User login
Test all perinatally exposed infants for HCV: CDC
In utero–exposed infants should be tested at 2-6 months of life, much earlier than the current strategy of testing at 18 months.
HCV infection, which can lead to liver fibrosis and cirrhosis, liver failure, hepatic cancer, and transplant, will develop in 6%-7% of all perinatally exposed infants and children. Curative therapy with direct-acting antivirals can be administered starting at age 3, the CDC noted in Morbidity and Mortality Week Report (MMWR).
About 70% of children 18 months and older are not being tested with the current strategy of anti-HCV testing.
This current MMWR report supplements the 2020 CDC recommendations for adult HCV screening, which includes universal screening among pregnant persons during each pregnancy.
The new recommendations
- Perinatally exposed infants should receive a nucleic acid amplification test for HCV RNA at 2-6 months of age to identify those who might develop chronic HCV infection if not treated.
- Those with detectable HCV RNA should be managed in consultation with an expert in pediatric HCV.
- Infants with undetectable HCV RNA do not require further follow-up unless clinically warranted.
“Testing perinatally exposed infants beginning at age 2 months with a NAT for HCV RNA is cost-effective and allows for earlier linkage to care, appropriate evaluation, and the opportunity to provide curative, life-saving therapy,” the MMWR report said.
A growing problem
The CDC noted that rates of HCV infections during pregnancy are on the rise, corresponding with the ongoing opioid crisis and intravenous drug use.
Yet most perinatally exposed children are not tested for HCV infection and are not referred for hepatitis C care. Reasons might include lack of awareness of perinatal exposure by pediatric providers, lack of regular pediatric care among exposed children, and switching of health care providers before the former recommended testing age of 18 months.
The CDC’s testing recommendation is welcome news to Dawnette A. Lewis, MD, a maternal fetal medicine specialist at Northwell Health in New Hyde Park, N.Y. “As opposed to data for hep B and HIV, we have traditionally had little information and experience regarding the transmission and impact of hep C in pregnant women and their babies. We’ve been having that conversation about the lack of information for some time, and now there’s an opportunity to get evolving data on hep C and how it affects the baby, ” she said.
In her view, mothers will likely be quite accepting of testing for their infants. “It could be integrated into the routine newborn screening panel, so there should not be barriers to accessibility if they’re getting prenatal and neonatal care.”
Commenting on HCV testing for babies in an interview at his institution, Ravi R. Jhaveri, MD, division head of pediatric infectious diseases at Northwestern Medicine’s Ann & Robert H. Lurie Children’s Hospital of Chicago, said, “This is a terrific way to capitalize on the fact that infants already come to the doctor for many visits during the first months of life for their vaccines and their well-child check. And so this should be an easy way to streamline our testing strategy and hopefully lose many fewer patients.”
Northwestern Medicine is an innovative clinic offering HCV testing and treatment outside of clinical trials for pregnant women and their infants with the goal of preventing transmission from mother to child.
Northwestern is launching a clinical trial of treatment for HCV-positive pregnant patients during regular prenatal care. “With very simple treatments similar to taking a prenatal vitamin, it would be easy and seamless to fit into the existing schedule,” said Lyn Yee, MD, a Northwestern maternal-fetal medicine specialist.
Dr. Yee stressed that eliminating hepatitis C will likely be one of the most significant health advancements of the decade.
Dr. Lewis, Dr. Jhaveri, and Dr. Yee had no relevant conflicts of interest to declare with regard to their comments.
In utero–exposed infants should be tested at 2-6 months of life, much earlier than the current strategy of testing at 18 months.
HCV infection, which can lead to liver fibrosis and cirrhosis, liver failure, hepatic cancer, and transplant, will develop in 6%-7% of all perinatally exposed infants and children. Curative therapy with direct-acting antivirals can be administered starting at age 3, the CDC noted in Morbidity and Mortality Week Report (MMWR).
About 70% of children 18 months and older are not being tested with the current strategy of anti-HCV testing.
This current MMWR report supplements the 2020 CDC recommendations for adult HCV screening, which includes universal screening among pregnant persons during each pregnancy.
The new recommendations
- Perinatally exposed infants should receive a nucleic acid amplification test for HCV RNA at 2-6 months of age to identify those who might develop chronic HCV infection if not treated.
- Those with detectable HCV RNA should be managed in consultation with an expert in pediatric HCV.
- Infants with undetectable HCV RNA do not require further follow-up unless clinically warranted.
“Testing perinatally exposed infants beginning at age 2 months with a NAT for HCV RNA is cost-effective and allows for earlier linkage to care, appropriate evaluation, and the opportunity to provide curative, life-saving therapy,” the MMWR report said.
A growing problem
The CDC noted that rates of HCV infections during pregnancy are on the rise, corresponding with the ongoing opioid crisis and intravenous drug use.
Yet most perinatally exposed children are not tested for HCV infection and are not referred for hepatitis C care. Reasons might include lack of awareness of perinatal exposure by pediatric providers, lack of regular pediatric care among exposed children, and switching of health care providers before the former recommended testing age of 18 months.
The CDC’s testing recommendation is welcome news to Dawnette A. Lewis, MD, a maternal fetal medicine specialist at Northwell Health in New Hyde Park, N.Y. “As opposed to data for hep B and HIV, we have traditionally had little information and experience regarding the transmission and impact of hep C in pregnant women and their babies. We’ve been having that conversation about the lack of information for some time, and now there’s an opportunity to get evolving data on hep C and how it affects the baby, ” she said.
In her view, mothers will likely be quite accepting of testing for their infants. “It could be integrated into the routine newborn screening panel, so there should not be barriers to accessibility if they’re getting prenatal and neonatal care.”
Commenting on HCV testing for babies in an interview at his institution, Ravi R. Jhaveri, MD, division head of pediatric infectious diseases at Northwestern Medicine’s Ann & Robert H. Lurie Children’s Hospital of Chicago, said, “This is a terrific way to capitalize on the fact that infants already come to the doctor for many visits during the first months of life for their vaccines and their well-child check. And so this should be an easy way to streamline our testing strategy and hopefully lose many fewer patients.”
Northwestern Medicine is an innovative clinic offering HCV testing and treatment outside of clinical trials for pregnant women and their infants with the goal of preventing transmission from mother to child.
Northwestern is launching a clinical trial of treatment for HCV-positive pregnant patients during regular prenatal care. “With very simple treatments similar to taking a prenatal vitamin, it would be easy and seamless to fit into the existing schedule,” said Lyn Yee, MD, a Northwestern maternal-fetal medicine specialist.
Dr. Yee stressed that eliminating hepatitis C will likely be one of the most significant health advancements of the decade.
Dr. Lewis, Dr. Jhaveri, and Dr. Yee had no relevant conflicts of interest to declare with regard to their comments.
In utero–exposed infants should be tested at 2-6 months of life, much earlier than the current strategy of testing at 18 months.
HCV infection, which can lead to liver fibrosis and cirrhosis, liver failure, hepatic cancer, and transplant, will develop in 6%-7% of all perinatally exposed infants and children. Curative therapy with direct-acting antivirals can be administered starting at age 3, the CDC noted in Morbidity and Mortality Week Report (MMWR).
About 70% of children 18 months and older are not being tested with the current strategy of anti-HCV testing.
This current MMWR report supplements the 2020 CDC recommendations for adult HCV screening, which includes universal screening among pregnant persons during each pregnancy.
The new recommendations
- Perinatally exposed infants should receive a nucleic acid amplification test for HCV RNA at 2-6 months of age to identify those who might develop chronic HCV infection if not treated.
- Those with detectable HCV RNA should be managed in consultation with an expert in pediatric HCV.
- Infants with undetectable HCV RNA do not require further follow-up unless clinically warranted.
“Testing perinatally exposed infants beginning at age 2 months with a NAT for HCV RNA is cost-effective and allows for earlier linkage to care, appropriate evaluation, and the opportunity to provide curative, life-saving therapy,” the MMWR report said.
A growing problem
The CDC noted that rates of HCV infections during pregnancy are on the rise, corresponding with the ongoing opioid crisis and intravenous drug use.
Yet most perinatally exposed children are not tested for HCV infection and are not referred for hepatitis C care. Reasons might include lack of awareness of perinatal exposure by pediatric providers, lack of regular pediatric care among exposed children, and switching of health care providers before the former recommended testing age of 18 months.
The CDC’s testing recommendation is welcome news to Dawnette A. Lewis, MD, a maternal fetal medicine specialist at Northwell Health in New Hyde Park, N.Y. “As opposed to data for hep B and HIV, we have traditionally had little information and experience regarding the transmission and impact of hep C in pregnant women and their babies. We’ve been having that conversation about the lack of information for some time, and now there’s an opportunity to get evolving data on hep C and how it affects the baby, ” she said.
