User login
CAR T for B-ALL: Game Changer For Young Patients?
It’s becoming more common for patients with less severe disease to undergo the treatment, often bypassing hematopoietic stem cell transplantation (HSCT), and survival is on the rise.
From 2018 to 2022, the percentage of patients in an international cohort who had disease burden of ≥50% fell from 18% to 4%, researchers reported at the annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago. Median relapse-free survival in patients who didn’t undergo post-infusion HSCT grew from 18 months in 2018 to 27 months in 2020. It was not estimable in 2021.
“This introduction of the therapy is changing the treatment landscape of how we look at refractory B-ALL, where the standard of care previously would be to proceed to transplant. This therapy is actually reducing the use of transplant, which has lots of morbidity and mortality associated with it,” Texas Children’s Cancer Center hematologist-oncologist Rayne H. Rouce, MD, who led the study, said in an interview.
Tisagenlecleucel received Food and Drug Administration approval in 2017, said Nirali N. Shah, MD, MHSc, head of the Pediatric Oncology Branch’s Hematologic Malignancies Section at the National Cancer Institute, in an interview. Dr. Shah is familiar with the study findings but didn’t take part in the research.
Remission rates have been around 60%-70%, Dr. Shah said, although that rate is “likely higher” now because of gains in experience and improvement in disease burden prior to therapy.
The new findings fill a knowledge gap about real-world outcomes since a lot of the prior data was based on investigational CAR T-cell products, she said.
The noninterventional, prospective, longitudinal study, funded by tisagenlecleucel manufacturer Novartis, tracked 974 patients up to age 25 who received tisagenlecleucel in the United States, Canada, Korea, and Taiwan.
The study found that between 2018 and 2022:
- The percentage of patients who received treatment while in morphological complete remission grew from 34% to 51%.
- The percentages who were in third or greater relapse fell from 14% to 2%.
- The percentages undergoing ≥1 HSCT before tisagenlecleucel infusion fell from 37% to 15%.
- Overall, 34.5% of 911 patients received post-infusion HSCT.
In the big picture, the findings suggest that the therapy can be considered more than “a last resort for patients in a second or greater relapse or who are refractory,” Dr. Rouce said. By offering CAR T-cell therapy to earlier-stage patients, she said, “when they’re less sick, when they have less comorbidities, and when their organs are functioning better, we could potentially save them from having to go on to a transplant.”
Dr. Shah said the findings indicate that “a substantial number of patients are surviving. It’s remarkable actually. Prior to tisagenlecleucel, patients had dismal outcomes from standard chemotherapy.”
She added that the study suggests “providers are getting much more comfortable with getting their patients in the best shape prior to getting CAR T-cell therapy. Outcomes are improving as providers expand the use of CAR T-cell therapy to patients who are less heavily pretreated and have lower disease burden.”
Moving forward, “at some point there will likely be a plateau in terms of how good the outcomes can be.” And there will be discussion of the role of HSCT.
“We’ll figure out some of the nuances about which patients need transplants and which can avoid them. But curative potential is growing. With or without transplant, this is ultimately going to lead to a much higher fraction of patients being cured who previously would not have been cured,” she said. “That’s the bottom line.”
As for adverse effects, Dr. Shah said “disease burden has a pretty direct relationship with side effects and toxicities. If you have more disease, you have more severe side effects.”
Reducing disease burden will reduce side effects, she said. Also, “we’re getting a lot better at managing these toxicities. Eliminating some of the more toxic chemotherapy through earlier use of CAR T-cells in chemotherapy-refractory patients may well help reduce therapy burden and improve long-term survival outcomes, she added.
As for cost, drugs.com reports that the therapy runs to more than $612,000 per infusion. But Dr. Shah said insurers are covering the treatment. She added that there are efforts to expand the indication so CAR T-cell therapy can be used earlier in patients who are chemotherapy-refractory.
