Childhood vaccination rates up since early pandemic, but few are up to date

Article Type
Changed

The proportion of children caught up on vaccinations is lower than 2019 levels, despite an increase in weekly vaccine administration among children from summer to fall 2020.

The finding, published in JAMA Pediatrics, joins a growing collection of studies examining the COVID-19 pandemic’s effect on routine pediatric vaccine delivery. A 2021 survey from the Urban Institute that found that nearly one in five parents delayed or did not get care for their children in the past 12 months because of fear of exposure to the virus.

“We need to think about what additional interventions are needed to promote catch-up vaccination, especially for those at-risk populations that we saw were undervaccinated even prior to the pandemic,” study author Malini B. DeSilva, MD, MPH, said in an interview. “[That means] working creatively to ensure that all children would have the opportunity to receive these recommended vaccines.”

While examining data on pediatric vaccination of 1.4 million children between Jan. 5, 2020, and Oct. 3, 2020, across eight health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin, Dr. DeSilva and colleagues saw vaccination administration rates return to near prepandemic levels after an initial decline, particularly after the Centers for Disease Control and Prevention and American Academy of Pediatrics guidelines specified that in-person visits for children younger than 2 years should be prioritized.

“I think we’ve all been concerned and aware that people just weren’t bringing their children to their pediatricians as frequently [caused by] the fear of being in medical settings during the heat of the pandemic,” said James Schneider, MD, who was not involved with the study. “So it’s not surprising that we saw lower rates of overall vaccinations in all age groups.”

The current study found that lower vaccination rates persisted among most age groups from March to September 2020. However, during the period of expanded primary care, which took place between May and October 2020, vaccination administration rates in infants younger than 2 years old and children aged 4-6 years approached or were equal to 2019 rates. However, these rebounds were not enough to make up for the missed vaccines.

Still, only 74% of infants reaching 7 months old in September 2020 were caught up on their vaccinations, compared with 81% of infants turning the same age in 2019. Researchers also found that, compared with 61% of infants reaching 18 months in September 2019, only 57% of 18-month-olds were up to date with vaccinations in September 2020. However, the proportion of 6-, 13-, and 18-year-olds up to date on vaccinations were about the same in 2020 and 2019.

Racial disparities also persisted during this time, with Black children having the lowest proportion of up-to-date vaccinations for most ages from January to September 2020. Although these disparities were evident prior to the pandemic, these differences became more pronounced for the 18-month-old age group, where just 41% of Black infants were up to date in vaccinations, compared with 76% of Asian infants, 54% of Hispanics infants, and 56% of White infants.

Dr. Schneider believes Dr. DeSilva’s study is a “robust” one and paints an accurate picture of the pandemic’s effect on pediatric vaccinations, despite examining data from just eight health systems.

“I think it’s a fairly reasonable representation of what we already have been recognizing during the pandemic,” he explained. “Which is that people are really reluctant to go to their physicians’ offices for routine care because of the fear of getting sick. I think the study emphasized the importance of catching these children up to keep them safe in the future.”

The Advisory Committee on Immunization Practices recommends a childhood immunization schedule that protects children against 14 infectious diseases before their second birthday. Since the on-time administration of these vaccines is essential for preventing communicable diseases, many pediatric offices are trying to ensure a safe environment for patients and families, said Dr. Schneider, chief of pediatric critical care at Cohen Children’s Medical Center, New York.

There’s also some concern that COVID-19 vaccine hesitancy my spillover into routine childhood vaccinations, especially for families who were already hesitant toward the routine well-established vaccine schedule for children.

The CDC and AAP recommend that children continue to receive recommended vaccinations during the COVID-19 pandemic.

To boost the number of children caught up on vaccinations, health system and community-level interventions are needed, especially in underserved communities, the researchers wrote. Additionally, enforcing mandates that require vaccination prior to school entry could also increase vaccine administration across populations and reduce disparities.

The study emphasizes the “immediate and lagging” disruptions in the delivery of pediatric health care caused by the pandemic, which will likely have long-term consequences for pediatric health, Brian P. Jenssen, MD, MSHP, who was not involved in the study, wrote in a solicited commentary.

However, interventions tailored to specific age groups could help remedy this. These include increasing the frequency of well-child care during the next year of life for infants younger than 24 months and prioritizing visits with 13-year-old adolescents who are behind on vaccinations.

“Although there is no evidence base for this approach, such a change could create not only catch-up opportunities for vaccination for children delayed at age 7 and 18 months, but also provide opportunities to attend to developmental concerns and social needs that have emerged during COVID-19,” wrote Dr. Jenssen, a researcher and primary care pediatrician at Children’s Hospital of Philadelphia.

Other practices such as reaching out to patients and families directly via text message, email, or phone to “notify them of needed vaccinations,” vaccine mandates, and having pediatric health systems partner with alternative settings to promote vaccination could also get kids back on track, health wise. Furthermore, financial incentives from insurers or primary care practices also may help.

“The COVID-19 pandemic’s lost care may have long-term consequences unless pediatric health care systems and child health advocates are proactive in engaging families to take advantage of every opportunity to catch up,” Dr. Jenssen wrote.

Publications
Topics
Sections

The proportion of children caught up on vaccinations is lower than 2019 levels, despite an increase in weekly vaccine administration among children from summer to fall 2020.

The finding, published in JAMA Pediatrics, joins a growing collection of studies examining the COVID-19 pandemic’s effect on routine pediatric vaccine delivery. A 2021 survey from the Urban Institute that found that nearly one in five parents delayed or did not get care for their children in the past 12 months because of fear of exposure to the virus.

“We need to think about what additional interventions are needed to promote catch-up vaccination, especially for those at-risk populations that we saw were undervaccinated even prior to the pandemic,” study author Malini B. DeSilva, MD, MPH, said in an interview. “[That means] working creatively to ensure that all children would have the opportunity to receive these recommended vaccines.”

While examining data on pediatric vaccination of 1.4 million children between Jan. 5, 2020, and Oct. 3, 2020, across eight health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin, Dr. DeSilva and colleagues saw vaccination administration rates return to near prepandemic levels after an initial decline, particularly after the Centers for Disease Control and Prevention and American Academy of Pediatrics guidelines specified that in-person visits for children younger than 2 years should be prioritized.

“I think we’ve all been concerned and aware that people just weren’t bringing their children to their pediatricians as frequently [caused by] the fear of being in medical settings during the heat of the pandemic,” said James Schneider, MD, who was not involved with the study. “So it’s not surprising that we saw lower rates of overall vaccinations in all age groups.”

The current study found that lower vaccination rates persisted among most age groups from March to September 2020. However, during the period of expanded primary care, which took place between May and October 2020, vaccination administration rates in infants younger than 2 years old and children aged 4-6 years approached or were equal to 2019 rates. However, these rebounds were not enough to make up for the missed vaccines.

Still, only 74% of infants reaching 7 months old in September 2020 were caught up on their vaccinations, compared with 81% of infants turning the same age in 2019. Researchers also found that, compared with 61% of infants reaching 18 months in September 2019, only 57% of 18-month-olds were up to date with vaccinations in September 2020. However, the proportion of 6-, 13-, and 18-year-olds up to date on vaccinations were about the same in 2020 and 2019.

Racial disparities also persisted during this time, with Black children having the lowest proportion of up-to-date vaccinations for most ages from January to September 2020. Although these disparities were evident prior to the pandemic, these differences became more pronounced for the 18-month-old age group, where just 41% of Black infants were up to date in vaccinations, compared with 76% of Asian infants, 54% of Hispanics infants, and 56% of White infants.

Dr. Schneider believes Dr. DeSilva’s study is a “robust” one and paints an accurate picture of the pandemic’s effect on pediatric vaccinations, despite examining data from just eight health systems.

“I think it’s a fairly reasonable representation of what we already have been recognizing during the pandemic,” he explained. “Which is that people are really reluctant to go to their physicians’ offices for routine care because of the fear of getting sick. I think the study emphasized the importance of catching these children up to keep them safe in the future.”

The Advisory Committee on Immunization Practices recommends a childhood immunization schedule that protects children against 14 infectious diseases before their second birthday. Since the on-time administration of these vaccines is essential for preventing communicable diseases, many pediatric offices are trying to ensure a safe environment for patients and families, said Dr. Schneider, chief of pediatric critical care at Cohen Children’s Medical Center, New York.

There’s also some concern that COVID-19 vaccine hesitancy my spillover into routine childhood vaccinations, especially for families who were already hesitant toward the routine well-established vaccine schedule for children.

The CDC and AAP recommend that children continue to receive recommended vaccinations during the COVID-19 pandemic.

To boost the number of children caught up on vaccinations, health system and community-level interventions are needed, especially in underserved communities, the researchers wrote. Additionally, enforcing mandates that require vaccination prior to school entry could also increase vaccine administration across populations and reduce disparities.

The study emphasizes the “immediate and lagging” disruptions in the delivery of pediatric health care caused by the pandemic, which will likely have long-term consequences for pediatric health, Brian P. Jenssen, MD, MSHP, who was not involved in the study, wrote in a solicited commentary.

However, interventions tailored to specific age groups could help remedy this. These include increasing the frequency of well-child care during the next year of life for infants younger than 24 months and prioritizing visits with 13-year-old adolescents who are behind on vaccinations.

“Although there is no evidence base for this approach, such a change could create not only catch-up opportunities for vaccination for children delayed at age 7 and 18 months, but also provide opportunities to attend to developmental concerns and social needs that have emerged during COVID-19,” wrote Dr. Jenssen, a researcher and primary care pediatrician at Children’s Hospital of Philadelphia.

Other practices such as reaching out to patients and families directly via text message, email, or phone to “notify them of needed vaccinations,” vaccine mandates, and having pediatric health systems partner with alternative settings to promote vaccination could also get kids back on track, health wise. Furthermore, financial incentives from insurers or primary care practices also may help.

“The COVID-19 pandemic’s lost care may have long-term consequences unless pediatric health care systems and child health advocates are proactive in engaging families to take advantage of every opportunity to catch up,” Dr. Jenssen wrote.

The proportion of children caught up on vaccinations is lower than 2019 levels, despite an increase in weekly vaccine administration among children from summer to fall 2020.

The finding, published in JAMA Pediatrics, joins a growing collection of studies examining the COVID-19 pandemic’s effect on routine pediatric vaccine delivery. A 2021 survey from the Urban Institute that found that nearly one in five parents delayed or did not get care for their children in the past 12 months because of fear of exposure to the virus.

“We need to think about what additional interventions are needed to promote catch-up vaccination, especially for those at-risk populations that we saw were undervaccinated even prior to the pandemic,” study author Malini B. DeSilva, MD, MPH, said in an interview. “[That means] working creatively to ensure that all children would have the opportunity to receive these recommended vaccines.”

While examining data on pediatric vaccination of 1.4 million children between Jan. 5, 2020, and Oct. 3, 2020, across eight health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin, Dr. DeSilva and colleagues saw vaccination administration rates return to near prepandemic levels after an initial decline, particularly after the Centers for Disease Control and Prevention and American Academy of Pediatrics guidelines specified that in-person visits for children younger than 2 years should be prioritized.

“I think we’ve all been concerned and aware that people just weren’t bringing their children to their pediatricians as frequently [caused by] the fear of being in medical settings during the heat of the pandemic,” said James Schneider, MD, who was not involved with the study. “So it’s not surprising that we saw lower rates of overall vaccinations in all age groups.”

The current study found that lower vaccination rates persisted among most age groups from March to September 2020. However, during the period of expanded primary care, which took place between May and October 2020, vaccination administration rates in infants younger than 2 years old and children aged 4-6 years approached or were equal to 2019 rates. However, these rebounds were not enough to make up for the missed vaccines.

Still, only 74% of infants reaching 7 months old in September 2020 were caught up on their vaccinations, compared with 81% of infants turning the same age in 2019. Researchers also found that, compared with 61% of infants reaching 18 months in September 2019, only 57% of 18-month-olds were up to date with vaccinations in September 2020. However, the proportion of 6-, 13-, and 18-year-olds up to date on vaccinations were about the same in 2020 and 2019.

Racial disparities also persisted during this time, with Black children having the lowest proportion of up-to-date vaccinations for most ages from January to September 2020. Although these disparities were evident prior to the pandemic, these differences became more pronounced for the 18-month-old age group, where just 41% of Black infants were up to date in vaccinations, compared with 76% of Asian infants, 54% of Hispanics infants, and 56% of White infants.

Dr. Schneider believes Dr. DeSilva’s study is a “robust” one and paints an accurate picture of the pandemic’s effect on pediatric vaccinations, despite examining data from just eight health systems.

