approach to BRUE has moved into the realm of shared decision-making with families. The likelihood of identifying a serious diagnosis is low for most of these children. And unfortunately, no single test can diagnose the full spectrum of potential explanatory diagnoses. For example, data from 2023 demonstrate that only 1.1% of lab tests following a BRUE contributed to a diagnosis, and most of the time that was a positive viral test. Similarly, imaging was helpful in only 1.5% of cases. So, explaining the evidence and deciding along with parents what is reasonable to do (or not do) is the current state of affairs.
 

My Take

As I reflect back on two and a half decades of caring for these patients, I believe that recent data have helped us a great deal. We do less testing and admit fewer infants to the hospital than we did 20 years ago, and that’s a good thing. Nevertheless, looking for a few red flags, having a high index of suspicion when the clinical exam is abnormal, and engaging in shared decision-making with families can help make the caring for these challenging patients more bearable and lead to better outcomes for all involved.

Dr. Basco is Professor, Department of Pediatrics, Medical University of South Carolina (MUSC); Director, Division of General Pediatrics, Department of Pediatrics, MUSC Children’s Hospital, Charleston, South Carolina. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Many infants have experienced an episode of apnea, defined as a pause in respiration of 20 seconds or more. Most episodes remain unexplained, and no underlying cause can be found. Historically, these were referred to as “near-miss SIDS,” episodes, but that label suggested that all of these events would have ended in death had someone not intervened. New descriptive terminology was needed.

In the mid-1980s, the term “apparent life-threatening event” (ALTE) was adopted. But that term, too, was an overstatement, because although scary for parents, these brief apnea episodes were not, in most cases, truly life-threatening.

In 2013, authors of a systematic review coined the term “brief resolved unexplained event” (BRUE). This review also addressed the history and physical exam features associated with risk for a subsequent episode. It was felt that hospitalization and testing might be warranted if certain infants could be identified as high risk for recurrence.

What Is Considered a BRUE?

In the current working definition of BRUE, the child must be < 1 year old. The episode must be a sudden, brief, and resolved, with one or more of these characteristics:

  • Cyanosis or pallor (but not turning red)
  • A change in breathing (absent, decreased, or irregular)
  • A change in tone (hypertonia or hypotonia)
  • A change in responsiveness.

Furthermore, to qualify as a BRUE, no explanation can be found for the event based on the history and physical examination but before any laboratory testing is done. The definition also excludes children with known potential explanatory diagnoses (such as gastroesophageal reflux or bronchiolitis) and those who are otherwise symptomatically ill at the time of the event.
 

Decision to Admit and Recurrence Risk

An apnea event in an otherwise healthy infant, regardless of what it’s called, puts providers and parents in a difficult position. Should the infant be hospitalized for further monitoring and potentially more invasive testing to determine the cause of the episode? And what are the chances that the episode will be repeated?

clinical practice guideline (CPG) for BRUE, widely adopted in 2016, resulted in significant reductions in healthcare utilization. The CPG attempted to identify low-risk infants who could safely be discharged from the emergency department. Although the CPG improved outcomes, experts acknowledged that an underlying problem was not likely to be identified even among infants deemed high risk, and these infants would be hospitalized unnecessarily.

Available data were simply insufficient to support this decision. So, with the goal of identifying factors that could help predict recurrent BRUE risk, a 15-hospital collaborative study was undertaken, followed by the development and validation of a clinical decision rule for predicting the risk for a serious underlying diagnosis or event recurrence among infants presenting with BRUE.

Here’s what we learned from more than 3000 cases of BRUE.

First, it turns out that it’s not easy to determine whether an infant is at low or high risk for recurrence of BRUE. Initially, 91.5% of patients enrolled in the study would have been labeled high risk.

Furthermore, a BRUE recurred in 14.3% of the cohort, and 4.8% of high-risk infants were found to have a serious undiagnosed condition. Seizures, airway anomalies, and gastroesophageal reflux were the top three causes of BRUE, but the spectrum of underlying pathology was quite considerable.

The problem was that 4.6% of the entire cohort were found to have a serious underlying condition, nearly identical to the proportion of high-risk infants with these conditions. This prompted the question of whether simply labeling infants “high risk” was really appropriate any longer. 
 

 

 

Revised BRUE Management

Although it hasn’t been possible to group infants neatly in low and high-risk categories, the data from that large cohort led to the development of the BRUE 2.0 criteria, which enabled more focused risk assessment of an infant who experienced a BRUE. With an app on MDCalc, these criteria allow providers to ascertain, and show families, a visual representation of their infant’s individualized risk for a subsequent BRUE and of having a serious underlying condition.

The cohort study also identified red flags from the history or physical exam of infants who experienced a BRUE: weight loss, failure to thrive, or a history of feeding problems. Exam findings such as a bulging fontanelle, forceful or bilious emesis, and evidence of gastrointestinal (GI) bleeding suggest a medical diagnosis rather than a BRUE. If GI-related causes are high on the differential, a feeding evaluation can be helpful. A feeding evaluation can be done in the outpatient setting and does not require hospitalization.

For suspicion of an underlying neurological condition (such as seizures), experts recommend obtaining a short EEG, which is highly sensitive for detecting infantile spasms and encephalopathy. They recommend reserving MRI for infants with abnormalities on EEG or physical exam. Metabolic or genetic testing should be done only if the infant looks ill, because most patients with genetic or inborn errors of metabolism will continue to have symptoms as they become older.

The approach to BRUE has moved into the realm of shared decision-making with families. The likelihood of identifying a serious diagnosis is low for most of these children. And unfortunately, no single test can diagnose the full spectrum of potential explanatory diagnoses. For example, data from 2023 demonstrate that only 1.1% of lab tests following a BRUE contributed to a diagnosis, and most of the time that was a positive viral test. Similarly, imaging was helpful in only 1.5% of cases. So, explaining the evidence and deciding along with parents what is reasonable to do (or not do) is the current state of affairs.
 

My Take

As I reflect back on two and a half decades of caring for these patients, I believe that recent data have helped us a great deal. We do less testing and admit fewer infants to the hospital than we did 20 years ago, and that’s a good thing. Nevertheless, looking for a few red flags, having a high index of suspicion when the clinical exam is abnormal, and engaging in shared decision-making with families can help make the caring for these challenging patients more bearable and lead to better outcomes for all involved.

Dr. Basco is Professor, Department of Pediatrics, Medical University of South Carolina (MUSC); Director, Division of General Pediatrics, Department of Pediatrics, MUSC Children’s Hospital, Charleston, South Carolina. He has disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What’s new in the new jaundice guidelines?

Article Type
Changed
Fri, 06/30/2023 - 11:45

More than 15 years in the making, the revised AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation was released in 2022. A key driving force for this revision was the expanded evidence base regarding monitoring and treatment of newborns 35 or more weeks’ gestation to prevent bilirubin encephalopathy and kernicterus.

Here, we summarize the highlights of the new guidelines and point out practical ways to incorporate these guidelines into daily practice.
 

What has changed?

If you are familiar with the previous guidelines (2004 or the 2009 update) for the management of newborn jaundice, you’ll note that the treatment graphs for phototherapy and exchange transfusion have been updated with new, slightly higher thresholds.