Novartis funded the study. Dr. Shah discloses ties with Lentigen, VOR, and CARGO, ImmunoACT, and Sobi. Dr. Rouce reports relationships with Pfizer and Novartis.
It’s becoming more common for patients with less severe disease to undergo the treatment, often bypassing hematopoietic stem cell transplantation (HSCT), and survival is on the rise.
From 2018 to 2022, the percentage of patients in an international cohort who had disease burden of ≥50% fell from 18% to 4%, researchers reported at the annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago. Median relapse-free survival in patients who didn’t undergo post-infusion HSCT grew from 18 months in 2018 to 27 months in 2020. It was not estimable in 2021.
“This introduction of the therapy is changing the treatment landscape of how we look at refractory B-ALL, where the standard of care previously would be to proceed to transplant. This therapy is actually reducing the use of transplant, which has lots of morbidity and mortality associated with it,” Texas Children’s Cancer Center hematologist-oncologist Rayne H. Rouce, MD, who led the study, said in an interview.
Tisagenlecleucel received Food and Drug Administration approval in 2017, said Nirali N. Shah, MD, MHSc, head of the Pediatric Oncology Branch’s Hematologic Malignancies Section at the National Cancer Institute, in an interview. Dr. Shah is familiar with the study findings but didn’t take part in the research.
Remission rates have been around 60%-70%, Dr. Shah said, although that rate is “likely higher” now because of gains in experience and improvement in disease burden prior to therapy.
The new findings fill a knowledge gap about real-world outcomes since a lot of the prior data was based on investigational CAR T-cell products, she said.
The noninterventional, prospective, longitudinal study, funded by tisagenlecleucel manufacturer Novartis, tracked 974 patients up to age 25 who received tisagenlecleucel in the United States, Canada, Korea, and Taiwan.
The study found that between 2018 and 2022:
- The percentage of patients who received treatment while in morphological complete remission grew from 34% to 51%.
- The percentages who were in third or greater relapse fell from 14% to 2%.
- The percentages undergoing ≥1 HSCT before tisagenlecleucel infusion fell from 37% to 15%.
- Overall, 34.5% of 911 patients received post-infusion HSCT.
In the big picture, the findings suggest that the therapy can be considered more than “a last resort for patients in a second or greater relapse or who are refractory,” Dr. Rouce said. By offering CAR T-cell therapy to earlier-stage patients, she said, “when they’re less sick, when they have less comorbidities, and when their organs are functioning better, we could potentially save them from having to go on to a transplant.”
Dr. Shah said the findings indicate that “a substantial number of patients are surviving. It’s remarkable actually. Prior to tisagenlecleucel, patients had dismal outcomes from standard chemotherapy.”
She added that the study suggests “providers are getting much more comfortable with getting their patients in the best shape prior to getting CAR T-cell therapy. Outcomes are improving as providers expand the use of CAR T-cell therapy to patients who are less heavily pretreated and have lower disease burden.”
Moving forward, “at some point there will likely be a plateau in terms of how good the outcomes can be.” And there will be discussion of the role of HSCT.
“We’ll figure out some of the nuances about which patients need transplants and which can avoid them. But curative potential is growing. With or without transplant, this is ultimately going to lead to a much higher fraction of patients being cured who previously would not have been cured,” she said. “That’s the bottom line.”
As for adverse effects, Dr. Shah said “disease burden has a pretty direct relationship with side effects and toxicities. If you have more disease, you have more severe side effects.”
Reducing disease burden will reduce side effects, she said. Also, “we’re getting a lot better at managing these toxicities. Eliminating some of the more toxic chemotherapy through earlier use of CAR T-cells in chemotherapy-refractory patients may well help reduce therapy burden and improve long-term survival outcomes, she added.
As for cost, drugs.com reports that the therapy runs to more than $612,000 per infusion. But Dr. Shah said insurers are covering the treatment. She added that there are efforts to expand the indication so CAR T-cell therapy can be used earlier in patients who are chemotherapy-refractory.