“I think it’s a fairly reasonable representation of what we already have been recognizing during the pandemic,” he explained. “Which is that people are really reluctant to go to their physicians’ offices for routine care because of the fear of getting sick. I think the study emphasized the importance of catching these children up to keep them safe in the future.”

The Advisory Committee on Immunization Practices recommends a childhood immunization schedule that protects children against 14 infectious diseases before their second birthday. Since the on-time administration of these vaccines is essential for preventing communicable diseases, many pediatric offices are trying to ensure a safe environment for patients and families, said Dr. Schneider, chief of pediatric critical care at Cohen Children’s Medical Center, New York.

There’s also some concern that COVID-19 vaccine hesitancy my spillover into routine childhood vaccinations, especially for families who were already hesitant toward the routine well-established vaccine schedule for children.

The CDC and AAP recommend that children continue to receive recommended vaccinations during the COVID-19 pandemic.

To boost the number of children caught up on vaccinations, health system and community-level interventions are needed, especially in underserved communities, the researchers wrote. Additionally, enforcing mandates that require vaccination prior to school entry could also increase vaccine administration across populations and reduce disparities.

The study emphasizes the “immediate and lagging” disruptions in the delivery of pediatric health care caused by the pandemic, which will likely have long-term consequences for pediatric health, Brian P. Jenssen, MD, MSHP, who was not involved in the study, wrote in a solicited commentary.

However, interventions tailored to specific age groups could help remedy this. These include increasing the frequency of well-child care during the next year of life for infants younger than 24 months and prioritizing visits with 13-year-old adolescents who are behind on vaccinations.

“Although there is no evidence base for this approach, such a change could create not only catch-up opportunities for vaccination for children delayed at age 7 and 18 months, but also provide opportunities to attend to developmental concerns and social needs that have emerged during COVID-19,” wrote Dr. Jenssen, a researcher and primary care pediatrician at Children’s Hospital of Philadelphia.

Other practices such as reaching out to patients and families directly via text message, email, or phone to “notify them of needed vaccinations,” vaccine mandates, and having pediatric health systems partner with alternative settings to promote vaccination could also get kids back on track, health wise. Furthermore, financial incentives from insurers or primary care practices also may help.

“The COVID-19 pandemic’s lost care may have long-term consequences unless pediatric health care systems and child health advocates are proactive in engaging families to take advantage of every opportunity to catch up,” Dr. Jenssen wrote.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA PEDIATRICS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA advisors vote to recommend Moderna boosters

Article Type
Changed

A panel of experts that advises the Food and Drug Administration on vaccine decisions voted unanimously Oct. 14 to approve booster doses of Moderna’s COVID-19 vaccine.

The 19 members of the FDA’s Vaccines and Related Biological Products Advisory Committee voted to authorize a 50-milligram dose -- half the dose used in the primary series of shots -- to boost immunity against COVID-19 at least 6 months after the second dose. Those who might need a booster are the same groups who’ve gotten a green light for third Pfizer doses. They include people:

  • Over age 65
  • Ages 18 to 64 who are at higher risk for severe COVID
  • Who are at higher risk of catching COVID because they live in group settings like nursing homes or prisons, or because they are frequently exposed at work, as health care workers are

The agency is not bound by the committee’s vote but usually follows its recommendations.

Some members of the committee said they weren’t satisfied with the data Moderna submitted to support its application but, for practical reasons, said it wouldn’t be fair to take booster doses off the table for Moderna recipients when Pfizer’s boosters were already available.

“The data are not perfect, but these are extraordinary times and we have to work with data that are not perfect,” said Eric Rubin, MD, editor-in-chief of TheNew England Journal of Medicine and a temporary voting member on the committee.

Patrick Moore, MD, a professor at the University of Pittsburgh Cancer Institute who is also a temporary voting member, said he voted to approve the Moderna boosters based “more on a gut feeling than on truly serious data.”

“I’ve got some real issues with this vote,” he said.

“We need to see good solid data, and it needs to be explained well,” Dr. Moore said, challenging companies making future applications to do better.

Next, the FDA will have to formally sign off on the emergency use authorization, which it is expected to do. Then, the Centers for Disease Control and Prevention’s Advisory Committee on Immunization Practices will meet to make formal recommendations on use of the Moderna boosters. That group is scheduled to meet Oct. 21 to take up questions of exactly how these boosters should be used.

Peter Marks, MD, head of the FDA’s Center for Biologics Evaluation and Research, cautioned that the CDC is more constrained in making recommendations under an emergency use authorization than it would be if the boosters had gotten full approval. So it will likely align its vote with the conditions of the emergency use authorization from the FDA.

After the advisory committee votes, the director of the CDC has to approve its recommendation.

Overall, data show that two doses of the Moderna vaccine remains highly effective at preventing hospitalization and death. But over time, levels of the body’s first line of defense against a virus -- its neutralizing antibodies -- fall somewhat. This drop seems to correspond with an increased risk for breakthrough cases of COVID-19.

Data presented by Moderna Oct. 14 showed the risk of breakthrough infections increased by 36% in study participants who received the vaccine in their clinical trials, compared to people in the same study who received a placebo first, and got the vaccine later, when the trial was unblended. Their protection was more recent, and they had fewer breakthrough infections.

In considering booster doses, the FDA has asked drugmakers to do studies that look at the immune responses of small groups of study participants and compare them to the immune responses seen in study participants after their first two vaccine doses.

To be considered effective, boosters have to clear two bars. The first looks at the concentration of antibodies generated in the blood of boosted study volunteers. The second looks at how many boosted study participants saw a four-fold increase in their blood antibody levels a month after the booster minus the number of people who saw the same increase after their original two doses.

Moderna presented data that its boosters met the first criteria, but failed to meet the second, perhaps because so many people in the study had good responses after their first two doses of the vaccines.

The FDA’s advisory committee will reconvene Oct. 15 to hear evidence supporting the emergency use authorization of a booster dose of the Johnson & Johnson vaccine.

This article was updated Oct. 15 and first appeared on WebMD.com.

Publications
Topics
Sections

A panel of experts that advises the Food and Drug Administration on vaccine decisions voted unanimously Oct. 14 to approve booster doses of Moderna’s COVID-19 vaccine.

The 19 members of the FDA’s Vaccines and Related Biological Products Advisory Committee voted to authorize a 50-milligram dose -- half the dose used in the primary series of shots -- to boost immunity against COVID-19 at least 6 months after the second dose. Those who might need a booster are the same groups who’ve gotten a green light for third Pfizer doses. They include people:

  • Over age 65
  • Ages 18 to 64 who are at higher risk for severe COVID
  • Who are at higher risk of catching COVID because they live in group settings like nursing homes or prisons, or because they are frequently exposed at work, as health care workers are

The agency is not bound by the committee’s vote but usually follows its recommendations.

Some members of the committee said they weren’t satisfied with the data Moderna submitted to support its application but, for practical reasons, said it wouldn’t be fair to take booster doses off the table for Moderna recipients when Pfizer’s boosters were already available.

“The data are not perfect, but these are extraordinary times and we have to work with data that are not perfect,” said Eric Rubin, MD, editor-in-chief of TheNew England Journal of Medicine and a temporary voting member on the committee.

Patrick Moore, MD, a professor at the University of Pittsburgh Cancer Institute who is also a temporary voting member, said he voted to approve the Moderna boosters based “more on a gut feeling than on truly serious data.”

“I’ve got some real issues with this vote,” he said.

“We need to see good solid data, and it needs to be explained well,” Dr. Moore said, challenging companies making future applications to do better.

Next, the FDA will have to formally sign off on the emergency use authorization, which it is expected to do. Then, the Centers for Disease Control and Prevention’s Advisory Committee on Immunization Practices will meet to make formal recommendations on use of the Moderna boosters. That group is scheduled to meet Oct. 21 to take up questions of exactly how these boosters should be used.

Peter Marks, MD, head of the FDA’s Center for Biologics Evaluation and Research, cautioned that the CDC is more constrained in making recommendations under an emergency use authorization than it would be if the boosters had gotten full approval. So it will likely align its vote with the conditions of the emergency use authorization from the FDA.

After the advisory committee votes, the director of the CDC has to approve its recommendation.

Overall, data show that two doses of the Moderna vaccine remains highly effective at preventing hospitalization and death. But over time, levels of the body’s first line of defense against a virus -- its neutralizing antibodies -- fall somewhat. This drop seems to correspond with an increased risk for breakthrough cases of COVID-19.

Data presented by Moderna Oct. 14 showed the risk of breakthrough infections increased by 36% in study participants who received the vaccine in their clinical trials, compared to people in the same study who received a placebo first, and got the vaccine later, when the trial was unblended. Their protection was more recent, and they had fewer breakthrough infections.

In considering booster doses, the FDA has asked drugmakers to do studies that look at the immune responses of small groups of study participants and compare them to the immune responses seen in study participants after their first two vaccine doses.

To be considered effective, boosters have to clear two bars. The first looks at the concentration of antibodies generated in the blood of boosted study volunteers. The second looks at how many boosted study participants saw a four-fold increase in their blood antibody levels a month after the booster minus the number of people who saw the same increase after their original two doses.

Moderna presented data that its boosters met the first criteria, but failed to meet the second, perhaps because so many people in the study had good responses after their first two doses of the vaccines.

The FDA’s advisory committee will reconvene Oct. 15 to hear evidence supporting the emergency use authorization of a booster dose of the Johnson & Johnson vaccine.

This article was updated Oct. 15 and first appeared on WebMD.com.

A panel of experts that advises the Food and Drug Administration on vaccine decisions voted unanimously Oct. 14 to approve booster doses of Moderna’s COVID-19 vaccine.

The 19 members of the FDA’s Vaccines and Related Biological Products Advisory Committee voted to authorize a 50-milligram dose -- half the dose used in the primary series of shots -- to boost immunity against COVID-19 at least 6 months after the second dose. Those who might need a booster are the same groups who’ve gotten a green light for third Pfizer doses. They include people:

  • Over age 65
  • Ages 18 to 64 who are at higher risk for severe COVID
  • Who are at higher risk of catching COVID because they live in group settings like nursing homes or prisons, or because they are frequently exposed at work, as health care workers are

The agency is not bound by the committee’s vote but usually follows its recommendations.

Some members of the committee said they weren’t satisfied with the data Moderna submitted to support its application but, for practical reasons, said it wouldn’t be fair to take booster doses off the table for Moderna recipients when Pfizer’s boosters were already available.

“The data are not perfect, but these are extraordinary times and we have to work with data that are not perfect,” said Eric Rubin, MD, editor-in-chief of TheNew England Journal of Medicine and a temporary voting member on the committee.

Patrick Moore, MD, a professor at the University of Pittsburgh Cancer Institute who is also a temporary voting member, said he voted to approve the Moderna boosters based “more on a gut feeling than on truly serious data.”

“I’ve got some real issues with this vote,” he said.

“We need to see good solid data, and it needs to be explained well,” Dr. Moore said, challenging companies making future applications to do better.

Next, the FDA will have to formally sign off on the emergency use authorization, which it is expected to do. Then, the Centers for Disease Control and Prevention’s Advisory Committee on Immunization Practices will meet to make formal recommendations on use of the Moderna boosters. That group is scheduled to meet Oct. 21 to take up questions of exactly how these boosters should be used.

Peter Marks, MD, head of the FDA’s Center for Biologics Evaluation and Research, cautioned that the CDC is more constrained in making recommendations under an emergency use authorization than it would be if the boosters had gotten full approval. So it will likely align its vote with the conditions of the emergency use authorization from the FDA.

After the advisory committee votes, the director of the CDC has to approve its recommendation.

Overall, data show that two doses of the Moderna vaccine remains highly effective at preventing hospitalization and death. But over time, levels of the body’s first line of defense against a virus -- its neutralizing antibodies -- fall somewhat. This drop seems to correspond with an increased risk for breakthrough cases of COVID-19.

Data presented by Moderna Oct. 14 showed the risk of breakthrough infections increased by 36% in study participants who received the vaccine in their clinical trials, compared to people in the same study who received a placebo first, and got the vaccine later, when the trial was unblended. Their protection was more recent, and they had fewer breakthrough infections.

In considering booster doses, the FDA has asked drugmakers to do studies that look at the immune responses of small groups of study participants and compare them to the immune responses seen in study participants after their first two vaccine doses.

To be considered effective, boosters have to clear two bars. The first looks at the concentration of antibodies generated in the blood of boosted study volunteers. The second looks at how many boosted study participants saw a four-fold increase in their blood antibody levels a month after the booster minus the number of people who saw the same increase after their original two doses.