Bilirubin thresholds for starting phototherapy are about 2 mg/dL higher overall than indicated in previous iterations of the guidelines.

This change reflects new evidence that infants don’t typically develop bilirubin neurotoxicity until the total serum bilirubin (TSB) reaches levels well above the previous exchange transfusion threshold, justifying a narrow increase in the bilirubin level for starting phototherapy. Also, phototherapy treatment thresholds are now risk-adjusted, with separate curves for each gestational age from 35 weeks to > 38 weeks.

To find the applicable phototherapy threshold, use the infant’s gestational age (rounding down) and determine whether the infant has even a single neurotoxicity risk factor other than prematurity. Neurotoxicity risk factors include a low albumin level, isoimmune hemolytic disease, glucose-6-phosphate dehydrogenase (G6PD) deficiency, or other hemolytic conditions; sepsis; or any significant clinical instability in the previous 24 hours.

For example, a 384/7 weeks’ gestation newborn has a TSB of 12 mg/dL at 48 hours of age but no neurotoxicity risk factors. Using the graph Phototherapy Thresholds: No Hyperbilirubinemia Neurotoxicity Risk Factors, should the infant be placed under phototherapy at this time? (Answer: No. The threshold for starting phototherapy on this infant is approximately 16 mg/dL.)

When hyperbilirubinemia becomes a medical emergency

A new term, “escalation of care,” has been adopted to describe actions to take when the newborn’s TSB climbs to within 2 mg/dL of the exchange transfusion threshold – a medical emergency. Instructions on how to ensure intensive phototherapy, and when to initiate an urgent exchange transfusion, are given, including the critical need to maintain intensive phototherapy continuously during infant transport and admission to another facility.

Transcutaneous vs. serum bilirubin

Either a serum TSB or a transcutaneous bilirubin (TcB) should be measured in all infants between 24 and 48 hours after birth or before discharge if that occurs earlier. TcB measurements are valid and reliable when used as a screening test to identify infants who require a TSB measurement. Although the two tests are generally correlated, they are not identical, and treatment decisions should be based on TSB levels. A TSB should be obtained if the TcB exceeds or is within 3 mg/dL of the phototherapy treatment threshold, or if the TcB is ≥ 15 mg/dL.

Following up: When to check another bilirubin level

Prior to these new guidelines, the question of when to get the next bilirubin level was based on Vinod Bhutani, MD’s risk nomogram, which classified newborn bilirubin levels within high-, intermediate-, or low-risk zones for needing phototherapy. A bilirubin level in the high-risk zone indicated the need for earlier follow-up. These risk zones have been replaced with a more specific table that provides recommended postdischarge follow-up based on how close the newborn’s bilirubin level is to the hour-specific threshold for treatment. The closer the latest TSB or TcB level is to the newborn’s risk-based phototherapy threshold, the sooner the follow-up to check another bilirubin level will need to be.

Most infants discharged before 72 hours of age will need follow-up within 2 days. Newborns with TSB levels nearing the level for phototherapy (within 2 mg/dL or less) should remain in the hospital.
 

Five tips for using the new guidelines

Bilitool.org, a popular and useful app, has already been updated to reflect the changes in the new guidelines, making it easy to apply the new thresholds and create a follow-up plan for each patient.

The guidelines provide recommendations for when to check rebound bilirubin levels after stopping phototherapy (hint: babies with neurotoxic risk factors). A TcB device should not be used while the infant is being treated with phototherapy. However, a TcB can be measured once the baby has been off phototherapy for at least 24 hours.

If you have at least two bilirubin measurements, you can calculate the “rate of rise” in bilirubin level. A rapid rate of rise, which serves as a clinical indicator of hemolysis, is defined as ≥ 0.3 mg/dL per hour in the first 24 hours or ≥ 0.2 mg/dL per hour after the first 24 hours of life. This is especially helpful when hemolysis is suspected even if the newborn’s direct antibody test (DAT) is negative. In this scenario, the infant is considered to have a neurotoxic risk factor.

When you initiate phototherapy, be aware of the infant’s bilirubin level threshold for stopping phototherapy (2 mg/dL below the starting phototherapy threshold), as well as the threshold for escalation of care (2 mg/dL below the exchange transfusion threshold).

Because the thresholds for starting phototherapy and initiating exchange transfusion are slightly higher and specific to gestational age, clinicians can more confidently use less phototherapy.
 

Other guideline highlights

The neurotoxic risk factors and corresponding thresholds are important. If the newborn has one or more neurotoxic risk factors other than prematurity, the neurotoxic risk threshold graph should be used when assessing the need for treatment. Neurotoxic risk thresholds should also be used for newborns whose bilirubin levels continue rising on phototherapy.

The guidelines emphasize that G6PD is one of the most important causes of hazardous hyperbilirubinemia leading to kernicterus in the United States and worldwide. Overall, 13% of African American males and about 4% of African American females have G6PD deficiency.

Finally, the guidelines remind clinicians that an important way to reduce the chances that phototherapy will be needed is to encourage early and frequent feeding (8-12 times in 24 hours).

The AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation contains a great deal more information, but these basic principles should allow practitioners to begin to incorporate these guidelines into daily practice.

Dr. Amaya is associate professor, department of pediatrics, Medical University of South Carolina, Charleston, and medical director, level 1 nursery, department of pediatrics, MUSC general academic pediatrics. She disclosed ties with Medical University of South Carolina. Dr. Balog is clinical associate professor of pediatrics, Medical University of South Carolina, Charleston. She has no relevant financial relationships. Dr. Basco is professor, department of pediatrics, Medical University of South Carolina, Charleston; director, division of general pediatrics, department of pediatrics, MUSC Children’s Hospital. He has disclosed no relevant financial relationships.

A version of this article originally appeared on Medscape.com.

Publications
Topics
Sections

More than 15 years in the making, the revised AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation was released in 2022. A key driving force for this revision was the expanded evidence base regarding monitoring and treatment of newborns 35 or more weeks’ gestation to prevent bilirubin encephalopathy and kernicterus.

Here, we summarize the highlights of the new guidelines and point out practical ways to incorporate these guidelines into daily practice.
 

What has changed?

If you are familiar with the previous guidelines (2004 or the 2009 update) for the management of newborn jaundice, you’ll note that the treatment graphs for phototherapy and exchange transfusion have been updated with new, slightly higher thresholds.

Bilirubin thresholds for starting phototherapy are about 2 mg/dL higher overall than indicated in previous iterations of the guidelines.

This change reflects new evidence that infants don’t typically develop bilirubin neurotoxicity until the total serum bilirubin (TSB) reaches levels well above the previous exchange transfusion threshold, justifying a narrow increase in the bilirubin level for starting phototherapy. Also, phototherapy treatment thresholds are now risk-adjusted, with separate curves for each gestational age from 35 weeks to > 38 weeks.

To find the applicable phototherapy threshold, use the infant’s gestational age (rounding down) and determine whether the infant has even a single neurotoxicity risk factor other than prematurity. Neurotoxicity risk factors include a low albumin level, isoimmune hemolytic disease, glucose-6-phosphate dehydrogenase (G6PD) deficiency, or other hemolytic conditions; sepsis; or any significant clinical instability in the previous 24 hours.

