User login
Gut Biomarkers Accurately Flag Autism Spectrum Disorder
, new research shows.
The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.
Their study was published online in Nature Microbiology.
Beyond Bacteria
The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD.
However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear.
To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China.
After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD.
Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children.
A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls.
“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote.
They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets.
‘Exciting’ Possibilities
“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre.
“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added.
He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.
“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted.
This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
, new research shows.
The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.
Their study was published online in Nature Microbiology.
Beyond Bacteria
The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD.
However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear.
To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China.
After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD.
Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children.
A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls.
“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote.
They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets.
‘Exciting’ Possibilities
“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre.
“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added.
He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.
“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted.
This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
, new research shows.
The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.
Their study was published online in Nature Microbiology.
Beyond Bacteria
The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD.
However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear.
To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China.
After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD.
Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children.
A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls.
“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote.
They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets.
‘Exciting’ Possibilities
“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre.
“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added.
He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.
“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted.
This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
A version of this article first appeared on Medscape.com.
FROM NATURE MICROBIOLOGY
What Is a Blue Zone Certified Clinician?
It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.
Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.
The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.
For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.
Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.
In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.
The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health.
What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.
Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.
Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.
The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.
For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.
Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.
In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.
The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health.
What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.
Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.
Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.
The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.
For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.
Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.
In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.
The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health.
What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.
Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Common Antidepressants Ranked by Potential for Weight Gain
Eight commonly used antidepressants have been ranked by their weight gain potential.
Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopram, paroxetine, and duloxetine associated with the greatest.
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator.
“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release.
The findings were published online in Annals of Internal Medicine.
Real-World Data
Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications.
Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.
At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine.
The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.
Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.
Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.
Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).
The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months.
Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.
“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote.
The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article.
A version of this article appeared on Medscape.com.
Eight commonly used antidepressants have been ranked by their weight gain potential.
Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopram, paroxetine, and duloxetine associated with the greatest.
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator.
“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release.
The findings were published online in Annals of Internal Medicine.
Real-World Data
Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications.
Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.
At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine.
The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.
Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.
Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.
Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).
The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months.
Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.
“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote.
The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article.
A version of this article appeared on Medscape.com.
Eight commonly used antidepressants have been ranked by their weight gain potential.
Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopram, paroxetine, and duloxetine associated with the greatest.
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator.
“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release.
The findings were published online in Annals of Internal Medicine.
Real-World Data
Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications.
Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.
At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine.
The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.
Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.
Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).
Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.
Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).
The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months.
Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.
“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote.
The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article.
A version of this article appeared on Medscape.com.
Specific Antipsychotics Linked to Increased Pneumonia Risk
TOPLINE:
High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.
METHODOLOGY:
- Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
- Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
- After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
- The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.
TAKEAWAY:
- During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
- Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
- Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
- Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).
IN PRACTICE:
“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”
SOURCE:
The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.
LIMITATIONS:
The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.
DISCLOSURES:
The study was funded by the Finnish Ministry of Social Affairs and Health.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article first appeared on Medscape.com.
TOPLINE:
High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.
METHODOLOGY:
- Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
- Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
- After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
- The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.
TAKEAWAY:
- During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
- Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
- Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
- Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).
IN PRACTICE:
“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”
SOURCE:
The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.
LIMITATIONS:
The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.
DISCLOSURES:
The study was funded by the Finnish Ministry of Social Affairs and Health.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article first appeared on Medscape.com.
TOPLINE:
High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.
METHODOLOGY:
- Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
- Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
- After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
- The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.
TAKEAWAY:
- During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
- Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
- Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
- Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).
IN PRACTICE:
“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”
SOURCE:
The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.
LIMITATIONS:
The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.
DISCLOSURES:
The study was funded by the Finnish Ministry of Social Affairs and Health.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article first appeared on Medscape.com.
Medication Overuse in Mental Health Facilities: Not the Answer, Regardless of Consent, Says Ethicist
This transcript has been edited for clarity.
There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve.
Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.
What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.
California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.”
That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”
They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs.
Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it.
Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?”
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve.
Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.
What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.
California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.”
That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”
They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs.
Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it.
Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?”
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.
A version of this article first appeared on Medscape.com.
This transcript has been edited for clarity.
There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve.
Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.
What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.
California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.”
That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”
They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs.
Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it.
Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?”
Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.
A version of this article first appeared on Medscape.com.
Climate Change, Climate Anxiety, Climate Hope
Clinical Case: Sol is a 10 year-old cisgender White girl who appears sad at her annual well visit. On further inquiry she describes that her father is angry that there is no snow, her mother keeps talking about the forests disappearing, and local flooding closed down her favorite family restaurant for good. She is worried “the planet is in trouble and there’s nothing we can do” so much that she gets stomachaches when she thinks about it.
Climate Anxiety
Climate change is a complex phenomenon that has been subject to decades of political disagreement. Lobbying by groups like the fossil fuel industry, state legislation to implement recycling, oil spills and pollution disasters, and outspoken icons like former US Vice President Al Gore and Swedish activist Greta Thunberg have kept the climate crisis a hot topic. What was once a slow burn has begun to boil as climate-related disasters occur — wildfires, droughts, floods, and increasingly powerful and frequent severe weather events — alongside increasing temperatures globally. With heroic efforts, the UN-convened Paris Agreement was adopted by 196 nations in 2015 with ambitious goals to reduce global greenhouse emissions and limit Earth’s rising temperature.1 Yet doomsday headlines on this topic remain a regular occurrence.