Moderna presented data that its boosters met the first criteria, but failed to meet the second, perhaps because so many people in the study had good responses after their first two doses of the vaccines.

The FDA’s advisory committee will reconvene Oct. 15 to hear evidence supporting the emergency use authorization of a booster dose of the Johnson & Johnson vaccine.

This article was updated Oct. 15 and first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Scientists use 3D printing to create injection-free vaccine patch

Article Type
Changed

Most vaccines are given with hypodermic needle injections. But shots aren’t necessarily the most efficient or effective way to deliver a vaccine. Scientists have been experimenting with microneedle patches to painlessly deliver a vaccine into the outermost layer of the skin with dozens of extremely tiny needles coated in the vaccine solution.

Now, researchers have found a three-dimensional printing method that lets them customize microneedle shapes in the patches for different pathogens, such as flu, measleshepatitis, or COVID-19. In tests using mice, the patches led to stronger and longer-lasting immune responses than traditional shots under the skin. The research team described their findings in the Proceedings of the National Academy of Sciences.
 

Tiny needles, big advantages

Previous research has shown delivering vaccines into the skin can cause a stronger immune response because the skin has a high concentration of immune cells. But shots can be painful and require skilled medical providers.

Microneedles painlessly deliver the vaccine into the skin without the need for a trained clinician. In fact, a person can even give the vaccine to themselves.

The needles – made of metal, silicon, or plastic – are so tiny that they puncture only the tough outermost layer of skin. The prospect of a painless vaccination without a hypodermic needle may ease anxiety in people who fear needles.

Scientists also can store dried patches after coating them with the vaccine solution, so there’s no preparation needed before giving the vaccine and the patches may not even require cold storage. This latest study suggests that the patches generate a stronger immune response than standard shots, allowing for a smaller dose than traditional vaccine delivery methods and possibly fewer side effects.
 

Breaking the mold

Past methods of making microneedle patches often used molds, but that approach limited the ability to customize patches for different diseases. Repeatedly using same mold also can blunt the tiny needles.

For the three-dimensional–printed patches, Cassie Caudill at the University of North Carolina at Chapel Hill and colleagues used a printing technique that allows greater control over and consistency in the shape of the microneedles. The investigators printed two shapes: a slender pyramid microneedle that is similar to previous versions, and one with serrated grooves that resembles a pine tree.

The increased surface area from the grooves let researchers add 36% more of the ingredient that causes an immune response, compared with using only the pyramid shape, yet still less than a conventional shot. At only 1 cm by 1 cm, each patch contains 100 microneedles that are just over 1 mm long. The researchers found that in mice the patch drew a stronger immune response than a conventional shot, despite carrying a much smaller dose of vaccine ingredient.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

Most vaccines are given with hypodermic needle injections. But shots aren’t necessarily the most efficient or effective way to deliver a vaccine. Scientists have been experimenting with microneedle patches to painlessly deliver a vaccine into the outermost layer of the skin with dozens of extremely tiny needles coated in the vaccine solution.

Now, researchers have found a three-dimensional printing method that lets them customize microneedle shapes in the patches for different pathogens, such as flu, measleshepatitis, or COVID-19. In tests using mice, the patches led to stronger and longer-lasting immune responses than traditional shots under the skin. The research team described their findings in the Proceedings of the National Academy of Sciences.
 

Tiny needles, big advantages

Previous research has shown delivering vaccines into the skin can cause a stronger immune response because the skin has a high concentration of immune cells. But shots can be painful and require skilled medical providers.

Microneedles painlessly deliver the vaccine into the skin without the need for a trained clinician. In fact, a person can even give the vaccine to themselves.

The needles – made of metal, silicon, or plastic – are so tiny that they puncture only the tough outermost layer of skin. The prospect of a painless vaccination without a hypodermic needle may ease anxiety in people who fear needles.

Scientists also can store dried patches after coating them with the vaccine solution, so there’s no preparation needed before giving the vaccine and the patches may not even require cold storage. This latest study suggests that the patches generate a stronger immune response than standard shots, allowing for a smaller dose than traditional vaccine delivery methods and possibly fewer side effects.
 

Breaking the mold

Past methods of making microneedle patches often used molds, but that approach limited the ability to customize patches for different diseases. Repeatedly using same mold also can blunt the tiny needles.

For the three-dimensional–printed patches, Cassie Caudill at the University of North Carolina at Chapel Hill and colleagues used a printing technique that allows greater control over and consistency in the shape of the microneedles. The investigators printed two shapes: a slender pyramid microneedle that is similar to previous versions, and one with serrated grooves that resembles a pine tree.

The increased surface area from the grooves let researchers add 36% more of the ingredient that causes an immune response, compared with using only the pyramid shape, yet still less than a conventional shot. At only 1 cm by 1 cm, each patch contains 100 microneedles that are just over 1 mm long. The researchers found that in mice the patch drew a stronger immune response than a conventional shot, despite carrying a much smaller dose of vaccine ingredient.

A version of this article first appeared on WebMD.com.

Most vaccines are given with hypodermic needle injections. But shots aren’t necessarily the most efficient or effective way to deliver a vaccine. Scientists have been experimenting with microneedle patches to painlessly deliver a vaccine into the outermost layer of the skin with dozens of extremely tiny needles coated in the vaccine solution.

Now, researchers have found a three-dimensional printing method that lets them customize microneedle shapes in the patches for different pathogens, such as flu, measleshepatitis, or COVID-19. In tests using mice, the patches led to stronger and longer-lasting immune responses than traditional shots under the skin. The research team described their findings in the Proceedings of the National Academy of Sciences.
 

Tiny needles, big advantages

Previous research has shown delivering vaccines into the skin can cause a stronger immune response because the skin has a high concentration of immune cells. But shots can be painful and require skilled medical providers.

Microneedles painlessly deliver the vaccine into the skin without the need for a trained clinician. In fact, a person can even give the vaccine to themselves.

The needles – made of metal, silicon, or plastic – are so tiny that they puncture only the tough outermost layer of skin. The prospect of a painless vaccination without a hypodermic needle may ease anxiety in people who fear needles.

Scientists also can store dried patches after coating them with the vaccine solution, so there’s no preparation needed before giving the vaccine and the patches may not even require cold storage. This latest study suggests that the patches generate a stronger immune response than standard shots, allowing for a smaller dose than traditional vaccine delivery methods and possibly fewer side effects.
 

Breaking the mold

Past methods of making microneedle patches often used molds, but that approach limited the ability to customize patches for different diseases. Repeatedly using same mold also can blunt the tiny needles.

For the three-dimensional–printed patches, Cassie Caudill at the University of North Carolina at Chapel Hill and colleagues used a printing technique that allows greater control over and consistency in the shape of the microneedles. The investigators printed two shapes: a slender pyramid microneedle that is similar to previous versions, and one with serrated grooves that resembles a pine tree.

The increased surface area from the grooves let researchers add 36% more of the ingredient that causes an immune response, compared with using only the pyramid shape, yet still less than a conventional shot. At only 1 cm by 1 cm, each patch contains 100 microneedles that are just over 1 mm long. The researchers found that in mice the patch drew a stronger immune response than a conventional shot, despite carrying a much smaller dose of vaccine ingredient.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New safety data regarding COVID vaccines

Article Type
Changed

 

Parsonage-Turner syndrome has been highlighted as a potential adverse effect of mRNA COVID vaccines in a recent pharmacovigilance monitoring report from the French National Agency for the Safety of Medicines and Health Products (ANSM).

The rare condition — more common in men than in women — is characterized by the sudden onset of severe pain in the shoulder, followed by arm paralysis. Its etiopathogenesis is not well understood, but vaccines, in particular the flu vaccine, have been implicated in some cases, the report states.

Six serious cases of the syndrome related to the Comirnaty (Pfizer) vaccine were reported by healthcare professionals and vaccinated individuals or their family and friends since the start of the monitoring program. Four of these cases occurred from September 3 to 16.

All six cases involved patients 19 to 69 years of age — two women and four men — who developed symptoms in the 50 days after vaccination. Half were reported after the first dose and half after the second dose. Four of the patients are currently recovering; the outcomes of the other two are unknown.

In the case of the Spikevax vaccine (Moderna), two cases of Parsonage-Turner syndrome were reported after vaccination (plus one that occurred after 50 days, which is currently being managed). The onset of symptoms in these two men — one in his early 30s and one in his early 60s — occurred less than 18 days after vaccination. One occurred after the first dose and one after the second dose. This timing indicates a possible link between the syndrome and the vaccine. Both men are currently in recovery.

This signal of mRNA vaccines is now “officially recognized,” according to the Pfizer and Moderna reports.

It is also considered a “potential signal” in the Vaxzevria (AstraZeneca) pharmacovigilance report, released October 8, which describes eight cases of Parsonage-Turner syndrome after vaccination.
 

Safety profile of mRNA COVID vaccines in youth

Between June 15, when children 12 years and older became eligible for vaccination, and August 26, there were 591 reports of potential adverse events — out of 6 million Pfizer doses administered — in 12- to 18-year-old children.

Of the 591 cases, 35.2% were deemed serious. The majority of these were cases of reactogenicity, malaise, or postvaccine discomfort (25%), followed by instances of myocarditis and pericarditis (15.9% and 7.2%, respectively). In eight of 10 cases, one of the first symptom reported was chest pain.

Myocarditis occurred in 39.4% of people after the first injection (mean time to onset, 13 days) and 54.5% after the second (mean time to onset, 4 days). Recorded progress was favorable in nearly nine of 10 cases.

Pericarditis occurred in 53.3% of people after the first injection (mean time to onset, 13 days), and 40.0% after the second (mean time to onset, 4 days).

Three cases of multisystem inflammatory syndrome in children (MISC) were reported after monitoring ended.

For this age group, “all reported events will continue to be monitored, especially serious events and multisystem inflammatory syndrome in children,” report authors conclude.

Data for adverse events after the Moderna vaccine remain limited, but the report stipulates that “the adverse events reported in 12- to 18-year-olds who received an injection do not display any particular pattern, compared with those reported in older subjects, with the exception of a roughly 100-fold lower incidence of reported adverse effects in the 12- to 17-year age group.”
 

No safety warnings for pregnant women

The pharmacovigilance report — which covered the period from December 27, 2020 to September 9, 2021 — “raises no safety warnings for pregnant or nursing women with any of the COVID-19 vaccines.” In addition, two recent studies — one published in JAMA and one in the New England Journal of Medicine — have shown no link between spontaneous miscarriage and mRNA vaccines.

“Moreover, it should be stressed that current data from the international literature consistently show that maternal SARS COV-2 infection increases the risk for fetal, maternal, and neonatal complications, and that this risk may increase with the arrival of the Alpha and Delta variants,” they write. “It is therefore important to reiterate the current recommendations to vaccinate all pregnant women, regardless of the stage of pregnancy.”

Some adverse effects, such as thromboembolic effects, in utero death, HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, and uterine contractions, will continue to be monitored.
 

Questions regarding menstrual disorders

As for gynecological disorders reported after vaccination, questions still remain. “In most of the reported cases, it is difficult to accurately determine whether the vaccine played a role in the occurrence of menstrual/genital bleeding,” the authors of the pharmacovigilance monitoring report state.

“Nonetheless, these cases warrant attention,” they add, and further discussions with the French National Association of Obstetricians and Gynecologists and the French Society of Endocrinology are needed in regard to these potential safety signals.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Parsonage-Turner syndrome has been highlighted as a potential adverse effect of mRNA COVID vaccines in a recent pharmacovigilance monitoring report from the French National Agency for the Safety of Medicines and Health Products (ANSM).

The rare condition — more common in men than in women — is characterized by the sudden onset of severe pain in the shoulder, followed by arm paralysis. Its etiopathogenesis is not well understood, but vaccines, in particular the flu vaccine, have been implicated in some cases, the report states.

Six serious cases of the syndrome related to the Comirnaty (Pfizer) vaccine were reported by healthcare professionals and vaccinated individuals or their family and friends since the start of the monitoring program. Four of these cases occurred from September 3 to 16.

All six cases involved patients 19 to 69 years of age — two women and four men — who developed symptoms in the 50 days after vaccination. Half were reported after the first dose and half after the second dose. Four of the patients are currently recovering; the outcomes of the other two are unknown.