For example, a 384/7 weeks’ gestation newborn has a TSB of 12 mg/dL at 48 hours of age but no neurotoxicity risk factors. Using the graph Phototherapy Thresholds: No Hyperbilirubinemia Neurotoxicity Risk Factors, should the infant be placed under phototherapy at this time? (Answer: No. The threshold for starting phototherapy on this infant is approximately 16 mg/dL.)

When hyperbilirubinemia becomes a medical emergency

A new term, “escalation of care,” has been adopted to describe actions to take when the newborn’s TSB climbs to within 2 mg/dL of the exchange transfusion threshold – a medical emergency. Instructions on how to ensure intensive phototherapy, and when to initiate an urgent exchange transfusion, are given, including the critical need to maintain intensive phototherapy continuously during infant transport and admission to another facility.

Transcutaneous vs. serum bilirubin

Either a serum TSB or a transcutaneous bilirubin (TcB) should be measured in all infants between 24 and 48 hours after birth or before discharge if that occurs earlier. TcB measurements are valid and reliable when used as a screening test to identify infants who require a TSB measurement. Although the two tests are generally correlated, they are not identical, and treatment decisions should be based on TSB levels. A TSB should be obtained if the TcB exceeds or is within 3 mg/dL of the phototherapy treatment threshold, or if the TcB is ≥ 15 mg/dL.

Following up: When to check another bilirubin level

Prior to these new guidelines, the question of when to get the next bilirubin level was based on Vinod Bhutani, MD’s risk nomogram, which classified newborn bilirubin levels within high-, intermediate-, or low-risk zones for needing phototherapy. A bilirubin level in the high-risk zone indicated the need for earlier follow-up. These risk zones have been replaced with a more specific table that provides recommended postdischarge follow-up based on how close the newborn’s bilirubin level is to the hour-specific threshold for treatment. The closer the latest TSB or TcB level is to the newborn’s risk-based phototherapy threshold, the sooner the follow-up to check another bilirubin level will need to be.

Most infants discharged before 72 hours of age will need follow-up within 2 days. Newborns with TSB levels nearing the level for phototherapy (within 2 mg/dL or less) should remain in the hospital.
 

Five tips for using the new guidelines

Bilitool.org, a popular and useful app, has already been updated to reflect the changes in the new guidelines, making it easy to apply the new thresholds and create a follow-up plan for each patient.

The guidelines provide recommendations for when to check rebound bilirubin levels after stopping phototherapy (hint: babies with neurotoxic risk factors). A TcB device should not be used while the infant is being treated with phototherapy. However, a TcB can be measured once the baby has been off phototherapy for at least 24 hours.

If you have at least two bilirubin measurements, you can calculate the “rate of rise” in bilirubin level. A rapid rate of rise, which serves as a clinical indicator of hemolysis, is defined as ≥ 0.3 mg/dL per hour in the first 24 hours or ≥ 0.2 mg/dL per hour after the first 24 hours of life. This is especially helpful when hemolysis is suspected even if the newborn’s direct antibody test (DAT) is negative. In this scenario, the infant is considered to have a neurotoxic risk factor.

When you initiate phototherapy, be aware of the infant’s bilirubin level threshold for stopping phototherapy (2 mg/dL below the starting phototherapy threshold), as well as the threshold for escalation of care (2 mg/dL below the exchange transfusion threshold).

Because the thresholds for starting phototherapy and initiating exchange transfusion are slightly higher and specific to gestational age, clinicians can more confidently use less phototherapy.
 

Other guideline highlights

The neurotoxic risk factors and corresponding thresholds are important. If the newborn has one or more neurotoxic risk factors other than prematurity, the neurotoxic risk threshold graph should be used when assessing the need for treatment. Neurotoxic risk thresholds should also be used for newborns whose bilirubin levels continue rising on phototherapy.

The guidelines emphasize that G6PD is one of the most important causes of hazardous hyperbilirubinemia leading to kernicterus in the United States and worldwide. Overall, 13% of African American males and about 4% of African American females have G6PD deficiency.

Finally, the guidelines remind clinicians that an important way to reduce the chances that phototherapy will be needed is to encourage early and frequent feeding (8-12 times in 24 hours).

The AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation contains a great deal more information, but these basic principles should allow practitioners to begin to incorporate these guidelines into daily practice.

Dr. Amaya is associate professor, department of pediatrics, Medical University of South Carolina, Charleston, and medical director, level 1 nursery, department of pediatrics, MUSC general academic pediatrics. She disclosed ties with Medical University of South Carolina. Dr. Balog is clinical associate professor of pediatrics, Medical University of South Carolina, Charleston. She has no relevant financial relationships. Dr. Basco is professor, department of pediatrics, Medical University of South Carolina, Charleston; director, division of general pediatrics, department of pediatrics, MUSC Children’s Hospital. He has disclosed no relevant financial relationships.

A version of this article originally appeared on Medscape.com.

More than 15 years in the making, the revised AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation was released in 2022. A key driving force for this revision was the expanded evidence base regarding monitoring and treatment of newborns 35 or more weeks’ gestation to prevent bilirubin encephalopathy and kernicterus.

Here, we summarize the highlights of the new guidelines and point out practical ways to incorporate these guidelines into daily practice.
 

What has changed?

If you are familiar with the previous guidelines (2004 or the 2009 update) for the management of newborn jaundice, you’ll note that the treatment graphs for phototherapy and exchange transfusion have been updated with new, slightly higher thresholds.

Bilirubin thresholds for starting phototherapy are about 2 mg/dL higher overall than indicated in previous iterations of the guidelines.

This change reflects new evidence that infants don’t typically develop bilirubin neurotoxicity until the total serum bilirubin (TSB) reaches levels well above the previous exchange transfusion threshold, justifying a narrow increase in the bilirubin level for starting phototherapy. Also, phototherapy treatment thresholds are now risk-adjusted, with separate curves for each gestational age from 35 weeks to > 38 weeks.

To find the applicable phototherapy threshold, use the infant’s gestational age (rounding down) and determine whether the infant has even a single neurotoxicity risk factor other than prematurity. Neurotoxicity risk factors include a low albumin level, isoimmune hemolytic disease, glucose-6-phosphate dehydrogenase (G6PD) deficiency, or other hemolytic conditions; sepsis; or any significant clinical instability in the previous 24 hours.

For example, a 384/7 weeks’ gestation newborn has a TSB of 12 mg/dL at 48 hours of age but no neurotoxicity risk factors. Using the graph Phototherapy Thresholds: No Hyperbilirubinemia Neurotoxicity Risk Factors, should the infant be placed under phototherapy at this time? (Answer: No. The threshold for starting phototherapy on this infant is approximately 16 mg/dL.)

When hyperbilirubinemia becomes a medical emergency

A new term, “escalation of care,” has been adopted to describe actions to take when the newborn’s TSB climbs to within 2 mg/dL of the exchange transfusion threshold – a medical emergency. Instructions on how to ensure intensive phototherapy, and when to initiate an urgent exchange transfusion, are given, including the critical need to maintain intensive phototherapy continuously during infant transport and admission to another facility.