Between sensationalized news coverage, political controversy, and international disasters, it is no wonder some youth are overwhelmed.
.2 Direct effects could include a family losing their home to flooding or wildfires, resulting in post-traumatic stress symptoms or an anxiety disorder. Indirect effects might include a drought that results in loss of agricultural income leading to a forced migration, family stress and/or separation, and disordered substance use.
Add to these direct and indirect effects the cultural and media pressures, such as frequent debate about the consequences of failure to reduce greenhouse gas emissions by 2030,3 and youth can encounter a sense of existential dread that intersects squarely with their developmental trajectory. “Climate anxiety,” also called eco-anxiety or solastalgia, refers to “distress about climate change and its impacts on the landscape and human existence.”4 Eco-anxiety is not a formal psychiatric diagnosis and is not found in the DSM-5-TR.
In practice, existential climate-centered fears range from worrying about what to do to help with the climate crisis all the way to being overwhelmed about humanity’s future to the point of dysfunction. Some argue that this is not pathological, but rather a practical response to real-world phenomena.5 An international survey of youth found 59% were “very or extremely” worried about climate change with a mix of associated emotions, and almost half described eco-anxiety as something that affects their daily functioning.6 The climate crisis often amplifies the inequities already experienced by youth from historically marginalized groups.
Managing Climate Anxiety
Climate anxiety presents with many of the typical features of other anxieties. These include worries that cycle repetitively and intrusively through the mind, somatic distress such as headaches or stomachaches, and avoidance of things that remind one of the uncertainty and distress associated with climate change. Because the climate crisis is so global and complex, hopelessness and fatigue are not uncommon.
However, climate anxiety can often be ameliorated with the typical approaches to treating anxiety. Borrowing from cognitive-behavioral and mindfulness-based interventions, many recommendations have been offered to help with eco-anxiety. External validation of youth’s concerns and fears is a starting point that might build a teen’s capacity to tolerate distressing emotions about global warming.
Once reactions to climate change are acknowledged and accepted, space is created for reflection. This might include a balance of hope and pragmatic action. For example, renewable energy sources have made up an increasing share of the market over time with the world adding 50% more renewable capacity in 2023.7 Seventy-two percent of Americans acknowledge global warming, 75% feel schools should teach about consequences and solutions for global warming, and 79% support investment in renewable energy.8
Climate activism itself has been shown to buffer climate anxiety, particularly when implemented collectively rather than individually.4 Nature connectedness, or cognitive and emotional connections with nature, not only has many direct mental health benefits, but is also associated with climate activism.9 Many other integrative interventions can improve well-being while reducing ecological harm. Nutrition, physical activity, mindfulness, and sleep are youth mental health interventions with a strong evidence base that also reduce the carbon footprint and pollution attributable to psychiatric pharmaceuticals. Moreover, these climate-friendly interventions can improve family-connectedness, thus boosting resilience.
Without needing to become eco-warriors, healthcare providers can model sustainable practices while caring for patients. This might include having more plants in the office, recycling and composting at work, adding solar panels to the rooftop, or joining local parks prescription programs (see mygreendoctor.org, a nonprofit owned by the Florida Medical Association).
Next Steps
Sol is relieved to hear that many kids her age share her family’s concerns. A conversation about how to manage distressing emotions and physical feelings leads to a referral for brief cognitive behavioral interventions. Her parents join your visit to hear her concerns. They want to begin a family plan for climate action. You recommend the books How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other by Naomi Klein and The Parents’ Guide to Climate Revolution: 100 Ways to Build a Fossil-Free Future, Raise Empowered Kids, and Still Get a Good Night’s Sleep by Mary DeMocker.
Dr. Rosenfeld is associate professor of psychiatry and pediatrics at the University of Vermont, Burlington.
References
1. Maizland L. Global Climate Agreements: Successes and Failures. Council on Foreign Relations. https://www.cfr.org/backgrounder/paris-global-climate-change-agreements.
2. van Nieuwenhuizen A et al. The effects of climate change on child and adolescent mental health: Clinical considerations. Curr Psychiatry Rep. 2021 Dec 7;23(12):88. doi: 10.1007/s11920-021-01296-y.
3. Window to Reach Climate Goals ‘Rapidly Closing’, UN Report Warns. United Nations. https://news.un.org/en/story/2023/09/1140527.
4. Schwartz SEO et al. Climate change anxiety and mental health: Environmental activism as buffer. Curr Psychol. 2022 Feb 28:1-14. doi: 10.1007/s12144-022-02735-6.
5. Pihkala P. Anxiety and the ecological crisis: an analysis of eco-anxiety and climate anxiety. Sustainability. 2020;12:7836. doi: 10.3390/su12197836.
