User login
Silver lining emerges for embolic protection in post-TAVR stroke
Although the Sentinel cerebral embolism protection (CEP) device may not significantly reduce the overall stroke rate in patients after they’ve had transcatheter aortic valve replacement (TAVR), the device may improve survival and reduce the severity of procedure-related stroke, a retrospective database study reported.
Investigators led by Samir R. Kapadia, MD, chair of cardiovascular medicine at the Cleveland Clinic, analyzed outcomes of 136,382 patients in the Nationwide Readmissions Database who had TAVR in 2018-2019. The dataset included 10,201 people who received the Sentinel CEP device during TAVR.
The proportion of patients who had a stroke after TAVR was similar in both groups – 1.85% (189) in the CEP group and 1.94% (1,447) in the CEP nonusers – but, as Dr. Kapadia pointed out, the stroke outcomes between the two groups were noticeably different.
“Interestingly enough, what we found was that the people with the CEPs who had a stroke had half the mortality, and they were going home at a significantly higher rate, than the people who had a stroke and didn’t have CEPs,” Dr. Kapadia said in an interview. A previous registry study of 276,316 TAVR patients reported the overall rate of post-TAVR stroke declined from 2.75% to 2.3% over an 8-year period. The CEP device, approved in December 2017, had been available in the last 2 years of that study.
In the current retrospective database study, CEP patients went home after their post-TAVR strokes at a rate of 28.2%, compared with 19.9% for those who didn’t have CEP (P = .011). The in-hospital death rates were 6.3% and 11.8% for the respective groups (P = .023), and the 30-day readmission rates were 15.9% and 16.8% (P = .91). “The readmission rate is similar, but if you survive you get admitted,” Dr. Kapadia reported in a research letter published in JACC: Cardiovascular Interventions.
CEP involves inserting a catheter in the right wrist during TAVR. The catheter deploys two filters, one in the left carotid artery, the other on the right carotid and radial arteries, to capture embolic debris. After the aortic valve is seated and the TAVR completed, the CEP filters are removed.
Potential effectiveness of filters
The study builds on work by Dr. Kapadia and colleagues reported in the PARTNER trial, which showed that CEP filters consistently captured embolized debris resulting in smaller brain lesions after TAVR than no filters. The hypothesis for the latest study, Dr. Kapadia said, “was that, even though the stroke rates may be very similar between the TAVR patients who had CEP and those who did not, the filter removed the large embolic particles, although there were small particles. In those cases, the consequence of stroke would be much less in the sense that you would have minor strokes, and you would either not die from the stroke or you would be able to walk home safely if you did have a stroke.”
In Dr. Kapadia’s experience, the filters capture up to 80% of embolic debris. The Cleveland Clinic used CEP in 96.5% of its TAVR cases in 2021, he said, adding that national rates are considerably lower because Medicare doesn’t reimburse for the procedure. An observational registry study reported that 13% of TAVR procedures used CEP by December 2019.
Dr. Kapadia said that the PROTECTED TAVR trial of the CEP device has completed data gathering and should report results later in 2022. The study randomized 3,000 patients to TAVR with or without CEP.
Dr. Kapadia noted that the findings require further study to validate them. “If it is all true, it will change the practice; it will make TAVR safer.”
David J. Cohen, MD, MSc, director of clinical and outcome research at the Cardiovascular Research Foundation in New York, called the study findings “provocative,” adding: “It makes points that we’ve seen in previous studies and certainly suggests there may be an important benefit of cerebral embolism protection that has not been well established to date.” Dr. Cohen is also director of academic affairs at St. Francis Hospital in Roslyn, N.Y.
The primary two findings of the study – lower risk of death and greater likelihood of discharge to home in CEP patients who had strokes after TAVR – “suggest that, while data on whether embolic protection actually prevents strokes is controversial and not at all definitive, these data suggest that perhaps one additional mechanism of benefit is that it’s making it much less severe when stroke occurs. That would obviously be of tremendous value.”
The findings are in line with other “suggestions that have not yet been explained,” Dr. Cohen said. “They may provide sort of a unifying explanation of why embolic protection may not prevent as many strokes as we thought but they may still be a very valuable adjunct.”
Boston Scientific distributes the Sentinel CEP device used in the study. Dr. Kapadia is the principal investigator of the PROTECTED TAVR trial, sponsored by Boston Scientific. Dr. Kapadia and study coauthors reported no other disclosures. Dr. Cohen is a consultant to Boston Scientific.
Although the Sentinel cerebral embolism protection (CEP) device may not significantly reduce the overall stroke rate in patients after they’ve had transcatheter aortic valve replacement (TAVR), the device may improve survival and reduce the severity of procedure-related stroke, a retrospective database study reported.
Investigators led by Samir R. Kapadia, MD, chair of cardiovascular medicine at the Cleveland Clinic, analyzed outcomes of 136,382 patients in the Nationwide Readmissions Database who had TAVR in 2018-2019. The dataset included 10,201 people who received the Sentinel CEP device during TAVR.
The proportion of patients who had a stroke after TAVR was similar in both groups – 1.85% (189) in the CEP group and 1.94% (1,447) in the CEP nonusers – but, as Dr. Kapadia pointed out, the stroke outcomes between the two groups were noticeably different.
“Interestingly enough, what we found was that the people with the CEPs who had a stroke had half the mortality, and they were going home at a significantly higher rate, than the people who had a stroke and didn’t have CEPs,” Dr. Kapadia said in an interview. A previous registry study of 276,316 TAVR patients reported the overall rate of post-TAVR stroke declined from 2.75% to 2.3% over an 8-year period. The CEP device, approved in December 2017, had been available in the last 2 years of that study.
In the current retrospective database study, CEP patients went home after their post-TAVR strokes at a rate of 28.2%, compared with 19.9% for those who didn’t have CEP (P = .011). The in-hospital death rates were 6.3% and 11.8% for the respective groups (P = .023), and the 30-day readmission rates were 15.9% and 16.8% (P = .91). “The readmission rate is similar, but if you survive you get admitted,” Dr. Kapadia reported in a research letter published in JACC: Cardiovascular Interventions.
CEP involves inserting a catheter in the right wrist during TAVR. The catheter deploys two filters, one in the left carotid artery, the other on the right carotid and radial arteries, to capture embolic debris. After the aortic valve is seated and the TAVR completed, the CEP filters are removed.
Potential effectiveness of filters
The study builds on work by Dr. Kapadia and colleagues reported in the PARTNER trial, which showed that CEP filters consistently captured embolized debris resulting in smaller brain lesions after TAVR than no filters. The hypothesis for the latest study, Dr. Kapadia said, “was that, even though the stroke rates may be very similar between the TAVR patients who had CEP and those who did not, the filter removed the large embolic particles, although there were small particles. In those cases, the consequence of stroke would be much less in the sense that you would have minor strokes, and you would either not die from the stroke or you would be able to walk home safely if you did have a stroke.”
In Dr. Kapadia’s experience, the filters capture up to 80% of embolic debris. The Cleveland Clinic used CEP in 96.5% of its TAVR cases in 2021, he said, adding that national rates are considerably lower because Medicare doesn’t reimburse for the procedure. An observational registry study reported that 13% of TAVR procedures used CEP by December 2019.
Dr. Kapadia said that the PROTECTED TAVR trial of the CEP device has completed data gathering and should report results later in 2022. The study randomized 3,000 patients to TAVR with or without CEP.
Dr. Kapadia noted that the findings require further study to validate them. “If it is all true, it will change the practice; it will make TAVR safer.”
David J. Cohen, MD, MSc, director of clinical and outcome research at the Cardiovascular Research Foundation in New York, called the study findings “provocative,” adding: “It makes points that we’ve seen in previous studies and certainly suggests there may be an important benefit of cerebral embolism protection that has not been well established to date.” Dr. Cohen is also director of academic affairs at St. Francis Hospital in Roslyn, N.Y.
The primary two findings of the study – lower risk of death and greater likelihood of discharge to home in CEP patients who had strokes after TAVR – “suggest that, while data on whether embolic protection actually prevents strokes is controversial and not at all definitive, these data suggest that perhaps one additional mechanism of benefit is that it’s making it much less severe when stroke occurs. That would obviously be of tremendous value.”
The findings are in line with other “suggestions that have not yet been explained,” Dr. Cohen said. “They may provide sort of a unifying explanation of why embolic protection may not prevent as many strokes as we thought but they may still be a very valuable adjunct.”
Boston Scientific distributes the Sentinel CEP device used in the study. Dr. Kapadia is the principal investigator of the PROTECTED TAVR trial, sponsored by Boston Scientific. Dr. Kapadia and study coauthors reported no other disclosures. Dr. Cohen is a consultant to Boston Scientific.
Although the Sentinel cerebral embolism protection (CEP) device may not significantly reduce the overall stroke rate in patients after they’ve had transcatheter aortic valve replacement (TAVR), the device may improve survival and reduce the severity of procedure-related stroke, a retrospective database study reported.
Investigators led by Samir R. Kapadia, MD, chair of cardiovascular medicine at the Cleveland Clinic, analyzed outcomes of 136,382 patients in the Nationwide Readmissions Database who had TAVR in 2018-2019. The dataset included 10,201 people who received the Sentinel CEP device during TAVR.
The proportion of patients who had a stroke after TAVR was similar in both groups – 1.85% (189) in the CEP group and 1.94% (1,447) in the CEP nonusers – but, as Dr. Kapadia pointed out, the stroke outcomes between the two groups were noticeably different.
“Interestingly enough, what we found was that the people with the CEPs who had a stroke had half the mortality, and they were going home at a significantly higher rate, than the people who had a stroke and didn’t have CEPs,” Dr. Kapadia said in an interview. A previous registry study of 276,316 TAVR patients reported the overall rate of post-TAVR stroke declined from 2.75% to 2.3% over an 8-year period. The CEP device, approved in December 2017, had been available in the last 2 years of that study.
In the current retrospective database study, CEP patients went home after their post-TAVR strokes at a rate of 28.2%, compared with 19.9% for those who didn’t have CEP (P = .011). The in-hospital death rates were 6.3% and 11.8% for the respective groups (P = .023), and the 30-day readmission rates were 15.9% and 16.8% (P = .91). “The readmission rate is similar, but if you survive you get admitted,” Dr. Kapadia reported in a research letter published in JACC: Cardiovascular Interventions.
CEP involves inserting a catheter in the right wrist during TAVR. The catheter deploys two filters, one in the left carotid artery, the other on the right carotid and radial arteries, to capture embolic debris. After the aortic valve is seated and the TAVR completed, the CEP filters are removed.
Potential effectiveness of filters
The study builds on work by Dr. Kapadia and colleagues reported in the PARTNER trial, which showed that CEP filters consistently captured embolized debris resulting in smaller brain lesions after TAVR than no filters. The hypothesis for the latest study, Dr. Kapadia said, “was that, even though the stroke rates may be very similar between the TAVR patients who had CEP and those who did not, the filter removed the large embolic particles, although there were small particles. In those cases, the consequence of stroke would be much less in the sense that you would have minor strokes, and you would either not die from the stroke or you would be able to walk home safely if you did have a stroke.”
In Dr. Kapadia’s experience, the filters capture up to 80% of embolic debris. The Cleveland Clinic used CEP in 96.5% of its TAVR cases in 2021, he said, adding that national rates are considerably lower because Medicare doesn’t reimburse for the procedure. An observational registry study reported that 13% of TAVR procedures used CEP by December 2019.
Dr. Kapadia said that the PROTECTED TAVR trial of the CEP device has completed data gathering and should report results later in 2022. The study randomized 3,000 patients to TAVR with or without CEP.
Dr. Kapadia noted that the findings require further study to validate them. “If it is all true, it will change the practice; it will make TAVR safer.”
David J. Cohen, MD, MSc, director of clinical and outcome research at the Cardiovascular Research Foundation in New York, called the study findings “provocative,” adding: “It makes points that we’ve seen in previous studies and certainly suggests there may be an important benefit of cerebral embolism protection that has not been well established to date.” Dr. Cohen is also director of academic affairs at St. Francis Hospital in Roslyn, N.Y.
The primary two findings of the study – lower risk of death and greater likelihood of discharge to home in CEP patients who had strokes after TAVR – “suggest that, while data on whether embolic protection actually prevents strokes is controversial and not at all definitive, these data suggest that perhaps one additional mechanism of benefit is that it’s making it much less severe when stroke occurs. That would obviously be of tremendous value.”
The findings are in line with other “suggestions that have not yet been explained,” Dr. Cohen said. “They may provide sort of a unifying explanation of why embolic protection may not prevent as many strokes as we thought but they may still be a very valuable adjunct.”
Boston Scientific distributes the Sentinel CEP device used in the study. Dr. Kapadia is the principal investigator of the PROTECTED TAVR trial, sponsored by Boston Scientific. Dr. Kapadia and study coauthors reported no other disclosures. Dr. Cohen is a consultant to Boston Scientific.
FROM JACC: CARDIOVASCULAR INTERVENTION
FDA approves first drug for myelofibrosis with thrombocytopenia
Pacritinib (Vonjo, CTI BioPharma) is indicated for use in the treatment of adults with intermediate- or high-risk primary or secondary (post–polycythemia vera or post–essential thrombocythemia) myelofibrosis with a platelet count below 50 × 109/L.
Pacritinib is a novel oral kinase inhibitor with specificity for activity against Janus associated kinase 2 (JAK2) and IRAK1, without inhibiting JAK1. The recommended dosage is 200 mg orally twice daily.
In the United States, there are approximately 21,000 patients with myelofibrosis, notes the manufacturer. About one-third develop severe thrombocytopenia.
“Myelofibrosis with severe thrombocytopenia, defined as blood platelet counts below 50 × 109/L, has been shown to result in poor survival outcomes coupled with debilitating symptoms. Limited treatment options have rendered this disease as an area of urgent unmet medical need,” said John Mascarenhas, MD, associate professor, medicine, hematology, and medical oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York.
“I am pleased to see that a new, efficacious, and safe treatment option is now available for these patients,” he said in a company press release.
Dr. Mascarenhas was the lead investigator of the phase 3 PERSIST-2 trial that was the basis for the approval. Results from the trial were published in 2018 in JAMA Oncology and reported in detail at the time by this news organization.
Authors of an accompanying editorial noted the trial was truncated after the FDA imposed a clinical hold on pacritinib in February 2016 after reports from an earlier trial, PERSIST-1, of patient deaths related to cardiac failure and arrest as well as intracranial hemorrhage. The clinical hold was lifted in January 2017 after the manufacturer provided the FDA with more mature data.
Despite the truncation, the PERSIST-2 trial provided sufficient data to obtain accelerated approval for the drug. The study compared pacritinib with best available therapy (BAT).
In the cohort of patients treated with pacritinib 200 mg twice daily, 29% of patients had a reduction in spleen volume of at least 35% compared with 3% of patients receiving BAT, which included ruxolitinib.
The company is now expected to demonstrate clinical benefit in a confirmatory trial and has the PACIFICA trial underway. Results are expected in mid-2025.
The most common adverse reactions (reported by ≥ 20% of patients) were diarrhea, thrombocytopenia, nausea, anemia, and peripheral edema. The most frequent serious adverse reactions (≥ 3%) were anemia, thrombocytopenia, pneumonia, cardiac failure, disease progression, pyrexia, and squamous cell carcinoma of the skin.
A version of this article first appeared on Medscape.com.
Pacritinib (Vonjo, CTI BioPharma) is indicated for use in the treatment of adults with intermediate- or high-risk primary or secondary (post–polycythemia vera or post–essential thrombocythemia) myelofibrosis with a platelet count below 50 × 109/L.
Pacritinib is a novel oral kinase inhibitor with specificity for activity against Janus associated kinase 2 (JAK2) and IRAK1, without inhibiting JAK1. The recommended dosage is 200 mg orally twice daily.