In the case of the Spikevax vaccine (Moderna), two cases of Parsonage-Turner syndrome were reported after vaccination (plus one that occurred after 50 days, which is currently being managed). The onset of symptoms in these two men — one in his early 30s and one in his early 60s — occurred less than 18 days after vaccination. One occurred after the first dose and one after the second dose. This timing indicates a possible link between the syndrome and the vaccine. Both men are currently in recovery.

This signal of mRNA vaccines is now “officially recognized,” according to the Pfizer and Moderna reports.

It is also considered a “potential signal” in the Vaxzevria (AstraZeneca) pharmacovigilance report, released October 8, which describes eight cases of Parsonage-Turner syndrome after vaccination.
 

Safety profile of mRNA COVID vaccines in youth

Between June 15, when children 12 years and older became eligible for vaccination, and August 26, there were 591 reports of potential adverse events — out of 6 million Pfizer doses administered — in 12- to 18-year-old children.

Of the 591 cases, 35.2% were deemed serious. The majority of these were cases of reactogenicity, malaise, or postvaccine discomfort (25%), followed by instances of myocarditis and pericarditis (15.9% and 7.2%, respectively). In eight of 10 cases, one of the first symptom reported was chest pain.

Myocarditis occurred in 39.4% of people after the first injection (mean time to onset, 13 days) and 54.5% after the second (mean time to onset, 4 days). Recorded progress was favorable in nearly nine of 10 cases.

Pericarditis occurred in 53.3% of people after the first injection (mean time to onset, 13 days), and 40.0% after the second (mean time to onset, 4 days).

Three cases of multisystem inflammatory syndrome in children (MISC) were reported after monitoring ended.

For this age group, “all reported events will continue to be monitored, especially serious events and multisystem inflammatory syndrome in children,” report authors conclude.

Data for adverse events after the Moderna vaccine remain limited, but the report stipulates that “the adverse events reported in 12- to 18-year-olds who received an injection do not display any particular pattern, compared with those reported in older subjects, with the exception of a roughly 100-fold lower incidence of reported adverse effects in the 12- to 17-year age group.”
 

No safety warnings for pregnant women

The pharmacovigilance report — which covered the period from December 27, 2020 to September 9, 2021 — “raises no safety warnings for pregnant or nursing women with any of the COVID-19 vaccines.” In addition, two recent studies — one published in JAMA and one in the New England Journal of Medicine — have shown no link between spontaneous miscarriage and mRNA vaccines.

“Moreover, it should be stressed that current data from the international literature consistently show that maternal SARS COV-2 infection increases the risk for fetal, maternal, and neonatal complications, and that this risk may increase with the arrival of the Alpha and Delta variants,” they write. “It is therefore important to reiterate the current recommendations to vaccinate all pregnant women, regardless of the stage of pregnancy.”

Some adverse effects, such as thromboembolic effects, in utero death, HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, and uterine contractions, will continue to be monitored.
 

Questions regarding menstrual disorders

As for gynecological disorders reported after vaccination, questions still remain. “In most of the reported cases, it is difficult to accurately determine whether the vaccine played a role in the occurrence of menstrual/genital bleeding,” the authors of the pharmacovigilance monitoring report state.

“Nonetheless, these cases warrant attention,” they add, and further discussions with the French National Association of Obstetricians and Gynecologists and the French Society of Endocrinology are needed in regard to these potential safety signals.

A version of this article first appeared on Medscape.com.

 

Parsonage-Turner syndrome has been highlighted as a potential adverse effect of mRNA COVID vaccines in a recent pharmacovigilance monitoring report from the French National Agency for the Safety of Medicines and Health Products (ANSM).

The rare condition — more common in men than in women — is characterized by the sudden onset of severe pain in the shoulder, followed by arm paralysis. Its etiopathogenesis is not well understood, but vaccines, in particular the flu vaccine, have been implicated in some cases, the report states.

Six serious cases of the syndrome related to the Comirnaty (Pfizer) vaccine were reported by healthcare professionals and vaccinated individuals or their family and friends since the start of the monitoring program. Four of these cases occurred from September 3 to 16.

All six cases involved patients 19 to 69 years of age — two women and four men — who developed symptoms in the 50 days after vaccination. Half were reported after the first dose and half after the second dose. Four of the patients are currently recovering; the outcomes of the other two are unknown.

In the case of the Spikevax vaccine (Moderna), two cases of Parsonage-Turner syndrome were reported after vaccination (plus one that occurred after 50 days, which is currently being managed). The onset of symptoms in these two men — one in his early 30s and one in his early 60s — occurred less than 18 days after vaccination. One occurred after the first dose and one after the second dose. This timing indicates a possible link between the syndrome and the vaccine. Both men are currently in recovery.

This signal of mRNA vaccines is now “officially recognized,” according to the Pfizer and Moderna reports.

It is also considered a “potential signal” in the Vaxzevria (AstraZeneca) pharmacovigilance report, released October 8, which describes eight cases of Parsonage-Turner syndrome after vaccination.
 

Safety profile of mRNA COVID vaccines in youth

Between June 15, when children 12 years and older became eligible for vaccination, and August 26, there were 591 reports of potential adverse events — out of 6 million Pfizer doses administered — in 12- to 18-year-old children.

Of the 591 cases, 35.2% were deemed serious. The majority of these were cases of reactogenicity, malaise, or postvaccine discomfort (25%), followed by instances of myocarditis and pericarditis (15.9% and 7.2%, respectively). In eight of 10 cases, one of the first symptom reported was chest pain.

Myocarditis occurred in 39.4% of people after the first injection (mean time to onset, 13 days) and 54.5% after the second (mean time to onset, 4 days). Recorded progress was favorable in nearly nine of 10 cases.

Pericarditis occurred in 53.3% of people after the first injection (mean time to onset, 13 days), and 40.0% after the second (mean time to onset, 4 days).

Three cases of multisystem inflammatory syndrome in children (MISC) were reported after monitoring ended.

For this age group, “all reported events will continue to be monitored, especially serious events and multisystem inflammatory syndrome in children,” report authors conclude.

Data for adverse events after the Moderna vaccine remain limited, but the report stipulates that “the adverse events reported in 12- to 18-year-olds who received an injection do not display any particular pattern, compared with those reported in older subjects, with the exception of a roughly 100-fold lower incidence of reported adverse effects in the 12- to 17-year age group.”
 

No safety warnings for pregnant women

The pharmacovigilance report — which covered the period from December 27, 2020 to September 9, 2021 — “raises no safety warnings for pregnant or nursing women with any of the COVID-19 vaccines.” In addition, two recent studies — one published in JAMA and one in the New England Journal of Medicine — have shown no link between spontaneous miscarriage and mRNA vaccines.

“Moreover, it should be stressed that current data from the international literature consistently show that maternal SARS COV-2 infection increases the risk for fetal, maternal, and neonatal complications, and that this risk may increase with the arrival of the Alpha and Delta variants,” they write. “It is therefore important to reiterate the current recommendations to vaccinate all pregnant women, regardless of the stage of pregnancy.”

Some adverse effects, such as thromboembolic effects, in utero death, HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, and uterine contractions, will continue to be monitored.
 

Questions regarding menstrual disorders

As for gynecological disorders reported after vaccination, questions still remain. “In most of the reported cases, it is difficult to accurately determine whether the vaccine played a role in the occurrence of menstrual/genital bleeding,” the authors of the pharmacovigilance monitoring report state.

“Nonetheless, these cases warrant attention,” they add, and further discussions with the French National Association of Obstetricians and Gynecologists and the French Society of Endocrinology are needed in regard to these potential safety signals.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Even one vaccinated member can cut family’s COVID risk

Article Type
Changed

The chances that unvaccinated family members will be infected or hospitalized with COVID-19 drop sharply if even one family member is vaccinated. The chances are reduced even further with each additional vaccinated or otherwise immune family member, according to new data.

Lead author Peter Nordström, MD, PhD, with the unit of geriatric medicine, Umeå (Sweden) University, said in an interview the message is important for public health: “When you vaccinate, you do not just protect yourself but also your relatives.”

The findings were published online on Oct. 11, 2021, in JAMA Internal Medicine.

Researchers analyzed data from 1,789,728 individuals from 814,806 families from nationwide registries in Sweden. All individuals had acquired immunity either from previously being infected with SARS-CoV-2 or by being fully vaccinated (that is, having received two doses of the Moderna, Pfizer, or Oxford/AstraZeneca vaccines). Persons were considered for inclusion until May 26, 2021.

Each person with immunity was matched in a 1:1 ratio to a person without immunity from a cohort of individuals with families that had from two to five members. Families with more than five members were excluded because of small sample sizes.

Primarily nonimmune families in which there was one immune family member had a 45%-61% lower risk of contracting COVID-19 (hazard ratio, 0.39-0.55; 95% confidence interval, 0.37-0.61; P < .001).

The risk reduction increased to 75%-86% when two family members were immune (HR, 0.14-0.25; 95% CI, 0.11-0.27; P < .001).

It increased to 91%-94% when three family members were immune (HR, 0.06-0.09; 95% CI, 0.04-0.10; P < .001) and to 97% with four immune family members (HR, 0.03; 95% CI, 0.02-0.05; P < .001).

“The results were similar for the outcome of COVID-19 infection that was severe enough to warrant a hospital stay,” the authors wrote. They listed as an example that, in three-member families in which two members were immune, the remaining nonimmune family member had an 80% lower risk for hospitalization (HR, 0.20; 95% CI, 0.10-0.43; P < .001).
 

Global implications

Dr. Nordström said the team used the family setting because it was more easily identifiable as a cohort with the national registries and because COVID-19 is spread among people in close contact with each other. The findings have implications for other groups that spend large amounts of time together and for herd immunity, he added.

The findings may be particularly welcome in regions of the world where vaccination rates are very low. The authors noted that most of the global population has not yet been vaccinated and that “it is anticipated that most of the population in low-income countries will be unable to receive a vaccine in 2021, with current vaccination rates suggesting that completely inoculating 70%-85% of the global population may take up to 5 years.”

Jill Foster, MD, a pediatric infectious disease specialist at the University of Minnesota, Minneapolis, said in an interview she agrees that the news could encourage countries that have very low vaccination rates.

This study may help motivate areas with few resources to start small, she said: “Even one is better than zero.”

She added that this news could also help ease the minds of families that have immunocompromised members or in which there are children who are too young to be vaccinated.

With these data, she said, people can see there’s something they can do to help protect a family member.

Dr. Foster said that although it’s intuitive to think that the more vaccinated people there are in a family, the safer people are, “it’s really nice to see the data coming out of such a large dataset.”

The authors acknowledged that a limitation of the study is that, at the time the study was conducted, the Delta variant was uncommon in Sweden. It is therefore unclear whether the findings regarding immunity are still relevant in Sweden and elsewhere now that the Delta strain is dominant.

The authors reported no relevant financial relationships. Dr. Foster has received grant support from Moderna.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The chances that unvaccinated family members will be infected or hospitalized with COVID-19 drop sharply if even one family member is vaccinated. The chances are reduced even further with each additional vaccinated or otherwise immune family member, according to new data.

Lead author Peter Nordström, MD, PhD, with the unit of geriatric medicine, Umeå (Sweden) University, said in an interview the message is important for public health: “When you vaccinate, you do not just protect yourself but also your relatives.”

The findings were published online on Oct. 11, 2021, in JAMA Internal Medicine.

Researchers analyzed data from 1,789,728 individuals from 814,806 families from nationwide registries in Sweden. All individuals had acquired immunity either from previously being infected with SARS-CoV-2 or by being fully vaccinated (that is, having received two doses of the Moderna, Pfizer, or Oxford/AstraZeneca vaccines). Persons were considered for inclusion until May 26, 2021.

Each person with immunity was matched in a 1:1 ratio to a person without immunity from a cohort of individuals with families that had from two to five members. Families with more than five members were excluded because of small sample sizes.

Primarily nonimmune families in which there was one immune family member had a 45%-61% lower risk of contracting COVID-19 (hazard ratio, 0.39-0.55; 95% confidence interval, 0.37-0.61; P < .001).

The risk reduction increased to 75%-86% when two family members were immune (HR, 0.14-0.25; 95% CI, 0.11-0.27; P < .001).

It increased to 91%-94% when three family members were immune (HR, 0.06-0.09; 95% CI, 0.04-0.10; P < .001) and to 97% with four immune family members (HR, 0.03; 95% CI, 0.02-0.05; P < .001).

“The results were similar for the outcome of COVID-19 infection that was severe enough to warrant a hospital stay,” the authors wrote. They listed as an example that, in three-member families in which two members were immune, the remaining nonimmune family member had an 80% lower risk for hospitalization (HR, 0.20; 95% CI, 0.10-0.43; P < .001).
 