In her view, mothers will likely be quite accepting of testing for their infants. “It could be integrated into the routine newborn screening panel, so there should not be barriers to accessibility if they’re getting prenatal and neonatal care.”
Commenting on HCV testing for babies in an interview at his institution, Ravi R. Jhaveri, MD, division head of pediatric infectious diseases at Northwestern Medicine’s Ann & Robert H. Lurie Children’s Hospital of Chicago, said, “This is a terrific way to capitalize on the fact that infants already come to the doctor for many visits during the first months of life for their vaccines and their well-child check. And so this should be an easy way to streamline our testing strategy and hopefully lose many fewer patients.”
Northwestern Medicine is an innovative clinic offering HCV testing and treatment outside of clinical trials for pregnant women and their infants with the goal of preventing transmission from mother to child.
Northwestern is launching a clinical trial of treatment for HCV-positive pregnant patients during regular prenatal care. “With very simple treatments similar to taking a prenatal vitamin, it would be easy and seamless to fit into the existing schedule,” said Lyn Yee, MD, a Northwestern maternal-fetal medicine specialist.
Dr. Yee stressed that eliminating hepatitis C will likely be one of the most significant health advancements of the decade.
Dr. Lewis, Dr. Jhaveri, and Dr. Yee had no relevant conflicts of interest to declare with regard to their comments.
People with long COVID don’t show signs of brain damage
A pair of new studies published about long COVID have shed more light on the sometimes-disabling condition that affects millions of people in the United States.
Scientists worldwide have been working to understand the wide-ranging condition, from risk factors to causes to potential treatments.
In the first study, 31 adults underwent lumbar puncture and blood draws to look for changes in their immune systems and also to look for changes in the nerve cells that could affect transmission of signals to the brain.
Among the participants, 25 people had neurocognitive symptoms of long COVID, such as memory loss or attention problems. Six participants had fully recovered from COVID, and 17 people had never had COVID.
Those who had COVID were diagnosed between March 2020 and May 2021. Their fluid samples were drawn at least three months after their first symptoms.
The results were published in the Journal of Infectious Diseases.
According to a summary of the study from the University of Gothenburg (Sweden), where the researchers work, “there were no significant differences between the groups when analyzing blood and cerebrospinal fluid for immune activation or brain injury markers. The findings thus suggest that post-COVID condition is not the result of ongoing infection, immune activation, or brain damage.”
In the second study, Norwegian researchers compared the likelihood of having 17 different long COVID symptoms based on whether a person had been infected with COVID. The analysis included 53,846 people who were diagnosed with COVID between February 2020 and February 2021, as well as more than 485,000 people who were not infected. Most people had not been vaccinated against COVID-19 during the time of the study.
The results were published in the journal BMC Infectious Diseases. Study results showed that people who had COVID were more than twice as likely to experience shortness of breath or fatigue. They were also more likely to experience memory loss or headache compared to people who never had COVID. Researchers only looked at symptoms that occurred at least three months after a COVID diagnosis.
They also found that hospitalization increased the risk for experiencing long COVID symptoms of shortness of breath, fatigue, and memory loss.
The authors noted that a limitation of their study was that, often, not all symptoms reported during a visit with a general practice medical provider are recorded in Norway, which could have affected the results.
A version of this article appeared on Medscape.com.
A pair of new studies published about long COVID have shed more light on the sometimes-disabling condition that affects millions of people in the United States.
Scientists worldwide have been working to understand the wide-ranging condition, from risk factors to causes to potential treatments.
In the first study, 31 adults underwent lumbar puncture and blood draws to look for changes in their immune systems and also to look for changes in the nerve cells that could affect transmission of signals to the brain.
Among the participants, 25 people had neurocognitive symptoms of long COVID, such as memory loss or attention problems. Six participants had fully recovered from COVID, and 17 people had never had COVID.
Those who had COVID were diagnosed between March 2020 and May 2021. Their fluid samples were drawn at least three months after their first symptoms.
The results were published in the Journal of Infectious Diseases.
According to a summary of the study from the University of Gothenburg (Sweden), where the researchers work, “there were no significant differences between the groups when analyzing blood and cerebrospinal fluid for immune activation or brain injury markers. The findings thus suggest that post-COVID condition is not the result of ongoing infection, immune activation, or brain damage.”
In the second study, Norwegian researchers compared the likelihood of having 17 different long COVID symptoms based on whether a person had been infected with COVID. The analysis included 53,846 people who were diagnosed with COVID between February 2020 and February 2021, as well as more than 485,000 people who were not infected. Most people had not been vaccinated against COVID-19 during the time of the study.
The results were published in the journal BMC Infectious Diseases. Study results showed that people who had COVID were more than twice as likely to experience shortness of breath or fatigue. They were also more likely to experience memory loss or headache compared to people who never had COVID. Researchers only looked at symptoms that occurred at least three months after a COVID diagnosis.
They also found that hospitalization increased the risk for experiencing long COVID symptoms of shortness of breath, fatigue, and memory loss.
The authors noted that a limitation of their study was that, often, not all symptoms reported during a visit with a general practice medical provider are recorded in Norway, which could have affected the results.
A version of this article appeared on Medscape.com.
A pair of new studies published about long COVID have shed more light on the sometimes-disabling condition that affects millions of people in the United States.
Scientists worldwide have been working to understand the wide-ranging condition, from risk factors to causes to potential treatments.
In the first study, 31 adults underwent lumbar puncture and blood draws to look for changes in their immune systems and also to look for changes in the nerve cells that could affect transmission of signals to the brain.
Among the participants, 25 people had neurocognitive symptoms of long COVID, such as memory loss or attention problems. Six participants had fully recovered from COVID, and 17 people had never had COVID.
Those who had COVID were diagnosed between March 2020 and May 2021. Their fluid samples were drawn at least three months after their first symptoms.
The results were published in the Journal of Infectious Diseases.
According to a summary of the study from the University of Gothenburg (Sweden), where the researchers work, “there were no significant differences between the groups when analyzing blood and cerebrospinal fluid for immune activation or brain injury markers. The findings thus suggest that post-COVID condition is not the result of ongoing infection, immune activation, or brain damage.”
In the second study, Norwegian researchers compared the likelihood of having 17 different long COVID symptoms based on whether a person had been infected with COVID. The analysis included 53,846 people who were diagnosed with COVID between February 2020 and February 2021, as well as more than 485,000 people who were not infected. Most people had not been vaccinated against COVID-19 during the time of the study.
The results were published in the journal BMC Infectious Diseases. Study results showed that people who had COVID were more than twice as likely to experience shortness of breath or fatigue. They were also more likely to experience memory loss or headache compared to people who never had COVID. Researchers only looked at symptoms that occurred at least three months after a COVID diagnosis.
They also found that hospitalization increased the risk for experiencing long COVID symptoms of shortness of breath, fatigue, and memory loss.
The authors noted that a limitation of their study was that, often, not all symptoms reported during a visit with a general practice medical provider are recorded in Norway, which could have affected the results.
A version of this article appeared on Medscape.com.
ACORN: No excess AKI with pip-tazo vs. cefepime
Two antibiotics, both alike in efficacy, are commonly prescribed for empirical treatment of infection in hospitalized adults.
Yet each drug – cefepime and piperacillin-tazobactam (Zosyn) – has its own baggage in terms of suspected associated toxicities: Cefepime has been implicated in neurologic dysfunction, and piperacillin-tazobactam has been associated with acute kidney injury (AKI).
The true nature of toxicities associated with each agent in clinical practice has been unclear, however – until now. As results of the randomized ACORN (Antibiotic Choice on Renal Outcomes) trial showed, but cefepime was indeed associated with a higher incidence of neurologic dysfunction as measured by freedom from delirium and coma.
The findings, by Edward T. Qian, MD MSc and colleagues at Vanderbilt University Medical Center, Nashville, Tenn.e, were published in JAMA.
Questioning a common practice
In an interview, Dr. Qian said that he and his colleagues conducted the pragmatic trial to seek answers to an important issue.
“We noticed a change in practice patterns as people were afraid of using Zosyn as empiric antibody therapy because they were afraid of the risks of AKI,” he said. “And as that practice shifted with a lower quality of evidence, just from observational studies, we started using more cefepime and we started seeing more patients with this rare phenomenon called ‘cefepime neurotoxicity.’ ”
To see whether the choice of one antibiotic over the other would affect the risk for either AKI or neurologic dysfunction, the investigators enrolled adults for whom a clinician ordered antipseudomonal antibiotics with 12 hours of when they were seen in the ED or medical ICU.
The patients were randomized on a 1:1 basis to receive either cefepime or piperacillin-tazobactam.
A total of 2,511 patients treated from Nov. 10, 2021, to Oct. 7, 2022, were included in the primary analysis. A large majority of the patients (94.7%) were enrolled in the ED, and 77.2% of patients were also receiving vancomycin at the time of enrollment.