In the United States, there are approximately 21,000 patients with myelofibrosis, notes the manufacturer. About one-third develop severe thrombocytopenia.
“Myelofibrosis with severe thrombocytopenia, defined as blood platelet counts below 50 × 109/L, has been shown to result in poor survival outcomes coupled with debilitating symptoms. Limited treatment options have rendered this disease as an area of urgent unmet medical need,” said John Mascarenhas, MD, associate professor, medicine, hematology, and medical oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York.
“I am pleased to see that a new, efficacious, and safe treatment option is now available for these patients,” he said in a company press release.
Dr. Mascarenhas was the lead investigator of the phase 3 PERSIST-2 trial that was the basis for the approval. Results from the trial were published in 2018 in JAMA Oncology and reported in detail at the time by this news organization.
Authors of an accompanying editorial noted the trial was truncated after the FDA imposed a clinical hold on pacritinib in February 2016 after reports from an earlier trial, PERSIST-1, of patient deaths related to cardiac failure and arrest as well as intracranial hemorrhage. The clinical hold was lifted in January 2017 after the manufacturer provided the FDA with more mature data.
Despite the truncation, the PERSIST-2 trial provided sufficient data to obtain accelerated approval for the drug. The study compared pacritinib with best available therapy (BAT).
In the cohort of patients treated with pacritinib 200 mg twice daily, 29% of patients had a reduction in spleen volume of at least 35% compared with 3% of patients receiving BAT, which included ruxolitinib.
The company is now expected to demonstrate clinical benefit in a confirmatory trial and has the PACIFICA trial underway. Results are expected in mid-2025.
The most common adverse reactions (reported by ≥ 20% of patients) were diarrhea, thrombocytopenia, nausea, anemia, and peripheral edema. The most frequent serious adverse reactions (≥ 3%) were anemia, thrombocytopenia, pneumonia, cardiac failure, disease progression, pyrexia, and squamous cell carcinoma of the skin.
A version of this article first appeared on Medscape.com.
Pacritinib (Vonjo, CTI BioPharma) is indicated for use in the treatment of adults with intermediate- or high-risk primary or secondary (post–polycythemia vera or post–essential thrombocythemia) myelofibrosis with a platelet count below 50 × 109/L.
Pacritinib is a novel oral kinase inhibitor with specificity for activity against Janus associated kinase 2 (JAK2) and IRAK1, without inhibiting JAK1. The recommended dosage is 200 mg orally twice daily.
In the United States, there are approximately 21,000 patients with myelofibrosis, notes the manufacturer. About one-third develop severe thrombocytopenia.
“Myelofibrosis with severe thrombocytopenia, defined as blood platelet counts below 50 × 109/L, has been shown to result in poor survival outcomes coupled with debilitating symptoms. Limited treatment options have rendered this disease as an area of urgent unmet medical need,” said John Mascarenhas, MD, associate professor, medicine, hematology, and medical oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York.
“I am pleased to see that a new, efficacious, and safe treatment option is now available for these patients,” he said in a company press release.
Dr. Mascarenhas was the lead investigator of the phase 3 PERSIST-2 trial that was the basis for the approval. Results from the trial were published in 2018 in JAMA Oncology and reported in detail at the time by this news organization.
Authors of an accompanying editorial noted the trial was truncated after the FDA imposed a clinical hold on pacritinib in February 2016 after reports from an earlier trial, PERSIST-1, of patient deaths related to cardiac failure and arrest as well as intracranial hemorrhage. The clinical hold was lifted in January 2017 after the manufacturer provided the FDA with more mature data.
Despite the truncation, the PERSIST-2 trial provided sufficient data to obtain accelerated approval for the drug. The study compared pacritinib with best available therapy (BAT).
In the cohort of patients treated with pacritinib 200 mg twice daily, 29% of patients had a reduction in spleen volume of at least 35% compared with 3% of patients receiving BAT, which included ruxolitinib.
The company is now expected to demonstrate clinical benefit in a confirmatory trial and has the PACIFICA trial underway. Results are expected in mid-2025.
The most common adverse reactions (reported by ≥ 20% of patients) were diarrhea, thrombocytopenia, nausea, anemia, and peripheral edema. The most frequent serious adverse reactions (≥ 3%) were anemia, thrombocytopenia, pneumonia, cardiac failure, disease progression, pyrexia, and squamous cell carcinoma of the skin.
A version of this article first appeared on Medscape.com.
Mixed results for cardiologists in stroke thrombectomy
Outcomes were mixed among ischemic stroke patients with large vessel occlusion who underwent thrombectomy by an interventional cardiologist as part of a multidisciplinary stroke team, in a single-center, prospective study from Poland.
Results from the 2-year experience show mechanical thrombectomy took longer when carried out by interventional cardiologists than by vascular surgeons and neuroradiologists (120 minutes vs. 105 minutes; P = .020).
The procedures were also less likely to achieve angiographic success, defined as a Thrombolysis in Cerebral Infarction (TICI) scale score of 2b or 3 (55.7% vs. 71.7%; P = .013), reported Krystian Wita, MD, PhD, Medical University of Silesia, Katowice, Poland, and colleagues.
The differences in duration and recanalization require further attention, they noted, and are related to a learning curve, more time dedicated to decision-making and, in some cases, needing a second opinion. Cardiologists performed 80 procedures compared with 116 for vascular surgeons and 52 for neuroradiologists, and treated twice as many patients with a previous stroke (13.9% vs. 6.5%).
Still, the interventional cardiologist- and noncardiologist-treated groups had similar functional independence at 3 months, defined by a modified Rankin Scale (mRS) score of 0 to 2 (44.4% vs. 54.8%; P = .275). Mortality was also similar at 3 months (31.3% vs. 28.0%; P = .595).
“This is the first analysis to prove the noninferiority of the cardiology services in the treatment of stroke with mechanical thrombectomy,” the authors reported in JACC: Cardiovascular Interventions.
But commenting for this news organization, J Mocco, MD, senior vice chair of neurosurgery and director of the Cerebrovascular Center at Mount Sinai Health System, New York, said this study isn’t designed as a noninferiority trial, is “grossly underpowered,” and the comparator cohort is not a gold standard comparator cohort.
“More importantly, they show that the cardiologists got significantly worse technical results and took longer, and we know that technical outcomes and the time to treatment are the two strongest predictors of outcome, which completely correlates with the fact that patients had 11% worse outcomes overall,” he said.
“It’s dumbfounding to me that this has been presented as evidence [that] an interventional cardiologist should be performing thrombectomy,” added Dr. Mocco, president-elect of the Society of NeuroInterventional Surgery.
Dr. Wita and coauthor Andrzej Kulach, MD, PhD, also with the Medical University of Silesia, told this news organization that timing is critical in mechanical thrombectomy (MT) and the sooner it’s performed, the better. But it cannot be performed by just any interventional cardiologist (IC).
“The IC must be trained in the procedure and cooperate with the neurologist to get good results,” they said. “We would like to stress that it is not a procedure for any cath lab and any cardiologist on duty. A network of cardiologists trained in MT must be organized and the stroke teams developed for the local unit to make the strategy reasonable and safe.”
The study was conducted from 2019 to 2020 and to participate, interventional cardiologists had to have performed a minimum of 700 angioplasties and 1,500 coronary angiographies and undergone complex training in thrombectomy, including 14-day training in a reference center and certified courses on a phantom and an animal model. They were also experienced in carotid angioplasty and participated as the second operators in neurointerventions.
“Considering the cardiologists are acting here in a multidisciplinary team led by neurologists, the findings are not surprising,” Dr. Wita and Dr. Kulach said. “What was surprising, is a certain level of skepticism among neurologists when cardiologists are to be involved in the procedure. We hope the quality of cardiology services will help to get over it.”
Major thrombectomy trials such as PRAGUE-16 have supported a role for interventional cardiologists to help meet demand for stroke thrombectomy. Dr. Wita and Dr. Kulach said there’s a lack of trained neuroradiologists and developed infrastructure for thrombectomy, whereas there’s a sufficient network of catheterization laboratories and trained cardiologists who could be involved.
The take-home message from the study, they said, is to “use the existing infrastructure to optimize the treatment of stroke. Building one from the very beginning is more time and resources-consuming.”
Dr. Mocco said a physician’s training is not a factor in the pathway to neurointerventional expertise, as long as they’re willing to put in the appropriate amount of specialization and training.
“There’s no way this represents a turf war or the neurology community somehow protecting its space, which is often used as a distraction, just like the idea that there’s not enough people,” he said. “It’s just not the case. Neurointervention is the most multispecialty space that I’m aware of.”
In the United States, at least, the problem isn’t a lack of resources or people to provide the service, but in getting patients to the correct hospitals, Dr. Mocco said. “We don’t have regionalized stroke care in the United States for the most part, so patients go to any hospital that says they provide stroke care rather than necessarily being triaged to capable centers that can provide the care.”
A 2021 Medicare analysis by Dr. Mocco and colleagues found that higher physician and hospital stroke thrombectomy volumes were associated with lower inpatient mortality and better outcomes.
Efforts are underway to regionalize care and delivery of patients in Los Angeles County and New York City, for example, where ambulances preferentially take patients with suspected large vessel occlusion to thrombectomy-capable stroke centers certified by independent organizations, Dr. Mocco said. In New York, “they’ve shown it has improved outcomes.”
Estêvão Carvalho de Campos Martins, MD, Hospital de Força Aérea do Galeão, Rio de Janeiro, and Fernando Luiz de Melo Bernardi, MD, Hospital Regional do Oeste, Chapecó, Brazil, noted in an accompanying editorial that the observational study is “hypothesis-generating only” and that the disconnect between technical and clinical outcomes is due to a type II error of low power.
They suggest that collaboration between specialties will be “essential for defining the optimal training program, so that ICs can reach solid procedural results.
“The accumulated experience with virtual simulation-based training for stroke could act as an educational accelerator but should be inserted in a prespecified program,” the editorialists said. “How to train and how to insert ICs into [an] MT interdisciplinary team is the current debate; meanwhile ICs are here, and many of them already contributing.”
Dr. Mocco is the principal investigator on research trials funded by Stryker Neurovascular, Microvention, and Penumbra; and is an investor in Cerebrotech, Imperative Care, Endostream, Viseon, BlinkTBI, Myra Medical, Serenity, Vastrax, NTI, RIST, Viz.ai , Synchron, Radical, and Truvic. He serves, or has recently served, as a consultant for: Cerebrotech, Viseon, Endostream, Vastrax, RIST, Synchron, Viz.ai , Perflow, and CVAid. Dr. Carvalho de Campos Martins and Dr. Luiz de Melo Bernardi have disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Outcomes were mixed among ischemic stroke patients with large vessel occlusion who underwent thrombectomy by an interventional cardiologist as part of a multidisciplinary stroke team, in a single-center, prospective study from Poland.
Results from the 2-year experience show mechanical thrombectomy took longer when carried out by interventional cardiologists than by vascular surgeons and neuroradiologists (120 minutes vs. 105 minutes; P = .020).
The procedures were also less likely to achieve angiographic success, defined as a Thrombolysis in Cerebral Infarction (TICI) scale score of 2b or 3 (55.7% vs. 71.7%; P = .013), reported Krystian Wita, MD, PhD, Medical University of Silesia, Katowice, Poland, and colleagues.
The differences in duration and recanalization require further attention, they noted, and are related to a learning curve, more time dedicated to decision-making and, in some cases, needing a second opinion. Cardiologists performed 80 procedures compared with 116 for vascular surgeons and 52 for neuroradiologists, and treated twice as many patients with a previous stroke (13.9% vs. 6.5%).
Still, the interventional cardiologist- and noncardiologist-treated groups had similar functional independence at 3 months, defined by a modified Rankin Scale (mRS) score of 0 to 2 (44.4% vs. 54.8%; P = .275). Mortality was also similar at 3 months (31.3% vs. 28.0%; P = .595).
“This is the first analysis to prove the noninferiority of the cardiology services in the treatment of stroke with mechanical thrombectomy,” the authors reported in JACC: Cardiovascular Interventions.
But commenting for this news organization, J Mocco, MD, senior vice chair of neurosurgery and director of the Cerebrovascular Center at Mount Sinai Health System, New York, said this study isn’t designed as a noninferiority trial, is “grossly underpowered,” and the comparator cohort is not a gold standard comparator cohort.
“More importantly, they show that the cardiologists got significantly worse technical results and took longer, and we know that technical outcomes and the time to treatment are the two strongest predictors of outcome, which completely correlates with the fact that patients had 11% worse outcomes overall,” he said.
“It’s dumbfounding to me that this has been presented as evidence [that] an interventional cardiologist should be performing thrombectomy,” added Dr. Mocco, president-elect of the Society of NeuroInterventional Surgery.
Dr. Wita and coauthor Andrzej Kulach, MD, PhD, also with the Medical University of Silesia, told this news organization that timing is critical in mechanical thrombectomy (MT) and the sooner it’s performed, the better. But it cannot be performed by just any interventional cardiologist (IC).
“The IC must be trained in the procedure and cooperate with the neurologist to get good results,” they said. “We would like to stress that it is not a procedure for any cath lab and any cardiologist on duty. A network of cardiologists trained in MT must be organized and the stroke teams developed for the local unit to make the strategy reasonable and safe.”
The study was conducted from 2019 to 2020 and to participate, interventional cardiologists had to have performed a minimum of 700 angioplasties and 1,500 coronary angiographies and undergone complex training in thrombectomy, including 14-day training in a reference center and certified courses on a phantom and an animal model. They were also experienced in carotid angioplasty and participated as the second operators in neurointerventions.
“Considering the cardiologists are acting here in a multidisciplinary team led by neurologists, the findings are not surprising,” Dr. Wita and Dr. Kulach said. “What was surprising, is a certain level of skepticism among neurologists when cardiologists are to be involved in the procedure. We hope the quality of cardiology services will help to get over it.”
Major thrombectomy trials such as PRAGUE-16 have supported a role for interventional cardiologists to help meet demand for stroke thrombectomy. Dr. Wita and Dr. Kulach said there’s a lack of trained neuroradiologists and developed infrastructure for thrombectomy, whereas there’s a sufficient network of catheterization laboratories and trained cardiologists who could be involved.
The take-home message from the study, they said, is to “use the existing infrastructure to optimize the treatment of stroke. Building one from the very beginning is more time and resources-consuming.”
Dr. Mocco said a physician’s training is not a factor in the pathway to neurointerventional expertise, as long as they’re willing to put in the appropriate amount of specialization and training.
“There’s no way this represents a turf war or the neurology community somehow protecting its space, which is often used as a distraction, just like the idea that there’s not enough people,” he said. “It’s just not the case. Neurointervention is the most multispecialty space that I’m aware of.”
In the United States, at least, the problem isn’t a lack of resources or people to provide the service, but in getting patients to the correct hospitals, Dr. Mocco said. “We don’t have regionalized stroke care in the United States for the most part, so patients go to any hospital that says they provide stroke care rather than necessarily being triaged to capable centers that can provide the care.”
A 2021 Medicare analysis by Dr. Mocco and colleagues found that higher physician and hospital stroke thrombectomy volumes were associated with lower inpatient mortality and better outcomes.
Efforts are underway to regionalize care and delivery of patients in Los Angeles County and New York City, for example, where ambulances preferentially take patients with suspected large vessel occlusion to thrombectomy-capable stroke centers certified by independent organizations, Dr. Mocco said. In New York, “they’ve shown it has improved outcomes.”
Estêvão Carvalho de Campos Martins, MD, Hospital de Força Aérea do Galeão, Rio de Janeiro, and Fernando Luiz de Melo Bernardi, MD, Hospital Regional do Oeste, Chapecó, Brazil, noted in an accompanying editorial that the observational study is “hypothesis-generating only” and that the disconnect between technical and clinical outcomes is due to a type II error of low power.