Global implications

Dr. Nordström said the team used the family setting because it was more easily identifiable as a cohort with the national registries and because COVID-19 is spread among people in close contact with each other. The findings have implications for other groups that spend large amounts of time together and for herd immunity, he added.

The findings may be particularly welcome in regions of the world where vaccination rates are very low. The authors noted that most of the global population has not yet been vaccinated and that “it is anticipated that most of the population in low-income countries will be unable to receive a vaccine in 2021, with current vaccination rates suggesting that completely inoculating 70%-85% of the global population may take up to 5 years.”

Jill Foster, MD, a pediatric infectious disease specialist at the University of Minnesota, Minneapolis, said in an interview she agrees that the news could encourage countries that have very low vaccination rates.

This study may help motivate areas with few resources to start small, she said: “Even one is better than zero.”

She added that this news could also help ease the minds of families that have immunocompromised members or in which there are children who are too young to be vaccinated.

With these data, she said, people can see there’s something they can do to help protect a family member.

Dr. Foster said that although it’s intuitive to think that the more vaccinated people there are in a family, the safer people are, “it’s really nice to see the data coming out of such a large dataset.”

The authors acknowledged that a limitation of the study is that, at the time the study was conducted, the Delta variant was uncommon in Sweden. It is therefore unclear whether the findings regarding immunity are still relevant in Sweden and elsewhere now that the Delta strain is dominant.

The authors reported no relevant financial relationships. Dr. Foster has received grant support from Moderna.

A version of this article first appeared on Medscape.com.

The chances that unvaccinated family members will be infected or hospitalized with COVID-19 drop sharply if even one family member is vaccinated. The chances are reduced even further with each additional vaccinated or otherwise immune family member, according to new data.

Lead author Peter Nordström, MD, PhD, with the unit of geriatric medicine, Umeå (Sweden) University, said in an interview the message is important for public health: “When you vaccinate, you do not just protect yourself but also your relatives.”

The findings were published online on Oct. 11, 2021, in JAMA Internal Medicine.

Researchers analyzed data from 1,789,728 individuals from 814,806 families from nationwide registries in Sweden. All individuals had acquired immunity either from previously being infected with SARS-CoV-2 or by being fully vaccinated (that is, having received two doses of the Moderna, Pfizer, or Oxford/AstraZeneca vaccines). Persons were considered for inclusion until May 26, 2021.

Each person with immunity was matched in a 1:1 ratio to a person without immunity from a cohort of individuals with families that had from two to five members. Families with more than five members were excluded because of small sample sizes.

Primarily nonimmune families in which there was one immune family member had a 45%-61% lower risk of contracting COVID-19 (hazard ratio, 0.39-0.55; 95% confidence interval, 0.37-0.61; P < .001).

The risk reduction increased to 75%-86% when two family members were immune (HR, 0.14-0.25; 95% CI, 0.11-0.27; P < .001).

It increased to 91%-94% when three family members were immune (HR, 0.06-0.09; 95% CI, 0.04-0.10; P < .001) and to 97% with four immune family members (HR, 0.03; 95% CI, 0.02-0.05; P < .001).

“The results were similar for the outcome of COVID-19 infection that was severe enough to warrant a hospital stay,” the authors wrote. They listed as an example that, in three-member families in which two members were immune, the remaining nonimmune family member had an 80% lower risk for hospitalization (HR, 0.20; 95% CI, 0.10-0.43; P < .001).
 

Global implications

Dr. Nordström said the team used the family setting because it was more easily identifiable as a cohort with the national registries and because COVID-19 is spread among people in close contact with each other. The findings have implications for other groups that spend large amounts of time together and for herd immunity, he added.

The findings may be particularly welcome in regions of the world where vaccination rates are very low. The authors noted that most of the global population has not yet been vaccinated and that “it is anticipated that most of the population in low-income countries will be unable to receive a vaccine in 2021, with current vaccination rates suggesting that completely inoculating 70%-85% of the global population may take up to 5 years.”

Jill Foster, MD, a pediatric infectious disease specialist at the University of Minnesota, Minneapolis, said in an interview she agrees that the news could encourage countries that have very low vaccination rates.

This study may help motivate areas with few resources to start small, she said: “Even one is better than zero.”

She added that this news could also help ease the minds of families that have immunocompromised members or in which there are children who are too young to be vaccinated.

With these data, she said, people can see there’s something they can do to help protect a family member.

Dr. Foster said that although it’s intuitive to think that the more vaccinated people there are in a family, the safer people are, “it’s really nice to see the data coming out of such a large dataset.”

The authors acknowledged that a limitation of the study is that, at the time the study was conducted, the Delta variant was uncommon in Sweden. It is therefore unclear whether the findings regarding immunity are still relevant in Sweden and elsewhere now that the Delta strain is dominant.

The authors reported no relevant financial relationships. Dr. Foster has received grant support from Moderna.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

WHO unveils global roadmap to defeat meningitis by 2030

Article Type
Changed

The World Health Organization and its partners recently released an ambitious plan, Defeating meningitis by 2030: A global road map. The goal is to reduce deaths and disabilities from bacterial meningitis, which kills about 250,000 people annually of the 1.2 million estimated to be infected.

This type of infection around the brain and spinal cord also causes long-term disabilities – deafness, learning problems, seizures, loss of limbs – in about one-quarter of survivors.

The leading causes of bacterial meningitis are Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and group B streptococcus. As with malaria, about half of the cases are in children under age 5 years. The most severely affected area for both infections is sub-Saharan Africa.

The main goal of the roadmap is to reduce vaccine-preventable cases of bacterial meningitis by 50% and deaths by 70% by 2030. WHO’s partners included the Centers for Disease Control and Prevention, the London School of Hygiene and Tropical Medicine, Médecins Sans Frontières (Doctors Without Borders), the Meningitis Research Foundation, PATH, UNICEF, and numerous global consultants.

For primary prevention and epidemic control, a major goal is to achieve higher vaccine coverage. Another goal is developing and deploying rapid diagnostic tests to guide treatment and prevention activities and measure the impact of vaccination. The lack of laboratory capacity to confirm the bacteria is a significant challenge. Also, patients often receive antibiotics before appropriate tests are conducted, and lumbar punctures are frequently not done.

The commitment to this project emerged in 2017. It was followed by a baseline analysis in 2018 and a draft roadmap the following year. Consultations with experts and with more than 600 patient groups in more than 90 countries followed.

Prevention through greater vaccine uptake was the top priority. Vaccination is considered the first line of defense against antibiotic resistance among the targeted bacteria.

Another goal is to quantify the decrease in antibiotic use for invasive infections or prophylaxis and the subsequent reduction in antimicrobial resistance in relation to increased vaccination.

Surveillance is weak in many regions, limiting the ability to detect epidemics and to respond appropriately. Similarly, there are limited data on the burden of sequelae, such as deafness, on meningitis survivors.

There is an inadequate supply of affordable vaccines to respond to epidemics.  Currently, routine vaccination against Neisseria meningitidis is occurring in 18 of 26 countries in the meningitis belt. Epidemics of meningococcus occur every few years in the driest time of the year and abate with the rains. Epidemics of pneumococcal meningitis are much rarer but follow a similar pattern; they have also been associated with crowding and alcohol use.

Care for those affected by meningitis is another focus, as is affirming the right to prevention and care. There’s a need for earlier recognition of the complications of meningitis and an increase in efforts to treat those complications.

WHO’s final goal in its roadmap is to boost awareness of meningitis and make it a priority for policymakers. Similarly, there is a need to educate communities about the disease, including how to access vaccines. If someone becomes ill, they need to be aware of the symptoms, the need for early treatment, and what aftercare is available.

Marie-Pierre Préziosi, MD, the core secretariat of WHO’s Technical Taskforce, told this news organization that while the roadmap looks aspirational, “it is feasible … you have strategic goals – each has milestones with time limits and who will do it.”

Regarding vaccinations, Dr. Préziosi said that “the strategy was a victim of its success. The mass campaign knocked down transmission completely.” Some countries are now waiting for multivalent vaccines. She said that vaccine hesitancy is not a significant problem in Africa “because the disease is so feared.”

Major obstacles to implementing the roadmap include the complacency of public health leaders and the COVID-19 lockdowns, which decreased vaccination coverage rates. “The second thing is also sufficient funding to do the research and innovation so that we get the affordable tools that we need globally,” Dr. Préziosi said.

Marilyn Felkner, DrPH, School of Human Ecology, University of Texas at Austin, said in an interview, “It’s very cliché, but we have often said that communicable diseases do not respect political boundaries. So to expect a country to be able to control that by themselves is a false hope.”

Regarding the roadmap, Dr. Felkner said, “I think that organizing ideas and having them in writing is always a good first step. And it can help people move forward if they’re feeling overwhelmed ... Having a written plan can certainly provide that fundamental basis. So, the important thing is not to say, ‘Oh, we have this great plan done; hope somebody picks up the plan.’ There’s got to be some momentum behind it, and hopefully some funding.”

Dr. Préziosi and Dr. Felkner have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The World Health Organization and its partners recently released an ambitious plan, Defeating meningitis by 2030: A global road map. The goal is to reduce deaths and disabilities from bacterial meningitis, which kills about 250,000 people annually of the 1.2 million estimated to be infected.

This type of infection around the brain and spinal cord also causes long-term disabilities – deafness, learning problems, seizures, loss of limbs – in about one-quarter of survivors.

The leading causes of bacterial meningitis are Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and group B streptococcus. As with malaria, about half of the cases are in children under age 5 years. The most severely affected area for both infections is sub-Saharan Africa.

The main goal of the roadmap is to reduce vaccine-preventable cases of bacterial meningitis by 50% and deaths by 70% by 2030. WHO’s partners included the Centers for Disease Control and Prevention, the London School of Hygiene and Tropical Medicine, Médecins Sans Frontières (Doctors Without Borders), the Meningitis Research Foundation, PATH, UNICEF, and numerous global consultants.

For primary prevention and epidemic control, a major goal is to achieve higher vaccine coverage. Another goal is developing and deploying rapid diagnostic tests to guide treatment and prevention activities and measure the impact of vaccination. The lack of laboratory capacity to confirm the bacteria is a significant challenge. Also, patients often receive antibiotics before appropriate tests are conducted, and lumbar punctures are frequently not done.

The commitment to this project emerged in 2017. It was followed by a baseline analysis in 2018 and a draft roadmap the following year. Consultations with experts and with more than 600 patient groups in more than 90 countries followed.

Prevention through greater vaccine uptake was the top priority. Vaccination is considered the first line of defense against antibiotic resistance among the targeted bacteria.

Another goal is to quantify the decrease in antibiotic use for invasive infections or prophylaxis and the subsequent reduction in antimicrobial resistance in relation to increased vaccination.

Surveillance is weak in many regions, limiting the ability to detect epidemics and to respond appropriately. Similarly, there are limited data on the burden of sequelae, such as deafness, on meningitis survivors.

There is an inadequate supply of affordable vaccines to respond to epidemics.  Currently, routine vaccination against Neisseria meningitidis is occurring in 18 of 26 countries in the meningitis belt. Epidemics of meningococcus occur every few years in the driest time of the year and abate with the rains. Epidemics of pneumococcal meningitis are much rarer but follow a similar pattern; they have also been associated with crowding and alcohol use.

Care for those affected by meningitis is another focus, as is affirming the right to prevention and care. There’s a need for earlier recognition of the complications of meningitis and an increase in efforts to treat those complications.

WHO’s final goal in its roadmap is to boost awareness of meningitis and make it a priority for policymakers. Similarly, there is a need to educate communities about the disease, including how to access vaccines. If someone becomes ill, they need to be aware of the symptoms, the need for early treatment, and what aftercare is available.

Marie-Pierre Préziosi, MD, the core secretariat of WHO’s Technical Taskforce, told this news organization that while the roadmap looks aspirational, “it is feasible … you have strategic goals – each has milestones with time limits and who will do it.”

Regarding vaccinations, Dr. Préziosi said that “the strategy was a victim of its success. The mass campaign knocked down transmission completely.” Some countries are now waiting for multivalent vaccines. She said that vaccine hesitancy is not a significant problem in Africa “because the disease is so feared.”

Major obstacles to implementing the roadmap include the complacency of public health leaders and the COVID-19 lockdowns, which decreased vaccination coverage rates. “The second thing is also sufficient funding to do the research and innovation so that we get the affordable tools that we need globally,” Dr. Préziosi said.