No added AKI risk
The investigators found that there was no significant difference between the drugs for the primary outcome of the highest stage of AKI or death within 14 days of the start of treatment.
In the cefepime arm, 85 of 1,214 patients (7.0%) had stage 3 AKI, and 92 (7.6%) died.
In the piperacillin-tazobactam arm, 97 of 1,297 patients (7.5%) had stage 3 AKI, and 78 (6%) died. As noted, the difference was not statistically significant.
In addition, there was no significant difference between the groups in the secondary endpoint of the incidence of major adverse kidney events at day 14, with 10.2% in the cefepime arm and 8.8% in the piperacillin-tazobactam arm having an event.
As noted before, however, there was a significant difference in the secondary outcome of the number of days alive and free of delirium and coma within 14 days.
Patients on cefepime had a mean 11.9 days free of delirium and coma, compared with 12.2 days for patients on piperacillin-tazobactam. This difference translated into an odds ratio of 0.79 (95% confidence interval, 0.65-0.95).
Dr. Qian said that he and his colleagues stop short of calling the neurologic dysfunction that they observed “cefepime neurotoxicity,” but added that it warrants further study.
Risk factors examined
The investigators plan to evaluate those patients who developed neurologic dysfunction while on the drug to see whether there were predisposing factors that might be a contraindication for cefepime in some cases.
“I think the big takeaway is that you should feel comfortable starting or using pip-tazo for your patients who are coming into the hospital and receiving empiric antibiotics for acute infection,” Dr. Qian said.
The ACORN investigators are supported by grants from the National Heart, Lung, and Blood Institute; National Institutes of Health; National Center for Advancing Translational Science; US Defense Department; and Vanderbilt University. Dr. Qian had no conflicts of interest to disclose.
Two antibiotics, both alike in efficacy, are commonly prescribed for empirical treatment of infection in hospitalized adults.
Yet each drug – cefepime and piperacillin-tazobactam (Zosyn) – has its own baggage in terms of suspected associated toxicities: Cefepime has been implicated in neurologic dysfunction, and piperacillin-tazobactam has been associated with acute kidney injury (AKI).
The true nature of toxicities associated with each agent in clinical practice has been unclear, however – until now. As results of the randomized ACORN (Antibiotic Choice on Renal Outcomes) trial showed, but cefepime was indeed associated with a higher incidence of neurologic dysfunction as measured by freedom from delirium and coma.
The findings, by Edward T. Qian, MD MSc and colleagues at Vanderbilt University Medical Center, Nashville, Tenn.e, were published in JAMA.
Questioning a common practice
In an interview, Dr. Qian said that he and his colleagues conducted the pragmatic trial to seek answers to an important issue.
“We noticed a change in practice patterns as people were afraid of using Zosyn as empiric antibody therapy because they were afraid of the risks of AKI,” he said. “And as that practice shifted with a lower quality of evidence, just from observational studies, we started using more cefepime and we started seeing more patients with this rare phenomenon called ‘cefepime neurotoxicity.’ ”
To see whether the choice of one antibiotic over the other would affect the risk for either AKI or neurologic dysfunction, the investigators enrolled adults for whom a clinician ordered antipseudomonal antibiotics with 12 hours of when they were seen in the ED or medical ICU.
The patients were randomized on a 1:1 basis to receive either cefepime or piperacillin-tazobactam.
A total of 2,511 patients treated from Nov. 10, 2021, to Oct. 7, 2022, were included in the primary analysis. A large majority of the patients (94.7%) were enrolled in the ED, and 77.2% of patients were also receiving vancomycin at the time of enrollment.
No added AKI risk
The investigators found that there was no significant difference between the drugs for the primary outcome of the highest stage of AKI or death within 14 days of the start of treatment.
In the cefepime arm, 85 of 1,214 patients (7.0%) had stage 3 AKI, and 92 (7.6%) died.
In the piperacillin-tazobactam arm, 97 of 1,297 patients (7.5%) had stage 3 AKI, and 78 (6%) died. As noted, the difference was not statistically significant.
In addition, there was no significant difference between the groups in the secondary endpoint of the incidence of major adverse kidney events at day 14, with 10.2% in the cefepime arm and 8.8% in the piperacillin-tazobactam arm having an event.
As noted before, however, there was a significant difference in the secondary outcome of the number of days alive and free of delirium and coma within 14 days.
Patients on cefepime had a mean 11.9 days free of delirium and coma, compared with 12.2 days for patients on piperacillin-tazobactam. This difference translated into an odds ratio of 0.79 (95% confidence interval, 0.65-0.95).
Dr. Qian said that he and his colleagues stop short of calling the neurologic dysfunction that they observed “cefepime neurotoxicity,” but added that it warrants further study.
Risk factors examined
The investigators plan to evaluate those patients who developed neurologic dysfunction while on the drug to see whether there were predisposing factors that might be a contraindication for cefepime in some cases.
“I think the big takeaway is that you should feel comfortable starting or using pip-tazo for your patients who are coming into the hospital and receiving empiric antibiotics for acute infection,” Dr. Qian said.
The ACORN investigators are supported by grants from the National Heart, Lung, and Blood Institute; National Institutes of Health; National Center for Advancing Translational Science; US Defense Department; and Vanderbilt University. Dr. Qian had no conflicts of interest to disclose.
Two antibiotics, both alike in efficacy, are commonly prescribed for empirical treatment of infection in hospitalized adults.
Yet each drug – cefepime and piperacillin-tazobactam (Zosyn) – has its own baggage in terms of suspected associated toxicities: Cefepime has been implicated in neurologic dysfunction, and piperacillin-tazobactam has been associated with acute kidney injury (AKI).
The true nature of toxicities associated with each agent in clinical practice has been unclear, however – until now. As results of the randomized ACORN (Antibiotic Choice on Renal Outcomes) trial showed, but cefepime was indeed associated with a higher incidence of neurologic dysfunction as measured by freedom from delirium and coma.
The findings, by Edward T. Qian, MD MSc and colleagues at Vanderbilt University Medical Center, Nashville, Tenn.e, were published in JAMA.
Questioning a common practice
In an interview, Dr. Qian said that he and his colleagues conducted the pragmatic trial to seek answers to an important issue.
“We noticed a change in practice patterns as people were afraid of using Zosyn as empiric antibody therapy because they were afraid of the risks of AKI,” he said. “And as that practice shifted with a lower quality of evidence, just from observational studies, we started using more cefepime and we started seeing more patients with this rare phenomenon called ‘cefepime neurotoxicity.’ ”
To see whether the choice of one antibiotic over the other would affect the risk for either AKI or neurologic dysfunction, the investigators enrolled adults for whom a clinician ordered antipseudomonal antibiotics with 12 hours of when they were seen in the ED or medical ICU.
The patients were randomized on a 1:1 basis to receive either cefepime or piperacillin-tazobactam.
A total of 2,511 patients treated from Nov. 10, 2021, to Oct. 7, 2022, were included in the primary analysis. A large majority of the patients (94.7%) were enrolled in the ED, and 77.2% of patients were also receiving vancomycin at the time of enrollment.
No added AKI risk
The investigators found that there was no significant difference between the drugs for the primary outcome of the highest stage of AKI or death within 14 days of the start of treatment.
In the cefepime arm, 85 of 1,214 patients (7.0%) had stage 3 AKI, and 92 (7.6%) died.
In the piperacillin-tazobactam arm, 97 of 1,297 patients (7.5%) had stage 3 AKI, and 78 (6%) died. As noted, the difference was not statistically significant.
In addition, there was no significant difference between the groups in the secondary endpoint of the incidence of major adverse kidney events at day 14, with 10.2% in the cefepime arm and 8.8% in the piperacillin-tazobactam arm having an event.
As noted before, however, there was a significant difference in the secondary outcome of the number of days alive and free of delirium and coma within 14 days.
Patients on cefepime had a mean 11.9 days free of delirium and coma, compared with 12.2 days for patients on piperacillin-tazobactam. This difference translated into an odds ratio of 0.79 (95% confidence interval, 0.65-0.95).
Dr. Qian said that he and his colleagues stop short of calling the neurologic dysfunction that they observed “cefepime neurotoxicity,” but added that it warrants further study.
Risk factors examined
The investigators plan to evaluate those patients who developed neurologic dysfunction while on the drug to see whether there were predisposing factors that might be a contraindication for cefepime in some cases.
“I think the big takeaway is that you should feel comfortable starting or using pip-tazo for your patients who are coming into the hospital and receiving empiric antibiotics for acute infection,” Dr. Qian said.
The ACORN investigators are supported by grants from the National Heart, Lung, and Blood Institute; National Institutes of Health; National Center for Advancing Translational Science; US Defense Department; and Vanderbilt University. Dr. Qian had no conflicts of interest to disclose.