They suggest that collaboration between specialties will be “essential for defining the optimal training program, so that ICs can reach solid procedural results.
“The accumulated experience with virtual simulation-based training for stroke could act as an educational accelerator but should be inserted in a prespecified program,” the editorialists said. “How to train and how to insert ICs into [an] MT interdisciplinary team is the current debate; meanwhile ICs are here, and many of them already contributing.”
Dr. Mocco is the principal investigator on research trials funded by Stryker Neurovascular, Microvention, and Penumbra; and is an investor in Cerebrotech, Imperative Care, Endostream, Viseon, BlinkTBI, Myra Medical, Serenity, Vastrax, NTI, RIST, Viz.ai , Synchron, Radical, and Truvic. He serves, or has recently served, as a consultant for: Cerebrotech, Viseon, Endostream, Vastrax, RIST, Synchron, Viz.ai , Perflow, and CVAid. Dr. Carvalho de Campos Martins and Dr. Luiz de Melo Bernardi have disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Outcomes were mixed among ischemic stroke patients with large vessel occlusion who underwent thrombectomy by an interventional cardiologist as part of a multidisciplinary stroke team, in a single-center, prospective study from Poland.
Results from the 2-year experience show mechanical thrombectomy took longer when carried out by interventional cardiologists than by vascular surgeons and neuroradiologists (120 minutes vs. 105 minutes; P = .020).
The procedures were also less likely to achieve angiographic success, defined as a Thrombolysis in Cerebral Infarction (TICI) scale score of 2b or 3 (55.7% vs. 71.7%; P = .013), reported Krystian Wita, MD, PhD, Medical University of Silesia, Katowice, Poland, and colleagues.
The differences in duration and recanalization require further attention, they noted, and are related to a learning curve, more time dedicated to decision-making and, in some cases, needing a second opinion. Cardiologists performed 80 procedures compared with 116 for vascular surgeons and 52 for neuroradiologists, and treated twice as many patients with a previous stroke (13.9% vs. 6.5%).
Still, the interventional cardiologist- and noncardiologist-treated groups had similar functional independence at 3 months, defined by a modified Rankin Scale (mRS) score of 0 to 2 (44.4% vs. 54.8%; P = .275). Mortality was also similar at 3 months (31.3% vs. 28.0%; P = .595).
“This is the first analysis to prove the noninferiority of the cardiology services in the treatment of stroke with mechanical thrombectomy,” the authors reported in JACC: Cardiovascular Interventions.
But commenting for this news organization, J Mocco, MD, senior vice chair of neurosurgery and director of the Cerebrovascular Center at Mount Sinai Health System, New York, said this study isn’t designed as a noninferiority trial, is “grossly underpowered,” and the comparator cohort is not a gold standard comparator cohort.
“More importantly, they show that the cardiologists got significantly worse technical results and took longer, and we know that technical outcomes and the time to treatment are the two strongest predictors of outcome, which completely correlates with the fact that patients had 11% worse outcomes overall,” he said.
“It’s dumbfounding to me that this has been presented as evidence [that] an interventional cardiologist should be performing thrombectomy,” added Dr. Mocco, president-elect of the Society of NeuroInterventional Surgery.
Dr. Wita and coauthor Andrzej Kulach, MD, PhD, also with the Medical University of Silesia, told this news organization that timing is critical in mechanical thrombectomy (MT) and the sooner it’s performed, the better. But it cannot be performed by just any interventional cardiologist (IC).
“The IC must be trained in the procedure and cooperate with the neurologist to get good results,” they said. “We would like to stress that it is not a procedure for any cath lab and any cardiologist on duty. A network of cardiologists trained in MT must be organized and the stroke teams developed for the local unit to make the strategy reasonable and safe.”
The study was conducted from 2019 to 2020 and to participate, interventional cardiologists had to have performed a minimum of 700 angioplasties and 1,500 coronary angiographies and undergone complex training in thrombectomy, including 14-day training in a reference center and certified courses on a phantom and an animal model. They were also experienced in carotid angioplasty and participated as the second operators in neurointerventions.
“Considering the cardiologists are acting here in a multidisciplinary team led by neurologists, the findings are not surprising,” Dr. Wita and Dr. Kulach said. “What was surprising, is a certain level of skepticism among neurologists when cardiologists are to be involved in the procedure. We hope the quality of cardiology services will help to get over it.”
Major thrombectomy trials such as PRAGUE-16 have supported a role for interventional cardiologists to help meet demand for stroke thrombectomy. Dr. Wita and Dr. Kulach said there’s a lack of trained neuroradiologists and developed infrastructure for thrombectomy, whereas there’s a sufficient network of catheterization laboratories and trained cardiologists who could be involved.
The take-home message from the study, they said, is to “use the existing infrastructure to optimize the treatment of stroke. Building one from the very beginning is more time and resources-consuming.”
Dr. Mocco said a physician’s training is not a factor in the pathway to neurointerventional expertise, as long as they’re willing to put in the appropriate amount of specialization and training.
“There’s no way this represents a turf war or the neurology community somehow protecting its space, which is often used as a distraction, just like the idea that there’s not enough people,” he said. “It’s just not the case. Neurointervention is the most multispecialty space that I’m aware of.”
In the United States, at least, the problem isn’t a lack of resources or people to provide the service, but in getting patients to the correct hospitals, Dr. Mocco said. “We don’t have regionalized stroke care in the United States for the most part, so patients go to any hospital that says they provide stroke care rather than necessarily being triaged to capable centers that can provide the care.”
A 2021 Medicare analysis by Dr. Mocco and colleagues found that higher physician and hospital stroke thrombectomy volumes were associated with lower inpatient mortality and better outcomes.
Efforts are underway to regionalize care and delivery of patients in Los Angeles County and New York City, for example, where ambulances preferentially take patients with suspected large vessel occlusion to thrombectomy-capable stroke centers certified by independent organizations, Dr. Mocco said. In New York, “they’ve shown it has improved outcomes.”
Estêvão Carvalho de Campos Martins, MD, Hospital de Força Aérea do Galeão, Rio de Janeiro, and Fernando Luiz de Melo Bernardi, MD, Hospital Regional do Oeste, Chapecó, Brazil, noted in an accompanying editorial that the observational study is “hypothesis-generating only” and that the disconnect between technical and clinical outcomes is due to a type II error of low power.
They suggest that collaboration between specialties will be “essential for defining the optimal training program, so that ICs can reach solid procedural results.
“The accumulated experience with virtual simulation-based training for stroke could act as an educational accelerator but should be inserted in a prespecified program,” the editorialists said. “How to train and how to insert ICs into [an] MT interdisciplinary team is the current debate; meanwhile ICs are here, and many of them already contributing.”
Dr. Mocco is the principal investigator on research trials funded by Stryker Neurovascular, Microvention, and Penumbra; and is an investor in Cerebrotech, Imperative Care, Endostream, Viseon, BlinkTBI, Myra Medical, Serenity, Vastrax, NTI, RIST, Viz.ai , Synchron, Radical, and Truvic. He serves, or has recently served, as a consultant for: Cerebrotech, Viseon, Endostream, Vastrax, RIST, Synchron, Viz.ai , Perflow, and CVAid. Dr. Carvalho de Campos Martins and Dr. Luiz de Melo Bernardi have disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Post–COVID vaccine AHA cases raise eyebrows in Italy
“The overall number of cases observed does not allow ... any definitive conclusion over a possible causal relationship between SARS-CoV-2 vaccination and AHA, which would need more epidemiological and pharmacovigilance data about suspected vaccine-related adverse events,” Maria Cristina Leone, MD, of Azienda USL-IRCCS di Reggio Emilia (Italy), and colleagues reported online on Jan. 19, 2022, in a letter to the editors of Thrombosis Research.
The cases, observed in Reggio Emilia during the first 8 months of the vaccination campaign, occurred following receipt of mRNA BNT162b2 (Pfizer-BioNTech) vaccine. The AHA patients included two men and two women who ranged in age from 67 to 86 years.
During this time frame, 235,597 people received at least one dose of BNT162b2 vaccine, the authors noted.
In the 5 years prior, from January 2016 to December 2020, only zero to two cases of AHA were observed each year, totaling five cases, or 1.9 cases per million people/year. These numbers are in line with the estimated incidence of the disease, the researchers noted, adding that “it should nonetheless be underlined that vaccination benefits exceed potential side effects and play a central role in individual and public health to effectively protect people from COVID-19 and stop the pandemic.”
However, they also wrote that the “unusual observation of four cases of a rare disease during the first months of the vaccination campaign in our province could be of interest and could sensitize health care personnel toward a possible complication of SARS-CoV-2 immunization.”
AHA is a rare autoimmune disease caused by neutralizing autoantibodies against coagulation factor VIII. It is mainly associated with malignancy, autoimmune diseases, certain medications, and postnatal status.
“Sporadic AHA cases have been reported in association with infectious diseases or vaccinations,” the author noted, adding that associations between the BNT162b2 vaccine immune complications, including AHA, have also been reported by other authors.
Three of the four case patients in Reggio Emilia had “at least one common clinical association of AHA,” they found, suggesting that these associations could “reflect susceptibility to autoimmunity potentially triggered by vaccination.”
“Case four died due to complications from sepsis after being treated with steroid and rituximab, whereas the first three cases underwent clinical and laboratory remission after immunosuppressive therapy, and no relapse has been observed during follow-up, as in the other two cases reported: This could suggest a more favorable prognosis in respect to other non–vaccine-associated cases, but longer-term data are definitely needed,” they concluded.
The authors reported having no disclosures.
“The overall number of cases observed does not allow ... any definitive conclusion over a possible causal relationship between SARS-CoV-2 vaccination and AHA, which would need more epidemiological and pharmacovigilance data about suspected vaccine-related adverse events,” Maria Cristina Leone, MD, of Azienda USL-IRCCS di Reggio Emilia (Italy), and colleagues reported online on Jan. 19, 2022, in a letter to the editors of Thrombosis Research.
The cases, observed in Reggio Emilia during the first 8 months of the vaccination campaign, occurred following receipt of mRNA BNT162b2 (Pfizer-BioNTech) vaccine. The AHA patients included two men and two women who ranged in age from 67 to 86 years.
During this time frame, 235,597 people received at least one dose of BNT162b2 vaccine, the authors noted.
In the 5 years prior, from January 2016 to December 2020, only zero to two cases of AHA were observed each year, totaling five cases, or 1.9 cases per million people/year. These numbers are in line with the estimated incidence of the disease, the researchers noted, adding that “it should nonetheless be underlined that vaccination benefits exceed potential side effects and play a central role in individual and public health to effectively protect people from COVID-19 and stop the pandemic.”
However, they also wrote that the “unusual observation of four cases of a rare disease during the first months of the vaccination campaign in our province could be of interest and could sensitize health care personnel toward a possible complication of SARS-CoV-2 immunization.”
AHA is a rare autoimmune disease caused by neutralizing autoantibodies against coagulation factor VIII. It is mainly associated with malignancy, autoimmune diseases, certain medications, and postnatal status.
“Sporadic AHA cases have been reported in association with infectious diseases or vaccinations,” the author noted, adding that associations between the BNT162b2 vaccine immune complications, including AHA, have also been reported by other authors.
Three of the four case patients in Reggio Emilia had “at least one common clinical association of AHA,” they found, suggesting that these associations could “reflect susceptibility to autoimmunity potentially triggered by vaccination.”
“Case four died due to complications from sepsis after being treated with steroid and rituximab, whereas the first three cases underwent clinical and laboratory remission after immunosuppressive therapy, and no relapse has been observed during follow-up, as in the other two cases reported: This could suggest a more favorable prognosis in respect to other non–vaccine-associated cases, but longer-term data are definitely needed,” they concluded.
The authors reported having no disclosures.
“The overall number of cases observed does not allow ... any definitive conclusion over a possible causal relationship between SARS-CoV-2 vaccination and AHA, which would need more epidemiological and pharmacovigilance data about suspected vaccine-related adverse events,” Maria Cristina Leone, MD, of Azienda USL-IRCCS di Reggio Emilia (Italy), and colleagues reported online on Jan. 19, 2022, in a letter to the editors of Thrombosis Research.
The cases, observed in Reggio Emilia during the first 8 months of the vaccination campaign, occurred following receipt of mRNA BNT162b2 (Pfizer-BioNTech) vaccine. The AHA patients included two men and two women who ranged in age from 67 to 86 years.
During this time frame, 235,597 people received at least one dose of BNT162b2 vaccine, the authors noted.
In the 5 years prior, from January 2016 to December 2020, only zero to two cases of AHA were observed each year, totaling five cases, or 1.9 cases per million people/year. These numbers are in line with the estimated incidence of the disease, the researchers noted, adding that “it should nonetheless be underlined that vaccination benefits exceed potential side effects and play a central role in individual and public health to effectively protect people from COVID-19 and stop the pandemic.”
However, they also wrote that the “unusual observation of four cases of a rare disease during the first months of the vaccination campaign in our province could be of interest and could sensitize health care personnel toward a possible complication of SARS-CoV-2 immunization.”
AHA is a rare autoimmune disease caused by neutralizing autoantibodies against coagulation factor VIII. It is mainly associated with malignancy, autoimmune diseases, certain medications, and postnatal status.
“Sporadic AHA cases have been reported in association with infectious diseases or vaccinations,” the author noted, adding that associations between the BNT162b2 vaccine immune complications, including AHA, have also been reported by other authors.
Three of the four case patients in Reggio Emilia had “at least one common clinical association of AHA,” they found, suggesting that these associations could “reflect susceptibility to autoimmunity potentially triggered by vaccination.”
“Case four died due to complications from sepsis after being treated with steroid and rituximab, whereas the first three cases underwent clinical and laboratory remission after immunosuppressive therapy, and no relapse has been observed during follow-up, as in the other two cases reported: This could suggest a more favorable prognosis in respect to other non–vaccine-associated cases, but longer-term data are definitely needed,” they concluded.
The authors reported having no disclosures.
FROM THROMBOSIS RESEARCH
New hemophilia treatments: ‘Our cup runneth over’
It’s a problem many clinicians would love to have: A whole variety of new or emerging therapeutic options to use in the care of their patients.
In a session titled “Hemophilia Update: Our Cup Runneth Over,” presented at the 2021 annual meeting of the American Society of Hematology,
Factor concentrates
Prophylaxis – as opposed to episodic treatment – is the standard of care in the use of factor concentrates in patients with hemophilia, said Ming Y. Lim, MB BChir, from the University of Utah in Salt Lake City.
“Effective prophylaxis is an ongoing collaborative effort that relies on shared decision-making between the patient and the clinician,” she told the audience.
As the complexity of therapeutic options, including gene therapy, continues to increase “it is critical that both patients and clinicians are actively involved in this collaborative process to optimize treatment and overall patient outcomes,” she added.
Historically, clinicians who treat patients with hemophilia aimed for trough levels of factor concentrates of at least 1% to prevent spontaneous joint bleeding. But as updated World Federation of Hemophilia (WFH) guidelines now recommend, trough levels should be sufficient to prevent spontaneous bleeding based on the individual patient’s bleeding phenotype and activity levels, starting in the range between 3% and 5%, and going higher as necessary.
“The appropriate target trough level is that at which a person with hemophilia experiences zero bleeds while pursuing an active or sedentary lifestyle,” she said.
The choice of factor concentrates between standard and extended half-life products will depend on multiple factors, including availability, patient and provider preferences, cost, and access to assays for monitoring extended half-life products.
The prolonged action of extended half-life products translates into dosing twice per week or every 3 days for factor VIII concentrates, and every 7-14 days for factor IX concentrates.
“All available extended half-life products have been shown to be efficacious in the prevention and treatment of bleeds, with no evidence for any clinical safety issues,” Dr. Lim said.
There are theoretical concerns, however, regarding the lifelong use of PEGylated clotting factor concentrates, leading to some variations in the regulatory approval for some PEGylated product intended for bleeding prophylaxis in children with hemophilia, she noted.