Novartis funded the study. Dr. Shah discloses ties with Lentigen, VOR, and CARGO, ImmunoACT, and Sobi. Dr. Rouce reports relationships with Pfizer and Novartis.
It’s becoming more common for patients with less severe disease to undergo the treatment, often bypassing hematopoietic stem cell transplantation (HSCT), and survival is on the rise.
From 2018 to 2022, the percentage of patients in an international cohort who had disease burden of ≥50% fell from 18% to 4%, researchers reported at the annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago. Median relapse-free survival in patients who didn’t undergo post-infusion HSCT grew from 18 months in 2018 to 27 months in 2020. It was not estimable in 2021.
“This introduction of the therapy is changing the treatment landscape of how we look at refractory B-ALL, where the standard of care previously would be to proceed to transplant. This therapy is actually reducing the use of transplant, which has lots of morbidity and mortality associated with it,” Texas Children’s Cancer Center hematologist-oncologist Rayne H. Rouce, MD, who led the study, said in an interview.
Tisagenlecleucel received Food and Drug Administration approval in 2017, said Nirali N. Shah, MD, MHSc, head of the Pediatric Oncology Branch’s Hematologic Malignancies Section at the National Cancer Institute, in an interview. Dr. Shah is familiar with the study findings but didn’t take part in the research.
Remission rates have been around 60%-70%, Dr. Shah said, although that rate is “likely higher” now because of gains in experience and improvement in disease burden prior to therapy.
The new findings fill a knowledge gap about real-world outcomes since a lot of the prior data was based on investigational CAR T-cell products, she said.
The noninterventional, prospective, longitudinal study, funded by tisagenlecleucel manufacturer Novartis, tracked 974 patients up to age 25 who received tisagenlecleucel in the United States, Canada, Korea, and Taiwan.
The study found that between 2018 and 2022:
- The percentage of patients who received treatment while in morphological complete remission grew from 34% to 51%.
- The percentages who were in third or greater relapse fell from 14% to 2%.
- The percentages undergoing ≥1 HSCT before tisagenlecleucel infusion fell from 37% to 15%.
- Overall, 34.5% of 911 patients received post-infusion HSCT.
In the big picture, the findings suggest that the therapy can be considered more than “a last resort for patients in a second or greater relapse or who are refractory,” Dr. Rouce said. By offering CAR T-cell therapy to earlier-stage patients, she said, “when they’re less sick, when they have less comorbidities, and when their organs are functioning better, we could potentially save them from having to go on to a transplant.”
Dr. Shah said the findings indicate that “a substantial number of patients are surviving. It’s remarkable actually. Prior to tisagenlecleucel, patients had dismal outcomes from standard chemotherapy.”
She added that the study suggests “providers are getting much more comfortable with getting their patients in the best shape prior to getting CAR T-cell therapy. Outcomes are improving as providers expand the use of CAR T-cell therapy to patients who are less heavily pretreated and have lower disease burden.”
Moving forward, “at some point there will likely be a plateau in terms of how good the outcomes can be.” And there will be discussion of the role of HSCT.
“We’ll figure out some of the nuances about which patients need transplants and which can avoid them. But curative potential is growing. With or without transplant, this is ultimately going to lead to a much higher fraction of patients being cured who previously would not have been cured,” she said. “That’s the bottom line.”
As for adverse effects, Dr. Shah said “disease burden has a pretty direct relationship with side effects and toxicities. If you have more disease, you have more severe side effects.”
Reducing disease burden will reduce side effects, she said. Also, “we’re getting a lot better at managing these toxicities. Eliminating some of the more toxic chemotherapy through earlier use of CAR T-cells in chemotherapy-refractory patients may well help reduce therapy burden and improve long-term survival outcomes, she added.