Transcutaneous vs. serum bilirubin

Either a serum TSB or a transcutaneous bilirubin (TcB) should be measured in all infants between 24 and 48 hours after birth or before discharge if that occurs earlier. TcB measurements are valid and reliable when used as a screening test to identify infants who require a TSB measurement. Although the two tests are generally correlated, they are not identical, and treatment decisions should be based on TSB levels. A TSB should be obtained if the TcB exceeds or is within 3 mg/dL of the phototherapy treatment threshold, or if the TcB is ≥ 15 mg/dL.

Following up: When to check another bilirubin level

Prior to these new guidelines, the question of when to get the next bilirubin level was based on Vinod Bhutani, MD’s risk nomogram, which classified newborn bilirubin levels within high-, intermediate-, or low-risk zones for needing phototherapy. A bilirubin level in the high-risk zone indicated the need for earlier follow-up. These risk zones have been replaced with a more specific table that provides recommended postdischarge follow-up based on how close the newborn’s bilirubin level is to the hour-specific threshold for treatment. The closer the latest TSB or TcB level is to the newborn’s risk-based phototherapy threshold, the sooner the follow-up to check another bilirubin level will need to be.

Most infants discharged before 72 hours of age will need follow-up within 2 days. Newborns with TSB levels nearing the level for phototherapy (within 2 mg/dL or less) should remain in the hospital.
 

Five tips for using the new guidelines

Bilitool.org, a popular and useful app, has already been updated to reflect the changes in the new guidelines, making it easy to apply the new thresholds and create a follow-up plan for each patient.

The guidelines provide recommendations for when to check rebound bilirubin levels after stopping phototherapy (hint: babies with neurotoxic risk factors). A TcB device should not be used while the infant is being treated with phototherapy. However, a TcB can be measured once the baby has been off phototherapy for at least 24 hours.

If you have at least two bilirubin measurements, you can calculate the “rate of rise” in bilirubin level. A rapid rate of rise, which serves as a clinical indicator of hemolysis, is defined as ≥ 0.3 mg/dL per hour in the first 24 hours or ≥ 0.2 mg/dL per hour after the first 24 hours of life. This is especially helpful when hemolysis is suspected even if the newborn’s direct antibody test (DAT) is negative. In this scenario, the infant is considered to have a neurotoxic risk factor.

When you initiate phototherapy, be aware of the infant’s bilirubin level threshold for stopping phototherapy (2 mg/dL below the starting phototherapy threshold), as well as the threshold for escalation of care (2 mg/dL below the exchange transfusion threshold).

Because the thresholds for starting phototherapy and initiating exchange transfusion are slightly higher and specific to gestational age, clinicians can more confidently use less phototherapy.
 

Other guideline highlights

The neurotoxic risk factors and corresponding thresholds are important. If the newborn has one or more neurotoxic risk factors other than prematurity, the neurotoxic risk threshold graph should be used when assessing the need for treatment. Neurotoxic risk thresholds should also be used for newborns whose bilirubin levels continue rising on phototherapy.

The guidelines emphasize that G6PD is one of the most important causes of hazardous hyperbilirubinemia leading to kernicterus in the United States and worldwide. Overall, 13% of African American males and about 4% of African American females have G6PD deficiency.

Finally, the guidelines remind clinicians that an important way to reduce the chances that phototherapy will be needed is to encourage early and frequent feeding (8-12 times in 24 hours).

The AAP Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation contains a great deal more information, but these basic principles should allow practitioners to begin to incorporate these guidelines into daily practice.

Dr. Amaya is associate professor, department of pediatrics, Medical University of South Carolina, Charleston, and medical director, level 1 nursery, department of pediatrics, MUSC general academic pediatrics. She disclosed ties with Medical University of South Carolina. Dr. Balog is clinical associate professor of pediatrics, Medical University of South Carolina, Charleston. She has no relevant financial relationships. Dr. Basco is professor, department of pediatrics, Medical University of South Carolina, Charleston; director, division of general pediatrics, department of pediatrics, MUSC Children’s Hospital. He has disclosed no relevant financial relationships.

A version of this article originally appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The latest on COVID-19 and the heart in children

Article Type
Changed
Wed, 06/01/2022 - 14:33

The 2022 Pediatric Academic Societies meeting included an excellent session on the acute and delayed effects of COVID-19 on children’s hearts. Data on the risk for cardiac injury during acute COVID-19, return-to-play guidelines after COVID-19–related heart injury, and post–vaccine-associated myocarditis were reviewed.

COVID-induced cardiac injury

The risk for COVID-induced cardiac injury is directly associated with age. Recent Centers for Disease Control and Prevention data revealed a “myocarditis or pericarditis” rate in the range of 12-17 cases per 100,000 SARS-CoV-2 infections among male children aged 5-11 years (lower rates for females); the rate jumps to 50-65 cases per 100,000 infections among male children aged 12-17 years. So cardiac injury caused by acute COVID-19 appears rare, but the risk is clearly associated with male sex and adolescent age.

Return to play after COVID-19

Clinicians may be pressed by patients and parents for advice on return to play after illness with COVID-19. In July 2020, the American College of Cardiology published an algorithm that has been adjusted over time, most recently in 2022 by the American Academy of Pediatrics. These algorithms stratify recommendations by degree of illness. One rule of thumb: Patients with severe COVID-19 (ICU care or multisystem inflammatory syndrome in children [MIS-C]) have only one box on the algorithm, and that is to rest for 3-6 months and only return to usual activity after cardiac clearance. Moderate disease (defined as ≥ 4 days of fever > 100.4 °F; ≥ 1 week of myalgia, chills, lethargy, or any non-ICU hospital stay; and no evidence of MIS-C) require undergoing an ECG to look for cardiac dysfunction, followed by at least 10 days of rest if the ECG is negative or referral for cardiac evaluation if either ECG or exam by a pediatric cardiologist is abnormal.

Clinicians can perhaps be more permissible with patients who are younger or who have had less severe disease. For example, if a patient aged younger than 12 years is asymptomatic with routine activity at the time of evaluation, an ECG is not indicated. For patients aged 12-15 years who are asymptomatic at the time of evaluation but participate in a high-intensity sport, clinicians might consider obtaining an ECG. As few as 3 days of rest might be enough for select patients who are asymptomatic at presentation. For other patients, clinicians should work with parents to introduce activity gradually and make it clear to parents that any activity intolerance requires quick reevaluation. On existing athlete registries, no deaths that are attributable to post–COVID-19 cardiac effects have been confirmed in children; however, all data presented during the session were from prior to the Omicron variant surge in early 2022, so more information may be forthcoming.
 

Considerations for MIS-C

Among children experiencing MIS-C, 35% had ECG changes, 40% exhibited left ventricular systolic or diastolic dysfunction, and 30% had mitral regurgitation, meaning that a large percentage of patients with MIS-C show some degree of cardiac dysfunction. Unfortunately, we are still in the data-gathering phase for long-term outcomes. Functional parameters tend to improve within a week, and most patients will return to normal cardiac function by 3-4 months.