FROM JAMA
The crucial roles of inpatient vaccinations in preventing respiratory viral illnesses
Chest Infections & Disaster Response Network
Disaster Response & Global Health Section
In recent years, the importance of inpatient vaccinations against respiratory viral illnesses has become increasingly clear. As the world grapples with the ever-present threat of contagious diseases like influenza, COVID-19, Respiratory Syncytial Virus (RSV) and other respiratory viruses, the significance of vaccinating individuals during hospital stays cannot be overstated. Notably, the rates of inpatient vaccinations have significantly increased in recent years.
Numerous studies have demonstrated the success of various strategies to boost vaccine delivery to hospitalized patients. These strategies include personalized catch-up plans, electronic medical record (EMR) prompts, visual reminders, staff education and training, and allowing nonphysicians to screen and order vaccines. The implementation of nonphysician protocols has proven effective in increasing inpatient influenza vaccinations in multiple studies (Mihalek AJ, et al. Hosp Pediatr. 2021 Dec 1. doi: 10.1542/hpeds.2021-005924; Skull S, et al. J Paediatr Child Health. 1999;35[5]:472).
Optimizing the delivery of vaccines to hospitalized patients carries substantial public health benefits. This is especially vital for patients who face challenges accessing primary care and during periods of health care systems disruptions, such as those experienced during the COVID-19 pandemic.
In conclusion, inpatient vaccinations against respiratory viral illnesses are supported by a growing body of evidence. These vaccinations not only prevent disease transmission within health care facilities but also protect vulnerable patients, alleviate the burden on health care systems and with the recent approval of the RSV vaccine, we have a new tool to combat respiratory viruses effectively. As we continue to navigate the challenges posed by respiratory viruses, prioritizing inpatient vaccinations is a wise and necessary step toward a healthier, safer future for all.
Stella Ogake, MD – Section Member-at-Large
Chest Infections & Disaster Response Network
Disaster Response & Global Health Section
In recent years, the importance of inpatient vaccinations against respiratory viral illnesses has become increasingly clear. As the world grapples with the ever-present threat of contagious diseases like influenza, COVID-19, Respiratory Syncytial Virus (RSV) and other respiratory viruses, the significance of vaccinating individuals during hospital stays cannot be overstated. Notably, the rates of inpatient vaccinations have significantly increased in recent years.
Numerous studies have demonstrated the success of various strategies to boost vaccine delivery to hospitalized patients. These strategies include personalized catch-up plans, electronic medical record (EMR) prompts, visual reminders, staff education and training, and allowing nonphysicians to screen and order vaccines. The implementation of nonphysician protocols has proven effective in increasing inpatient influenza vaccinations in multiple studies (Mihalek AJ, et al. Hosp Pediatr. 2021 Dec 1. doi: 10.1542/hpeds.2021-005924; Skull S, et al. J Paediatr Child Health. 1999;35[5]:472).
Optimizing the delivery of vaccines to hospitalized patients carries substantial public health benefits. This is especially vital for patients who face challenges accessing primary care and during periods of health care systems disruptions, such as those experienced during the COVID-19 pandemic.
In conclusion, inpatient vaccinations against respiratory viral illnesses are supported by a growing body of evidence. These vaccinations not only prevent disease transmission within health care facilities but also protect vulnerable patients, alleviate the burden on health care systems and with the recent approval of the RSV vaccine, we have a new tool to combat respiratory viruses effectively. As we continue to navigate the challenges posed by respiratory viruses, prioritizing inpatient vaccinations is a wise and necessary step toward a healthier, safer future for all.
Stella Ogake, MD – Section Member-at-Large
Chest Infections & Disaster Response Network
Disaster Response & Global Health Section
In recent years, the importance of inpatient vaccinations against respiratory viral illnesses has become increasingly clear. As the world grapples with the ever-present threat of contagious diseases like influenza, COVID-19, Respiratory Syncytial Virus (RSV) and other respiratory viruses, the significance of vaccinating individuals during hospital stays cannot be overstated. Notably, the rates of inpatient vaccinations have significantly increased in recent years.
Numerous studies have demonstrated the success of various strategies to boost vaccine delivery to hospitalized patients. These strategies include personalized catch-up plans, electronic medical record (EMR) prompts, visual reminders, staff education and training, and allowing nonphysicians to screen and order vaccines. The implementation of nonphysician protocols has proven effective in increasing inpatient influenza vaccinations in multiple studies (Mihalek AJ, et al. Hosp Pediatr. 2021 Dec 1. doi: 10.1542/hpeds.2021-005924; Skull S, et al. J Paediatr Child Health. 1999;35[5]:472).
Optimizing the delivery of vaccines to hospitalized patients carries substantial public health benefits. This is especially vital for patients who face challenges accessing primary care and during periods of health care systems disruptions, such as those experienced during the COVID-19 pandemic.
In conclusion, inpatient vaccinations against respiratory viral illnesses are supported by a growing body of evidence. These vaccinations not only prevent disease transmission within health care facilities but also protect vulnerable patients, alleviate the burden on health care systems and with the recent approval of the RSV vaccine, we have a new tool to combat respiratory viruses effectively. As we continue to navigate the challenges posed by respiratory viruses, prioritizing inpatient vaccinations is a wise and necessary step toward a healthier, safer future for all.
Stella Ogake, MD – Section Member-at-Large
Update on seasonal flu, RSV infections, and vaccines
Chest Infections & Disaster Response Network
Chest Infections Section
November 12 marks World Pneumonia Day, and while it has long been recognized that viruses play a significant role in causing pneumonia, awareness has surged due to the COVID-19 pandemic. Furthermore, with the advent of rapid molecular diagnostics, the contribution of respiratory viral pathogens in pneumonia has become clearer (Seema J, et al. N Engl J Med. 2015 Jul 30;373[5]:415-27). Despite COVID-19 remaining a substantial threat, infection rates with other respiratory viruses are on the rise and will continue to increase during colder months. Here, we will provide an update on influenza and RSV:
Currently, influenza activity in the United States is low (National Center for Immunization and Respiratory Diseases. FluView. 2023 Oct 4. https://www.cdc.gov/flu/weekly/index.htm). Vaccination coverage for US adults during the previous influenza season stood at 47% (Centers for Disease Control and Prevention. FluVaxView Vaccination Dashboard. 2023 Oct 4. https://www.cdc.gov/flu/fluvaxview/dashboard/vaccination-dashboard.html). Hospitalizations were estimated to range between 300,000 and 650,000, a significant increase from the 2021-2022 season, which saw about 100,000 hospitalizations (Centers for Disease Control and Prevention. Preliminary In-Season Estimates of Influenza Burden. 2023 Oct 4. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm). Data from the Southern Hemisphere’s recent influenza season indicates a 52% vaccine efficacy in preventing influenza-associated hospitalizations (Fowlkes AL, et al. MMWR Morb Mortal Wkly Rep. 2023 Sep 15;72[37]:1010-5). Influenza hospitalization rates are likely returning to higher pre-COVID-19 levels.
Respiratory Syncytial Virus (RSV) is a seasonal pathogen causing substantial morbidity and mortality. This year, two new vaccines have become available to prevent RSV-associated lower respiratory tract diseases, boasting a vaccine effectiveness of over 80% for the first and over 70% for the second season post-administration (Melgar M, et al. MMWR Morb Mortal Wkly Rep. 2023 Jul 21;72[29]:793-801). The CDC’s Advisory Committee on Immunization Practices recommends a single dose for adults over 60, and one vaccine is FDA-approved for pregnant individuals (32-36 weeks gestation) to provide passive infant immunity.
In summary, both the current influenza vaccine and the new RSV vaccines demonstrate effectiveness and are strongly recommended, alongside an updated COVID-19 vaccine.
John Huston, MD
Jamie Felzer, MD, MPH – Section Fellow-in-Training
Charles Dela Cruz, MD – Section Member-at-Large
Sebastian Kurz, MD, FCCP – Network Member-at-Large
Chest Infections & Disaster Response Network
Chest Infections Section
November 12 marks World Pneumonia Day, and while it has long been recognized that viruses play a significant role in causing pneumonia, awareness has surged due to the COVID-19 pandemic. Furthermore, with the advent of rapid molecular diagnostics, the contribution of respiratory viral pathogens in pneumonia has become clearer (Seema J, et al. N Engl J Med. 2015 Jul 30;373[5]:415-27). Despite COVID-19 remaining a substantial threat, infection rates with other respiratory viruses are on the rise and will continue to increase during colder months. Here, we will provide an update on influenza and RSV:
Currently, influenza activity in the United States is low (National Center for Immunization and Respiratory Diseases. FluView. 2023 Oct 4. https://www.cdc.gov/flu/weekly/index.htm). Vaccination coverage for US adults during the previous influenza season stood at 47% (Centers for Disease Control and Prevention. FluVaxView Vaccination Dashboard. 2023 Oct 4. https://www.cdc.gov/flu/fluvaxview/dashboard/vaccination-dashboard.html). Hospitalizations were estimated to range between 300,000 and 650,000, a significant increase from the 2021-2022 season, which saw about 100,000 hospitalizations (Centers for Disease Control and Prevention. Preliminary In-Season Estimates of Influenza Burden. 2023 Oct 4. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm). Data from the Southern Hemisphere’s recent influenza season indicates a 52% vaccine efficacy in preventing influenza-associated hospitalizations (Fowlkes AL, et al. MMWR Morb Mortal Wkly Rep. 2023 Sep 15;72[37]:1010-5). Influenza hospitalization rates are likely returning to higher pre-COVID-19 levels.