The pharmacokinetics of prophylaxis with factor concentrates can vary according to age, body mass, blood type, and von Willebrand factor levels, so WFH guidelines recommend pharmacokinetic assessment of people with hemophilia for optimization of prophylaxis, she said.
Factor mimetic and rebalancing therapies
With the commercial availability of one factor mimetic for treatment of hemophilia A and with other factor mimetics and rebalancing therapies such as fitusiran in the works, it raises the question, “Is this the beginning of the end of the use of factor?” said Alice Ma, MD, FACP, of the University of North Carolina in Chapel Hill.
Factors that may determine the answer to that question include the convenience of subcutaneous administration of factor VIII mimetics compared with intravenous delivery of factor concentrates, relative cost of factors versus nonfactor products, and safety.
She reviewed the current state of alternatives to factor concentrates, including the factor mimetic emicizumab (Hemlibra), which was approved by the Food and Drug Administration in 2018 for bleeding prophylaxis in patients with hemophilia A with inhibitors, and is currently the only FDA-approved and licensed agent in its class.
Although emicizumab is widely regarded as a major advance, there are still unanswered clinical questions about its long-term use, Dr. Ma said. It is unknown, for example, whether it can prevent inhibitor development in previously untreated patients, and whether it can prevent intracranial hemorrhage in early years of life prior to the start of traditional prophylaxis.
It’s also unknown whether the factor VIII mimetic activity of emicizumab provides the same physiological benefits of coagulation factors, and the mechanism of thrombotic adverse events seen with this agent is still unclear, she added.
Other factor VIII mimetics in the pipeline include Mim8, which is being developed in Denmark by Novo Nordisk; this is a next-generation bispecific antibody with enhanced activity over emicizumab in both mouse models and in vitro hemophilia A assays. There are also two others bispecific antibodies designed to generate thrombin in preclinical development: BS-027125 (Bioverativ, U.S.) and NIBX-2101 (Takeda, Japan).
One of the most promising rebalancing factors in development is fitusiran, a small interfering RNA molecule that targets mRNA encoding antithrombin. As reported during ASH 2021, fitusiran was associated with an approximately 90% reduction in annualized bleeding rates in patients with hemophilia A and hemophilia B, both with inhibitors, in two clinical trials. It was described at the meeting “as a great leap forward” in the treatment of hemophilia.
However, during its clinical development fitusiran has been consistently associated with thrombotic complications, Dr. Ma noted.
Also in development are several drugs targeted against tissue factor pathway inhibitor (TFPI), an anticoagulant protein that inhibits early phases of the procoagulant response. These agents included marstacimab (Pfizer, U.S.) which has been reported to normalize coagulation in plasma from hemophilia patients ex vivo and is currently being evaluated in patients with hemophilia A and B. There is also MG1113 (Green Cross Corporation, South Korea), a monoclonal antibody currently being tested in healthy volunteers, and BAX499 (Takeda), an aptamer derived from recombinant human TFPI that has been shown to inhibit TFPI in vitro and in vivo. However, development of this agent is on hold due to bleeding in study subjects, Dr. Ma noted.
“It is really notable that none of the replacements of factor have been free of thrombotic side effects,” Dr. Ma said. “And so I think it shows that you mess with Mother Nature at your peril. If you poke at the hemostasis-thrombosis arm and reduce antithrombotic proteins, and something triggers bleeding and you start to treat with a therapy for hemorrhage, it’s not a surprise that the first patient treated with fitusiran had a thrombosis, and I think we were just not potentially savvy enough to predict that.”
Considerable optimism over gene therapy
“There is now repeated proof of concept success for hemophilia A and B gene therapy. I think this supports the considerable optimism that’s really driving this field,” said Lindsey A. George, MD, of the University of Pennsylvania and Children’s Hospital of Philadelphia.
She reviewed adeno-associated virus (AAV) vector and AAV-mediated gene transfer approaches for hemophilia A and B.
There are currently four clinical trials of gene therapy for patients with hemophilia B, and five for patients with hemophilia A.
Because AAV efficiently targets the liver, most safety considerations about systemic AAV-mediated gene therapy are focused around potential hepatotoxicity, Dr. George said.
“Thankfully, short-term safety in the context of hemophilia has really been quite good,” she said.
Patients who undergo gene therapy for hemophilia are typically monitored twice weekly for 3 months for evidence of a capsid-specific CD8 T cell response, also called a capsid immune response. This presents with transient transaminase elevations (primarily ALT) and a decline in factor VIII and factor IX activity.
In clinical trials for patients with hemophilia, the capsid immune response has limited the efficacy of the therapy in the short term, but has not been a major cause for safety concerns. It is typically managed with glucocorticoids or other immunomodulating agents such as mycophenolate mofetil or tacrolimus.
There have also been reported cases of transaminase elevations without evidence of a capsid immune response, which warrants further investigation, she added.
Regarding efficacy, she noted that across clinical trials, the observed annualized bleeding rate has been less than 1%, despite heterogeneity of vectors and dosing used.
“That’s obviously quite optimistic for the field, but it also sort of raises the point that the heterogeneity at which we’re achieving the same phenotypic observations deserves a bit of a deeper dive,” she said.
Although hemophilia B gene transfer appears to be durable, the same cannot be said as yet for hemophilia A.
In canine models for hemophilia A and B, factor VIII and factor IX expression have been demonstrated for 8-10 years post vector, and in humans factor IX expression in patients with hemophilia B has been reported for up to 8 years.
In contrast, in the three hemophilia A trials in which patients have been followed for a minimum of 2 years, there was an approximately 40% loss of transgene vector from year 1 to year 2 with two vectors, but not a third.
Potential explanations for the loss of expression seen include an unfolded protein response, promoter silence, and an ongoing undetected or unmitigated immune response to AAV or to the transgene.
Regarding the future of gene therapy, Dr. George said that “we anticipate that there will be licensed vectors in the very near future, and predicted that gene therapy “will fulfill its promise to alter the paradigm of hemophilia care.”
Dr. Lim disclosed honoraria from several companies and travel support from Novo Nordisk. Dr. Ma disclosed honoraria and research funding from Takeda. Dr. George disclosed FVIII-QQ patents and royalties, research funding from AskBio, and consulting activities/advisory board participation with others.
A version of this article first appeared on Medscape.com.
It’s a problem many clinicians would love to have: A whole variety of new or emerging therapeutic options to use in the care of their patients.
In a session titled “Hemophilia Update: Our Cup Runneth Over,” presented at the 2021 annual meeting of the American Society of Hematology,
Factor concentrates
Prophylaxis – as opposed to episodic treatment – is the standard of care in the use of factor concentrates in patients with hemophilia, said Ming Y. Lim, MB BChir, from the University of Utah in Salt Lake City.
“Effective prophylaxis is an ongoing collaborative effort that relies on shared decision-making between the patient and the clinician,” she told the audience.
As the complexity of therapeutic options, including gene therapy, continues to increase “it is critical that both patients and clinicians are actively involved in this collaborative process to optimize treatment and overall patient outcomes,” she added.
Historically, clinicians who treat patients with hemophilia aimed for trough levels of factor concentrates of at least 1% to prevent spontaneous joint bleeding. But as updated World Federation of Hemophilia (WFH) guidelines now recommend, trough levels should be sufficient to prevent spontaneous bleeding based on the individual patient’s bleeding phenotype and activity levels, starting in the range between 3% and 5%, and going higher as necessary.
“The appropriate target trough level is that at which a person with hemophilia experiences zero bleeds while pursuing an active or sedentary lifestyle,” she said.
The choice of factor concentrates between standard and extended half-life products will depend on multiple factors, including availability, patient and provider preferences, cost, and access to assays for monitoring extended half-life products.
The prolonged action of extended half-life products translates into dosing twice per week or every 3 days for factor VIII concentrates, and every 7-14 days for factor IX concentrates.
“All available extended half-life products have been shown to be efficacious in the prevention and treatment of bleeds, with no evidence for any clinical safety issues,” Dr. Lim said.
There are theoretical concerns, however, regarding the lifelong use of PEGylated clotting factor concentrates, leading to some variations in the regulatory approval for some PEGylated product intended for bleeding prophylaxis in children with hemophilia, she noted.
The pharmacokinetics of prophylaxis with factor concentrates can vary according to age, body mass, blood type, and von Willebrand factor levels, so WFH guidelines recommend pharmacokinetic assessment of people with hemophilia for optimization of prophylaxis, she said.
Factor mimetic and rebalancing therapies
With the commercial availability of one factor mimetic for treatment of hemophilia A and with other factor mimetics and rebalancing therapies such as fitusiran in the works, it raises the question, “Is this the beginning of the end of the use of factor?” said Alice Ma, MD, FACP, of the University of North Carolina in Chapel Hill.
Factors that may determine the answer to that question include the convenience of subcutaneous administration of factor VIII mimetics compared with intravenous delivery of factor concentrates, relative cost of factors versus nonfactor products, and safety.
She reviewed the current state of alternatives to factor concentrates, including the factor mimetic emicizumab (Hemlibra), which was approved by the Food and Drug Administration in 2018 for bleeding prophylaxis in patients with hemophilia A with inhibitors, and is currently the only FDA-approved and licensed agent in its class.
Although emicizumab is widely regarded as a major advance, there are still unanswered clinical questions about its long-term use, Dr. Ma said. It is unknown, for example, whether it can prevent inhibitor development in previously untreated patients, and whether it can prevent intracranial hemorrhage in early years of life prior to the start of traditional prophylaxis.
It’s also unknown whether the factor VIII mimetic activity of emicizumab provides the same physiological benefits of coagulation factors, and the mechanism of thrombotic adverse events seen with this agent is still unclear, she added.
Other factor VIII mimetics in the pipeline include Mim8, which is being developed in Denmark by Novo Nordisk; this is a next-generation bispecific antibody with enhanced activity over emicizumab in both mouse models and in vitro hemophilia A assays. There are also two others bispecific antibodies designed to generate thrombin in preclinical development: BS-027125 (Bioverativ, U.S.) and NIBX-2101 (Takeda, Japan).
One of the most promising rebalancing factors in development is fitusiran, a small interfering RNA molecule that targets mRNA encoding antithrombin. As reported during ASH 2021, fitusiran was associated with an approximately 90% reduction in annualized bleeding rates in patients with hemophilia A and hemophilia B, both with inhibitors, in two clinical trials. It was described at the meeting “as a great leap forward” in the treatment of hemophilia.
However, during its clinical development fitusiran has been consistently associated with thrombotic complications, Dr. Ma noted.
Also in development are several drugs targeted against tissue factor pathway inhibitor (TFPI), an anticoagulant protein that inhibits early phases of the procoagulant response. These agents included marstacimab (Pfizer, U.S.) which has been reported to normalize coagulation in plasma from hemophilia patients ex vivo and is currently being evaluated in patients with hemophilia A and B. There is also MG1113 (Green Cross Corporation, South Korea), a monoclonal antibody currently being tested in healthy volunteers, and BAX499 (Takeda), an aptamer derived from recombinant human TFPI that has been shown to inhibit TFPI in vitro and in vivo. However, development of this agent is on hold due to bleeding in study subjects, Dr. Ma noted.
“It is really notable that none of the replacements of factor have been free of thrombotic side effects,” Dr. Ma said. “And so I think it shows that you mess with Mother Nature at your peril. If you poke at the hemostasis-thrombosis arm and reduce antithrombotic proteins, and something triggers bleeding and you start to treat with a therapy for hemorrhage, it’s not a surprise that the first patient treated with fitusiran had a thrombosis, and I think we were just not potentially savvy enough to predict that.”
Considerable optimism over gene therapy
“There is now repeated proof of concept success for hemophilia A and B gene therapy. I think this supports the considerable optimism that’s really driving this field,” said Lindsey A. George, MD, of the University of Pennsylvania and Children’s Hospital of Philadelphia.
She reviewed adeno-associated virus (AAV) vector and AAV-mediated gene transfer approaches for hemophilia A and B.
There are currently four clinical trials of gene therapy for patients with hemophilia B, and five for patients with hemophilia A.
Because AAV efficiently targets the liver, most safety considerations about systemic AAV-mediated gene therapy are focused around potential hepatotoxicity, Dr. George said.
“Thankfully, short-term safety in the context of hemophilia has really been quite good,” she said.
Patients who undergo gene therapy for hemophilia are typically monitored twice weekly for 3 months for evidence of a capsid-specific CD8 T cell response, also called a capsid immune response. This presents with transient transaminase elevations (primarily ALT) and a decline in factor VIII and factor IX activity.
In clinical trials for patients with hemophilia, the capsid immune response has limited the efficacy of the therapy in the short term, but has not been a major cause for safety concerns. It is typically managed with glucocorticoids or other immunomodulating agents such as mycophenolate mofetil or tacrolimus.
There have also been reported cases of transaminase elevations without evidence of a capsid immune response, which warrants further investigation, she added.
Regarding efficacy, she noted that across clinical trials, the observed annualized bleeding rate has been less than 1%, despite heterogeneity of vectors and dosing used.
“That’s obviously quite optimistic for the field, but it also sort of raises the point that the heterogeneity at which we’re achieving the same phenotypic observations deserves a bit of a deeper dive,” she said.
Although hemophilia B gene transfer appears to be durable, the same cannot be said as yet for hemophilia A.
In canine models for hemophilia A and B, factor VIII and factor IX expression have been demonstrated for 8-10 years post vector, and in humans factor IX expression in patients with hemophilia B has been reported for up to 8 years.
In contrast, in the three hemophilia A trials in which patients have been followed for a minimum of 2 years, there was an approximately 40% loss of transgene vector from year 1 to year 2 with two vectors, but not a third.
Potential explanations for the loss of expression seen include an unfolded protein response, promoter silence, and an ongoing undetected or unmitigated immune response to AAV or to the transgene.
Regarding the future of gene therapy, Dr. George said that “we anticipate that there will be licensed vectors in the very near future, and predicted that gene therapy “will fulfill its promise to alter the paradigm of hemophilia care.”
Dr. Lim disclosed honoraria from several companies and travel support from Novo Nordisk. Dr. Ma disclosed honoraria and research funding from Takeda. Dr. George disclosed FVIII-QQ patents and royalties, research funding from AskBio, and consulting activities/advisory board participation with others.
A version of this article first appeared on Medscape.com.
It’s a problem many clinicians would love to have: A whole variety of new or emerging therapeutic options to use in the care of their patients.
In a session titled “Hemophilia Update: Our Cup Runneth Over,” presented at the 2021 annual meeting of the American Society of Hematology,
Factor concentrates
Prophylaxis – as opposed to episodic treatment – is the standard of care in the use of factor concentrates in patients with hemophilia, said Ming Y. Lim, MB BChir, from the University of Utah in Salt Lake City.
“Effective prophylaxis is an ongoing collaborative effort that relies on shared decision-making between the patient and the clinician,” she told the audience.
As the complexity of therapeutic options, including gene therapy, continues to increase “it is critical that both patients and clinicians are actively involved in this collaborative process to optimize treatment and overall patient outcomes,” she added.
Historically, clinicians who treat patients with hemophilia aimed for trough levels of factor concentrates of at least 1% to prevent spontaneous joint bleeding. But as updated World Federation of Hemophilia (WFH) guidelines now recommend, trough levels should be sufficient to prevent spontaneous bleeding based on the individual patient’s bleeding phenotype and activity levels, starting in the range between 3% and 5%, and going higher as necessary.
“The appropriate target trough level is that at which a person with hemophilia experiences zero bleeds while pursuing an active or sedentary lifestyle,” she said.
The choice of factor concentrates between standard and extended half-life products will depend on multiple factors, including availability, patient and provider preferences, cost, and access to assays for monitoring extended half-life products.
The prolonged action of extended half-life products translates into dosing twice per week or every 3 days for factor VIII concentrates, and every 7-14 days for factor IX concentrates.