As for cost, drugs.com reports that the therapy runs to more than $612,000 per infusion. But Dr. Shah said insurers are covering the treatment. She added that there are efforts to expand the indication so CAR T-cell therapy can be used earlier in patients who are chemotherapy-refractory.
Novartis funded the study. Dr. Shah discloses ties with Lentigen, VOR, and CARGO, ImmunoACT, and Sobi. Dr. Rouce reports relationships with Pfizer and Novartis.
FROM ASCO 2024
New Drug Combo Boosts PFS
At a median follow-up of 4 years, progression-free survival for the new treatment, known as BrECADD, was 94.3% vs. 90.9% for BEACOPP (hazard ratio, 0.66, 95% CI, P = .035), researchers led by Peter Borchmann, MD, assistant medical director of hematology and oncology at the University Hospital of Cologne, Germany, reported at the annual meeting of the American Society of Clinical Oncology (ASCO).
“These results are really striking,” said hematologist-oncologist Oreofe O. Odejide, MD, MPH, of the Dana-Farber Cancer Institute and Harvard Medical School, Boston, who was not involved in the study and commented on it during an ASCO news briefing. “This is really poised to impact the standard-of-care treatment for patients with advanced-stage classical Hodgkin lymphoma.”
As Dr. Borchmann explained at the briefing, Hodgkin lymphoma is the most common cancer among young adults. “The median age at onset is around 30 years, and it can be primarily cured with chemotherapy. Intensified chemotherapy probably is better primary lymphoma control than less intensive treatment, but this comes at the cost of treatment-related adverse events.”
Dr. Borchmann and colleagues developed the existing treatment known as BEACOPP, a combination of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone. “It’s our standard of care due to its high primary cure rate, which is reflected by compelling progression-free survival,” he said.
However, he said, “it’s a high burden of treatment.” The investigational treatment, BrECADD, includes six drugs instead of seven: brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone. Two of the additions — brentuximab vedotin and dacarbazine — are cancer drugs, and dexamethasone is a steroid. There is one fewer cancer drug in the new formulation.
In the international HD21 trial (9 countries, 233 sites), researchers recruited patients aged 18-60 who received four or six cycles of either BEACOPP or BrECADD. The doses were guided by PET2 findings.
In the intention-to-treat cohort of 1,482 subjects (median age 31.1, 44% female), 742 were assigned to BrECADD and 740 to BEACOPP.
There were few early treatment failures in the BrECADD group vs. BEACOPP. The numbers who had primary progression within the first 3 months were 5 vs. 15, respectively, and the numbers reaching early relapse between months 3 and 12 were 11 vs. 23, respectively.
Four-year overall survival rates in the groups were nearly identical at 98.5% for BrECADD and 98.2% for BEACOPP. In regard to fertility, follicle-stimulating hormone recovery rates after 1 year were higher in the BrECADD group in both men (67% vs. 24%, respectively) and women (89% vs. 68%, respectively). Birth rates were also higher in the BrECADD group (n = 60 vs. n = 43 in the BEACOPP group).
Nearly two-thirds of those in BrECADD group (64%) required 12 weeks of therapy — four cycles. As for treatment-related morbidity toxicities, they were less common in the BrECADD group vs. the BEACOPP group (42% vs. 59%, respectively, P < .0001), and 1% of BrECADD-treated had them at 1 year.
Oncologist Julie R. Gralow, MD, chief medical officer and executive vice president of ASCO, welcomed the findings at the ACO news briefing. “By replacing some pretty toxic chemo with an antibody-drug conjugate [brentuximab vedotin], and changing the regimen a bit, and using PET scan to determine the number of cycles received, the long-term outcomes were maintained, if not even improved upon,” said Dr. Dr. Gralow, who was not involved in the study.
In addition, she said, the findings about fertility are good news because “these are young people who probably haven’t started a family yet, and we’re increasing the odds that they will be able to do so after survival.”