Respiratory Syncytial Virus (RSV) is a seasonal pathogen causing substantial morbidity and mortality. This year, two new vaccines have become available to prevent RSV-associated lower respiratory tract diseases, boasting a vaccine effectiveness of over 80% for the first and over 70% for the second season post-administration (Melgar M, et al. MMWR Morb Mortal Wkly Rep. 2023 Jul 21;72[29]:793-801). The CDC’s Advisory Committee on Immunization Practices recommends a single dose for adults over 60, and one vaccine is FDA-approved for pregnant individuals (32-36 weeks gestation) to provide passive infant immunity.
In summary, both the current influenza vaccine and the new RSV vaccines demonstrate effectiveness and are strongly recommended, alongside an updated COVID-19 vaccine.
John Huston, MD
Jamie Felzer, MD, MPH – Section Fellow-in-Training
Charles Dela Cruz, MD – Section Member-at-Large
Sebastian Kurz, MD, FCCP – Network Member-at-Large
Chest Infections & Disaster Response Network
Chest Infections Section
November 12 marks World Pneumonia Day, and while it has long been recognized that viruses play a significant role in causing pneumonia, awareness has surged due to the COVID-19 pandemic. Furthermore, with the advent of rapid molecular diagnostics, the contribution of respiratory viral pathogens in pneumonia has become clearer (Seema J, et al. N Engl J Med. 2015 Jul 30;373[5]:415-27). Despite COVID-19 remaining a substantial threat, infection rates with other respiratory viruses are on the rise and will continue to increase during colder months. Here, we will provide an update on influenza and RSV:
Currently, influenza activity in the United States is low (National Center for Immunization and Respiratory Diseases. FluView. 2023 Oct 4. https://www.cdc.gov/flu/weekly/index.htm). Vaccination coverage for US adults during the previous influenza season stood at 47% (Centers for Disease Control and Prevention. FluVaxView Vaccination Dashboard. 2023 Oct 4. https://www.cdc.gov/flu/fluvaxview/dashboard/vaccination-dashboard.html). Hospitalizations were estimated to range between 300,000 and 650,000, a significant increase from the 2021-2022 season, which saw about 100,000 hospitalizations (Centers for Disease Control and Prevention. Preliminary In-Season Estimates of Influenza Burden. 2023 Oct 4. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm). Data from the Southern Hemisphere’s recent influenza season indicates a 52% vaccine efficacy in preventing influenza-associated hospitalizations (Fowlkes AL, et al. MMWR Morb Mortal Wkly Rep. 2023 Sep 15;72[37]:1010-5). Influenza hospitalization rates are likely returning to higher pre-COVID-19 levels.
Respiratory Syncytial Virus (RSV) is a seasonal pathogen causing substantial morbidity and mortality. This year, two new vaccines have become available to prevent RSV-associated lower respiratory tract diseases, boasting a vaccine effectiveness of over 80% for the first and over 70% for the second season post-administration (Melgar M, et al. MMWR Morb Mortal Wkly Rep. 2023 Jul 21;72[29]:793-801). The CDC’s Advisory Committee on Immunization Practices recommends a single dose for adults over 60, and one vaccine is FDA-approved for pregnant individuals (32-36 weeks gestation) to provide passive infant immunity.
In summary, both the current influenza vaccine and the new RSV vaccines demonstrate effectiveness and are strongly recommended, alongside an updated COVID-19 vaccine.
John Huston, MD
Jamie Felzer, MD, MPH – Section Fellow-in-Training
Charles Dela Cruz, MD – Section Member-at-Large
Sebastian Kurz, MD, FCCP – Network Member-at-Large
Piperacillin-tazobactam poses no renal risk in adults with sepsis
TOPLINE:
METHODOLOGY:
The coadministration of piperacillin-tazobactam and vancomycin may raise the risk for AKI, according to a warning from the Food and Drug Administration.
The ACORN trial included 2,511 adults presenting to emergency department or intensive care unit with suspected infection.
Within 12 hours of presentation, these individuals were prescribed either cefepime (n = 1,214) or piperacillin-tazobactam (n = 1,297).
The primary outcome was the risk for the highest stage of AKI or death within 14 days of randomization.
TAKEAWAY:
The highest stage of AKI or death within 14 days did not differ significantly between the cefepime and piperacillin-tazobactam groups (odds ratio, 0.95; P = .56).
The incidence of major adverse kidney events by day 14 was not significantly different between the two groups (absolute risk difference, 1.4%; 95% confidence interval, −1.0% to 3.8%).
Patients in the cefepime versus piperacillin-tazobactam group had fewer days alive and free of delirium and coma within 14 days (OR, 0.79; 95% CI, 0.65-0.95).
IN PRACTICE:
In an accompanying editorial, Steven Y. C. Tong, department of infectious diseases, University of Melbourne, and colleagues wrote: “Because institutions must make decisions about which antibiotics to position on medical wards for rapid administration in patients meeting sepsis criteria, these data should offer solace that if the choice is made to use piperacillin-tazobactam, there is not an increased risk of AKI.”
SOURCE:
The study was led by Edward T. Qian, MD, of Vanderbilt University Medical Center, Nashville, Tenn. It was published online in JAMA with an accompanying editorial.
LIMITATIONS:
The study was conducted at a single academic center, which may limit the generalizability of findings.
Both patients and clinicians were not blinded to group assignment, which may have influenced clinical assessments like Richmond Agitation-Sedation Scale and CAM-ICU or the frequency of laboratory measurements like creatinine.
DISCLOSURES:
The project was supported by the Vanderbilt Institute for Clinical and Translational Research and several other sources, including grants from the National Center for Advancing Translational Sciences. Some authors declared receiving travel grant, personal fees, honoraria, and unrelated research support from various sources.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
The coadministration of piperacillin-tazobactam and vancomycin may raise the risk for AKI, according to a warning from the Food and Drug Administration.
The ACORN trial included 2,511 adults presenting to emergency department or intensive care unit with suspected infection.
Within 12 hours of presentation, these individuals were prescribed either cefepime (n = 1,214) or piperacillin-tazobactam (n = 1,297).
The primary outcome was the risk for the highest stage of AKI or death within 14 days of randomization.
TAKEAWAY:
The highest stage of AKI or death within 14 days did not differ significantly between the cefepime and piperacillin-tazobactam groups (odds ratio, 0.95; P = .56).
The incidence of major adverse kidney events by day 14 was not significantly different between the two groups (absolute risk difference, 1.4%; 95% confidence interval, −1.0% to 3.8%).
Patients in the cefepime versus piperacillin-tazobactam group had fewer days alive and free of delirium and coma within 14 days (OR, 0.79; 95% CI, 0.65-0.95).
IN PRACTICE:
In an accompanying editorial, Steven Y. C. Tong, department of infectious diseases, University of Melbourne, and colleagues wrote: “Because institutions must make decisions about which antibiotics to position on medical wards for rapid administration in patients meeting sepsis criteria, these data should offer solace that if the choice is made to use piperacillin-tazobactam, there is not an increased risk of AKI.”
SOURCE:
The study was led by Edward T. Qian, MD, of Vanderbilt University Medical Center, Nashville, Tenn. It was published online in JAMA with an accompanying editorial.
LIMITATIONS:
The study was conducted at a single academic center, which may limit the generalizability of findings.
Both patients and clinicians were not blinded to group assignment, which may have influenced clinical assessments like Richmond Agitation-Sedation Scale and CAM-ICU or the frequency of laboratory measurements like creatinine.
DISCLOSURES:
The project was supported by the Vanderbilt Institute for Clinical and Translational Research and several other sources, including grants from the National Center for Advancing Translational Sciences. Some authors declared receiving travel grant, personal fees, honoraria, and unrelated research support from various sources.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
The coadministration of piperacillin-tazobactam and vancomycin may raise the risk for AKI, according to a warning from the Food and Drug Administration.
The ACORN trial included 2,511 adults presenting to emergency department or intensive care unit with suspected infection.
Within 12 hours of presentation, these individuals were prescribed either cefepime (n = 1,214) or piperacillin-tazobactam (n = 1,297).