“All available extended half-life products have been shown to be efficacious in the prevention and treatment of bleeds, with no evidence for any clinical safety issues,” Dr. Lim said.
There are theoretical concerns, however, regarding the lifelong use of PEGylated clotting factor concentrates, leading to some variations in the regulatory approval for some PEGylated product intended for bleeding prophylaxis in children with hemophilia, she noted.
The pharmacokinetics of prophylaxis with factor concentrates can vary according to age, body mass, blood type, and von Willebrand factor levels, so WFH guidelines recommend pharmacokinetic assessment of people with hemophilia for optimization of prophylaxis, she said.
Factor mimetic and rebalancing therapies
With the commercial availability of one factor mimetic for treatment of hemophilia A and with other factor mimetics and rebalancing therapies such as fitusiran in the works, it raises the question, “Is this the beginning of the end of the use of factor?” said Alice Ma, MD, FACP, of the University of North Carolina in Chapel Hill.
Factors that may determine the answer to that question include the convenience of subcutaneous administration of factor VIII mimetics compared with intravenous delivery of factor concentrates, relative cost of factors versus nonfactor products, and safety.
She reviewed the current state of alternatives to factor concentrates, including the factor mimetic emicizumab (Hemlibra), which was approved by the Food and Drug Administration in 2018 for bleeding prophylaxis in patients with hemophilia A with inhibitors, and is currently the only FDA-approved and licensed agent in its class.
Although emicizumab is widely regarded as a major advance, there are still unanswered clinical questions about its long-term use, Dr. Ma said. It is unknown, for example, whether it can prevent inhibitor development in previously untreated patients, and whether it can prevent intracranial hemorrhage in early years of life prior to the start of traditional prophylaxis.
It’s also unknown whether the factor VIII mimetic activity of emicizumab provides the same physiological benefits of coagulation factors, and the mechanism of thrombotic adverse events seen with this agent is still unclear, she added.
Other factor VIII mimetics in the pipeline include Mim8, which is being developed in Denmark by Novo Nordisk; this is a next-generation bispecific antibody with enhanced activity over emicizumab in both mouse models and in vitro hemophilia A assays. There are also two others bispecific antibodies designed to generate thrombin in preclinical development: BS-027125 (Bioverativ, U.S.) and NIBX-2101 (Takeda, Japan).
One of the most promising rebalancing factors in development is fitusiran, a small interfering RNA molecule that targets mRNA encoding antithrombin. As reported during ASH 2021, fitusiran was associated with an approximately 90% reduction in annualized bleeding rates in patients with hemophilia A and hemophilia B, both with inhibitors, in two clinical trials. It was described at the meeting “as a great leap forward” in the treatment of hemophilia.
However, during its clinical development fitusiran has been consistently associated with thrombotic complications, Dr. Ma noted.
Also in development are several drugs targeted against tissue factor pathway inhibitor (TFPI), an anticoagulant protein that inhibits early phases of the procoagulant response. These agents included marstacimab (Pfizer, U.S.) which has been reported to normalize coagulation in plasma from hemophilia patients ex vivo and is currently being evaluated in patients with hemophilia A and B. There is also MG1113 (Green Cross Corporation, South Korea), a monoclonal antibody currently being tested in healthy volunteers, and BAX499 (Takeda), an aptamer derived from recombinant human TFPI that has been shown to inhibit TFPI in vitro and in vivo. However, development of this agent is on hold due to bleeding in study subjects, Dr. Ma noted.
“It is really notable that none of the replacements of factor have been free of thrombotic side effects,” Dr. Ma said. “And so I think it shows that you mess with Mother Nature at your peril. If you poke at the hemostasis-thrombosis arm and reduce antithrombotic proteins, and something triggers bleeding and you start to treat with a therapy for hemorrhage, it’s not a surprise that the first patient treated with fitusiran had a thrombosis, and I think we were just not potentially savvy enough to predict that.”
Considerable optimism over gene therapy
“There is now repeated proof of concept success for hemophilia A and B gene therapy. I think this supports the considerable optimism that’s really driving this field,” said Lindsey A. George, MD, of the University of Pennsylvania and Children’s Hospital of Philadelphia.
She reviewed adeno-associated virus (AAV) vector and AAV-mediated gene transfer approaches for hemophilia A and B.
There are currently four clinical trials of gene therapy for patients with hemophilia B, and five for patients with hemophilia A.
Because AAV efficiently targets the liver, most safety considerations about systemic AAV-mediated gene therapy are focused around potential hepatotoxicity, Dr. George said.
“Thankfully, short-term safety in the context of hemophilia has really been quite good,” she said.
Patients who undergo gene therapy for hemophilia are typically monitored twice weekly for 3 months for evidence of a capsid-specific CD8 T cell response, also called a capsid immune response. This presents with transient transaminase elevations (primarily ALT) and a decline in factor VIII and factor IX activity.
In clinical trials for patients with hemophilia, the capsid immune response has limited the efficacy of the therapy in the short term, but has not been a major cause for safety concerns. It is typically managed with glucocorticoids or other immunomodulating agents such as mycophenolate mofetil or tacrolimus.
There have also been reported cases of transaminase elevations without evidence of a capsid immune response, which warrants further investigation, she added.
Regarding efficacy, she noted that across clinical trials, the observed annualized bleeding rate has been less than 1%, despite heterogeneity of vectors and dosing used.
“That’s obviously quite optimistic for the field, but it also sort of raises the point that the heterogeneity at which we’re achieving the same phenotypic observations deserves a bit of a deeper dive,” she said.
Although hemophilia B gene transfer appears to be durable, the same cannot be said as yet for hemophilia A.
In canine models for hemophilia A and B, factor VIII and factor IX expression have been demonstrated for 8-10 years post vector, and in humans factor IX expression in patients with hemophilia B has been reported for up to 8 years.
In contrast, in the three hemophilia A trials in which patients have been followed for a minimum of 2 years, there was an approximately 40% loss of transgene vector from year 1 to year 2 with two vectors, but not a third.
Potential explanations for the loss of expression seen include an unfolded protein response, promoter silence, and an ongoing undetected or unmitigated immune response to AAV or to the transgene.
Regarding the future of gene therapy, Dr. George said that “we anticipate that there will be licensed vectors in the very near future, and predicted that gene therapy “will fulfill its promise to alter the paradigm of hemophilia care.”
Dr. Lim disclosed honoraria from several companies and travel support from Novo Nordisk. Dr. Ma disclosed honoraria and research funding from Takeda. Dr. George disclosed FVIII-QQ patents and royalties, research funding from AskBio, and consulting activities/advisory board participation with others.
A version of this article first appeared on Medscape.com.
REPORTING FROM ASH 2021
New stroke risk score developed for COVID patients
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Researchers have developed a quick and easy scoring system to predict which hospitalized COVID-19 patients are more at risk for stroke.
“The system is simple. You can calculate the points in 5 seconds and then predict the chances the patient will have a stroke,” Alexander E. Merkler, MD, assistant professor of neurology at Weill Cornell Medical College/NewYork-Presbyterian Hospital, and lead author of a study of the system, told this news organization.
The new system will allow clinicians to stratify patients and lead to closer monitoring of those at highest risk for stroke, said Dr. Merkler.
The study was presented during the International Stroke Conference, presented by the American Stroke Association, a division of the American Heart Association.
Some, but not all, studies suggest COVID-19 increases the risk of stroke and worsens stroke outcomes, and the association isn’t clear, investigators note.
Researchers used the American Heart Association Get With the Guidelines COVID-19 cardiovascular disease registry for this analysis. They evaluated 21,420 adult patients (mean age 61 years, 54% men), who were hospitalized with COVID-19 at 122 centers from March 2020 to March 2021.
Investigators tapped into the vast amounts of data in this registry on different variables, including demographics, comorbidities, and lab values.
The outcome was a cerebrovascular event, defined as any ischemic or hemorrhagic stroke, transient ischemic attack (TIA), or cerebral vein thrombosis. Of the total hospitalized COVID-19 population, 312 (1.5%) had a cerebrovascular event.
Researchers first used standard statistical models to determine which risk factors are most associated with the development of stroke. They identified six such factors:
- history of stroke
- no fever at the time of hospital admission
- no history of pulmonary disease
- high white blood cell count
- history of hypertension
- high systolic blood pressure at the time of hospital admission
That the list of risk factors included absence of fever and no history of pulmonary disease was somewhat surprising, said Dr. Merkler, but there may be possible explanations, he added.
A high fever is an inflammatory response, and perhaps patients who aren’t responding appropriately “could be sicker in general and have a poor immune system, and thereby be at increased risk for stroke,” said Dr. Merkler.
In the case of pulmonary disease, patients without a history who are admitted for COVID “may have an extremely high burden of COVID, or are extremely sick, and that’s why they’re at higher risk for stroke.”
The scoring system assigns points for each variable, with more points conferring a higher risk of stroke. For example, someone who has 0-1 points has 0.2% risk of having a stroke, and someone with 4-6 points has 2% to 3% risk, said Dr. Merkler.
“So, we’re talking about a 10- to 15-fold increased risk of having a stroke with 4 to 6 versus 0 to 1 variables.”
The accuracy of the risk stratification score (C-statistic of 0.66; 95% confidence interval, 0.60-0.72) is “fairly good or modestly good,” said Dr. Merkler.
A patient with a score of 5 or 6 may need more vigilant monitoring to make sure symptoms are caught early and therapies such as thrombolytics and thrombectomy are readily available, he added.
Researchers also used a sophisticated machine-learning approach where a computer takes all the variables and identifies the best algorithm to predict stroke.
“The machine-learning algorithm was basically just as good as our standard model; it was almost identical,” said Dr. Merkler.
Outside of COVID, other scoring systems are used to predict stroke. For example, the ABCD2 score uses various factors to predict risk of recurrent stroke.
Philip B. Gorelick, MD, adjunct professor, Northwestern University Feinberg School of Medicine, Chicago, said the results are promising, as they may lead to identifying modifiable factors to prevent stroke.
Dr. Gorelick noted that the authors identified risk factors to predict risk of stroke “after an extensive analysis of baseline factors that included an internal validation process.”
The finding that no fever and no history of pulmonary disease were included in those risk factors was “unexpected,” said Dr. Gorelick, who is also medical director of the Hauenstein Neuroscience Center in Grand Rapids, Michigan. “This may reflect the baseline timing of data collection.”
He added further validation of the results in other data sets “will be useful to determine the consistency of the predictive model and its potential value in general practice.”
Louise D. McCullough, MD, PhD, professor and chair of neurology, McGovern Medical School, The University of Texas Health Science Center, Houston, said the association between stroke risk and COVID exposure “has been very unclear.”
“Some people find a very strong association between stroke and COVID, some do not,” said Dr. McCullough, who served as the chair of the ISC 2022 meeting.
This new study looking at a risk stratification model for COVID patients was “very nicely done,” she added.
“They used the American Heart Association Get With The Guidelines COVID registry, which was an amazing feat that was done very quickly by the AHA to establish COVID reporting in the Get With The Guidelines data, allowing us to really look at other factors related to stroke that are in this unique database.”
The study received funding support from the American Stroke Association. Dr. Merkler has received funding from the American Heart Association and the Leon Levy Foundation. Dr. Gorelick was not involved in the study and has disclosed no relevant financial relationships.
A version of this article first appeared on Medscape.com.
FROM ISC 2022
Novel drug targets raised Lp(a): topline results released
Topline results from the phase 1 APOLLO study of SLN360, a short interfering ribonucleic acid (siRNA) targeting lipoprotein(a), showed it significantly reduced Lp(a) in a dose-dependent manner from 46% to up to 98%.
Reductions of up to 81% were maintained out to 150 days, according to a release from the developer of the drug, Silence Therapeutics.
High Lp(a) affects about one in five people worldwide and is a genetic risk factor for cardiovascular disease. There are no approved medications that selectively lower Lp(a), and levels cannot be significantly modified through lifestyle changes or any approved medications.
SLN360 is a siRNA that is designed to lower Lp(a) production by using the body’s natural process of RNA interference to target and silence messenger RNA transcribed from the LPA gene in liver cells.
The first-in-human APOLLO trial evaluated 32 patients with serum Lp(a) concentrations of at least 150 nmol/L and no cardiovascular disease who received a single subcutaneous dose of SLN360 (30 mg, 100 mg, less than or equal to 300 mg, or less than or equal to 600 mg) or placebo and were followed for up to 150 days.
No clinically important safety concerns were identified, although low-grade adverse events at the injection site occurred, most prominently at the highest dose, according to the company.
Study follow-up has been extended to 1 year. Patient enrollment continues in the multiple-ascending dose portion of the phase 1 study in patients with high Lp(a) and a confirmed history of stable atherosclerotic cardiovascular disease, the company statement notes.
Detailed results from APOLLO will be presented in a late-breaking clinical trials session at the American College of Cardiology Annual Scientific Session on April 3 by principal investigator Steven E. Nissen, MD, Cleveland Clinic.
A version of this article first appeared on Medscape.com.
Topline results from the phase 1 APOLLO study of SLN360, a short interfering ribonucleic acid (siRNA) targeting lipoprotein(a), showed it significantly reduced Lp(a) in a dose-dependent manner from 46% to up to 98%.
Reductions of up to 81% were maintained out to 150 days, according to a release from the developer of the drug, Silence Therapeutics.
High Lp(a) affects about one in five people worldwide and is a genetic risk factor for cardiovascular disease. There are no approved medications that selectively lower Lp(a), and levels cannot be significantly modified through lifestyle changes or any approved medications.
SLN360 is a siRNA that is designed to lower Lp(a) production by using the body’s natural process of RNA interference to target and silence messenger RNA transcribed from the LPA gene in liver cells.
The first-in-human APOLLO trial evaluated 32 patients with serum Lp(a) concentrations of at least 150 nmol/L and no cardiovascular disease who received a single subcutaneous dose of SLN360 (30 mg, 100 mg, less than or equal to 300 mg, or less than or equal to 600 mg) or placebo and were followed for up to 150 days.
No clinically important safety concerns were identified, although low-grade adverse events at the injection site occurred, most prominently at the highest dose, according to the company.
Study follow-up has been extended to 1 year. Patient enrollment continues in the multiple-ascending dose portion of the phase 1 study in patients with high Lp(a) and a confirmed history of stable atherosclerotic cardiovascular disease, the company statement notes.
Detailed results from APOLLO will be presented in a late-breaking clinical trials session at the American College of Cardiology Annual Scientific Session on April 3 by principal investigator Steven E. Nissen, MD, Cleveland Clinic.
A version of this article first appeared on Medscape.com.
Topline results from the phase 1 APOLLO study of SLN360, a short interfering ribonucleic acid (siRNA) targeting lipoprotein(a), showed it significantly reduced Lp(a) in a dose-dependent manner from 46% to up to 98%.
Reductions of up to 81% were maintained out to 150 days, according to a release from the developer of the drug, Silence Therapeutics.
High Lp(a) affects about one in five people worldwide and is a genetic risk factor for cardiovascular disease. There are no approved medications that selectively lower Lp(a), and levels cannot be significantly modified through lifestyle changes or any approved medications.
SLN360 is a siRNA that is designed to lower Lp(a) production by using the body’s natural process of RNA interference to target and silence messenger RNA transcribed from the LPA gene in liver cells.
The first-in-human APOLLO trial evaluated 32 patients with serum Lp(a) concentrations of at least 150 nmol/L and no cardiovascular disease who received a single subcutaneous dose of SLN360 (30 mg, 100 mg, less than or equal to 300 mg, or less than or equal to 600 mg) or placebo and were followed for up to 150 days.
No clinically important safety concerns were identified, although low-grade adverse events at the injection site occurred, most prominently at the highest dose, according to the company.