6. Hickman C et al. Climate Anxiety in Children and Young People and Their Beliefs About Government Responses to Climate Change: A Global Survey. Lancet Planet Health. 2021 Dec;5(12):e863-e873. doi: 10.1016/S2542-5196(21)00278-3.
7. IEA (2021), Global Energy Review 2021, IEA, Paris. https://www.iea.org/reports/global-energy-review-2021/renewables.
8. Marlon J et al. Yale Climate Opinion Maps 2023. https://climatecommunication.yale.edu/visualizations-data/ycom-us/.
9. Thomson EE, Roach SP. The Relationships Among Nature Connectedness, Climate Anxiety, Climate Action, Climate Knowledge, and Mental Health. Front Psychol. 2023 Nov 15:14:1241400. doi: 10.3389/fpsyg.2023.1241400.
Clinical Case: Sol is a 10 year-old cisgender White girl who appears sad at her annual well visit. On further inquiry she describes that her father is angry that there is no snow, her mother keeps talking about the forests disappearing, and local flooding closed down her favorite family restaurant for good. She is worried “the planet is in trouble and there’s nothing we can do” so much that she gets stomachaches when she thinks about it.
Climate Anxiety
Climate change is a complex phenomenon that has been subject to decades of political disagreement. Lobbying by groups like the fossil fuel industry, state legislation to implement recycling, oil spills and pollution disasters, and outspoken icons like former US Vice President Al Gore and Swedish activist Greta Thunberg have kept the climate crisis a hot topic. What was once a slow burn has begun to boil as climate-related disasters occur — wildfires, droughts, floods, and increasingly powerful and frequent severe weather events — alongside increasing temperatures globally. With heroic efforts, the UN-convened Paris Agreement was adopted by 196 nations in 2015 with ambitious goals to reduce global greenhouse emissions and limit Earth’s rising temperature.1 Yet doomsday headlines on this topic remain a regular occurrence.
Between sensationalized news coverage, political controversy, and international disasters, it is no wonder some youth are overwhelmed.
.2 Direct effects could include a family losing their home to flooding or wildfires, resulting in post-traumatic stress symptoms or an anxiety disorder. Indirect effects might include a drought that results in loss of agricultural income leading to a forced migration, family stress and/or separation, and disordered substance use.
Add to these direct and indirect effects the cultural and media pressures, such as frequent debate about the consequences of failure to reduce greenhouse gas emissions by 2030,3 and youth can encounter a sense of existential dread that intersects squarely with their developmental trajectory. “Climate anxiety,” also called eco-anxiety or solastalgia, refers to “distress about climate change and its impacts on the landscape and human existence.”4 Eco-anxiety is not a formal psychiatric diagnosis and is not found in the DSM-5-TR.
In practice, existential climate-centered fears range from worrying about what to do to help with the climate crisis all the way to being overwhelmed about humanity’s future to the point of dysfunction. Some argue that this is not pathological, but rather a practical response to real-world phenomena.5 An international survey of youth found 59% were “very or extremely” worried about climate change with a mix of associated emotions, and almost half described eco-anxiety as something that affects their daily functioning.6 The climate crisis often amplifies the inequities already experienced by youth from historically marginalized groups.
Managing Climate Anxiety
Climate anxiety presents with many of the typical features of other anxieties. These include worries that cycle repetitively and intrusively through the mind, somatic distress such as headaches or stomachaches, and avoidance of things that remind one of the uncertainty and distress associated with climate change. Because the climate crisis is so global and complex, hopelessness and fatigue are not uncommon.
However, climate anxiety can often be ameliorated with the typical approaches to treating anxiety. Borrowing from cognitive-behavioral and mindfulness-based interventions, many recommendations have been offered to help with eco-anxiety. External validation of youth’s concerns and fears is a starting point that might build a teen’s capacity to tolerate distressing emotions about global warming.
Once reactions to climate change are acknowledged and accepted, space is created for reflection. This might include a balance of hope and pragmatic action. For example, renewable energy sources have made up an increasing share of the market over time with the world adding 50% more renewable capacity in 2023.7 Seventy-two percent of Americans acknowledge global warming, 75% feel schools should teach about consequences and solutions for global warming, and 79% support investment in renewable energy.8
Climate activism itself has been shown to buffer climate anxiety, particularly when implemented collectively rather than individually.4 Nature connectedness, or cognitive and emotional connections with nature, not only has many direct mental health benefits, but is also associated with climate activism.9 Many other integrative interventions can improve well-being while reducing ecological harm. Nutrition, physical activity, mindfulness, and sleep are youth mental health interventions with a strong evidence base that also reduce the carbon footprint and pollution attributable to psychiatric pharmaceuticals. Moreover, these climate-friendly interventions can improve family-connectedness, thus boosting resilience.
Without needing to become eco-warriors, healthcare providers can model sustainable practices while caring for patients. This might include having more plants in the office, recycling and composting at work, adding solar panels to the rooftop, or joining local parks prescription programs (see mygreendoctor.org, a nonprofit owned by the Florida Medical Association).