The primary outcome was the risk for the highest stage of AKI or death within 14 days of randomization.
TAKEAWAY:
The highest stage of AKI or death within 14 days did not differ significantly between the cefepime and piperacillin-tazobactam groups (odds ratio, 0.95; P = .56).
The incidence of major adverse kidney events by day 14 was not significantly different between the two groups (absolute risk difference, 1.4%; 95% confidence interval, −1.0% to 3.8%).
Patients in the cefepime versus piperacillin-tazobactam group had fewer days alive and free of delirium and coma within 14 days (OR, 0.79; 95% CI, 0.65-0.95).
IN PRACTICE:
In an accompanying editorial, Steven Y. C. Tong, department of infectious diseases, University of Melbourne, and colleagues wrote: “Because institutions must make decisions about which antibiotics to position on medical wards for rapid administration in patients meeting sepsis criteria, these data should offer solace that if the choice is made to use piperacillin-tazobactam, there is not an increased risk of AKI.”
SOURCE:
The study was led by Edward T. Qian, MD, of Vanderbilt University Medical Center, Nashville, Tenn. It was published online in JAMA with an accompanying editorial.
LIMITATIONS:
The study was conducted at a single academic center, which may limit the generalizability of findings.
Both patients and clinicians were not blinded to group assignment, which may have influenced clinical assessments like Richmond Agitation-Sedation Scale and CAM-ICU or the frequency of laboratory measurements like creatinine.
DISCLOSURES:
The project was supported by the Vanderbilt Institute for Clinical and Translational Research and several other sources, including grants from the National Center for Advancing Translational Sciences. Some authors declared receiving travel grant, personal fees, honoraria, and unrelated research support from various sources.
A version of this article appeared on Medscape.com.
Tech encourages HIV prevention among women
Access to technology, particularly cellphones, is tied to a higher awareness of pre-exposure prophylaxis (PrEP) in women, according to survey results presented at the Association of Nurses in AIDS Care 2023 Annual Meeting.
Those with limited access to technology, older women, and women who had been incarcerated were also less likely to be aware of their medication options.
Researchers collected responses from 206 women in New York and Philadelphia by computer survey. The women were HIV negative and eligible to receive medication but were not currently taking any.
Most participants were Black (61%) or Hispanic (24%), and the average age of participants was 39 years. Nearly 60% of the group reported they were not aware of PrEP.
Younger women, Hispanic women, women who had not been incarcerated, and women with access to technology were most likely to be aware that they could take medication to prevent HIV.
“Women who utilized their cell phones for activities such as texting, emailing, watching videos, playing games, downloading apps, and accessing social media were more likely to be aware of PrEP,” point out the researchers led by Su Kyung Kim, PhD, WHNP-BC, an assistant professor at Thomas Jefferson University, Philadelphia.
These findings could help direct efforts to increase awareness among women where uptake has remained low, the researchers report. “Mobile technologies, in particular, offer a nimble, customizable, and accessible way to reach this target population and increase awareness of PrEP.”
A version of this article first appeared on Medscape.com.
Access to technology, particularly cellphones, is tied to a higher awareness of pre-exposure prophylaxis (PrEP) in women, according to survey results presented at the Association of Nurses in AIDS Care 2023 Annual Meeting.
Those with limited access to technology, older women, and women who had been incarcerated were also less likely to be aware of their medication options.
Researchers collected responses from 206 women in New York and Philadelphia by computer survey. The women were HIV negative and eligible to receive medication but were not currently taking any.
Most participants were Black (61%) or Hispanic (24%), and the average age of participants was 39 years. Nearly 60% of the group reported they were not aware of PrEP.
Younger women, Hispanic women, women who had not been incarcerated, and women with access to technology were most likely to be aware that they could take medication to prevent HIV.
“Women who utilized their cell phones for activities such as texting, emailing, watching videos, playing games, downloading apps, and accessing social media were more likely to be aware of PrEP,” point out the researchers led by Su Kyung Kim, PhD, WHNP-BC, an assistant professor at Thomas Jefferson University, Philadelphia.
These findings could help direct efforts to increase awareness among women where uptake has remained low, the researchers report. “Mobile technologies, in particular, offer a nimble, customizable, and accessible way to reach this target population and increase awareness of PrEP.”
A version of this article first appeared on Medscape.com.
Access to technology, particularly cellphones, is tied to a higher awareness of pre-exposure prophylaxis (PrEP) in women, according to survey results presented at the Association of Nurses in AIDS Care 2023 Annual Meeting.
Those with limited access to technology, older women, and women who had been incarcerated were also less likely to be aware of their medication options.
Researchers collected responses from 206 women in New York and Philadelphia by computer survey. The women were HIV negative and eligible to receive medication but were not currently taking any.
Most participants were Black (61%) or Hispanic (24%), and the average age of participants was 39 years. Nearly 60% of the group reported they were not aware of PrEP.
Younger women, Hispanic women, women who had not been incarcerated, and women with access to technology were most likely to be aware that they could take medication to prevent HIV.
“Women who utilized their cell phones for activities such as texting, emailing, watching videos, playing games, downloading apps, and accessing social media were more likely to be aware of PrEP,” point out the researchers led by Su Kyung Kim, PhD, WHNP-BC, an assistant professor at Thomas Jefferson University, Philadelphia.
These findings could help direct efforts to increase awareness among women where uptake has remained low, the researchers report. “Mobile technologies, in particular, offer a nimble, customizable, and accessible way to reach this target population and increase awareness of PrEP.”
A version of this article first appeared on Medscape.com.
Upper respiratory infections: Viral testing in primary care
It’s upper respiratory infection (URI) season. The following is a clinical scenario drawn from my own practice. I’ll tell you what I plan to do, but I’m most interested in crowdsourcing a response from all of you to collectively determine best practice. So please answer the polling questions and contribute your thoughts in the comments, whether you agree or disagree with me.
The patient
The patient is a 69-year-old woman with a 3-day history of cough, nasal congestion, malaise, tactile fever, and poor appetite. She has no sick contacts. She denies dyspnea, presyncope, and chest pain. She has tried guaifenesin and ibuprofen for her symptoms, which helped a little.
She is up to date on immunizations, including four doses of COVID-19 vaccine and the influenza vaccine, which she received 2 months ago.
The patient has a history of heart failure with reduced ejection fraction, coronary artery disease, hypertension, chronic kidney disease stage 3aA2, obesity, and osteoarthritis. Current medications include atorvastatin, losartan, metoprolol, and aspirin.
Her weight is stable at 212 lb, and her vital signs today are:
- Temperature: 37.5° C
- Pulse: 60 beats/min
- Blood pressure: 150/88 mm Hg
- Respiration rate: 14 breaths/min
- SpO2: 93% on room air
What information is most critical before deciding on management?
Your peers chose:
- The patient’s history of viral URIs
14%
- Whether her cough is productive and the color of the sputum
38%
- How well this season’s flu vaccine matches circulating influenza viruses
8%
- Local epidemiology of major viral pathogens (e.g., SARS-CoV-2, influenza, RSV)
40%
Dr. Vega’s take
To provide the best care for our patients when they are threatened with multiple viral upper respiratory pathogens, it is imperative that clinicians have some idea regarding the epidemiology of viral infections, with as much local data as possible. This knowledge will help direct appropriate testing and treatment.
Modern viral molecular testing platforms are highly accurate, but they are not infallible. Small flaws in specificity and sensitivity of testing are magnified when community viral circulation is low. In a U.K. study conducted during a period of low COVID-19 prevalence, the positive predictive value of reverse-transcriptase polymerase chain reaction (RT-PCR) testing was just 16%. Although the negative predictive value was much higher, the false-positive rate of testing was still 0.5%. The authors of the study describe important potential consequences of false-positive results, such as being temporarily removed from an organ transplant list and unnecessary contact tracing.
Testing and treatment
Your county public health department maintains a website describing local activity of SARS-CoV-2 and influenza. Both viruses are in heavy circulation now.
What is the next best step in this patient’s management?
Your peers chose:
- Treat empirically with ritonavir-boosted nirmatrelvir
7%
- Treat empirically with oseltamivir or baloxavir
14%
- Perform lab-based multiplex RT-PCR testing and wait to treat on the basis of results
34%
- Perform rapid nucleic acid amplification testing (NAAT) and treat on the basis of results
45%
Every practice has different resources and should use the best means available to treat patients. Ideally, this patient would undergo rapid NAAT with results available within 30 minutes. Test results will help guide not only treatment decisions but also infection-control measures.
The Infectious Diseases Society of America has provided updates for testing for URIs since the onset of the COVID-19 pandemic. Both laboratory-based and point-of-care rapid NAATs are recommended for testing. Rapid NAATs have been demonstrated to have a sensitivity of 96% and specificity of 100% in the detection of SARS-CoV-2. Obviously, they also offer a highly efficient means to make treatment and isolation decisions.