Moving forward, she said, “we will need to have some discussion on how this relates to ABVD, which is a more commonly used regimen in the United States right now.” ABVD refers to a combination of doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, and dacarbazine.
Takeda funded the study. Dr. Borchmann reported ties with BMS, GmbH & Co, Incyte, MSD/Merck, Roche, Takeda/Millennium, Miltenyi, Amgen, and Novartis. Some of the other study authors reported various disclosures. Dr. Odejide and Dr. Gralow have no disclosures.
At a median follow-up of 4 years, progression-free survival for the new treatment, known as BrECADD, was 94.3% vs. 90.9% for BEACOPP (hazard ratio, 0.66, 95% CI, P = .035), researchers led by Peter Borchmann, MD, assistant medical director of hematology and oncology at the University Hospital of Cologne, Germany, reported at the annual meeting of the American Society of Clinical Oncology (ASCO).
“These results are really striking,” said hematologist-oncologist Oreofe O. Odejide, MD, MPH, of the Dana-Farber Cancer Institute and Harvard Medical School, Boston, who was not involved in the study and commented on it during an ASCO news briefing. “This is really poised to impact the standard-of-care treatment for patients with advanced-stage classical Hodgkin lymphoma.”
As Dr. Borchmann explained at the briefing, Hodgkin lymphoma is the most common cancer among young adults. “The median age at onset is around 30 years, and it can be primarily cured with chemotherapy. Intensified chemotherapy probably is better primary lymphoma control than less intensive treatment, but this comes at the cost of treatment-related adverse events.”
Dr. Borchmann and colleagues developed the existing treatment known as BEACOPP, a combination of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone. “It’s our standard of care due to its high primary cure rate, which is reflected by compelling progression-free survival,” he said.
However, he said, “it’s a high burden of treatment.” The investigational treatment, BrECADD, includes six drugs instead of seven: brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone. Two of the additions — brentuximab vedotin and dacarbazine — are cancer drugs, and dexamethasone is a steroid. There is one fewer cancer drug in the new formulation.
In the international HD21 trial (9 countries, 233 sites), researchers recruited patients aged 18-60 who received four or six cycles of either BEACOPP or BrECADD. The doses were guided by PET2 findings.
In the intention-to-treat cohort of 1,482 subjects (median age 31.1, 44% female), 742 were assigned to BrECADD and 740 to BEACOPP.
There were few early treatment failures in the BrECADD group vs. BEACOPP. The numbers who had primary progression within the first 3 months were 5 vs. 15, respectively, and the numbers reaching early relapse between months 3 and 12 were 11 vs. 23, respectively.
Four-year overall survival rates in the groups were nearly identical at 98.5% for BrECADD and 98.2% for BEACOPP. In regard to fertility, follicle-stimulating hormone recovery rates after 1 year were higher in the BrECADD group in both men (67% vs. 24%, respectively) and women (89% vs. 68%, respectively). Birth rates were also higher in the BrECADD group (n = 60 vs. n = 43 in the BEACOPP group).
Nearly two-thirds of those in BrECADD group (64%) required 12 weeks of therapy — four cycles. As for treatment-related morbidity toxicities, they were less common in the BrECADD group vs. the BEACOPP group (42% vs. 59%, respectively, P < .0001), and 1% of BrECADD-treated had them at 1 year.
Oncologist Julie R. Gralow, MD, chief medical officer and executive vice president of ASCO, welcomed the findings at the ACO news briefing. “By replacing some pretty toxic chemo with an antibody-drug conjugate [brentuximab vedotin], and changing the regimen a bit, and using PET scan to determine the number of cycles received, the long-term outcomes were maintained, if not even improved upon,” said Dr. Dr. Gralow, who was not involved in the study.
In addition, she said, the findings about fertility are good news because “these are young people who probably haven’t started a family yet, and we’re increasing the odds that they will be able to do so after survival.”