Next Steps
Sol is relieved to hear that many kids her age share her family’s concerns. A conversation about how to manage distressing emotions and physical feelings leads to a referral for brief cognitive behavioral interventions. Her parents join your visit to hear her concerns. They want to begin a family plan for climate action. You recommend the books How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other by Naomi Klein and The Parents’ Guide to Climate Revolution: 100 Ways to Build a Fossil-Free Future, Raise Empowered Kids, and Still Get a Good Night’s Sleep by Mary DeMocker.
Dr. Rosenfeld is associate professor of psychiatry and pediatrics at the University of Vermont, Burlington.
References
1. Maizland L. Global Climate Agreements: Successes and Failures. Council on Foreign Relations. https://www.cfr.org/backgrounder/paris-global-climate-change-agreements.
2. van Nieuwenhuizen A et al. The effects of climate change on child and adolescent mental health: Clinical considerations. Curr Psychiatry Rep. 2021 Dec 7;23(12):88. doi: 10.1007/s11920-021-01296-y.
3. Window to Reach Climate Goals ‘Rapidly Closing’, UN Report Warns. United Nations. https://news.un.org/en/story/2023/09/1140527.
4. Schwartz SEO et al. Climate change anxiety and mental health: Environmental activism as buffer. Curr Psychol. 2022 Feb 28:1-14. doi: 10.1007/s12144-022-02735-6.
5. Pihkala P. Anxiety and the ecological crisis: an analysis of eco-anxiety and climate anxiety. Sustainability. 2020;12:7836. doi: 10.3390/su12197836.
6. Hickman C et al. Climate Anxiety in Children and Young People and Their Beliefs About Government Responses to Climate Change: A Global Survey. Lancet Planet Health. 2021 Dec;5(12):e863-e873. doi: 10.1016/S2542-5196(21)00278-3.
7. IEA (2021), Global Energy Review 2021, IEA, Paris. https://www.iea.org/reports/global-energy-review-2021/renewables.
8. Marlon J et al. Yale Climate Opinion Maps 2023. https://climatecommunication.yale.edu/visualizations-data/ycom-us/.
9. Thomson EE, Roach SP. The Relationships Among Nature Connectedness, Climate Anxiety, Climate Action, Climate Knowledge, and Mental Health. Front Psychol. 2023 Nov 15:14:1241400. doi: 10.3389/fpsyg.2023.1241400.
Clinical Case: Sol is a 10 year-old cisgender White girl who appears sad at her annual well visit. On further inquiry she describes that her father is angry that there is no snow, her mother keeps talking about the forests disappearing, and local flooding closed down her favorite family restaurant for good. She is worried “the planet is in trouble and there’s nothing we can do” so much that she gets stomachaches when she thinks about it.
Climate Anxiety
Climate change is a complex phenomenon that has been subject to decades of political disagreement. Lobbying by groups like the fossil fuel industry, state legislation to implement recycling, oil spills and pollution disasters, and outspoken icons like former US Vice President Al Gore and Swedish activist Greta Thunberg have kept the climate crisis a hot topic. What was once a slow burn has begun to boil as climate-related disasters occur — wildfires, droughts, floods, and increasingly powerful and frequent severe weather events — alongside increasing temperatures globally. With heroic efforts, the UN-convened Paris Agreement was adopted by 196 nations in 2015 with ambitious goals to reduce global greenhouse emissions and limit Earth’s rising temperature.1 Yet doomsday headlines on this topic remain a regular occurrence.
Between sensationalized news coverage, political controversy, and international disasters, it is no wonder some youth are overwhelmed.
.2 Direct effects could include a family losing their home to flooding or wildfires, resulting in post-traumatic stress symptoms or an anxiety disorder. Indirect effects might include a drought that results in loss of agricultural income leading to a forced migration, family stress and/or separation, and disordered substance use.
Add to these direct and indirect effects the cultural and media pressures, such as frequent debate about the consequences of failure to reduce greenhouse gas emissions by 2030,3 and youth can encounter a sense of existential dread that intersects squarely with their developmental trajectory. “Climate anxiety,” also called eco-anxiety or solastalgia, refers to “distress about climate change and its impacts on the landscape and human existence.”4 Eco-anxiety is not a formal psychiatric diagnosis and is not found in the DSM-5-TR.
In practice, existential climate-centered fears range from worrying about what to do to help with the climate crisis all the way to being overwhelmed about humanity’s future to the point of dysfunction. Some argue that this is not pathological, but rather a practical response to real-world phenomena.5 An international survey of youth found 59% were “very or extremely” worried about climate change with a mix of associated emotions, and almost half described eco-anxiety as something that affects their daily functioning.6 The climate crisis often amplifies the inequities already experienced by youth from historically marginalized groups.
Managing Climate Anxiety
Climate anxiety presents with many of the typical features of other anxieties. These include worries that cycle repetitively and intrusively through the mind, somatic distress such as headaches or stomachaches, and avoidance of things that remind one of the uncertainty and distress associated with climate change. Because the climate crisis is so global and complex, hopelessness and fatigue are not uncommon.