Return to play after MIS-C is quite different from that for acute COVID-19. Patients with MIS-C should be treated much like other patients with myocarditis with an expected return to play in 3-6 months and only after cardiac follow-up. Another good-to-remember recommendation is to delay COVID-19 vaccination for at least 90 days after an episode of MIS-C.
 

Vaccine-related myocarditis

Once again, older age appears to be a risk factor because most patients with postvaccine myocarditis have been in their mid-teens to early 20s, with events more likely after the second vaccine dose and also more likely in male children (4:1 ratio to female children). No deaths have occurred from postvaccination myocarditis in patients younger than 30 years. Still, many individuals have exhibited residual MRI enhancement in the cardiac tissue for some time after experiencing postvaccination myocarditis; it’s currently unclear whether that has clinical implications. By comparison, CDC data demonstrates convincingly that the risk for cardiac effects is much greater after acute COVID-19 than after COVID-19 vaccination, with risk ratios often higher than 20, depending on age and condition (for example, myocarditis vs. pericarditis). Data are still insufficient to determine whether clinicians should recommend or avoid COVID-19 vaccination in children with congenital heart disease.

In summary, administering COVID-19 vaccines requires a great deal of shared decision-making with parents, and the clinician’s role is to educate parents about all potential risks related to both the vaccine and COVID-19 illness. Research has consistently shown that acute COVID-19 myocarditis and myocarditis associated with MIS-C are much more likely to occur in unvaccinated youth and more likely than postvaccination myocarditis, regardless of age.

William T. Basco, Jr., MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The 2022 Pediatric Academic Societies meeting included an excellent session on the acute and delayed effects of COVID-19 on children’s hearts. Data on the risk for cardiac injury during acute COVID-19, return-to-play guidelines after COVID-19–related heart injury, and post–vaccine-associated myocarditis were reviewed.

COVID-induced cardiac injury

The risk for COVID-induced cardiac injury is directly associated with age. Recent Centers for Disease Control and Prevention data revealed a “myocarditis or pericarditis” rate in the range of 12-17 cases per 100,000 SARS-CoV-2 infections among male children aged 5-11 years (lower rates for females); the rate jumps to 50-65 cases per 100,000 infections among male children aged 12-17 years. So cardiac injury caused by acute COVID-19 appears rare, but the risk is clearly associated with male sex and adolescent age.

Return to play after COVID-19

Clinicians may be pressed by patients and parents for advice on return to play after illness with COVID-19. In July 2020, the American College of Cardiology published an algorithm that has been adjusted over time, most recently in 2022 by the American Academy of Pediatrics. These algorithms stratify recommendations by degree of illness. One rule of thumb: Patients with severe COVID-19 (ICU care or multisystem inflammatory syndrome in children [MIS-C]) have only one box on the algorithm, and that is to rest for 3-6 months and only return to usual activity after cardiac clearance. Moderate disease (defined as ≥ 4 days of fever > 100.4 °F; ≥ 1 week of myalgia, chills, lethargy, or any non-ICU hospital stay; and no evidence of MIS-C) require undergoing an ECG to look for cardiac dysfunction, followed by at least 10 days of rest if the ECG is negative or referral for cardiac evaluation if either ECG or exam by a pediatric cardiologist is abnormal.

Clinicians can perhaps be more permissible with patients who are younger or who have had less severe disease. For example, if a patient aged younger than 12 years is asymptomatic with routine activity at the time of evaluation, an ECG is not indicated. For patients aged 12-15 years who are asymptomatic at the time of evaluation but participate in a high-intensity sport, clinicians might consider obtaining an ECG. As few as 3 days of rest might be enough for select patients who are asymptomatic at presentation. For other patients, clinicians should work with parents to introduce activity gradually and make it clear to parents that any activity intolerance requires quick reevaluation. On existing athlete registries, no deaths that are attributable to post–COVID-19 cardiac effects have been confirmed in children; however, all data presented during the session were from prior to the Omicron variant surge in early 2022, so more information may be forthcoming.
 

Considerations for MIS-C

Among children experiencing MIS-C, 35% had ECG changes, 40% exhibited left ventricular systolic or diastolic dysfunction, and 30% had mitral regurgitation, meaning that a large percentage of patients with MIS-C show some degree of cardiac dysfunction. Unfortunately, we are still in the data-gathering phase for long-term outcomes. Functional parameters tend to improve within a week, and most patients will return to normal cardiac function by 3-4 months.

Return to play after MIS-C is quite different from that for acute COVID-19. Patients with MIS-C should be treated much like other patients with myocarditis with an expected return to play in 3-6 months and only after cardiac follow-up. Another good-to-remember recommendation is to delay COVID-19 vaccination for at least 90 days after an episode of MIS-C.
 

Vaccine-related myocarditis

Once again, older age appears to be a risk factor because most patients with postvaccine myocarditis have been in their mid-teens to early 20s, with events more likely after the second vaccine dose and also more likely in male children (4:1 ratio to female children). No deaths have occurred from postvaccination myocarditis in patients younger than 30 years. Still, many individuals have exhibited residual MRI enhancement in the cardiac tissue for some time after experiencing postvaccination myocarditis; it’s currently unclear whether that has clinical implications. By comparison, CDC data demonstrates convincingly that the risk for cardiac effects is much greater after acute COVID-19 than after COVID-19 vaccination, with risk ratios often higher than 20, depending on age and condition (for example, myocarditis vs. pericarditis). Data are still insufficient to determine whether clinicians should recommend or avoid COVID-19 vaccination in children with congenital heart disease.

In summary, administering COVID-19 vaccines requires a great deal of shared decision-making with parents, and the clinician’s role is to educate parents about all potential risks related to both the vaccine and COVID-19 illness. Research has consistently shown that acute COVID-19 myocarditis and myocarditis associated with MIS-C are much more likely to occur in unvaccinated youth and more likely than postvaccination myocarditis, regardless of age.

William T. Basco, Jr., MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

The 2022 Pediatric Academic Societies meeting included an excellent session on the acute and delayed effects of COVID-19 on children’s hearts. Data on the risk for cardiac injury during acute COVID-19, return-to-play guidelines after COVID-19–related heart injury, and post–vaccine-associated myocarditis were reviewed.

COVID-induced cardiac injury

The risk for COVID-induced cardiac injury is directly associated with age. Recent Centers for Disease Control and Prevention data revealed a “myocarditis or pericarditis” rate in the range of 12-17 cases per 100,000 SARS-CoV-2 infections among male children aged 5-11 years (lower rates for females); the rate jumps to 50-65 cases per 100,000 infections among male children aged 12-17 years. So cardiac injury caused by acute COVID-19 appears rare, but the risk is clearly associated with male sex and adolescent age.