There are multiple platforms for molecular testing available. Laboratory-based platforms can test for dozens of potential pathogens, including bacteria. Rapid NAATs often have the ability to test for SARS-CoV-2, influenza, and respiratory syncytial virus (RSV). This functionality is important, because these infections generally are difficult to discriminate on the basis of clinical information alone.
The IDSA clearly recognizes the challenges of trying to manage cases of URI. For example, they state that testing of the anterior nares (AN) or oropharynx (OP) is acceptable, even though testing from the nasopharynx offers increased sensitivity. However, testing at the AN/OP allows for patient self-collection of samples, which is also recommended as an option by the IDSA. In an analysis of six cohort studies, the pooled sensitivity of patient-collected nasopharyngeal samples from the AN/OP was 88%, whereas the respective value for samples taken by health care providers was 95%.
The U.S. Centers for Disease Control and Prevention also provides recommendations for the management of patients with acute upper respiratory illness. Patients who are sick enough to be hospitalized should be tested at least for SARS-CoV-2 and influenza using molecular assays. Outpatients should be tested for SARS-CoV-2 with either molecular or antigen testing, and influenza testing should be offered if the findings will change decisions regarding treatment or isolation. Practically speaking, the recommendations for influenza testing mean that most individuals should be tested, including patients at high risk for complications of influenza and those who might have exposure to individuals at high risk.
Treatment of COVID-19 should only be provided in cases of a positive test within 5 days of symptom onset. However, clinicians may treat patients with anti-influenza medications presumptively if test results are not immediately available and the patient has worsening symptoms or is in a group at high risk for complications.
What are some of the challenges that you have faced during the COVID-19 pandemic regarding the management of patients with acute URIs? What have you found in terms of solutions, and where do gaps in quality of care persist? Please add your comments. I will review and circle back with a response. Thank you!
A version of this article first appeared on Medscape.com.
It’s upper respiratory infection (URI) season. The following is a clinical scenario drawn from my own practice. I’ll tell you what I plan to do, but I’m most interested in crowdsourcing a response from all of you to collectively determine best practice. So please answer the polling questions and contribute your thoughts in the comments, whether you agree or disagree with me.
The patient
The patient is a 69-year-old woman with a 3-day history of cough, nasal congestion, malaise, tactile fever, and poor appetite. She has no sick contacts. She denies dyspnea, presyncope, and chest pain. She has tried guaifenesin and ibuprofen for her symptoms, which helped a little.
She is up to date on immunizations, including four doses of COVID-19 vaccine and the influenza vaccine, which she received 2 months ago.
The patient has a history of heart failure with reduced ejection fraction, coronary artery disease, hypertension, chronic kidney disease stage 3aA2, obesity, and osteoarthritis. Current medications include atorvastatin, losartan, metoprolol, and aspirin.
Her weight is stable at 212 lb, and her vital signs today are:
- Temperature: 37.5° C
- Pulse: 60 beats/min
- Blood pressure: 150/88 mm Hg
- Respiration rate: 14 breaths/min
- SpO2: 93% on room air
What information is most critical before deciding on management?
Your peers chose:
- The patient’s history of viral URIs
14%
- Whether her cough is productive and the color of the sputum
38%
- How well this season’s flu vaccine matches circulating influenza viruses
8%
- Local epidemiology of major viral pathogens (e.g., SARS-CoV-2, influenza, RSV)
40%
Dr. Vega’s take
To provide the best care for our patients when they are threatened with multiple viral upper respiratory pathogens, it is imperative that clinicians have some idea regarding the epidemiology of viral infections, with as much local data as possible. This knowledge will help direct appropriate testing and treatment.
Modern viral molecular testing platforms are highly accurate, but they are not infallible. Small flaws in specificity and sensitivity of testing are magnified when community viral circulation is low. In a U.K. study conducted during a period of low COVID-19 prevalence, the positive predictive value of reverse-transcriptase polymerase chain reaction (RT-PCR) testing was just 16%. Although the negative predictive value was much higher, the false-positive rate of testing was still 0.5%. The authors of the study describe important potential consequences of false-positive results, such as being temporarily removed from an organ transplant list and unnecessary contact tracing.
Testing and treatment
Your county public health department maintains a website describing local activity of SARS-CoV-2 and influenza. Both viruses are in heavy circulation now.
What is the next best step in this patient’s management?
Your peers chose:
- Treat empirically with ritonavir-boosted nirmatrelvir
7%
- Treat empirically with oseltamivir or baloxavir
14%
- Perform lab-based multiplex RT-PCR testing and wait to treat on the basis of results
34%
- Perform rapid nucleic acid amplification testing (NAAT) and treat on the basis of results
45%
Every practice has different resources and should use the best means available to treat patients. Ideally, this patient would undergo rapid NAAT with results available within 30 minutes. Test results will help guide not only treatment decisions but also infection-control measures.
The Infectious Diseases Society of America has provided updates for testing for URIs since the onset of the COVID-19 pandemic. Both laboratory-based and point-of-care rapid NAATs are recommended for testing. Rapid NAATs have been demonstrated to have a sensitivity of 96% and specificity of 100% in the detection of SARS-CoV-2. Obviously, they also offer a highly efficient means to make treatment and isolation decisions.
There are multiple platforms for molecular testing available. Laboratory-based platforms can test for dozens of potential pathogens, including bacteria. Rapid NAATs often have the ability to test for SARS-CoV-2, influenza, and respiratory syncytial virus (RSV). This functionality is important, because these infections generally are difficult to discriminate on the basis of clinical information alone.
The IDSA clearly recognizes the challenges of trying to manage cases of URI. For example, they state that testing of the anterior nares (AN) or oropharynx (OP) is acceptable, even though testing from the nasopharynx offers increased sensitivity. However, testing at the AN/OP allows for patient self-collection of samples, which is also recommended as an option by the IDSA. In an analysis of six cohort studies, the pooled sensitivity of patient-collected nasopharyngeal samples from the AN/OP was 88%, whereas the respective value for samples taken by health care providers was 95%.
The U.S. Centers for Disease Control and Prevention also provides recommendations for the management of patients with acute upper respiratory illness. Patients who are sick enough to be hospitalized should be tested at least for SARS-CoV-2 and influenza using molecular assays. Outpatients should be tested for SARS-CoV-2 with either molecular or antigen testing, and influenza testing should be offered if the findings will change decisions regarding treatment or isolation. Practically speaking, the recommendations for influenza testing mean that most individuals should be tested, including patients at high risk for complications of influenza and those who might have exposure to individuals at high risk.
Treatment of COVID-19 should only be provided in cases of a positive test within 5 days of symptom onset. However, clinicians may treat patients with anti-influenza medications presumptively if test results are not immediately available and the patient has worsening symptoms or is in a group at high risk for complications.
What are some of the challenges that you have faced during the COVID-19 pandemic regarding the management of patients with acute URIs? What have you found in terms of solutions, and where do gaps in quality of care persist? Please add your comments. I will review and circle back with a response. Thank you!
A version of this article first appeared on Medscape.com.
It’s upper respiratory infection (URI) season. The following is a clinical scenario drawn from my own practice. I’ll tell you what I plan to do, but I’m most interested in crowdsourcing a response from all of you to collectively determine best practice. So please answer the polling questions and contribute your thoughts in the comments, whether you agree or disagree with me.
The patient
The patient is a 69-year-old woman with a 3-day history of cough, nasal congestion, malaise, tactile fever, and poor appetite. She has no sick contacts. She denies dyspnea, presyncope, and chest pain. She has tried guaifenesin and ibuprofen for her symptoms, which helped a little.
She is up to date on immunizations, including four doses of COVID-19 vaccine and the influenza vaccine, which she received 2 months ago.
The patient has a history of heart failure with reduced ejection fraction, coronary artery disease, hypertension, chronic kidney disease stage 3aA2, obesity, and osteoarthritis. Current medications include atorvastatin, losartan, metoprolol, and aspirin.
Her weight is stable at 212 lb, and her vital signs today are:
- Temperature: 37.5° C
- Pulse: 60 beats/min
- Blood pressure: 150/88 mm Hg
- Respiration rate: 14 breaths/min
- SpO2: 93% on room air
What information is most critical before deciding on management?
Your peers chose:
- The patient’s history of viral URIs
14%
- Whether her cough is productive and the color of the sputum
38%
- How well this season’s flu vaccine matches circulating influenza viruses
8%
- Local epidemiology of major viral pathogens (e.g., SARS-CoV-2, influenza, RSV)
40%
Dr. Vega’s take
To provide the best care for our patients when they are threatened with multiple viral upper respiratory pathogens, it is imperative that clinicians have some idea regarding the epidemiology of viral infections, with as much local data as possible. This knowledge will help direct appropriate testing and treatment.