However, climate anxiety can often be ameliorated with the typical approaches to treating anxiety. Borrowing from cognitive-behavioral and mindfulness-based interventions, many recommendations have been offered to help with eco-anxiety. External validation of youth’s concerns and fears is a starting point that might build a teen’s capacity to tolerate distressing emotions about global warming.
Once reactions to climate change are acknowledged and accepted, space is created for reflection. This might include a balance of hope and pragmatic action. For example, renewable energy sources have made up an increasing share of the market over time with the world adding 50% more renewable capacity in 2023.7 Seventy-two percent of Americans acknowledge global warming, 75% feel schools should teach about consequences and solutions for global warming, and 79% support investment in renewable energy.8
Climate activism itself has been shown to buffer climate anxiety, particularly when implemented collectively rather than individually.4 Nature connectedness, or cognitive and emotional connections with nature, not only has many direct mental health benefits, but is also associated with climate activism.9 Many other integrative interventions can improve well-being while reducing ecological harm. Nutrition, physical activity, mindfulness, and sleep are youth mental health interventions with a strong evidence base that also reduce the carbon footprint and pollution attributable to psychiatric pharmaceuticals. Moreover, these climate-friendly interventions can improve family-connectedness, thus boosting resilience.
Without needing to become eco-warriors, healthcare providers can model sustainable practices while caring for patients. This might include having more plants in the office, recycling and composting at work, adding solar panels to the rooftop, or joining local parks prescription programs (see mygreendoctor.org, a nonprofit owned by the Florida Medical Association).
Next Steps
Sol is relieved to hear that many kids her age share her family’s concerns. A conversation about how to manage distressing emotions and physical feelings leads to a referral for brief cognitive behavioral interventions. Her parents join your visit to hear her concerns. They want to begin a family plan for climate action. You recommend the books How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other by Naomi Klein and The Parents’ Guide to Climate Revolution: 100 Ways to Build a Fossil-Free Future, Raise Empowered Kids, and Still Get a Good Night’s Sleep by Mary DeMocker.
Dr. Rosenfeld is associate professor of psychiatry and pediatrics at the University of Vermont, Burlington.
References
1. Maizland L. Global Climate Agreements: Successes and Failures. Council on Foreign Relations. https://www.cfr.org/backgrounder/paris-global-climate-change-agreements.
2. van Nieuwenhuizen A et al. The effects of climate change on child and adolescent mental health: Clinical considerations. Curr Psychiatry Rep. 2021 Dec 7;23(12):88. doi: 10.1007/s11920-021-01296-y.
3. Window to Reach Climate Goals ‘Rapidly Closing’, UN Report Warns. United Nations. https://news.un.org/en/story/2023/09/1140527.
4. Schwartz SEO et al. Climate change anxiety and mental health: Environmental activism as buffer. Curr Psychol. 2022 Feb 28:1-14. doi: 10.1007/s12144-022-02735-6.
5. Pihkala P. Anxiety and the ecological crisis: an analysis of eco-anxiety and climate anxiety. Sustainability. 2020;12:7836. doi: 10.3390/su12197836.
6. Hickman C et al. Climate Anxiety in Children and Young People and Their Beliefs About Government Responses to Climate Change: A Global Survey. Lancet Planet Health. 2021 Dec;5(12):e863-e873. doi: 10.1016/S2542-5196(21)00278-3.
7. IEA (2021), Global Energy Review 2021, IEA, Paris. https://www.iea.org/reports/global-energy-review-2021/renewables.
8. Marlon J et al. Yale Climate Opinion Maps 2023. https://climatecommunication.yale.edu/visualizations-data/ycom-us/.
9. Thomson EE, Roach SP. The Relationships Among Nature Connectedness, Climate Anxiety, Climate Action, Climate Knowledge, and Mental Health. Front Psychol. 2023 Nov 15:14:1241400. doi: 10.3389/fpsyg.2023.1241400.
Study Links Suicide to Missed Early Care After Discharge
TOPLINE:
A study found that patients who die by suicide within a year after discharge from inpatient mental health care are less likely to have primary care consultation in the first 2 weeks, highlighting a gap during the high-risk transition period.
METHODOLOGY:
- Researchers used a nested case-control study design, analyzing the records of 613 people who died by suicide within a year of being discharged from an inpatient psychiatric facility in England between 2001 and 2019.
- Of these, 93 (15.4%) died within 2 weeks of discharge.
- Each patient was matched with up to 20 control individuals who were discharged at a similar time but were living.
- Researchers evaluated primary care consultations after discharge.
TAKEAWAY:
- People who died by suicide within a year were less likely to have had a primary care consultation within 2 weeks of discharge (adjusted odds ratio [aOR], 0.61; P = .01).
- Those who died by suicide had higher odds for a consultation in the week preceding their death (aOR, 1.71; P < .001) and the prescription of three or more psychotropic medications (aOR, 1.73; P < .001).
- Evidence of discharge communication between the facility and primary care clinician was infrequent, highlighting a gap in continuity of care.
- Approximately 40% of people who died within 2 weeks of discharge had a documented visit with a primary care clinician during that period.