Return to play after COVID-19

Clinicians may be pressed by patients and parents for advice on return to play after illness with COVID-19. In July 2020, the American College of Cardiology published an algorithm that has been adjusted over time, most recently in 2022 by the American Academy of Pediatrics. These algorithms stratify recommendations by degree of illness. One rule of thumb: Patients with severe COVID-19 (ICU care or multisystem inflammatory syndrome in children [MIS-C]) have only one box on the algorithm, and that is to rest for 3-6 months and only return to usual activity after cardiac clearance. Moderate disease (defined as ≥ 4 days of fever > 100.4 °F; ≥ 1 week of myalgia, chills, lethargy, or any non-ICU hospital stay; and no evidence of MIS-C) require undergoing an ECG to look for cardiac dysfunction, followed by at least 10 days of rest if the ECG is negative or referral for cardiac evaluation if either ECG or exam by a pediatric cardiologist is abnormal.

Clinicians can perhaps be more permissible with patients who are younger or who have had less severe disease. For example, if a patient aged younger than 12 years is asymptomatic with routine activity at the time of evaluation, an ECG is not indicated. For patients aged 12-15 years who are asymptomatic at the time of evaluation but participate in a high-intensity sport, clinicians might consider obtaining an ECG. As few as 3 days of rest might be enough for select patients who are asymptomatic at presentation. For other patients, clinicians should work with parents to introduce activity gradually and make it clear to parents that any activity intolerance requires quick reevaluation. On existing athlete registries, no deaths that are attributable to post–COVID-19 cardiac effects have been confirmed in children; however, all data presented during the session were from prior to the Omicron variant surge in early 2022, so more information may be forthcoming.
 

Considerations for MIS-C

Among children experiencing MIS-C, 35% had ECG changes, 40% exhibited left ventricular systolic or diastolic dysfunction, and 30% had mitral regurgitation, meaning that a large percentage of patients with MIS-C show some degree of cardiac dysfunction. Unfortunately, we are still in the data-gathering phase for long-term outcomes. Functional parameters tend to improve within a week, and most patients will return to normal cardiac function by 3-4 months.

Return to play after MIS-C is quite different from that for acute COVID-19. Patients with MIS-C should be treated much like other patients with myocarditis with an expected return to play in 3-6 months and only after cardiac follow-up. Another good-to-remember recommendation is to delay COVID-19 vaccination for at least 90 days after an episode of MIS-C.
 

Vaccine-related myocarditis

Once again, older age appears to be a risk factor because most patients with postvaccine myocarditis have been in their mid-teens to early 20s, with events more likely after the second vaccine dose and also more likely in male children (4:1 ratio to female children). No deaths have occurred from postvaccination myocarditis in patients younger than 30 years. Still, many individuals have exhibited residual MRI enhancement in the cardiac tissue for some time after experiencing postvaccination myocarditis; it’s currently unclear whether that has clinical implications. By comparison, CDC data demonstrates convincingly that the risk for cardiac effects is much greater after acute COVID-19 than after COVID-19 vaccination, with risk ratios often higher than 20, depending on age and condition (for example, myocarditis vs. pericarditis). Data are still insufficient to determine whether clinicians should recommend or avoid COVID-19 vaccination in children with congenital heart disease.

In summary, administering COVID-19 vaccines requires a great deal of shared decision-making with parents, and the clinician’s role is to educate parents about all potential risks related to both the vaccine and COVID-19 illness. Research has consistently shown that acute COVID-19 myocarditis and myocarditis associated with MIS-C are much more likely to occur in unvaccinated youth and more likely than postvaccination myocarditis, regardless of age.

William T. Basco, Jr., MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The febrile infant: New AAP guidance for the first 2 months of life

Article Type
Changed
Wed, 07/21/2021 - 15:09

 

Sixteen years in the making, the American Academy of Pediatrics just released a new clinical practice guideline (CPG), “Evaluation and Management of Well-Appearing Febrile Infants 8-60 Days Old”. The recommendations were derived from interpretations of sequential studies in young, febrile, but well-appearing infants that covered invasive bacterial infection (IBI) incidence, diagnostic modalities, and treatment during the first 2 months of life, further refining approaches to evaluation and empirical treatment.
 

Pediatricians have long had solid information to help assess the risk for IBI among febrile infants aged 0-3 months, but there has been an ongoing desire to further refine the suggested evaluation of these very young infants. A study of febrile infants from the Pediatric Research in Office Settings network along with subsequent evidence has identified the first 3 weeks of life as the period of highest risk for IBI, with risk declining in a graded fashion aged between 22 and 56 days.
 

Critical caveats

First, some caveats. Infants 0-7 days are not addressed in the CPG, and all should be treated as high risk and receive full IBI evaluation according to newborn protocols. Second, the recommendations apply only to “well-appearing” infants. Any ill-appearing infant should be treated as high risk and receive full IBI evaluation and begun on empirical antimicrobials. Third, even though the CPG deals with infants as young as 8-21 days old, the recommendations are to treat all infants in this age group as high risk, even if well-appearing, and complete full IBI evaluation and empirical therapy while awaiting results. Fourth, these guidelines apply only to infants born at 37 weeks’ gestation or more. Finally, the new CPG action statements are meant to be recommendations rather than a standard of medical care, leaving some leeway for clinician interpretation of individual patient scenarios. Where appropriate, parents’ values and preferences should be incorporated as part of shared decision-making.

The CPG divides young, febrile infants into three cohorts based on age:

  • 8-21 days old
  • 22-28 days old
  • 29-60 days old

Age 8-21 days

For well-appearing febrile infants 8-21 days old, the CPG recommends a complete IBI evaluation that includes urine, blood, and cerebrospinal fluid (CSF) for culture, approaching all infants in this cohort as high risk. Inflammatory markers may be obtained, but the evidence is not comprehensive enough to evaluate their role in decision-making for this age group. A two-step urine evaluation method (urine analysis followed by culture if the urine analysis looks concerning) is not recommended for infants aged 8-21 days. Urine samples for culture from these young infants should be obtained by catheterization or suprapubic aspiration.

The CPG recommends drawing blood cultures and CSF by lumbar puncture from this cohort. These infants should be admitted to the hospital, treated empirically with antimicrobials, and actively monitored. However, if the cultures are negative at 24-36 hours, the clinician should discontinue antimicrobials and discharge the infant if there is no other reason for continued hospitalization.
 

Age 22-28 days

Well-appearing, febrile infants 22-28 days old are in an intermediate-risk zone. The recommendation for infants in this cohort is to obtain a urine specimen by catheterization or suprapubic aspiration for both urine analysis and culture. Clinicians may consider obtaining urine samples for analysis noninvasively (e.g., urine bag) in this cohort, but this is not the preferred method.

Blood culture should be obtained from all infants in this group. Inflammatory markers can help clinicians identify infants at greater risk for IBI, including meningitis. Previous data suggested that inflammatory markers such as serum white blood cell counts greater than 11,000/mcL, a serum absolute neutrophil count of greater than 4,000/mcL, and elevated C-reactive protein and procalcitonin levels could help providers identify febrile infants with true IBI. A 2008 study demonstrated that procalcitonin had the best receiver operating characteristic curve in regard to predicting IBI in young febrile infants. Other research backed up that finding and identified cutoff values for procalcitonin levels greater than 1.0 ng/mL. The CPG recommends considering a procalcitonin value of 0.5 ng/mL or higher as positive, indicating that the infant is at greater risk for IBI and potentially should undergo an expanded IBI workup. Therefore, in infants aged 22-28 days, inflammatory markers can play a role in deciding whether to perform a lumbar puncture.