Marilyn Felkner, DrPH, School of Human Ecology, University of Texas at Austin, said in an interview, “It’s very cliché, but we have often said that communicable diseases do not respect political boundaries. So to expect a country to be able to control that by themselves is a false hope.”

Regarding the roadmap, Dr. Felkner said, “I think that organizing ideas and having them in writing is always a good first step. And it can help people move forward if they’re feeling overwhelmed ... Having a written plan can certainly provide that fundamental basis. So, the important thing is not to say, ‘Oh, we have this great plan done; hope somebody picks up the plan.’ There’s got to be some momentum behind it, and hopefully some funding.”

Dr. Préziosi and Dr. Felkner have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

The World Health Organization and its partners recently released an ambitious plan, Defeating meningitis by 2030: A global road map. The goal is to reduce deaths and disabilities from bacterial meningitis, which kills about 250,000 people annually of the 1.2 million estimated to be infected.

This type of infection around the brain and spinal cord also causes long-term disabilities – deafness, learning problems, seizures, loss of limbs – in about one-quarter of survivors.

The leading causes of bacterial meningitis are Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and group B streptococcus. As with malaria, about half of the cases are in children under age 5 years. The most severely affected area for both infections is sub-Saharan Africa.

The main goal of the roadmap is to reduce vaccine-preventable cases of bacterial meningitis by 50% and deaths by 70% by 2030. WHO’s partners included the Centers for Disease Control and Prevention, the London School of Hygiene and Tropical Medicine, Médecins Sans Frontières (Doctors Without Borders), the Meningitis Research Foundation, PATH, UNICEF, and numerous global consultants.

For primary prevention and epidemic control, a major goal is to achieve higher vaccine coverage. Another goal is developing and deploying rapid diagnostic tests to guide treatment and prevention activities and measure the impact of vaccination. The lack of laboratory capacity to confirm the bacteria is a significant challenge. Also, patients often receive antibiotics before appropriate tests are conducted, and lumbar punctures are frequently not done.

The commitment to this project emerged in 2017. It was followed by a baseline analysis in 2018 and a draft roadmap the following year. Consultations with experts and with more than 600 patient groups in more than 90 countries followed.

Prevention through greater vaccine uptake was the top priority. Vaccination is considered the first line of defense against antibiotic resistance among the targeted bacteria.

Another goal is to quantify the decrease in antibiotic use for invasive infections or prophylaxis and the subsequent reduction in antimicrobial resistance in relation to increased vaccination.

Surveillance is weak in many regions, limiting the ability to detect epidemics and to respond appropriately. Similarly, there are limited data on the burden of sequelae, such as deafness, on meningitis survivors.

There is an inadequate supply of affordable vaccines to respond to epidemics.  Currently, routine vaccination against Neisseria meningitidis is occurring in 18 of 26 countries in the meningitis belt. Epidemics of meningococcus occur every few years in the driest time of the year and abate with the rains. Epidemics of pneumococcal meningitis are much rarer but follow a similar pattern; they have also been associated with crowding and alcohol use.

Care for those affected by meningitis is another focus, as is affirming the right to prevention and care. There’s a need for earlier recognition of the complications of meningitis and an increase in efforts to treat those complications.

WHO’s final goal in its roadmap is to boost awareness of meningitis and make it a priority for policymakers. Similarly, there is a need to educate communities about the disease, including how to access vaccines. If someone becomes ill, they need to be aware of the symptoms, the need for early treatment, and what aftercare is available.

Marie-Pierre Préziosi, MD, the core secretariat of WHO’s Technical Taskforce, told this news organization that while the roadmap looks aspirational, “it is feasible … you have strategic goals – each has milestones with time limits and who will do it.”

Regarding vaccinations, Dr. Préziosi said that “the strategy was a victim of its success. The mass campaign knocked down transmission completely.” Some countries are now waiting for multivalent vaccines. She said that vaccine hesitancy is not a significant problem in Africa “because the disease is so feared.”

Major obstacles to implementing the roadmap include the complacency of public health leaders and the COVID-19 lockdowns, which decreased vaccination coverage rates. “The second thing is also sufficient funding to do the research and innovation so that we get the affordable tools that we need globally,” Dr. Préziosi said.

Marilyn Felkner, DrPH, School of Human Ecology, University of Texas at Austin, said in an interview, “It’s very cliché, but we have often said that communicable diseases do not respect political boundaries. So to expect a country to be able to control that by themselves is a false hope.”

Regarding the roadmap, Dr. Felkner said, “I think that organizing ideas and having them in writing is always a good first step. And it can help people move forward if they’re feeling overwhelmed ... Having a written plan can certainly provide that fundamental basis. So, the important thing is not to say, ‘Oh, we have this great plan done; hope somebody picks up the plan.’ There’s got to be some momentum behind it, and hopefully some funding.”

Dr. Préziosi and Dr. Felkner have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No short-term death risk in elderly after COVID-19 vaccines

Article Type
Changed

When 23 frail elderly patients in Norway died in early 2021 shortly after they had received an mRNA-based vaccine against COVID-19, Norwegian health authorities cautioned physicians to conduct more thorough assessments of patients prior to immunization, and launched an investigation into the safety of the BNT162b2 vaccine (Comirnaty; Pfizer-BioNTech).

Now, the results of that investigation and of a subsequent larger study of nursing home residents in Norway have shown no increased risk for short-term mortality following COVID-19 vaccination in the overall population of elderly patients. The new research also showed clear evidence of a survival benefit compared with the unvaccinated population, Anette Hylen Ranhoff, MD, PhD, said at the annual meeting of the European Geriatric Medicine Society, held in a hybrid format in Athens, Greece, and online.

“We found no evidence of increased short-term mortality among vaccinated older individuals, and particularly not among the nursing home patients,” said Dr. Ranhoff, a senior researcher at the Norwegian Institute of Public Health and professor at University of Bergen, Norway. “But we think that this [lower] mortality risk was most likely a sort of ‘healthy-vaccinee’ effect, which means that people who were a bit more healthy were vaccinated, and not those who were the very, very most frail.”

“We have more or less the same data in France about events, with very high rates of vaccination,” said session moderator Athanase Benetos MD, PhD, professor and chairman of geriatric medicine at the University Hospital of Nancy in France, who was not involved in the study.

“In my department, a month after the end of the vaccination and at the same time while the pandemic in the city was going up, we had a 90% decrease in mortality from COVID in the nursing homes,” he told Dr. Ranhoff.
 

Potential risks

Frail elderly patients were not included in clinical trials of COVID-19 vaccines, and although previous studies have shown a low incidence of local or systemic reactions to vaccination among older people, “we think that quite mild adverse events following vaccination could trigger and destabilize a frail person,” Dr. Ranhoff said.

As reported Jan. 15, 2021, in BMJ, investigation by the Norwegian Medicines Agency (NOMA) into 13 of the 23 reported cases concluded that common adverse reactions associated with mRNA vaccines could have contributed to the deaths of some of the frail elderly patients

Steinar Madsen, MD, NOMA medical director, told BMJ “we are not alarmed or worried about this, because these are very rare occurrences and they occurred in very frail patients with very serious disease.”
 

Health authorities investigate

In response to the report and at the request of the Norwegian Public Health Institute and NOMA, Dr. Ranhoff and colleagues investigated the first 100 deaths among nursing-home residents who received the vaccine. The team consisted of three geriatricians and an infectious disease specialist who sees patients in nursing homes.

They looked at each patient’s clinical course before and after vaccination, their health trajectory and life expectancy at the time of vaccination, new symptoms following vaccination, and the time from vaccination to new symptoms and to death.

In addition, the investigators evaluated Clinical Frailty Scale (CFS) scores for each patient. CFS scores range from 1 (very fit) to 9 (terminally ill, with a life expectancy of less than 6 months who are otherwise evidently frail).

The initial investigation found that among 95 evaluable patients, the association between vaccination and death was “probable” in 10, “possible” in 26, and “unlikely” in 59.

The mean time from vaccination to symptoms was 1.4 days in the probable cases, 2.5 days in the possible cases, and 4.7 days in the unlikely cases.

The mean time from vaccination to death was 3.1, 8.3, and 8.2 days, respectively.

In all three categories, the patients had mean CFS scores ranging from 7.6 to 7.9, putting them in the “severely frail” category, defined as people who are completely dependent for personal care but seem stable and not at high risk for dying.

“We have quite many nursing home residents in Norway, 35,000; more than 80% have dementia, and the mean age is 85 years. We know that approximately 45 people die every day in these nursing homes, and their mean age of death is 87.5 years,” Dr. Ranhoff said.
 

Population-wide study

Dr. Ranhoff and colleagues also looked more broadly into the question of potential vaccine-related mortality in the total population of older people in Norway from the day of vaccination to follow-up at 3 weeks.

They conducted a matched cohort study to investigate the relationship between the mRNA SARS-CoV-2 vaccine and overall death among persons aged 65 and older in the general population, and across four groups: patients receiving home-based care, long-term nursing home patients, short-term nursing home patients, and those not receiving health services.

The researchers identified a total of 967,786 residents of Norway aged 65 and over at the start of the country’s vaccination campaign at the end of December, 2020, and they matched vaccinated individuals with unvaccinated persons based on demographic, geographic, and clinical risk group factors.

Dr. Ranhoff showed Kaplan-Meier survival curves for the total population and for each of the health-service states. In all cases there was a clear survival benefit for vaccinated vs. unvaccinated patients. She did not, however, provide specific numbers or hazard ratios for the differences between vaccinated and unvaccinated individuals in each of the comparisons.

The study was supported by the Norwegian Institute of Public Health. Dr. Ranhoff and Dr. Benetos reported no conflicts of interest.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

When 23 frail elderly patients in Norway died in early 2021 shortly after they had received an mRNA-based vaccine against COVID-19, Norwegian health authorities cautioned physicians to conduct more thorough assessments of patients prior to immunization, and launched an investigation into the safety of the BNT162b2 vaccine (Comirnaty; Pfizer-BioNTech).

Now, the results of that investigation and of a subsequent larger study of nursing home residents in Norway have shown no increased risk for short-term mortality following COVID-19 vaccination in the overall population of elderly patients. The new research also showed clear evidence of a survival benefit compared with the unvaccinated population, Anette Hylen Ranhoff, MD, PhD, said at the annual meeting of the European Geriatric Medicine Society, held in a hybrid format in Athens, Greece, and online.

“We found no evidence of increased short-term mortality among vaccinated older individuals, and particularly not among the nursing home patients,” said Dr. Ranhoff, a senior researcher at the Norwegian Institute of Public Health and professor at University of Bergen, Norway. “But we think that this [lower] mortality risk was most likely a sort of ‘healthy-vaccinee’ effect, which means that people who were a bit more healthy were vaccinated, and not those who were the very, very most frail.”

“We have more or less the same data in France about events, with very high rates of vaccination,” said session moderator Athanase Benetos MD, PhD, professor and chairman of geriatric medicine at the University Hospital of Nancy in France, who was not involved in the study.

“In my department, a month after the end of the vaccination and at the same time while the pandemic in the city was going up, we had a 90% decrease in mortality from COVID in the nursing homes,” he told Dr. Ranhoff.
 

Potential risks

Frail elderly patients were not included in clinical trials of COVID-19 vaccines, and although previous studies have shown a low incidence of local or systemic reactions to vaccination among older people, “we think that quite mild adverse events following vaccination could trigger and destabilize a frail person,” Dr. Ranhoff said.

As reported Jan. 15, 2021, in BMJ, investigation by the Norwegian Medicines Agency (NOMA) into 13 of the 23 reported cases concluded that common adverse reactions associated with mRNA vaccines could have contributed to the deaths of some of the frail elderly patients

Steinar Madsen, MD, NOMA medical director, told BMJ “we are not alarmed or worried about this, because these are very rare occurrences and they occurred in very frail patients with very serious disease.”
 

Health authorities investigate

In response to the report and at the request of the Norwegian Public Health Institute and NOMA, Dr. Ranhoff and colleagues investigated the first 100 deaths among nursing-home residents who received the vaccine. The team consisted of three geriatricians and an infectious disease specialist who sees patients in nursing homes.

They looked at each patient’s clinical course before and after vaccination, their health trajectory and life expectancy at the time of vaccination, new symptoms following vaccination, and the time from vaccination to new symptoms and to death.

In addition, the investigators evaluated Clinical Frailty Scale (CFS) scores for each patient. CFS scores range from 1 (very fit) to 9 (terminally ill, with a life expectancy of less than 6 months who are otherwise evidently frail).

The initial investigation found that among 95 evaluable patients, the association between vaccination and death was “probable” in 10, “possible” in 26, and “unlikely” in 59.