IN PRACTICE:
“Primary care clinicians have opportunities to intervene and should prioritize patients experiencing transition from inpatient care,” the authors wrote.
SOURCE:
The study was led by Rebecca Musgrove, PhD, of the Centre for Mental Health and Safety at The University of Manchester in England, and published online on June 12 in BJGP Open.
LIMITATIONS:
The study’s reliance on individuals registered with the Clinical Practice Research Datalink may have caused some suicide cases to be excluded, limiting generalizability. Lack of linked up-to-date mental health records may have led to the omission of significant post-discharge care data. Incomplete discharge documentation may undercount informational continuity, affecting multivariable analysis.
DISCLOSURES:
The study was supported by the National Institute of Health and Care Research. Some authors declared serving as members of advisory groups and receiving grants and personal fees from various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
A study found that patients who die by suicide within a year after discharge from inpatient mental health care are less likely to have primary care consultation in the first 2 weeks, highlighting a gap during the high-risk transition period.
METHODOLOGY:
- Researchers used a nested case-control study design, analyzing the records of 613 people who died by suicide within a year of being discharged from an inpatient psychiatric facility in England between 2001 and 2019.
- Of these, 93 (15.4%) died within 2 weeks of discharge.
- Each patient was matched with up to 20 control individuals who were discharged at a similar time but were living.
- Researchers evaluated primary care consultations after discharge.
TAKEAWAY:
- People who died by suicide within a year were less likely to have had a primary care consultation within 2 weeks of discharge (adjusted odds ratio [aOR], 0.61; P = .01).
- Those who died by suicide had higher odds for a consultation in the week preceding their death (aOR, 1.71; P < .001) and the prescription of three or more psychotropic medications (aOR, 1.73; P < .001).
- Evidence of discharge communication between the facility and primary care clinician was infrequent, highlighting a gap in continuity of care.
- Approximately 40% of people who died within 2 weeks of discharge had a documented visit with a primary care clinician during that period.
IN PRACTICE:
“Primary care clinicians have opportunities to intervene and should prioritize patients experiencing transition from inpatient care,” the authors wrote.
SOURCE:
The study was led by Rebecca Musgrove, PhD, of the Centre for Mental Health and Safety at The University of Manchester in England, and published online on June 12 in BJGP Open.
LIMITATIONS:
The study’s reliance on individuals registered with the Clinical Practice Research Datalink may have caused some suicide cases to be excluded, limiting generalizability. Lack of linked up-to-date mental health records may have led to the omission of significant post-discharge care data. Incomplete discharge documentation may undercount informational continuity, affecting multivariable analysis.
DISCLOSURES:
The study was supported by the National Institute of Health and Care Research. Some authors declared serving as members of advisory groups and receiving grants and personal fees from various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
A study found that patients who die by suicide within a year after discharge from inpatient mental health care are less likely to have primary care consultation in the first 2 weeks, highlighting a gap during the high-risk transition period.
METHODOLOGY:
- Researchers used a nested case-control study design, analyzing the records of 613 people who died by suicide within a year of being discharged from an inpatient psychiatric facility in England between 2001 and 2019.
- Of these, 93 (15.4%) died within 2 weeks of discharge.
- Each patient was matched with up to 20 control individuals who were discharged at a similar time but were living.
- Researchers evaluated primary care consultations after discharge.
TAKEAWAY:
- People who died by suicide within a year were less likely to have had a primary care consultation within 2 weeks of discharge (adjusted odds ratio [aOR], 0.61; P = .01).
- Those who died by suicide had higher odds for a consultation in the week preceding their death (aOR, 1.71; P < .001) and the prescription of three or more psychotropic medications (aOR, 1.73; P < .001).
- Evidence of discharge communication between the facility and primary care clinician was infrequent, highlighting a gap in continuity of care.
- Approximately 40% of people who died within 2 weeks of discharge had a documented visit with a primary care clinician during that period.
IN PRACTICE:
“Primary care clinicians have opportunities to intervene and should prioritize patients experiencing transition from inpatient care,” the authors wrote.
SOURCE:
The study was led by Rebecca Musgrove, PhD, of the Centre for Mental Health and Safety at The University of Manchester in England, and published online on June 12 in BJGP Open.
LIMITATIONS:
The study’s reliance on individuals registered with the Clinical Practice Research Datalink may have caused some suicide cases to be excluded, limiting generalizability. Lack of linked up-to-date mental health records may have led to the omission of significant post-discharge care data. Incomplete discharge documentation may undercount informational continuity, affecting multivariable analysis.
DISCLOSURES:
The study was supported by the National Institute of Health and Care Research. Some authors declared serving as members of advisory groups and receiving grants and personal fees from various sources.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Prostate Meds Tied to Reduced Risk for Lewy Body Dementia
Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.
Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.
“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”
The findings were published online in Neurology.
Increasing ATP Neuroprotective?
In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD).
In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).
There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.
To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.
Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.
After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.
During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.
After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).
“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.
Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.
No study funding or author disclosures were reported.
A version of this article first appeared on Medscape.com.
Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.
Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.
“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”
The findings were published online in Neurology.