Study follow-up has been extended to 1 year. Patient enrollment continues in the multiple-ascending dose portion of the phase 1 study in patients with high Lp(a) and a confirmed history of stable atherosclerotic cardiovascular disease, the company statement notes.
Detailed results from APOLLO will be presented in a late-breaking clinical trials session at the American College of Cardiology Annual Scientific Session on April 3 by principal investigator Steven E. Nissen, MD, Cleveland Clinic.
A version of this article first appeared on Medscape.com.
Merits of short DAPT, de-escalation in ACS challenge guidelines
Standard dual-antiplatelet therapy (DAPT) with aspirin and a potent P2Y12 inhibitor for 12 months after stenting for an acute coronary syndrome (ACS) is under increasing fire from studies showing that varying the duration and intensity of DAPT can reduce bleeding risk without compromising ischemic protection.
A novel meta-analysis of 29 studies indirectly compares short DAPT and de-escalation in 50,602 patients, providing new insights into the relative safety and efficacy of the two strategies and further challenging current guideline recommendations.
Results show no difference in the risk of death between short DAPT with aspirin or P2Y12 inhibitor discontinuation 1-6 months after percutaneous coronary intervention and de-escalation to clopidogrel (Plavix) or lower-dose prasugrel (Effient) or ticagrelor (Brilinta) after the initial high-risk period for ischemic events (risk ratio, 0.98).
“However, there are some differentiating characteristics between the two. De-escalation seems to reduce NACE – net adverse cardiovascular events – likely because of a reduction in major adverse cardiac events, while short DAPT decreases bleeding,” senior author Davide Capodanno, MD, PhD, University of Catania (Italy) told this news organization.
The findings, published in JACC: Cardiovascular Interventions, are clinically plausible because patients remain on two antiplatelet drugs with de-escalation, but are on only one drug at the point of shortening DAPT, he said. “So, of course, if you have only one antiplatelet drug instead of two, you reduce bleeding. On the other hand, having two antiplatelets probably reduces the thrombotic and ischemic events.”
The study failed to show statistically significant differences in ischemic endpoints between strategies, likely because of few events and wide confidence intervals, Dr. Capodanno said. “In fact, when we look at each single component of this NACE, we see a directional difference in favor of de-escalation, which is what you would expect from two drugs.”
All-cause death was also similar among strategies in an alternative five-node analysis that split short DAPT and de-escalation into four groups and included standard DAPT.
Compared with short DAPT with P2Y12 inhibitor discontinuation, both de-escalation to clopidogrel and to half-dose prasugrel or ticagrelor reduced the risk for NACE. De-escalation to half dose also reduced the risk for minor bleeding, compared with short DAPT with aspirin discontinuation.
The overall results were similar in multiple sensitivity analyses and a Bayesian meta-analysis, according to the authors, led by Claudio Laudani, MD, also with the University of Catania.
The Bayesian analysis suggested a greater than 95% probability that de-escalation is the best strategy for NACE, MI, stroke, stent thrombosis, and minor bleeding, whereas short DAPT ranks first for major bleeding with a greater than 95% probability.
Guidelines upside down?
In the absence of a head-to-head comparison, the authors say the results warrant a change in current guidelines, which give a class 2a recommendation for short DAPT and a weak class 2b for de-escalation.
“The two strategies have both merits and caveats but, overall, they are very similar; so this is why we believe they should be similar [in status],” Dr. Capodanno said.
In an accompanying editorial, Dean Kereiakes, MD, Christ Hospital Heart and Vascular Center, Cincinnati, and Robert Yeh, MD, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, suggest the guideline recommendations are upside down.
“The class 1 recommendation should be for short DAPT or DAPT de-escalation vs. standard DAPT based on this meta-analysis and, frankly, based on the independent analyses from Bangalore [et al.] and from Shoji [et al.],” Dr. Kereiakes told this news organization.
“When you look at the meta-analyses that have been done, what you see is a reduction of bleeding and either no change or a slight numeric reduction in ischemic events, which magnifies the net clinical benefit, favoring short DAPT or DAPT de-escalation in comparison to standard 12-month, guideline-compliant DAPT,” he said. “So for me, it’s kind of like, game over. When will the guidelines catch up?”
In a comment, Gregg Stone, MD, Icahn School of Medicine at Mount Sinai, New York, said in an email that “both approaches warrant a class 1 recommendation in patients at high bleeding risk, and both a 2a in non–high bleeding risk patients. With contemporary drug-eluting stents, the prognosis is more strongly determined by bleeding risk and the occurrence of hemorrhagic complications than ischemic risk.”
Not all strategies are ‘created equal’
The editorialists caution that, while viable, not all short DAPT or de-escalation strategies are “created equal.” In the five-node analysis, for example, the relative risk of stent thrombosis is highest following a short DAPT regimen with extended aspirin monotherapy (RR, 1.45) and lowest following de-escalation to half-dose prasugrel/ticagrelor (RR, 0.45).
Although not universally observed, the signal of harm with aspirin is consistent with studies such as TWILIGHT, HOST EXAM, and a 2020 meta-analysis, in which stopping aspirin 1-3 months after PCI cut bleeding by 50%, compared with DAPT in patients with ACS, noted Dr. Kereiakes.
He also hinted that more data are forthcoming showing that short DAPT followed by aspirin single-antiplatelet therapy (SAPT) has relatively higher ischemic and bleeding event rates, compared with short DAPT followed by P2Y12 SAPT, with or without an anticoagulant on board.
The key going forward, all agree, is to formally incorporate ischemic/bleeding risk stratification tools into practice guidelines to allow personalized antiplatelet therapy. To that end, Dr. Kereiakes and Dr. Yeh offer a detailed graphic of rank-order recommendations for each strategy by clinical risk strata, with de-escalation generally best for those at greatest ischemic risk and short DAPT best applied to those at greatest bleeding risk.
“The biggest incremental knowledge provided by Davide and Laudani is that they gave us more insight into the granularity of platelet inhibition strategies,” Dr. Kereiakes said. “And it is mechanistically possible to be applied in clinical practice. It’s what I personally see in high-volume clinical practice.”
Before it can be determined which of these strategies is safer and/or more effective, a large, direct head-to-head comparative randomized trial is necessary, Dr. Stone cautioned.
“There are still many variables that were not adjusted for in this excellent study, including the timing of DAPT discontinuation or de-escalation, the specific agent used, etc.,” he added. “Finally, as implied by these results, the optimal regimen may vary based on the balance of ischemic and bleeding risk. Thus, the specific population enrolled in such a randomized trial might importantly affect its outcome.”
As a man “who likes science and statistics,” Dr. Capodanno said he’d also like a large, randomized trial directly comparing the two strategies to confirm these indirect findings. “But it’s very difficult to imagine the power for a trial like that, so it’s not something that’s easy to do.”
Dr. Capodanno reports consulting and speaker fees from Amgen, Arena, Biotronik, Daiichi-Sankyo, and Sanofi outside the present work. Coauthor disclosures are listed in the original article. Dr. Kereiakes reports consulting fees from SINO Medical Sciences Technologies, Svelte Medical Systems, Elixir Medical, and Caliber Therapeutics/Orchestra Biomed. Dr. Yeh reports consulting fees and grant support from Abbott Vascular, AstraZeneca, Boston Scientific, and Medtronic. Dr. Stone reported having no disclosures relevant to the study.
A version of this article first appeared on Medscape.com.
Standard dual-antiplatelet therapy (DAPT) with aspirin and a potent P2Y12 inhibitor for 12 months after stenting for an acute coronary syndrome (ACS) is under increasing fire from studies showing that varying the duration and intensity of DAPT can reduce bleeding risk without compromising ischemic protection.
A novel meta-analysis of 29 studies indirectly compares short DAPT and de-escalation in 50,602 patients, providing new insights into the relative safety and efficacy of the two strategies and further challenging current guideline recommendations.
Results show no difference in the risk of death between short DAPT with aspirin or P2Y12 inhibitor discontinuation 1-6 months after percutaneous coronary intervention and de-escalation to clopidogrel (Plavix) or lower-dose prasugrel (Effient) or ticagrelor (Brilinta) after the initial high-risk period for ischemic events (risk ratio, 0.98).
“However, there are some differentiating characteristics between the two. De-escalation seems to reduce NACE – net adverse cardiovascular events – likely because of a reduction in major adverse cardiac events, while short DAPT decreases bleeding,” senior author Davide Capodanno, MD, PhD, University of Catania (Italy) told this news organization.
The findings, published in JACC: Cardiovascular Interventions, are clinically plausible because patients remain on two antiplatelet drugs with de-escalation, but are on only one drug at the point of shortening DAPT, he said. “So, of course, if you have only one antiplatelet drug instead of two, you reduce bleeding. On the other hand, having two antiplatelets probably reduces the thrombotic and ischemic events.”
The study failed to show statistically significant differences in ischemic endpoints between strategies, likely because of few events and wide confidence intervals, Dr. Capodanno said. “In fact, when we look at each single component of this NACE, we see a directional difference in favor of de-escalation, which is what you would expect from two drugs.”
All-cause death was also similar among strategies in an alternative five-node analysis that split short DAPT and de-escalation into four groups and included standard DAPT.
Compared with short DAPT with P2Y12 inhibitor discontinuation, both de-escalation to clopidogrel and to half-dose prasugrel or ticagrelor reduced the risk for NACE. De-escalation to half dose also reduced the risk for minor bleeding, compared with short DAPT with aspirin discontinuation.
The overall results were similar in multiple sensitivity analyses and a Bayesian meta-analysis, according to the authors, led by Claudio Laudani, MD, also with the University of Catania.
The Bayesian analysis suggested a greater than 95% probability that de-escalation is the best strategy for NACE, MI, stroke, stent thrombosis, and minor bleeding, whereas short DAPT ranks first for major bleeding with a greater than 95% probability.
Guidelines upside down?
In the absence of a head-to-head comparison, the authors say the results warrant a change in current guidelines, which give a class 2a recommendation for short DAPT and a weak class 2b for de-escalation.
“The two strategies have both merits and caveats but, overall, they are very similar; so this is why we believe they should be similar [in status],” Dr. Capodanno said.
In an accompanying editorial, Dean Kereiakes, MD, Christ Hospital Heart and Vascular Center, Cincinnati, and Robert Yeh, MD, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, suggest the guideline recommendations are upside down.
“The class 1 recommendation should be for short DAPT or DAPT de-escalation vs. standard DAPT based on this meta-analysis and, frankly, based on the independent analyses from Bangalore [et al.] and from Shoji [et al.],” Dr. Kereiakes told this news organization.
“When you look at the meta-analyses that have been done, what you see is a reduction of bleeding and either no change or a slight numeric reduction in ischemic events, which magnifies the net clinical benefit, favoring short DAPT or DAPT de-escalation in comparison to standard 12-month, guideline-compliant DAPT,” he said. “So for me, it’s kind of like, game over. When will the guidelines catch up?”
In a comment, Gregg Stone, MD, Icahn School of Medicine at Mount Sinai, New York, said in an email that “both approaches warrant a class 1 recommendation in patients at high bleeding risk, and both a 2a in non–high bleeding risk patients. With contemporary drug-eluting stents, the prognosis is more strongly determined by bleeding risk and the occurrence of hemorrhagic complications than ischemic risk.”
Not all strategies are ‘created equal’
The editorialists caution that, while viable, not all short DAPT or de-escalation strategies are “created equal.” In the five-node analysis, for example, the relative risk of stent thrombosis is highest following a short DAPT regimen with extended aspirin monotherapy (RR, 1.45) and lowest following de-escalation to half-dose prasugrel/ticagrelor (RR, 0.45).
Although not universally observed, the signal of harm with aspirin is consistent with studies such as TWILIGHT, HOST EXAM, and a 2020 meta-analysis, in which stopping aspirin 1-3 months after PCI cut bleeding by 50%, compared with DAPT in patients with ACS, noted Dr. Kereiakes.
He also hinted that more data are forthcoming showing that short DAPT followed by aspirin single-antiplatelet therapy (SAPT) has relatively higher ischemic and bleeding event rates, compared with short DAPT followed by P2Y12 SAPT, with or without an anticoagulant on board.
The key going forward, all agree, is to formally incorporate ischemic/bleeding risk stratification tools into practice guidelines to allow personalized antiplatelet therapy. To that end, Dr. Kereiakes and Dr. Yeh offer a detailed graphic of rank-order recommendations for each strategy by clinical risk strata, with de-escalation generally best for those at greatest ischemic risk and short DAPT best applied to those at greatest bleeding risk.
“The biggest incremental knowledge provided by Davide and Laudani is that they gave us more insight into the granularity of platelet inhibition strategies,” Dr. Kereiakes said. “And it is mechanistically possible to be applied in clinical practice. It’s what I personally see in high-volume clinical practice.”
Before it can be determined which of these strategies is safer and/or more effective, a large, direct head-to-head comparative randomized trial is necessary, Dr. Stone cautioned.
“There are still many variables that were not adjusted for in this excellent study, including the timing of DAPT discontinuation or de-escalation, the specific agent used, etc.,” he added. “Finally, as implied by these results, the optimal regimen may vary based on the balance of ischemic and bleeding risk. Thus, the specific population enrolled in such a randomized trial might importantly affect its outcome.”
As a man “who likes science and statistics,” Dr. Capodanno said he’d also like a large, randomized trial directly comparing the two strategies to confirm these indirect findings. “But it’s very difficult to imagine the power for a trial like that, so it’s not something that’s easy to do.”
Dr. Capodanno reports consulting and speaker fees from Amgen, Arena, Biotronik, Daiichi-Sankyo, and Sanofi outside the present work. Coauthor disclosures are listed in the original article. Dr. Kereiakes reports consulting fees from SINO Medical Sciences Technologies, Svelte Medical Systems, Elixir Medical, and Caliber Therapeutics/Orchestra Biomed. Dr. Yeh reports consulting fees and grant support from Abbott Vascular, AstraZeneca, Boston Scientific, and Medtronic. Dr. Stone reported having no disclosures relevant to the study.
A version of this article first appeared on Medscape.com.
Standard dual-antiplatelet therapy (DAPT) with aspirin and a potent P2Y12 inhibitor for 12 months after stenting for an acute coronary syndrome (ACS) is under increasing fire from studies showing that varying the duration and intensity of DAPT can reduce bleeding risk without compromising ischemic protection.
A novel meta-analysis of 29 studies indirectly compares short DAPT and de-escalation in 50,602 patients, providing new insights into the relative safety and efficacy of the two strategies and further challenging current guideline recommendations.
Results show no difference in the risk of death between short DAPT with aspirin or P2Y12 inhibitor discontinuation 1-6 months after percutaneous coronary intervention and de-escalation to clopidogrel (Plavix) or lower-dose prasugrel (Effient) or ticagrelor (Brilinta) after the initial high-risk period for ischemic events (risk ratio, 0.98).
“However, there are some differentiating characteristics between the two. De-escalation seems to reduce NACE – net adverse cardiovascular events – likely because of a reduction in major adverse cardiac events, while short DAPT decreases bleeding,” senior author Davide Capodanno, MD, PhD, University of Catania (Italy) told this news organization.
The findings, published in JACC: Cardiovascular Interventions, are clinically plausible because patients remain on two antiplatelet drugs with de-escalation, but are on only one drug at the point of shortening DAPT, he said. “So, of course, if you have only one antiplatelet drug instead of two, you reduce bleeding. On the other hand, having two antiplatelets probably reduces the thrombotic and ischemic events.”
The study failed to show statistically significant differences in ischemic endpoints between strategies, likely because of few events and wide confidence intervals, Dr. Capodanno said. “In fact, when we look at each single component of this NACE, we see a directional difference in favor of de-escalation, which is what you would expect from two drugs.”
All-cause death was also similar among strategies in an alternative five-node analysis that split short DAPT and de-escalation into four groups and included standard DAPT.