Many more nuanced recommendations for whether to and how to empirically treat with antimicrobials in this cohort can be found in the CPG, including whether to manage in the hospital or at home. Treatment recommendations vary greatly for this cohort on the basis of the tests obtained and whether tests were positive or negative at the initial evaluation.
 

Age 29-60 days

The CPG will be most helpful when clinicians are faced with well-appearing, febrile infants in the 29- to 60-day age group. As with the other groups, a urine evaluation is recommended; however, the CPG suggests that the two-step approach – obtaining a urine analysis by a noninvasive method and only obtaining culture if the urine analysis is positive – is reasonable. This means that a bag or free-flowing urine specimen would be appropriate for urinalysis, followed by catheterization/suprapubic aspiration if a culture is necessary. This would save approximately 90% of infants from invasive urine collection. Regardless, only catheter or suprapubic specimens are appropriate for urine culture.

The CPG also recommends that clinicians obtain blood culture on all of these infants. Inflammatory markers should be assessed in this cohort because avoiding lumbar puncture for CSF culture would be appropriate in this cohort if the inflammatory markers are negative. If CSF is obtained in this age cohort, enterovirus testing should be added to the testing regimen. Again, for any infant considered at higher risk for IBI on the basis of screening tests, the CPG recommends a 24- to 36-hour rule-out period with empirical antimicrobial treatment and active monitoring in the hospital.
 

Summary

The recommended approach for febrile infants 8-21 days old is relatively aggressive, with urine, blood, and CSF evaluation for IBI. Clinicians gain some leeway for infants age 22-28 days, but the guidelines recommend a more flexible approach to evaluating well-appearing, febrile infants age 29-60 days, when a two-step urine evaluation and inflammatory marker assessment can help clinicians and parents have a better discussion about the risk-benefit trade-offs of more aggressive testing and empirical treatment.

The author would like to thank Ken Roberts, MD, for his review and helpful comments on this summary of the CPG highlights. Summary points of the CPG were presented by the writing group at the 2021 Pediatric Academic Societies meeting.

William T. Basco, Jr, MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Sixteen years in the making, the American Academy of Pediatrics just released a new clinical practice guideline (CPG), “Evaluation and Management of Well-Appearing Febrile Infants 8-60 Days Old”. The recommendations were derived from interpretations of sequential studies in young, febrile, but well-appearing infants that covered invasive bacterial infection (IBI) incidence, diagnostic modalities, and treatment during the first 2 months of life, further refining approaches to evaluation and empirical treatment.
 

Pediatricians have long had solid information to help assess the risk for IBI among febrile infants aged 0-3 months, but there has been an ongoing desire to further refine the suggested evaluation of these very young infants. A study of febrile infants from the Pediatric Research in Office Settings network along with subsequent evidence has identified the first 3 weeks of life as the period of highest risk for IBI, with risk declining in a graded fashion aged between 22 and 56 days.
 

Critical caveats

First, some caveats. Infants 0-7 days are not addressed in the CPG, and all should be treated as high risk and receive full IBI evaluation according to newborn protocols. Second, the recommendations apply only to “well-appearing” infants. Any ill-appearing infant should be treated as high risk and receive full IBI evaluation and begun on empirical antimicrobials. Third, even though the CPG deals with infants as young as 8-21 days old, the recommendations are to treat all infants in this age group as high risk, even if well-appearing, and complete full IBI evaluation and empirical therapy while awaiting results. Fourth, these guidelines apply only to infants born at 37 weeks’ gestation or more. Finally, the new CPG action statements are meant to be recommendations rather than a standard of medical care, leaving some leeway for clinician interpretation of individual patient scenarios. Where appropriate, parents’ values and preferences should be incorporated as part of shared decision-making.

The CPG divides young, febrile infants into three cohorts based on age:

  • 8-21 days old
  • 22-28 days old
  • 29-60 days old

Age 8-21 days

For well-appearing febrile infants 8-21 days old, the CPG recommends a complete IBI evaluation that includes urine, blood, and cerebrospinal fluid (CSF) for culture, approaching all infants in this cohort as high risk. Inflammatory markers may be obtained, but the evidence is not comprehensive enough to evaluate their role in decision-making for this age group. A two-step urine evaluation method (urine analysis followed by culture if the urine analysis looks concerning) is not recommended for infants aged 8-21 days. Urine samples for culture from these young infants should be obtained by catheterization or suprapubic aspiration.

The CPG recommends drawing blood cultures and CSF by lumbar puncture from this cohort. These infants should be admitted to the hospital, treated empirically with antimicrobials, and actively monitored. However, if the cultures are negative at 24-36 hours, the clinician should discontinue antimicrobials and discharge the infant if there is no other reason for continued hospitalization.
 

Age 22-28 days

Well-appearing, febrile infants 22-28 days old are in an intermediate-risk zone. The recommendation for infants in this cohort is to obtain a urine specimen by catheterization or suprapubic aspiration for both urine analysis and culture. Clinicians may consider obtaining urine samples for analysis noninvasively (e.g., urine bag) in this cohort, but this is not the preferred method.

Blood culture should be obtained from all infants in this group. Inflammatory markers can help clinicians identify infants at greater risk for IBI, including meningitis. Previous data suggested that inflammatory markers such as serum white blood cell counts greater than 11,000/mcL, a serum absolute neutrophil count of greater than 4,000/mcL, and elevated C-reactive protein and procalcitonin levels could help providers identify febrile infants with true IBI. A 2008 study demonstrated that procalcitonin had the best receiver operating characteristic curve in regard to predicting IBI in young febrile infants. Other research backed up that finding and identified cutoff values for procalcitonin levels greater than 1.0 ng/mL. The CPG recommends considering a procalcitonin value of 0.5 ng/mL or higher as positive, indicating that the infant is at greater risk for IBI and potentially should undergo an expanded IBI workup. Therefore, in infants aged 22-28 days, inflammatory markers can play a role in deciding whether to perform a lumbar puncture.

Many more nuanced recommendations for whether to and how to empirically treat with antimicrobials in this cohort can be found in the CPG, including whether to manage in the hospital or at home. Treatment recommendations vary greatly for this cohort on the basis of the tests obtained and whether tests were positive or negative at the initial evaluation.
 

Age 29-60 days

The CPG will be most helpful when clinicians are faced with well-appearing, febrile infants in the 29- to 60-day age group. As with the other groups, a urine evaluation is recommended; however, the CPG suggests that the two-step approach – obtaining a urine analysis by a noninvasive method and only obtaining culture if the urine analysis is positive – is reasonable. This means that a bag or free-flowing urine specimen would be appropriate for urinalysis, followed by catheterization/suprapubic aspiration if a culture is necessary. This would save approximately 90% of infants from invasive urine collection. Regardless, only catheter or suprapubic specimens are appropriate for urine culture.