Increasing ATP Neuroprotective?
In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD).
In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).
There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.
To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.
Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.
After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.
During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.
After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).
“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.
Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.
No study funding or author disclosures were reported.
A version of this article first appeared on Medscape.com.
Certain medications that are used to treat benign prostatic hyperplasia (BPH) are associated with a reduced risk for dementia with Lewy bodies (DLB), the second most common neurodegenerative type of dementia after Alzheimer’s disease.
Investigators found older men taking alpha-1 blockers terazosin, doxazosin, or alfuzosin (Tz/Dz/Az) were 40% less likely to develop DLB than those taking tamsulosin and 37% less likely than men taking the 5-alpha reductase inhibitors (5ARI) finasteride and dutasteride.
“These results are exciting because right now there are no drugs to prevent or treat dementia with Lewy bodies,” study investigator Jacob E. Simmering, PhD, of the University of Iowa in Iowa City, said in a press release. “If we can determine that an existing drug can offer protection against this debilitating disease, that has the potential to greatly reduce its effects.”
The findings were published online in Neurology.
Increasing ATP Neuroprotective?
In recent years, investigators have speculated that improving metabolic activity in the brain may reduce the risk for Parkinson’s disease (PD).
In previous studies, the use of Tz/Dz/Az resulted in the activation of phosphoglycerate kinase-1 (PKG1), which increases the availability of adenosine triphosphate (ATP).
There have been case reports of PD being linked to mutations affecting PGK1. Researchers speculate that increased ATP availability in neurons resulting from the activation of PKG1 allows cells to better adapt to aging and synuclein aggregation.
To investigate whether glycolysis-enhancing drugs might be neuroprotective in those with DLB, investigators conducted a retrospective cohort study using a commercial health insurance claims database and a Medicare supplemental health claims database to follow a sample of men aged > 40 years taking Tz, Dz, or Az (n = 126,313), tamsulosin (n = 437,035), or a 5ARI (n = 80,158) for BPH.
Tamsulosin and 5ARI medications do not activate PKG1, so investigators used them as comparators to Tz/Dz/Az. Participants were followed from the medication initiation date until the end of enrollment in the claims databases.
After following claimants for an average of 3 years, 195 participants developed DLB who were taking Tz, Dz, or Az, a rate of 5.21 cases per 10,000 people per year.
During the follow-up period, 1286 participants taking tamsulosin developed DLB, a rate of 10.8 per 10,000 people per year, and among those taking 5ARIs, 193 cases of DLB were reported, a rate of 7.8 per 10,000 people per year.
After matching the groups by age and other health conditions that may explain differences in rates of DLB, men taking Tz/Dz/Az had a 60% lower risk than those taking tamsulosin (P < .001) and a 37% lower risk for developing DLB than those taking the 5ARI medications (P = .012).
“This emerging evidence of a protective association across a spectrum of diseases suggests a broad neuroprotective effect for Tz/Dz/Az, consistent with our hypothesized mechanism that activation of PGK1 increases brain ATP and mitigates neurodegeneration,” the authors wrote.
Study limitations include excluding women from the study, so the findings cannot be generalized to women. Claims analyses were limited to administrative data that could have been incorrect, and the analyses did not include medication dosages.
No study funding or author disclosures were reported.
A version of this article first appeared on Medscape.com.
Chronic Loneliness Tied to Increased Stroke Risk
Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.
The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.
“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”
The findings were published online in eClinicalMedicine.
Significant, Chronic Health Consequences
Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.
Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.
Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.
Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:
- Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
- Remitting (those who scored high at baseline and low at follow-up).
- Recent onset (those who scored low at baseline and high at follow-up).
- Consistently high (those who scored high at both baseline and follow-up).
Incident stroke was determined by participant report and medical record data.
Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.
Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).
Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).
The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.
Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.
“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.
She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
Progressive Research
Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”
She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.
“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.
Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”
The study was funded by the National Institute on Aging. There were no conflicts of interest noted.
A version of this article first appeared on Medscape.com.
Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.
The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.
“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”
The findings were published online in eClinicalMedicine.
Significant, Chronic Health Consequences
Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.
Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.
Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.
Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:
- Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
- Remitting (those who scored high at baseline and low at follow-up).
- Recent onset (those who scored low at baseline and high at follow-up).
- Consistently high (those who scored high at both baseline and follow-up).
Incident stroke was determined by participant report and medical record data.
Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.
Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).
Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).
The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.
Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.
“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.
She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
Progressive Research
Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”
She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.
“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.
Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”
The study was funded by the National Institute on Aging. There were no conflicts of interest noted.
A version of this article first appeared on Medscape.com.
Adults older than 50 years who report experiencing persistently high levels of loneliness have a 56% increased risk for stroke, a new study showed.
The increased stroke risk did not apply to individuals who reported experiencing situational loneliness, a finding that investigators believe bolsters the hypothesis that chronic loneliness is driving the association.
“Our findings suggest that individuals who experience chronic loneliness are at higher risk for incident stroke,” lead investigator Yenee Soh, ScD, research associate of social and behavioral sciences in the Harvard T.H. Chan School of Public Health, Boston, told this news organization. “It is important to routinely assess loneliness, as the consequences may be worse if unidentified and/or ignored.”