Compared with short DAPT with P2Y12 inhibitor discontinuation, both de-escalation to clopidogrel and to half-dose prasugrel or ticagrelor reduced the risk for NACE. De-escalation to half dose also reduced the risk for minor bleeding, compared with short DAPT with aspirin discontinuation.
The overall results were similar in multiple sensitivity analyses and a Bayesian meta-analysis, according to the authors, led by Claudio Laudani, MD, also with the University of Catania.
The Bayesian analysis suggested a greater than 95% probability that de-escalation is the best strategy for NACE, MI, stroke, stent thrombosis, and minor bleeding, whereas short DAPT ranks first for major bleeding with a greater than 95% probability.
Guidelines upside down?
In the absence of a head-to-head comparison, the authors say the results warrant a change in current guidelines, which give a class 2a recommendation for short DAPT and a weak class 2b for de-escalation.
“The two strategies have both merits and caveats but, overall, they are very similar; so this is why we believe they should be similar [in status],” Dr. Capodanno said.
In an accompanying editorial, Dean Kereiakes, MD, Christ Hospital Heart and Vascular Center, Cincinnati, and Robert Yeh, MD, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, suggest the guideline recommendations are upside down.
“The class 1 recommendation should be for short DAPT or DAPT de-escalation vs. standard DAPT based on this meta-analysis and, frankly, based on the independent analyses from Bangalore [et al.] and from Shoji [et al.],” Dr. Kereiakes told this news organization.
“When you look at the meta-analyses that have been done, what you see is a reduction of bleeding and either no change or a slight numeric reduction in ischemic events, which magnifies the net clinical benefit, favoring short DAPT or DAPT de-escalation in comparison to standard 12-month, guideline-compliant DAPT,” he said. “So for me, it’s kind of like, game over. When will the guidelines catch up?”
In a comment, Gregg Stone, MD, Icahn School of Medicine at Mount Sinai, New York, said in an email that “both approaches warrant a class 1 recommendation in patients at high bleeding risk, and both a 2a in non–high bleeding risk patients. With contemporary drug-eluting stents, the prognosis is more strongly determined by bleeding risk and the occurrence of hemorrhagic complications than ischemic risk.”
Not all strategies are ‘created equal’
The editorialists caution that, while viable, not all short DAPT or de-escalation strategies are “created equal.” In the five-node analysis, for example, the relative risk of stent thrombosis is highest following a short DAPT regimen with extended aspirin monotherapy (RR, 1.45) and lowest following de-escalation to half-dose prasugrel/ticagrelor (RR, 0.45).
Although not universally observed, the signal of harm with aspirin is consistent with studies such as TWILIGHT, HOST EXAM, and a 2020 meta-analysis, in which stopping aspirin 1-3 months after PCI cut bleeding by 50%, compared with DAPT in patients with ACS, noted Dr. Kereiakes.
He also hinted that more data are forthcoming showing that short DAPT followed by aspirin single-antiplatelet therapy (SAPT) has relatively higher ischemic and bleeding event rates, compared with short DAPT followed by P2Y12 SAPT, with or without an anticoagulant on board.
The key going forward, all agree, is to formally incorporate ischemic/bleeding risk stratification tools into practice guidelines to allow personalized antiplatelet therapy. To that end, Dr. Kereiakes and Dr. Yeh offer a detailed graphic of rank-order recommendations for each strategy by clinical risk strata, with de-escalation generally best for those at greatest ischemic risk and short DAPT best applied to those at greatest bleeding risk.
“The biggest incremental knowledge provided by Davide and Laudani is that they gave us more insight into the granularity of platelet inhibition strategies,” Dr. Kereiakes said. “And it is mechanistically possible to be applied in clinical practice. It’s what I personally see in high-volume clinical practice.”
Before it can be determined which of these strategies is safer and/or more effective, a large, direct head-to-head comparative randomized trial is necessary, Dr. Stone cautioned.
“There are still many variables that were not adjusted for in this excellent study, including the timing of DAPT discontinuation or de-escalation, the specific agent used, etc.,” he added. “Finally, as implied by these results, the optimal regimen may vary based on the balance of ischemic and bleeding risk. Thus, the specific population enrolled in such a randomized trial might importantly affect its outcome.”
As a man “who likes science and statistics,” Dr. Capodanno said he’d also like a large, randomized trial directly comparing the two strategies to confirm these indirect findings. “But it’s very difficult to imagine the power for a trial like that, so it’s not something that’s easy to do.”
Dr. Capodanno reports consulting and speaker fees from Amgen, Arena, Biotronik, Daiichi-Sankyo, and Sanofi outside the present work. Coauthor disclosures are listed in the original article. Dr. Kereiakes reports consulting fees from SINO Medical Sciences Technologies, Svelte Medical Systems, Elixir Medical, and Caliber Therapeutics/Orchestra Biomed. Dr. Yeh reports consulting fees and grant support from Abbott Vascular, AstraZeneca, Boston Scientific, and Medtronic. Dr. Stone reported having no disclosures relevant to the study.
A version of this article first appeared on Medscape.com.
FROM JACC: CARDIOVASCULAR INTERVENTIONS
‘Substantial’ CVD risks, burden up to a year after COVID-19
People who have had COVID-19 have an increased risk for, and 12-month burden of, cardiovascular disease (CVD) that is substantial and spans an array of cardiovascular disorders, a deep dive into federal data suggests.
“I went into this thinking that this is most likely happening in people to start with who have a higher risk of cardiovascular disorders, smokers, people with high BMI, diabetes, but what we found is something different,” Ziyad Al-Aly, MD, said in an interview. “It’s evident in people at high risk, but it was also as clear as the sun even in people who have no cardiovascular risk whatsoever.”
Rates were increased in younger adults, never smokers, White and Black people, and males and females, he said. “So the risk confirmed by the SARS-CoV-2 virus seems to spare almost no one.”
Although cardiovascular outcomes increased with the severity of the acute infection, the excess risks and burdens were also evident in those who never required hospitalization, a group that represents the majority of people with COVID-19, observed Dr. Al-Aly, who directs the Clinical Epidemiology Center at the Veterans Affairs St. Louis Health Care System.
“This study is very important because it underscores not just the acute cardiovascular risk associated with COVID but the increased risk of chronic cardiovascular outcomes as well,” cardiologist C. Michael Gibson, MD, professor of medicine, Harvard Medical School, Boston, said in an interview. “Given the number of patients in the U.S. who have been infected with COVID, this could represent a significant chronic burden on the health care system, particularly as health care professionals leave the profession.”
For the study, the investigators used national VA databases to build a cohort of 153,760 veterans who were alive 30 days after testing positive for COVID-19 between March 1, 2020, and January 2021. They were compared with a contemporary cohort of 5.6 million veterans with no evidence of SARS-CoV-2 infection and a historical cohort of 5.8 million veterans using the system in 2017 prior to the pandemic. Median follow-up was 347, 348, and 347 days, respectively.
As reported in Nature Medicine, the risk for a major adverse cardiovascular event, a composite of myocardial infarction, stroke, and all-cause mortality, was 4% higher in people who had been infected with COVID-19 than in those who had not.
“People say 4% is small, but actually it’s really, really big if you think about it in the context of the huge number of people who have had COVID-19 in the United States, and also globally,” Dr. Al-Aly said.
Compared with the contemporary control group, people who had COVID-19 had an increased risk (hazard ratio [HR]) and burden per 1,000 people at 1 year for the following cardiovascular outcomes:
- Stroke: HR, 1.52; burden, 4.03
- Transient ischemic attack: HR, 1.49; burden, 1.84
- Dysrhythmias: HR, 1.69; burden, 19.86
- Ischemic heart disease: HR, 1.66; burden, 7.28
- Heart failure: HR, 1.72; burden, 11.61
- Nonischemic cardiomyopathy: HR, 1.62; burden 3.56
- Pulmonary embolism: HR, 2.93; burden, 5.47
- Deep vein thrombosis: HR, 2.09; burden, 4.18
- Pericarditis: HR, 1.85, burden, 0.98
- Myocarditis: HR, 5.38; burden, 0.31
Recent reports have raised concerns about an association between COVID-19 vaccines and myocarditis and pericarditis, particularly in young males. Although very few of the participants were vaccinated prior to becoming infected, as vaccines were not yet widely available, the researchers performed two analyses censoring participants at the time of the first dose of any COVID-19 vaccine and adjusting for vaccination as a time-varying covariate.
The absolute numbers of myocarditis and pericarditis were still higher than the contemporary and historical cohorts. These numbers are much larger than those reported for myocarditis after vaccines, which are generally around 40 cases per 1 million people, observed Dr. Al-Aly.
The overall results were also consistent when compared with the historical control subjects.
“What we’re seeing in our report and others is that SARS-CoV-2 can leave a sort of scar or imprint on people, and some of these conditions are likely chronic conditions,” Dr. Al-Aly said. “So you’re going to have a generation of people who will bear the scar of COVID for their lifetime and I think that requires recognition and attention, so we’re aware of the magnitude of the problem and prepared to deal with it.”
With more than 76 million COVID-19 cases in the United States, that effort will likely have to be at the federal level, similar to President Joe Biden’s recent relaunch of the “Cancer Moonshot,” he added. “We need a greater and broader recognition at the federal level to try and recognize that when you have an earthquake, you don’t just deal with the earthquake when the earth is shaking, but you also need to deal with the aftermath.”
Dr. Gibson pointed out that this was a study of predominantly males and, thus, it’s unclear if the results can be extended to females. Nevertheless, he added, “long COVID may include outcomes beyond the central nervous system and we should educate patients about the risk of late cardiovascular outcomes.”
The authors noted the largely White, male cohort may limit generalizability of the findings. Other limitations include the possibility that some people may have had COVID-19 but were not tested, the datasets lacked information on cause of death, and possible residual confounding not accounted for in the adjusted analyses.
The research was funded by the U.S. Department of Veterans Affairs and two American Society of Nephrology and Kidney Cure fellowship awards. The authors declared no competing interests. Dr. Gibson reports having no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
People who have had COVID-19 have an increased risk for, and 12-month burden of, cardiovascular disease (CVD) that is substantial and spans an array of cardiovascular disorders, a deep dive into federal data suggests.
“I went into this thinking that this is most likely happening in people to start with who have a higher risk of cardiovascular disorders, smokers, people with high BMI, diabetes, but what we found is something different,” Ziyad Al-Aly, MD, said in an interview. “It’s evident in people at high risk, but it was also as clear as the sun even in people who have no cardiovascular risk whatsoever.”
Rates were increased in younger adults, never smokers, White and Black people, and males and females, he said. “So the risk confirmed by the SARS-CoV-2 virus seems to spare almost no one.”
Although cardiovascular outcomes increased with the severity of the acute infection, the excess risks and burdens were also evident in those who never required hospitalization, a group that represents the majority of people with COVID-19, observed Dr. Al-Aly, who directs the Clinical Epidemiology Center at the Veterans Affairs St. Louis Health Care System.
“This study is very important because it underscores not just the acute cardiovascular risk associated with COVID but the increased risk of chronic cardiovascular outcomes as well,” cardiologist C. Michael Gibson, MD, professor of medicine, Harvard Medical School, Boston, said in an interview. “Given the number of patients in the U.S. who have been infected with COVID, this could represent a significant chronic burden on the health care system, particularly as health care professionals leave the profession.”
For the study, the investigators used national VA databases to build a cohort of 153,760 veterans who were alive 30 days after testing positive for COVID-19 between March 1, 2020, and January 2021. They were compared with a contemporary cohort of 5.6 million veterans with no evidence of SARS-CoV-2 infection and a historical cohort of 5.8 million veterans using the system in 2017 prior to the pandemic. Median follow-up was 347, 348, and 347 days, respectively.
As reported in Nature Medicine, the risk for a major adverse cardiovascular event, a composite of myocardial infarction, stroke, and all-cause mortality, was 4% higher in people who had been infected with COVID-19 than in those who had not.
“People say 4% is small, but actually it’s really, really big if you think about it in the context of the huge number of people who have had COVID-19 in the United States, and also globally,” Dr. Al-Aly said.
Compared with the contemporary control group, people who had COVID-19 had an increased risk (hazard ratio [HR]) and burden per 1,000 people at 1 year for the following cardiovascular outcomes:
- Stroke: HR, 1.52; burden, 4.03
- Transient ischemic attack: HR, 1.49; burden, 1.84
- Dysrhythmias: HR, 1.69; burden, 19.86
- Ischemic heart disease: HR, 1.66; burden, 7.28
- Heart failure: HR, 1.72; burden, 11.61
- Nonischemic cardiomyopathy: HR, 1.62; burden 3.56
- Pulmonary embolism: HR, 2.93; burden, 5.47
- Deep vein thrombosis: HR, 2.09; burden, 4.18
- Pericarditis: HR, 1.85, burden, 0.98
- Myocarditis: HR, 5.38; burden, 0.31
Recent reports have raised concerns about an association between COVID-19 vaccines and myocarditis and pericarditis, particularly in young males. Although very few of the participants were vaccinated prior to becoming infected, as vaccines were not yet widely available, the researchers performed two analyses censoring participants at the time of the first dose of any COVID-19 vaccine and adjusting for vaccination as a time-varying covariate.
The absolute numbers of myocarditis and pericarditis were still higher than the contemporary and historical cohorts. These numbers are much larger than those reported for myocarditis after vaccines, which are generally around 40 cases per 1 million people, observed Dr. Al-Aly.
The overall results were also consistent when compared with the historical control subjects.
“What we’re seeing in our report and others is that SARS-CoV-2 can leave a sort of scar or imprint on people, and some of these conditions are likely chronic conditions,” Dr. Al-Aly said. “So you’re going to have a generation of people who will bear the scar of COVID for their lifetime and I think that requires recognition and attention, so we’re aware of the magnitude of the problem and prepared to deal with it.”
With more than 76 million COVID-19 cases in the United States, that effort will likely have to be at the federal level, similar to President Joe Biden’s recent relaunch of the “Cancer Moonshot,” he added. “We need a greater and broader recognition at the federal level to try and recognize that when you have an earthquake, you don’t just deal with the earthquake when the earth is shaking, but you also need to deal with the aftermath.”
Dr. Gibson pointed out that this was a study of predominantly males and, thus, it’s unclear if the results can be extended to females. Nevertheless, he added, “long COVID may include outcomes beyond the central nervous system and we should educate patients about the risk of late cardiovascular outcomes.”
The authors noted the largely White, male cohort may limit generalizability of the findings. Other limitations include the possibility that some people may have had COVID-19 but were not tested, the datasets lacked information on cause of death, and possible residual confounding not accounted for in the adjusted analyses.
The research was funded by the U.S. Department of Veterans Affairs and two American Society of Nephrology and Kidney Cure fellowship awards. The authors declared no competing interests. Dr. Gibson reports having no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
People who have had COVID-19 have an increased risk for, and 12-month burden of, cardiovascular disease (CVD) that is substantial and spans an array of cardiovascular disorders, a deep dive into federal data suggests.
“I went into this thinking that this is most likely happening in people to start with who have a higher risk of cardiovascular disorders, smokers, people with high BMI, diabetes, but what we found is something different,” Ziyad Al-Aly, MD, said in an interview. “It’s evident in people at high risk, but it was also as clear as the sun even in people who have no cardiovascular risk whatsoever.”
Rates were increased in younger adults, never smokers, White and Black people, and males and females, he said. “So the risk confirmed by the SARS-CoV-2 virus seems to spare almost no one.”
Although cardiovascular outcomes increased with the severity of the acute infection, the excess risks and burdens were also evident in those who never required hospitalization, a group that represents the majority of people with COVID-19, observed Dr. Al-Aly, who directs the Clinical Epidemiology Center at the Veterans Affairs St. Louis Health Care System.