The mean time from vaccination to symptoms was 1.4 days in the probable cases, 2.5 days in the possible cases, and 4.7 days in the unlikely cases.

The mean time from vaccination to death was 3.1, 8.3, and 8.2 days, respectively.

In all three categories, the patients had mean CFS scores ranging from 7.6 to 7.9, putting them in the “severely frail” category, defined as people who are completely dependent for personal care but seem stable and not at high risk for dying.

“We have quite many nursing home residents in Norway, 35,000; more than 80% have dementia, and the mean age is 85 years. We know that approximately 45 people die every day in these nursing homes, and their mean age of death is 87.5 years,” Dr. Ranhoff said.
 

Population-wide study

Dr. Ranhoff and colleagues also looked more broadly into the question of potential vaccine-related mortality in the total population of older people in Norway from the day of vaccination to follow-up at 3 weeks.

They conducted a matched cohort study to investigate the relationship between the mRNA SARS-CoV-2 vaccine and overall death among persons aged 65 and older in the general population, and across four groups: patients receiving home-based care, long-term nursing home patients, short-term nursing home patients, and those not receiving health services.

The researchers identified a total of 967,786 residents of Norway aged 65 and over at the start of the country’s vaccination campaign at the end of December, 2020, and they matched vaccinated individuals with unvaccinated persons based on demographic, geographic, and clinical risk group factors.

Dr. Ranhoff showed Kaplan-Meier survival curves for the total population and for each of the health-service states. In all cases there was a clear survival benefit for vaccinated vs. unvaccinated patients. She did not, however, provide specific numbers or hazard ratios for the differences between vaccinated and unvaccinated individuals in each of the comparisons.

The study was supported by the Norwegian Institute of Public Health. Dr. Ranhoff and Dr. Benetos reported no conflicts of interest.

When 23 frail elderly patients in Norway died in early 2021 shortly after they had received an mRNA-based vaccine against COVID-19, Norwegian health authorities cautioned physicians to conduct more thorough assessments of patients prior to immunization, and launched an investigation into the safety of the BNT162b2 vaccine (Comirnaty; Pfizer-BioNTech).

Now, the results of that investigation and of a subsequent larger study of nursing home residents in Norway have shown no increased risk for short-term mortality following COVID-19 vaccination in the overall population of elderly patients. The new research also showed clear evidence of a survival benefit compared with the unvaccinated population, Anette Hylen Ranhoff, MD, PhD, said at the annual meeting of the European Geriatric Medicine Society, held in a hybrid format in Athens, Greece, and online.

“We found no evidence of increased short-term mortality among vaccinated older individuals, and particularly not among the nursing home patients,” said Dr. Ranhoff, a senior researcher at the Norwegian Institute of Public Health and professor at University of Bergen, Norway. “But we think that this [lower] mortality risk was most likely a sort of ‘healthy-vaccinee’ effect, which means that people who were a bit more healthy were vaccinated, and not those who were the very, very most frail.”

“We have more or less the same data in France about events, with very high rates of vaccination,” said session moderator Athanase Benetos MD, PhD, professor and chairman of geriatric medicine at the University Hospital of Nancy in France, who was not involved in the study.

“In my department, a month after the end of the vaccination and at the same time while the pandemic in the city was going up, we had a 90% decrease in mortality from COVID in the nursing homes,” he told Dr. Ranhoff.
 

Potential risks

Frail elderly patients were not included in clinical trials of COVID-19 vaccines, and although previous studies have shown a low incidence of local or systemic reactions to vaccination among older people, “we think that quite mild adverse events following vaccination could trigger and destabilize a frail person,” Dr. Ranhoff said.

As reported Jan. 15, 2021, in BMJ, investigation by the Norwegian Medicines Agency (NOMA) into 13 of the 23 reported cases concluded that common adverse reactions associated with mRNA vaccines could have contributed to the deaths of some of the frail elderly patients

Steinar Madsen, MD, NOMA medical director, told BMJ “we are not alarmed or worried about this, because these are very rare occurrences and they occurred in very frail patients with very serious disease.”
 

Health authorities investigate

In response to the report and at the request of the Norwegian Public Health Institute and NOMA, Dr. Ranhoff and colleagues investigated the first 100 deaths among nursing-home residents who received the vaccine. The team consisted of three geriatricians and an infectious disease specialist who sees patients in nursing homes.

They looked at each patient’s clinical course before and after vaccination, their health trajectory and life expectancy at the time of vaccination, new symptoms following vaccination, and the time from vaccination to new symptoms and to death.

In addition, the investigators evaluated Clinical Frailty Scale (CFS) scores for each patient. CFS scores range from 1 (very fit) to 9 (terminally ill, with a life expectancy of less than 6 months who are otherwise evidently frail).

The initial investigation found that among 95 evaluable patients, the association between vaccination and death was “probable” in 10, “possible” in 26, and “unlikely” in 59.

The mean time from vaccination to symptoms was 1.4 days in the probable cases, 2.5 days in the possible cases, and 4.7 days in the unlikely cases.

The mean time from vaccination to death was 3.1, 8.3, and 8.2 days, respectively.

In all three categories, the patients had mean CFS scores ranging from 7.6 to 7.9, putting them in the “severely frail” category, defined as people who are completely dependent for personal care but seem stable and not at high risk for dying.

“We have quite many nursing home residents in Norway, 35,000; more than 80% have dementia, and the mean age is 85 years. We know that approximately 45 people die every day in these nursing homes, and their mean age of death is 87.5 years,” Dr. Ranhoff said.
 

Population-wide study

Dr. Ranhoff and colleagues also looked more broadly into the question of potential vaccine-related mortality in the total population of older people in Norway from the day of vaccination to follow-up at 3 weeks.

They conducted a matched cohort study to investigate the relationship between the mRNA SARS-CoV-2 vaccine and overall death among persons aged 65 and older in the general population, and across four groups: patients receiving home-based care, long-term nursing home patients, short-term nursing home patients, and those not receiving health services.

The researchers identified a total of 967,786 residents of Norway aged 65 and over at the start of the country’s vaccination campaign at the end of December, 2020, and they matched vaccinated individuals with unvaccinated persons based on demographic, geographic, and clinical risk group factors.

Dr. Ranhoff showed Kaplan-Meier survival curves for the total population and for each of the health-service states. In all cases there was a clear survival benefit for vaccinated vs. unvaccinated patients. She did not, however, provide specific numbers or hazard ratios for the differences between vaccinated and unvaccinated individuals in each of the comparisons.

The study was supported by the Norwegian Institute of Public Health. Dr. Ranhoff and Dr. Benetos reported no conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EUGMS 2021

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Pfizer asks FDA to authorize COVID vaccine for kids 5-11

Article Type
Changed

Pfizer asked the FDA on Thursday to expand emergency use authorization of its COVID-19 vaccine to children ages 5 to 11.

The request comes after the drugmaker submitted clinical trial data to the FDA on Sept. 28. Pfizer said the study of 2,268 children showed the vaccine was safe and produced a robust immune response.

Participants in the studies received a lower dose of the vaccine, 10 micrograms. Their response 2 weeks after a second dose was reportedly equal to the immune protection in a control group of 16- to 25-year-olds who received the fully approved 30-microgram doses.

Currently, the Pfizer EUA applies to 12- to 15-year-olds and people eligible for a Pfizer booster shot. The drugmaker received full FDA approval for the vaccine for Americans 16 years and older in August.

The filing for authorization in 5- to 11-year-olds comes as overall cases of COVID-19 in the United States continue to decline. The decrease includes a drop in new cases in children for the fourth consecutive week, according to analysis of data from the American Academy of Pediatrics and the Children’s Hospital Association.

The next step is an FDA decision on whether to expand the current emergency use authorization (EUA) for teenagers to the younger age group.

Timing of any official word from the agency is unknown. But possibly in anticipation of today’s filing, the FDA already scheduled a meeting of its Vaccines and Related Biological Products Advisory Committee for Oct. 25.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

Pfizer asked the FDA on Thursday to expand emergency use authorization of its COVID-19 vaccine to children ages 5 to 11.

The request comes after the drugmaker submitted clinical trial data to the FDA on Sept. 28. Pfizer said the study of 2,268 children showed the vaccine was safe and produced a robust immune response.

Participants in the studies received a lower dose of the vaccine, 10 micrograms. Their response 2 weeks after a second dose was reportedly equal to the immune protection in a control group of 16- to 25-year-olds who received the fully approved 30-microgram doses.

Currently, the Pfizer EUA applies to 12- to 15-year-olds and people eligible for a Pfizer booster shot. The drugmaker received full FDA approval for the vaccine for Americans 16 years and older in August.

The filing for authorization in 5- to 11-year-olds comes as overall cases of COVID-19 in the United States continue to decline. The decrease includes a drop in new cases in children for the fourth consecutive week, according to analysis of data from the American Academy of Pediatrics and the Children’s Hospital Association.

The next step is an FDA decision on whether to expand the current emergency use authorization (EUA) for teenagers to the younger age group.

Timing of any official word from the agency is unknown. But possibly in anticipation of today’s filing, the FDA already scheduled a meeting of its Vaccines and Related Biological Products Advisory Committee for Oct. 25.

A version of this article first appeared on WebMD.com.

Pfizer asked the FDA on Thursday to expand emergency use authorization of its COVID-19 vaccine to children ages 5 to 11.

The request comes after the drugmaker submitted clinical trial data to the FDA on Sept. 28. Pfizer said the study of 2,268 children showed the vaccine was safe and produced a robust immune response.

Participants in the studies received a lower dose of the vaccine, 10 micrograms. Their response 2 weeks after a second dose was reportedly equal to the immune protection in a control group of 16- to 25-year-olds who received the fully approved 30-microgram doses.

Currently, the Pfizer EUA applies to 12- to 15-year-olds and people eligible for a Pfizer booster shot. The drugmaker received full FDA approval for the vaccine for Americans 16 years and older in August.

The filing for authorization in 5- to 11-year-olds comes as overall cases of COVID-19 in the United States continue to decline. The decrease includes a drop in new cases in children for the fourth consecutive week, according to analysis of data from the American Academy of Pediatrics and the Children’s Hospital Association.

The next step is an FDA decision on whether to expand the current emergency use authorization (EUA) for teenagers to the younger age group.

Timing of any official word from the agency is unknown. But possibly in anticipation of today’s filing, the FDA already scheduled a meeting of its Vaccines and Related Biological Products Advisory Committee for Oct. 25.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Johnson & Johnson requests FDA approval for vaccine booster doses

Article Type
Changed

Johnson & Johnson asked the Food and Drug Administration (FDA) on Tuesday to authorize an extra dose of its COVID-19 vaccine as a booster shot.

The company said it filed a request for people ages 18 and older who have received the one-shot vaccine. Johnson & Johnson submitted data for several different booster intervals -- ranging from 2 months to 6 months -- but didn’t formally recommend one to the FDA, The Associated Press reported.

“We’re describing the data to them,” Mathai Mammen, MD, head of global research and development for Janssen, the company’s vaccine division, told CNN.

“The process is not that we asked for a very specific interval -- we’re providing them data and we’re going to be presenting to the committee,” he said. “They’ll take all that into consideration when they ultimately decide on an appropriate interval.”

The FDA’s independent vaccine advisory committee meets next week to review data on booster shots from both Johnson & Johnson and Moderna. It’s the first step in the review process, which then requires approval from leaders at the FDA and Centers for Disease Control and Prevention. If both agencies authorize the extra shots, Americans could receive boosters from Johnson & Johnson and Moderna later this month, the AP reported.

Johnson & Johnson previously released data that showed the vaccine remains highly effective against COVID-19 at least 5 months after vaccination, with 81% efficacy against hospitalizations in the United States.

Two weeks ago, the company reported that a booster dose at 2 months or 6 months further lifted immunity, with a booster at 2 months providing 94% protection against moderate and severe COVID-19. The company said the 6-month booster raised antibodies by 12 times but didn’t release additional data at that time.

In September, the FDA authorized booster shots of the Pfizer vaccine for ages 65 and older, those who live in long-term care facilities, and those with higher risks for contracting COVID-19. The Biden administration is supporting a booster campaign to address potential waning vaccine immunity and remaining surges of the more contagious Delta variant, the AP reported.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

Johnson & Johnson asked the Food and Drug Administration (FDA) on Tuesday to authorize an extra dose of its COVID-19 vaccine as a booster shot.

The company said it filed a request for people ages 18 and older who have received the one-shot vaccine. Johnson & Johnson submitted data for several different booster intervals -- ranging from 2 months to 6 months -- but didn’t formally recommend one to the FDA, The Associated Press reported.