The CPG also recommends that clinicians obtain blood culture on all of these infants. Inflammatory markers should be assessed in this cohort because avoiding lumbar puncture for CSF culture would be appropriate in this cohort if the inflammatory markers are negative. If CSF is obtained in this age cohort, enterovirus testing should be added to the testing regimen. Again, for any infant considered at higher risk for IBI on the basis of screening tests, the CPG recommends a 24- to 36-hour rule-out period with empirical antimicrobial treatment and active monitoring in the hospital.
 

Summary

The recommended approach for febrile infants 8-21 days old is relatively aggressive, with urine, blood, and CSF evaluation for IBI. Clinicians gain some leeway for infants age 22-28 days, but the guidelines recommend a more flexible approach to evaluating well-appearing, febrile infants age 29-60 days, when a two-step urine evaluation and inflammatory marker assessment can help clinicians and parents have a better discussion about the risk-benefit trade-offs of more aggressive testing and empirical treatment.

The author would like to thank Ken Roberts, MD, for his review and helpful comments on this summary of the CPG highlights. Summary points of the CPG were presented by the writing group at the 2021 Pediatric Academic Societies meeting.

William T. Basco, Jr, MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

 

Sixteen years in the making, the American Academy of Pediatrics just released a new clinical practice guideline (CPG), “Evaluation and Management of Well-Appearing Febrile Infants 8-60 Days Old”. The recommendations were derived from interpretations of sequential studies in young, febrile, but well-appearing infants that covered invasive bacterial infection (IBI) incidence, diagnostic modalities, and treatment during the first 2 months of life, further refining approaches to evaluation and empirical treatment.
 

Pediatricians have long had solid information to help assess the risk for IBI among febrile infants aged 0-3 months, but there has been an ongoing desire to further refine the suggested evaluation of these very young infants. A study of febrile infants from the Pediatric Research in Office Settings network along with subsequent evidence has identified the first 3 weeks of life as the period of highest risk for IBI, with risk declining in a graded fashion aged between 22 and 56 days.
 

Critical caveats

First, some caveats. Infants 0-7 days are not addressed in the CPG, and all should be treated as high risk and receive full IBI evaluation according to newborn protocols. Second, the recommendations apply only to “well-appearing” infants. Any ill-appearing infant should be treated as high risk and receive full IBI evaluation and begun on empirical antimicrobials. Third, even though the CPG deals with infants as young as 8-21 days old, the recommendations are to treat all infants in this age group as high risk, even if well-appearing, and complete full IBI evaluation and empirical therapy while awaiting results. Fourth, these guidelines apply only to infants born at 37 weeks’ gestation or more. Finally, the new CPG action statements are meant to be recommendations rather than a standard of medical care, leaving some leeway for clinician interpretation of individual patient scenarios. Where appropriate, parents’ values and preferences should be incorporated as part of shared decision-making.

The CPG divides young, febrile infants into three cohorts based on age:

  • 8-21 days old
  • 22-28 days old
  • 29-60 days old

Age 8-21 days

For well-appearing febrile infants 8-21 days old, the CPG recommends a complete IBI evaluation that includes urine, blood, and cerebrospinal fluid (CSF) for culture, approaching all infants in this cohort as high risk. Inflammatory markers may be obtained, but the evidence is not comprehensive enough to evaluate their role in decision-making for this age group. A two-step urine evaluation method (urine analysis followed by culture if the urine analysis looks concerning) is not recommended for infants aged 8-21 days. Urine samples for culture from these young infants should be obtained by catheterization or suprapubic aspiration.

The CPG recommends drawing blood cultures and CSF by lumbar puncture from this cohort. These infants should be admitted to the hospital, treated empirically with antimicrobials, and actively monitored. However, if the cultures are negative at 24-36 hours, the clinician should discontinue antimicrobials and discharge the infant if there is no other reason for continued hospitalization.
 

Age 22-28 days

Well-appearing, febrile infants 22-28 days old are in an intermediate-risk zone. The recommendation for infants in this cohort is to obtain a urine specimen by catheterization or suprapubic aspiration for both urine analysis and culture. Clinicians may consider obtaining urine samples for analysis noninvasively (e.g., urine bag) in this cohort, but this is not the preferred method.

Blood culture should be obtained from all infants in this group. Inflammatory markers can help clinicians identify infants at greater risk for IBI, including meningitis. Previous data suggested that inflammatory markers such as serum white blood cell counts greater than 11,000/mcL, a serum absolute neutrophil count of greater than 4,000/mcL, and elevated C-reactive protein and procalcitonin levels could help providers identify febrile infants with true IBI. A 2008 study demonstrated that procalcitonin had the best receiver operating characteristic curve in regard to predicting IBI in young febrile infants. Other research backed up that finding and identified cutoff values for procalcitonin levels greater than 1.0 ng/mL. The CPG recommends considering a procalcitonin value of 0.5 ng/mL or higher as positive, indicating that the infant is at greater risk for IBI and potentially should undergo an expanded IBI workup. Therefore, in infants aged 22-28 days, inflammatory markers can play a role in deciding whether to perform a lumbar puncture.

Many more nuanced recommendations for whether to and how to empirically treat with antimicrobials in this cohort can be found in the CPG, including whether to manage in the hospital or at home. Treatment recommendations vary greatly for this cohort on the basis of the tests obtained and whether tests were positive or negative at the initial evaluation.
 

Age 29-60 days

The CPG will be most helpful when clinicians are faced with well-appearing, febrile infants in the 29- to 60-day age group. As with the other groups, a urine evaluation is recommended; however, the CPG suggests that the two-step approach – obtaining a urine analysis by a noninvasive method and only obtaining culture if the urine analysis is positive – is reasonable. This means that a bag or free-flowing urine specimen would be appropriate for urinalysis, followed by catheterization/suprapubic aspiration if a culture is necessary. This would save approximately 90% of infants from invasive urine collection. Regardless, only catheter or suprapubic specimens are appropriate for urine culture.

The CPG also recommends that clinicians obtain blood culture on all of these infants. Inflammatory markers should be assessed in this cohort because avoiding lumbar puncture for CSF culture would be appropriate in this cohort if the inflammatory markers are negative. If CSF is obtained in this age cohort, enterovirus testing should be added to the testing regimen. Again, for any infant considered at higher risk for IBI on the basis of screening tests, the CPG recommends a 24- to 36-hour rule-out period with empirical antimicrobial treatment and active monitoring in the hospital.
 

Summary

The recommended approach for febrile infants 8-21 days old is relatively aggressive, with urine, blood, and CSF evaluation for IBI. Clinicians gain some leeway for infants age 22-28 days, but the guidelines recommend a more flexible approach to evaluating well-appearing, febrile infants age 29-60 days, when a two-step urine evaluation and inflammatory marker assessment can help clinicians and parents have a better discussion about the risk-benefit trade-offs of more aggressive testing and empirical treatment.

The author would like to thank Ken Roberts, MD, for his review and helpful comments on this summary of the CPG highlights. Summary points of the CPG were presented by the writing group at the 2021 Pediatric Academic Societies meeting.

William T. Basco, Jr, MD, MS, is a professor of pediatrics at the Medical University of South Carolina, Charleston, and director of the division of general pediatrics. He is an active health services researcher and has published more than 60 manuscripts in the peer-reviewed literature.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article