The findings were published online in eClinicalMedicine.
Significant, Chronic Health Consequences
Exacerbated by the COVID-19 pandemic, loneliness is at an all-time high. A 2023 Surgeon General’s report highlighted the fact that loneliness and social isolation are linked to significant and chronic health consequences.
Previous research has linked loneliness to cardiovascular disease, yet few studies have examined the association between loneliness and stroke risk. The current study is one of the first to examine the association between changes in loneliness and stroke risk over time.
Using data from the 2006-2018 Health and Retirement Study, researchers assessed the link between loneliness and incident stroke over time. Between 2006 and 2008, 12,161 study participants, who were all older than 50 years with no history of stroke, responded to questions from the Revised UCLA Loneliness Scale. From these responses, researchers created summary loneliness scores.
Four years later, from 2010 to 2012, the 8936 remaining study participants responded to the same 20 questions again. Based on loneliness scores across the two time points, participants were divided into four groups:
- Consistently low (those who scored low on the loneliness scale at both baseline and follow-up).
- Remitting (those who scored high at baseline and low at follow-up).
- Recent onset (those who scored low at baseline and high at follow-up).
- Consistently high (those who scored high at both baseline and follow-up).
Incident stroke was determined by participant report and medical record data.
Among participants whose loneliness was measured at baseline only, 1237 strokes occurred during the 2006-2018 follow-up period. Among those who provided two loneliness assessments over time, 601 strokes occurred during the follow-up period.
Even after adjusting for social isolation, depressive symptoms, physical activity, body mass index, and other health conditions, investigators found that participants who reported being lonely at baseline only had a 25% increased stroke risk, compared with those who did not report being lonely at baseline (hazard ratio [HR], 1.25; 95% confidence interval (CI), 1.06-1.47).
Participants who reported having consistently high loneliness across both time points had a 56% increased risk for incident stroke vs those who did not report loneliness at both time points after adjusting for social isolation and depression (HR, 1.56; 95% CI, 1.11-2.18).
The researchers did not investigate any of the underlying issues that may contribute to the association between loneliness and stroke risk, but speculated there may be physiological factors at play. These could include inflammation caused by increased hypothalamic pituitary-adrenocortical activity, behavioral factors such as poor medication adherence, smoking and/or alcohol use, and psychosocial issues.
Those who experience chronic loneliness may represent individuals that are unable to develop or maintain satisfying social relationships, which may result in longer-term interpersonal difficulties, Dr. Soh noted.
“Since loneliness is a highly subjective experience, seeking help to address and intervene to address a patient’s specific personal needs is important. It’s important to distinguish loneliness from social isolation,” said Dr. Soh.
She added that “by screening for loneliness and providing care or referring patients to relevant behavioral healthcare providers, clinicians can play a crucial role in addressing loneliness and its associated health risks early on to help reduce the population burden of loneliness.”
Progressive Research
Commenting on the findings for this news organization, Elaine Jones, MD, medical director of Access TeleCare, who was not involved in the research, applauded the investigators for “advancing the topic by looking at the chronicity aspect of loneliness.”
She said more research is needed to investigate loneliness as a stroke risk factor and noted that there may be something inherently different among respondents who reported loneliness at both study time points.
“Personality types may play a role here. We know people with positive attitudes and outlooks can do better in challenging health situations than people who are negative in their attitudes, regardless of depression. Perhaps those who feel lonely initially decided to do something about it and join groups, take up a hobby, or re-engage with family or friends. Perhaps the people who are chronically lonely don’t, or can’t, do this,” Dr. Jones said.
Chronic loneliness can cause stress, she added, “and we know that stress chemicals and hormones can be harmful to health over long durations of time.”
The study was funded by the National Institute on Aging. There were no conflicts of interest noted.
A version of this article first appeared on Medscape.com.
Six Distinct Subtypes of Depression, Anxiety Identified via Brain Imaging
This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.
“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.
The study was published online in Nature Medicine.
No More Trial and Error?
Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.
“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.
“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.
To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.
Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.
Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.
“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.
For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.
Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.
In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.
For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
A Work in Progress
The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.
Naming the biotypes is a work in progress, Dr. Williams said.
“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.
“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.
Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”
“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.
However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”
Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.
A version of this article appeared on Medscape.com.
This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.
“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.
The study was published online in Nature Medicine.
No More Trial and Error?
Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.
“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.
“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.
To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.
Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.
Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.
“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.
For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.
Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.
In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.
For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
A Work in Progress
The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.
Naming the biotypes is a work in progress, Dr. Williams said.
“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.
“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.
Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”
“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.
However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”
Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.
A version of this article appeared on Medscape.com.
This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.
“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.
The study was published online in Nature Medicine.
No More Trial and Error?
Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.
“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.
“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.
To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.
Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.
Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.
“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.
For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.
Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.
In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.
For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
A Work in Progress
The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.
Naming the biotypes is a work in progress, Dr. Williams said.
“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.
“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.
Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”
“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.
However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”
Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.
A version of this article appeared on Medscape.com.