“This study is very important because it underscores not just the acute cardiovascular risk associated with COVID but the increased risk of chronic cardiovascular outcomes as well,” cardiologist C. Michael Gibson, MD, professor of medicine, Harvard Medical School, Boston, said in an interview. “Given the number of patients in the U.S. who have been infected with COVID, this could represent a significant chronic burden on the health care system, particularly as health care professionals leave the profession.”
For the study, the investigators used national VA databases to build a cohort of 153,760 veterans who were alive 30 days after testing positive for COVID-19 between March 1, 2020, and January 2021. They were compared with a contemporary cohort of 5.6 million veterans with no evidence of SARS-CoV-2 infection and a historical cohort of 5.8 million veterans using the system in 2017 prior to the pandemic. Median follow-up was 347, 348, and 347 days, respectively.
As reported in Nature Medicine, the risk for a major adverse cardiovascular event, a composite of myocardial infarction, stroke, and all-cause mortality, was 4% higher in people who had been infected with COVID-19 than in those who had not.
“People say 4% is small, but actually it’s really, really big if you think about it in the context of the huge number of people who have had COVID-19 in the United States, and also globally,” Dr. Al-Aly said.
Compared with the contemporary control group, people who had COVID-19 had an increased risk (hazard ratio [HR]) and burden per 1,000 people at 1 year for the following cardiovascular outcomes:
- Stroke: HR, 1.52; burden, 4.03
- Transient ischemic attack: HR, 1.49; burden, 1.84
- Dysrhythmias: HR, 1.69; burden, 19.86
- Ischemic heart disease: HR, 1.66; burden, 7.28
- Heart failure: HR, 1.72; burden, 11.61
- Nonischemic cardiomyopathy: HR, 1.62; burden 3.56
- Pulmonary embolism: HR, 2.93; burden, 5.47
- Deep vein thrombosis: HR, 2.09; burden, 4.18
- Pericarditis: HR, 1.85, burden, 0.98
- Myocarditis: HR, 5.38; burden, 0.31
Recent reports have raised concerns about an association between COVID-19 vaccines and myocarditis and pericarditis, particularly in young males. Although very few of the participants were vaccinated prior to becoming infected, as vaccines were not yet widely available, the researchers performed two analyses censoring participants at the time of the first dose of any COVID-19 vaccine and adjusting for vaccination as a time-varying covariate.
The absolute numbers of myocarditis and pericarditis were still higher than the contemporary and historical cohorts. These numbers are much larger than those reported for myocarditis after vaccines, which are generally around 40 cases per 1 million people, observed Dr. Al-Aly.
The overall results were also consistent when compared with the historical control subjects.
“What we’re seeing in our report and others is that SARS-CoV-2 can leave a sort of scar or imprint on people, and some of these conditions are likely chronic conditions,” Dr. Al-Aly said. “So you’re going to have a generation of people who will bear the scar of COVID for their lifetime and I think that requires recognition and attention, so we’re aware of the magnitude of the problem and prepared to deal with it.”
With more than 76 million COVID-19 cases in the United States, that effort will likely have to be at the federal level, similar to President Joe Biden’s recent relaunch of the “Cancer Moonshot,” he added. “We need a greater and broader recognition at the federal level to try and recognize that when you have an earthquake, you don’t just deal with the earthquake when the earth is shaking, but you also need to deal with the aftermath.”
Dr. Gibson pointed out that this was a study of predominantly males and, thus, it’s unclear if the results can be extended to females. Nevertheless, he added, “long COVID may include outcomes beyond the central nervous system and we should educate patients about the risk of late cardiovascular outcomes.”
The authors noted the largely White, male cohort may limit generalizability of the findings. Other limitations include the possibility that some people may have had COVID-19 but were not tested, the datasets lacked information on cause of death, and possible residual confounding not accounted for in the adjusted analyses.
The research was funded by the U.S. Department of Veterans Affairs and two American Society of Nephrology and Kidney Cure fellowship awards. The authors declared no competing interests. Dr. Gibson reports having no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
Seniors face higher risk of other medical conditions after COVID-19
The findings of the observational study, which were published in the BMJ, show the risk of a new condition being triggered by COVID is more than twice as high in seniors, compared with younger patients. Plus, the researchers observed an even higher risk among those who were hospitalized, with nearly half (46%) of patients having developed new conditions after the acute COVID-19 infection period.
Respiratory failure with shortness of breath was the most common postacute sequela, but a wide range of heart, kidney, lung, liver, cognitive, mental health, and other conditions were diagnosed at least 3 weeks after initial infection and persisted beyond 30 days.
This is one of the first studies to specifically describe the incidence and severity of new conditions triggered by COVID-19 infection in a general sample of older adults, said study author Ken Cohen MD, FACP, executive director of translational research at Optum Labs and national senior medical director at Optum Care.
“Much of what has been published on the postacute sequelae of COVID-19 has been predominantly from a younger population, and many of the patients had been hospitalized,” Dr. Cohen noted. “This was the first study to focus on a large population of seniors, most of whom did not require hospitalization.”
Dr. Cohen and colleagues reviewed the health insurance records of more than 133,000 Medicare beneficiaries aged 65 or older who were diagnosed with COVID-19 before April 2020. They also matched individuals by age, race, sex, hospitalization status, and other factors to comparison groups without COVID-19 (one from 2020 and one from 2019), and to a group diagnosed with other lower respiratory tract viral infections before the pandemic.
Risk of developing new conditions was higher in hospitalized
After acute COVID-19 infection, 32% of seniors sought medical care for at least one new medical condition in 2020, compared with 21% of uninfected people in the same year.
The most commonly observed conditions included:
- Respiratory failure (7.55% higher risk).
- Fatigue (5.66% higher risk).
- High blood pressure (4.43% higher risk).
- Memory problems (2.63% higher risk).
- Kidney injury (2.59% higher risk).
- Mental health diagnoses (2.5% higher risk).
- Blood-clotting disorders (1.47 % higher risk).
- Heart rhythm disorders (2.9% higher risk).
The risk of developing new conditions was even higher among those 23,486 who were hospitalized in 2020. Those individuals showed a 23.6% higher risk for developing at least one new condition, compared with uninfected seniors in the same year. Also, patients older than 75 had a higher risk for neurological disorders, including dementia, encephalopathy, and memory problems. The researchers also found that respiratory failure and kidney injury were significantly more likely to affect men and Black patients.
When those who had COVID were compared with the group with other lower respiratory viral infections before the pandemic, only the risks of respiratory failure (2.39% higher), dementia (0.71% higher), and fatigue (0.18% higher) were higher.
Primary care providers can learn from these data to better evaluate and manage their geriatric patients with COVID-19 infection, said Amit Shah, MD, a geriatrician with the Mayo Clinic in Phoenix, in an interview.
“We must assess older patients who have had COVID-19 for more than just improvement from the respiratory symptoms of COVID-19 in post-COVID follow-up visits,” he said. “Older individuals with frailty have vulnerability to subsequent complications from severe illnesses and it is common to see post-illness diagnoses, such as new diagnosis of delirium; dementia; or renal, respiratory, or cardiac issues that is precipitated by the original illness. This study confirms that this is likely the case with COVID-19 as well.
“Primary care physicians should be vigilant for these complications, including attention to the rehabilitation needs of older patients with longer-term postviral fatigue from COVID-19,” Dr. Shah added.
Data predates ‘Omicron wave’
It remains uncertain whether sequelae will differ with the Omicron variant, but the findings remain applicable, Dr. Cohen said.
“We know that illness from the Omicron variant is on average less severe in those that have been vaccinated. However, throughout the Omicron wave, individuals who have not been vaccinated continue to have significant rates of serious illness and hospitalization,” he said.
“Our findings showed that serious illness with hospitalization was associated with a higher rate of sequelae. It can therefore be inferred that the rates of sequelae seen in our study would continue to occur in unvaccinated individuals who contract Omicron, but might occur less frequently in vaccinated individuals who contract Omicron and have less severe illness.”
Dr. Cohen serves as a consultant for Pfizer. Dr. Shah has disclosed no relevant financial relationships.
The findings of the observational study, which were published in the BMJ, show the risk of a new condition being triggered by COVID is more than twice as high in seniors, compared with younger patients. Plus, the researchers observed an even higher risk among those who were hospitalized, with nearly half (46%) of patients having developed new conditions after the acute COVID-19 infection period.
Respiratory failure with shortness of breath was the most common postacute sequela, but a wide range of heart, kidney, lung, liver, cognitive, mental health, and other conditions were diagnosed at least 3 weeks after initial infection and persisted beyond 30 days.
This is one of the first studies to specifically describe the incidence and severity of new conditions triggered by COVID-19 infection in a general sample of older adults, said study author Ken Cohen MD, FACP, executive director of translational research at Optum Labs and national senior medical director at Optum Care.
“Much of what has been published on the postacute sequelae of COVID-19 has been predominantly from a younger population, and many of the patients had been hospitalized,” Dr. Cohen noted. “This was the first study to focus on a large population of seniors, most of whom did not require hospitalization.”
Dr. Cohen and colleagues reviewed the health insurance records of more than 133,000 Medicare beneficiaries aged 65 or older who were diagnosed with COVID-19 before April 2020. They also matched individuals by age, race, sex, hospitalization status, and other factors to comparison groups without COVID-19 (one from 2020 and one from 2019), and to a group diagnosed with other lower respiratory tract viral infections before the pandemic.
Risk of developing new conditions was higher in hospitalized
After acute COVID-19 infection, 32% of seniors sought medical care for at least one new medical condition in 2020, compared with 21% of uninfected people in the same year.
The most commonly observed conditions included:
- Respiratory failure (7.55% higher risk).
- Fatigue (5.66% higher risk).
- High blood pressure (4.43% higher risk).
- Memory problems (2.63% higher risk).
- Kidney injury (2.59% higher risk).
- Mental health diagnoses (2.5% higher risk).
- Blood-clotting disorders (1.47 % higher risk).
- Heart rhythm disorders (2.9% higher risk).
The risk of developing new conditions was even higher among those 23,486 who were hospitalized in 2020. Those individuals showed a 23.6% higher risk for developing at least one new condition, compared with uninfected seniors in the same year. Also, patients older than 75 had a higher risk for neurological disorders, including dementia, encephalopathy, and memory problems. The researchers also found that respiratory failure and kidney injury were significantly more likely to affect men and Black patients.
When those who had COVID were compared with the group with other lower respiratory viral infections before the pandemic, only the risks of respiratory failure (2.39% higher), dementia (0.71% higher), and fatigue (0.18% higher) were higher.
Primary care providers can learn from these data to better evaluate and manage their geriatric patients with COVID-19 infection, said Amit Shah, MD, a geriatrician with the Mayo Clinic in Phoenix, in an interview.
“We must assess older patients who have had COVID-19 for more than just improvement from the respiratory symptoms of COVID-19 in post-COVID follow-up visits,” he said. “Older individuals with frailty have vulnerability to subsequent complications from severe illnesses and it is common to see post-illness diagnoses, such as new diagnosis of delirium; dementia; or renal, respiratory, or cardiac issues that is precipitated by the original illness. This study confirms that this is likely the case with COVID-19 as well.
“Primary care physicians should be vigilant for these complications, including attention to the rehabilitation needs of older patients with longer-term postviral fatigue from COVID-19,” Dr. Shah added.
Data predates ‘Omicron wave’
It remains uncertain whether sequelae will differ with the Omicron variant, but the findings remain applicable, Dr. Cohen said.
“We know that illness from the Omicron variant is on average less severe in those that have been vaccinated. However, throughout the Omicron wave, individuals who have not been vaccinated continue to have significant rates of serious illness and hospitalization,” he said.
“Our findings showed that serious illness with hospitalization was associated with a higher rate of sequelae. It can therefore be inferred that the rates of sequelae seen in our study would continue to occur in unvaccinated individuals who contract Omicron, but might occur less frequently in vaccinated individuals who contract Omicron and have less severe illness.”
Dr. Cohen serves as a consultant for Pfizer. Dr. Shah has disclosed no relevant financial relationships.
The findings of the observational study, which were published in the BMJ, show the risk of a new condition being triggered by COVID is more than twice as high in seniors, compared with younger patients. Plus, the researchers observed an even higher risk among those who were hospitalized, with nearly half (46%) of patients having developed new conditions after the acute COVID-19 infection period.
Respiratory failure with shortness of breath was the most common postacute sequela, but a wide range of heart, kidney, lung, liver, cognitive, mental health, and other conditions were diagnosed at least 3 weeks after initial infection and persisted beyond 30 days.
This is one of the first studies to specifically describe the incidence and severity of new conditions triggered by COVID-19 infection in a general sample of older adults, said study author Ken Cohen MD, FACP, executive director of translational research at Optum Labs and national senior medical director at Optum Care.
“Much of what has been published on the postacute sequelae of COVID-19 has been predominantly from a younger population, and many of the patients had been hospitalized,” Dr. Cohen noted. “This was the first study to focus on a large population of seniors, most of whom did not require hospitalization.”
Dr. Cohen and colleagues reviewed the health insurance records of more than 133,000 Medicare beneficiaries aged 65 or older who were diagnosed with COVID-19 before April 2020. They also matched individuals by age, race, sex, hospitalization status, and other factors to comparison groups without COVID-19 (one from 2020 and one from 2019), and to a group diagnosed with other lower respiratory tract viral infections before the pandemic.
Risk of developing new conditions was higher in hospitalized
After acute COVID-19 infection, 32% of seniors sought medical care for at least one new medical condition in 2020, compared with 21% of uninfected people in the same year.
The most commonly observed conditions included:
- Respiratory failure (7.55% higher risk).
- Fatigue (5.66% higher risk).
- High blood pressure (4.43% higher risk).
- Memory problems (2.63% higher risk).
- Kidney injury (2.59% higher risk).
- Mental health diagnoses (2.5% higher risk).
- Blood-clotting disorders (1.47 % higher risk).
- Heart rhythm disorders (2.9% higher risk).
The risk of developing new conditions was even higher among those 23,486 who were hospitalized in 2020. Those individuals showed a 23.6% higher risk for developing at least one new condition, compared with uninfected seniors in the same year. Also, patients older than 75 had a higher risk for neurological disorders, including dementia, encephalopathy, and memory problems. The researchers also found that respiratory failure and kidney injury were significantly more likely to affect men and Black patients.
When those who had COVID were compared with the group with other lower respiratory viral infections before the pandemic, only the risks of respiratory failure (2.39% higher), dementia (0.71% higher), and fatigue (0.18% higher) were higher.
Primary care providers can learn from these data to better evaluate and manage their geriatric patients with COVID-19 infection, said Amit Shah, MD, a geriatrician with the Mayo Clinic in Phoenix, in an interview.
“We must assess older patients who have had COVID-19 for more than just improvement from the respiratory symptoms of COVID-19 in post-COVID follow-up visits,” he said. “Older individuals with frailty have vulnerability to subsequent complications from severe illnesses and it is common to see post-illness diagnoses, such as new diagnosis of delirium; dementia; or renal, respiratory, or cardiac issues that is precipitated by the original illness. This study confirms that this is likely the case with COVID-19 as well.
“Primary care physicians should be vigilant for these complications, including attention to the rehabilitation needs of older patients with longer-term postviral fatigue from COVID-19,” Dr. Shah added.
Data predates ‘Omicron wave’
It remains uncertain whether sequelae will differ with the Omicron variant, but the findings remain applicable, Dr. Cohen said.
“We know that illness from the Omicron variant is on average less severe in those that have been vaccinated. However, throughout the Omicron wave, individuals who have not been vaccinated continue to have significant rates of serious illness and hospitalization,” he said.
“Our findings showed that serious illness with hospitalization was associated with a higher rate of sequelae. It can therefore be inferred that the rates of sequelae seen in our study would continue to occur in unvaccinated individuals who contract Omicron, but might occur less frequently in vaccinated individuals who contract Omicron and have less severe illness.”
Dr. Cohen serves as a consultant for Pfizer. Dr. Shah has disclosed no relevant financial relationships.
FROM BMJ