“We’re describing the data to them,” Mathai Mammen, MD, head of global research and development for Janssen, the company’s vaccine division, told CNN.

“The process is not that we asked for a very specific interval -- we’re providing them data and we’re going to be presenting to the committee,” he said. “They’ll take all that into consideration when they ultimately decide on an appropriate interval.”

The FDA’s independent vaccine advisory committee meets next week to review data on booster shots from both Johnson & Johnson and Moderna. It’s the first step in the review process, which then requires approval from leaders at the FDA and Centers for Disease Control and Prevention. If both agencies authorize the extra shots, Americans could receive boosters from Johnson & Johnson and Moderna later this month, the AP reported.

Johnson & Johnson previously released data that showed the vaccine remains highly effective against COVID-19 at least 5 months after vaccination, with 81% efficacy against hospitalizations in the United States.

Two weeks ago, the company reported that a booster dose at 2 months or 6 months further lifted immunity, with a booster at 2 months providing 94% protection against moderate and severe COVID-19. The company said the 6-month booster raised antibodies by 12 times but didn’t release additional data at that time.

In September, the FDA authorized booster shots of the Pfizer vaccine for ages 65 and older, those who live in long-term care facilities, and those with higher risks for contracting COVID-19. The Biden administration is supporting a booster campaign to address potential waning vaccine immunity and remaining surges of the more contagious Delta variant, the AP reported.

A version of this article first appeared on WebMD.com.

Johnson & Johnson asked the Food and Drug Administration (FDA) on Tuesday to authorize an extra dose of its COVID-19 vaccine as a booster shot.

The company said it filed a request for people ages 18 and older who have received the one-shot vaccine. Johnson & Johnson submitted data for several different booster intervals -- ranging from 2 months to 6 months -- but didn’t formally recommend one to the FDA, The Associated Press reported.

“We’re describing the data to them,” Mathai Mammen, MD, head of global research and development for Janssen, the company’s vaccine division, told CNN.

“The process is not that we asked for a very specific interval -- we’re providing them data and we’re going to be presenting to the committee,” he said. “They’ll take all that into consideration when they ultimately decide on an appropriate interval.”

The FDA’s independent vaccine advisory committee meets next week to review data on booster shots from both Johnson & Johnson and Moderna. It’s the first step in the review process, which then requires approval from leaders at the FDA and Centers for Disease Control and Prevention. If both agencies authorize the extra shots, Americans could receive boosters from Johnson & Johnson and Moderna later this month, the AP reported.

Johnson & Johnson previously released data that showed the vaccine remains highly effective against COVID-19 at least 5 months after vaccination, with 81% efficacy against hospitalizations in the United States.

Two weeks ago, the company reported that a booster dose at 2 months or 6 months further lifted immunity, with a booster at 2 months providing 94% protection against moderate and severe COVID-19. The company said the 6-month booster raised antibodies by 12 times but didn’t release additional data at that time.

In September, the FDA authorized booster shots of the Pfizer vaccine for ages 65 and older, those who live in long-term care facilities, and those with higher risks for contracting COVID-19. The Biden administration is supporting a booster campaign to address potential waning vaccine immunity and remaining surges of the more contagious Delta variant, the AP reported.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Flu shot highly recommended this year

Article Type
Changed

With the Delta variant of COVID-19 still raging in the United States and ICUs in parts of the country filled with patients with the coronavirus, experts are voicing concern about the added risk of a difficult flu season.

Two mathematical models are predicting a big rebound in the number and severity of flu cases in the 2021-22 season after 2020-2021’s flu season failed to show up when public health measures brought in to control COVID-19 seemed to have the added benefit of stopping the flu.

But both analyses, posted to the medRxiv preprint server and not yet peer reviewed by other experts, have come to the same conclusion: The flu could make a comeback this year.

In the worst-case scenario, the United States could see an extra 300,000-400,000 hospitalizations from the flu – almost double the usual number – according to senior study author Mark Roberts, MD, director of the Public Health Dynamics Laboratory at the University of Pittsburgh. These numbers could be a disaster in areas where hospitals are already filled with COVID-19 patients.

Waning natural immunity in the public because of 2020-2021’s missing flu season could make people, especially young children, more likely to get the virus.

“Usually, a combination of natural immunity and vaccination helps tamp down seasonal influenza,” said Dr. Roberts. “If we don’t have the first part, we’ll have to rely more on the vaccine.”

In a typical year, about half of Americans get the flu shot. The new mathematical models predict that the vaccination rate would need to rise to about 75% to avoid the extra hospitalizations. But even a 10% increase in vaccination rates could reduce hospitalizations by 6%-46%, depending on what strains are dominant.

Usually, the Southern Hemisphere flu season, from February to August, helps show what the Northern Hemisphere can expect over the coming winter. But with strict COVID-19 measures and limits on international travel still in place in countries like Australia and New Zealand and much of South America, it has been another record-low year for flu infections, said Ian Barr, PhD, deputy director of the World Health Organization’s Collaborating Center for Reference and Research on Influenza in Melbourne.

Australia detected only around 500 cases in 2021, compared with about 300,000 in a normal year, and recorded no hospitalizations or deaths from the flu. New Zealand recorded just two cases.

“I’ve never seen anything like this,” Dr. Barr said.

In Australia, the mild flu season led to fewer people getting their flu shot than usual. The rate fell from around 50% to just 33%, said Dr. Barr. “If that happens in the U.S., the population will be even more vulnerable because there has been almost no flu for more than 12 months,” he said.

Both Dr. Roberts and Dr. Barr say it is vital that as many people as possible get vaccinated during the upcoming flu season, especially children who will have almost no natural immunity to the virus.

“The vaccine is our best weapon against the flu, especially for the most at-risk groups,” said Dr. Barr.

Other parts of the world had mixed results. India saw a high number of flu cases, while neighboring Sri Lanka had very few. West Africa also saw quite a high level of circulating virus. Overall, the flu was detected in 45 countries during the Southern Hemisphere season, less than half of what might be expected in a normal year, said Dr. Barr.

Despite the overall low numbers, the WHO saw enough in the data to make two changes to 2022’s Southern Hemisphere vaccine formulation at its meeting on Sept. 24, after changing just one of the strains for the Northern Hemisphere vaccine at its meeting in February.

The CDC recommends that everyone 6 months or older get the flu shot, with few exceptions.

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

With the Delta variant of COVID-19 still raging in the United States and ICUs in parts of the country filled with patients with the coronavirus, experts are voicing concern about the added risk of a difficult flu season.

Two mathematical models are predicting a big rebound in the number and severity of flu cases in the 2021-22 season after 2020-2021’s flu season failed to show up when public health measures brought in to control COVID-19 seemed to have the added benefit of stopping the flu.

But both analyses, posted to the medRxiv preprint server and not yet peer reviewed by other experts, have come to the same conclusion: The flu could make a comeback this year.

In the worst-case scenario, the United States could see an extra 300,000-400,000 hospitalizations from the flu – almost double the usual number – according to senior study author Mark Roberts, MD, director of the Public Health Dynamics Laboratory at the University of Pittsburgh. These numbers could be a disaster in areas where hospitals are already filled with COVID-19 patients.

Waning natural immunity in the public because of 2020-2021’s missing flu season could make people, especially young children, more likely to get the virus.

“Usually, a combination of natural immunity and vaccination helps tamp down seasonal influenza,” said Dr. Roberts. “If we don’t have the first part, we’ll have to rely more on the vaccine.”

In a typical year, about half of Americans get the flu shot. The new mathematical models predict that the vaccination rate would need to rise to about 75% to avoid the extra hospitalizations. But even a 10% increase in vaccination rates could reduce hospitalizations by 6%-46%, depending on what strains are dominant.

Usually, the Southern Hemisphere flu season, from February to August, helps show what the Northern Hemisphere can expect over the coming winter. But with strict COVID-19 measures and limits on international travel still in place in countries like Australia and New Zealand and much of South America, it has been another record-low year for flu infections, said Ian Barr, PhD, deputy director of the World Health Organization’s Collaborating Center for Reference and Research on Influenza in Melbourne.

Australia detected only around 500 cases in 2021, compared with about 300,000 in a normal year, and recorded no hospitalizations or deaths from the flu. New Zealand recorded just two cases.

“I’ve never seen anything like this,” Dr. Barr said.

In Australia, the mild flu season led to fewer people getting their flu shot than usual. The rate fell from around 50% to just 33%, said Dr. Barr. “If that happens in the U.S., the population will be even more vulnerable because there has been almost no flu for more than 12 months,” he said.

Both Dr. Roberts and Dr. Barr say it is vital that as many people as possible get vaccinated during the upcoming flu season, especially children who will have almost no natural immunity to the virus.

“The vaccine is our best weapon against the flu, especially for the most at-risk groups,” said Dr. Barr.

Other parts of the world had mixed results. India saw a high number of flu cases, while neighboring Sri Lanka had very few. West Africa also saw quite a high level of circulating virus. Overall, the flu was detected in 45 countries during the Southern Hemisphere season, less than half of what might be expected in a normal year, said Dr. Barr.

Despite the overall low numbers, the WHO saw enough in the data to make two changes to 2022’s Southern Hemisphere vaccine formulation at its meeting on Sept. 24, after changing just one of the strains for the Northern Hemisphere vaccine at its meeting in February.

The CDC recommends that everyone 6 months or older get the flu shot, with few exceptions.

A version of this article first appeared on WebMD.com.

With the Delta variant of COVID-19 still raging in the United States and ICUs in parts of the country filled with patients with the coronavirus, experts are voicing concern about the added risk of a difficult flu season.

Two mathematical models are predicting a big rebound in the number and severity of flu cases in the 2021-22 season after 2020-2021’s flu season failed to show up when public health measures brought in to control COVID-19 seemed to have the added benefit of stopping the flu.

But both analyses, posted to the medRxiv preprint server and not yet peer reviewed by other experts, have come to the same conclusion: The flu could make a comeback this year.

In the worst-case scenario, the United States could see an extra 300,000-400,000 hospitalizations from the flu – almost double the usual number – according to senior study author Mark Roberts, MD, director of the Public Health Dynamics Laboratory at the University of Pittsburgh. These numbers could be a disaster in areas where hospitals are already filled with COVID-19 patients.

Waning natural immunity in the public because of 2020-2021’s missing flu season could make people, especially young children, more likely to get the virus.

“Usually, a combination of natural immunity and vaccination helps tamp down seasonal influenza,” said Dr. Roberts. “If we don’t have the first part, we’ll have to rely more on the vaccine.”

In a typical year, about half of Americans get the flu shot. The new mathematical models predict that the vaccination rate would need to rise to about 75% to avoid the extra hospitalizations. But even a 10% increase in vaccination rates could reduce hospitalizations by 6%-46%, depending on what strains are dominant.

Usually, the Southern Hemisphere flu season, from February to August, helps show what the Northern Hemisphere can expect over the coming winter. But with strict COVID-19 measures and limits on international travel still in place in countries like Australia and New Zealand and much of South America, it has been another record-low year for flu infections, said Ian Barr, PhD, deputy director of the World Health Organization’s Collaborating Center for Reference and Research on Influenza in Melbourne.

Australia detected only around 500 cases in 2021, compared with about 300,000 in a normal year, and recorded no hospitalizations or deaths from the flu. New Zealand recorded just two cases.

“I’ve never seen anything like this,” Dr. Barr said.

In Australia, the mild flu season led to fewer people getting their flu shot than usual. The rate fell from around 50% to just 33%, said Dr. Barr. “If that happens in the U.S., the population will be even more vulnerable because there has been almost no flu for more than 12 months,” he said.

Both Dr. Roberts and Dr. Barr say it is vital that as many people as possible get vaccinated during the upcoming flu season, especially children who will have almost no natural immunity to the virus.

“The vaccine is our best weapon against the flu, especially for the most at-risk groups,” said Dr. Barr.

Other parts of the world had mixed results. India saw a high number of flu cases, while neighboring Sri Lanka had very few. West Africa also saw quite a high level of circulating virus. Overall, the flu was detected in 45 countries during the Southern Hemisphere season, less than half of what might be expected in a normal year, said Dr. Barr.

Despite the overall low numbers, the WHO saw enough in the data to make two changes to 2022’s Southern Hemisphere vaccine formulation at its meeting on Sept. 24, after changing just one of the strains for the Northern Hemisphere vaccine at its meeting in February.

The CDC recommends that everyone 6 months or older get the flu shot, with few exceptions.

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article