Modern viral molecular testing platforms are highly accurate, but they are not infallible. Small flaws in specificity and sensitivity of testing are magnified when community viral circulation is low. In a U.K. study conducted during a period of low COVID-19 prevalence, the positive predictive value of reverse-transcriptase polymerase chain reaction (RT-PCR) testing was just 16%. Although the negative predictive value was much higher, the false-positive rate of testing was still 0.5%. The authors of the study describe important potential consequences of false-positive results, such as being temporarily removed from an organ transplant list and unnecessary contact tracing.
Testing and treatment
Your county public health department maintains a website describing local activity of SARS-CoV-2 and influenza. Both viruses are in heavy circulation now.
What is the next best step in this patient’s management?
Your peers chose:
- Treat empirically with ritonavir-boosted nirmatrelvir
7%
- Treat empirically with oseltamivir or baloxavir
14%
- Perform lab-based multiplex RT-PCR testing and wait to treat on the basis of results
34%
- Perform rapid nucleic acid amplification testing (NAAT) and treat on the basis of results
45%
Every practice has different resources and should use the best means available to treat patients. Ideally, this patient would undergo rapid NAAT with results available within 30 minutes. Test results will help guide not only treatment decisions but also infection-control measures.
The Infectious Diseases Society of America has provided updates for testing for URIs since the onset of the COVID-19 pandemic. Both laboratory-based and point-of-care rapid NAATs are recommended for testing. Rapid NAATs have been demonstrated to have a sensitivity of 96% and specificity of 100% in the detection of SARS-CoV-2. Obviously, they also offer a highly efficient means to make treatment and isolation decisions.
There are multiple platforms for molecular testing available. Laboratory-based platforms can test for dozens of potential pathogens, including bacteria. Rapid NAATs often have the ability to test for SARS-CoV-2, influenza, and respiratory syncytial virus (RSV). This functionality is important, because these infections generally are difficult to discriminate on the basis of clinical information alone.
The IDSA clearly recognizes the challenges of trying to manage cases of URI. For example, they state that testing of the anterior nares (AN) or oropharynx (OP) is acceptable, even though testing from the nasopharynx offers increased sensitivity. However, testing at the AN/OP allows for patient self-collection of samples, which is also recommended as an option by the IDSA. In an analysis of six cohort studies, the pooled sensitivity of patient-collected nasopharyngeal samples from the AN/OP was 88%, whereas the respective value for samples taken by health care providers was 95%.
The U.S. Centers for Disease Control and Prevention also provides recommendations for the management of patients with acute upper respiratory illness. Patients who are sick enough to be hospitalized should be tested at least for SARS-CoV-2 and influenza using molecular assays. Outpatients should be tested for SARS-CoV-2 with either molecular or antigen testing, and influenza testing should be offered if the findings will change decisions regarding treatment or isolation. Practically speaking, the recommendations for influenza testing mean that most individuals should be tested, including patients at high risk for complications of influenza and those who might have exposure to individuals at high risk.
Treatment of COVID-19 should only be provided in cases of a positive test within 5 days of symptom onset. However, clinicians may treat patients with anti-influenza medications presumptively if test results are not immediately available and the patient has worsening symptoms or is in a group at high risk for complications.
What are some of the challenges that you have faced during the COVID-19 pandemic regarding the management of patients with acute URIs? What have you found in terms of solutions, and where do gaps in quality of care persist? Please add your comments. I will review and circle back with a response. Thank you!
A version of this article first appeared on Medscape.com.
Vaccination status doesn’t impact infectivity timeline in kids
TOPLINE:
according to a new study. The findings indicate that return-to-school policies for infected children may not need to differ on the basis of vaccine or booster status.
METHODOLOGY:
- The study looked at 76 children, both vaccinated and unvaccinated, aged 7-18 years who had tested positive for COVID-19.
- Researchers performed nasal swabs every other day for 10 days, sending the swab to a lab to be tested for cytopathic effect (CPE), or cell death, an indicator of infectivity.
- They took pictures of the lab cultures to look for signs of CPE starting at 6 days after the test, which corresponds to the 2nd day after testing positive.
- If CPE characteristics were present in at least 30% of images, children were considered infectious.
TAKEAWAY:
- By day 3, half of study participants were noninfectious, independent of whether they had been vaccinated.
- By day 5, less than 25% of children were infectious, regardless of vaccination status.
- Among vaccinated children, the duration of infectivity was similar for children who received a booster and for those who had not.
- The authors state that these results are consistent with those of a study in adults with the Omicron variant, which found no association between vaccination status and infectivity duration.
IN PRACTICE:
“Our findings suggest that current policies requiring isolation for 5 days after a positive test might be appropriate, as the majority of children were not infectious by day 5. Additionally, return-to-school policies may not need to discriminate by vaccine or booster status,” the authors wrote.
SOURCE:
The study was led by Neeraj Sood, PhD, of the University of Southern California in Los Angeles, and was published in JAMA Pediatrics.
LIMITATIONS:
The sample size was small, and the authors identified the potential for nonresponse bias. The research did not include data from children who didn’t receive a test. CPE is the standard for estimating infectivity, but it can still carry inaccuracies.
DISCLOSURES:
The authors report no disclosures. The study was funded by RF Catalytic Capital.
A version of this article first appeared on Medscape.com.
TOPLINE:
according to a new study. The findings indicate that return-to-school policies for infected children may not need to differ on the basis of vaccine or booster status.
METHODOLOGY:
- The study looked at 76 children, both vaccinated and unvaccinated, aged 7-18 years who had tested positive for COVID-19.
- Researchers performed nasal swabs every other day for 10 days, sending the swab to a lab to be tested for cytopathic effect (CPE), or cell death, an indicator of infectivity.
- They took pictures of the lab cultures to look for signs of CPE starting at 6 days after the test, which corresponds to the 2nd day after testing positive.
- If CPE characteristics were present in at least 30% of images, children were considered infectious.
TAKEAWAY:
- By day 3, half of study participants were noninfectious, independent of whether they had been vaccinated.
- By day 5, less than 25% of children were infectious, regardless of vaccination status.
- Among vaccinated children, the duration of infectivity was similar for children who received a booster and for those who had not.
- The authors state that these results are consistent with those of a study in adults with the Omicron variant, which found no association between vaccination status and infectivity duration.
IN PRACTICE:
“Our findings suggest that current policies requiring isolation for 5 days after a positive test might be appropriate, as the majority of children were not infectious by day 5. Additionally, return-to-school policies may not need to discriminate by vaccine or booster status,” the authors wrote.
SOURCE:
The study was led by Neeraj Sood, PhD, of the University of Southern California in Los Angeles, and was published in JAMA Pediatrics.
LIMITATIONS:
The sample size was small, and the authors identified the potential for nonresponse bias. The research did not include data from children who didn’t receive a test. CPE is the standard for estimating infectivity, but it can still carry inaccuracies.
DISCLOSURES:
The authors report no disclosures. The study was funded by RF Catalytic Capital.
A version of this article first appeared on Medscape.com.
TOPLINE:
according to a new study. The findings indicate that return-to-school policies for infected children may not need to differ on the basis of vaccine or booster status.
METHODOLOGY:
- The study looked at 76 children, both vaccinated and unvaccinated, aged 7-18 years who had tested positive for COVID-19.
- Researchers performed nasal swabs every other day for 10 days, sending the swab to a lab to be tested for cytopathic effect (CPE), or cell death, an indicator of infectivity.
- They took pictures of the lab cultures to look for signs of CPE starting at 6 days after the test, which corresponds to the 2nd day after testing positive.
- If CPE characteristics were present in at least 30% of images, children were considered infectious.
TAKEAWAY:
- By day 3, half of study participants were noninfectious, independent of whether they had been vaccinated.
- By day 5, less than 25% of children were infectious, regardless of vaccination status.
- Among vaccinated children, the duration of infectivity was similar for children who received a booster and for those who had not.
- The authors state that these results are consistent with those of a study in adults with the Omicron variant, which found no association between vaccination status and infectivity duration.
IN PRACTICE:
“Our findings suggest that current policies requiring isolation for 5 days after a positive test might be appropriate, as the majority of children were not infectious by day 5. Additionally, return-to-school policies may not need to discriminate by vaccine or booster status,” the authors wrote.
SOURCE:
The study was led by Neeraj Sood, PhD, of the University of Southern California in Los Angeles, and was published in JAMA Pediatrics.
LIMITATIONS:
The sample size was small, and the authors identified the potential for nonresponse bias. The research did not include data from children who didn’t receive a test. CPE is the standard for estimating infectivity, but it can still carry inaccuracies.
DISCLOSURES:
The authors report no disclosures. The study was funded by RF Catalytic Capital.
A version of this article first appeared on Medscape.com.