Moving forward, she said, “we will need to have some discussion on how this relates to ABVD, which is a more commonly used regimen in the United States right now.” ABVD refers to a combination of doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, and dacarbazine.
Takeda funded the study. Dr. Borchmann reported ties with BMS, GmbH & Co, Incyte, MSD/Merck, Roche, Takeda/Millennium, Miltenyi, Amgen, and Novartis. Some of the other study authors reported various disclosures. Dr. Odejide and Dr. Gralow have no disclosures.
At a median follow-up of 4 years, progression-free survival for the new treatment, known as BrECADD, was 94.3% vs. 90.9% for BEACOPP (hazard ratio, 0.66, 95% CI, P = .035), researchers led by Peter Borchmann, MD, assistant medical director of hematology and oncology at the University Hospital of Cologne, Germany, reported at the annual meeting of the American Society of Clinical Oncology (ASCO).
“These results are really striking,” said hematologist-oncologist Oreofe O. Odejide, MD, MPH, of the Dana-Farber Cancer Institute and Harvard Medical School, Boston, who was not involved in the study and commented on it during an ASCO news briefing. “This is really poised to impact the standard-of-care treatment for patients with advanced-stage classical Hodgkin lymphoma.”
As Dr. Borchmann explained at the briefing, Hodgkin lymphoma is the most common cancer among young adults. “The median age at onset is around 30 years, and it can be primarily cured with chemotherapy. Intensified chemotherapy probably is better primary lymphoma control than less intensive treatment, but this comes at the cost of treatment-related adverse events.”
Dr. Borchmann and colleagues developed the existing treatment known as BEACOPP, a combination of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone. “It’s our standard of care due to its high primary cure rate, which is reflected by compelling progression-free survival,” he said.
However, he said, “it’s a high burden of treatment.” The investigational treatment, BrECADD, includes six drugs instead of seven: brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone. Two of the additions — brentuximab vedotin and dacarbazine — are cancer drugs, and dexamethasone is a steroid. There is one fewer cancer drug in the new formulation.
In the international HD21 trial (9 countries, 233 sites), researchers recruited patients aged 18-60 who received four or six cycles of either BEACOPP or BrECADD. The doses were guided by PET2 findings.
In the intention-to-treat cohort of 1,482 subjects (median age 31.1, 44% female), 742 were assigned to BrECADD and 740 to BEACOPP.
There were few early treatment failures in the BrECADD group vs. BEACOPP. The numbers who had primary progression within the first 3 months were 5 vs. 15, respectively, and the numbers reaching early relapse between months 3 and 12 were 11 vs. 23, respectively.
Four-year overall survival rates in the groups were nearly identical at 98.5% for BrECADD and 98.2% for BEACOPP. In regard to fertility, follicle-stimulating hormone recovery rates after 1 year were higher in the BrECADD group in both men (67% vs. 24%, respectively) and women (89% vs. 68%, respectively). Birth rates were also higher in the BrECADD group (n = 60 vs. n = 43 in the BEACOPP group).
Nearly two-thirds of those in BrECADD group (64%) required 12 weeks of therapy — four cycles. As for treatment-related morbidity toxicities, they were less common in the BrECADD group vs. the BEACOPP group (42% vs. 59%, respectively, P < .0001), and 1% of BrECADD-treated had them at 1 year.
Oncologist Julie R. Gralow, MD, chief medical officer and executive vice president of ASCO, welcomed the findings at the ACO news briefing. “By replacing some pretty toxic chemo with an antibody-drug conjugate [brentuximab vedotin], and changing the regimen a bit, and using PET scan to determine the number of cycles received, the long-term outcomes were maintained, if not even improved upon,” said Dr. Dr. Gralow, who was not involved in the study.
In addition, she said, the findings about fertility are good news because “these are young people who probably haven’t started a family yet, and we’re increasing the odds that they will be able to do so after survival.”
Moving forward, she said, “we will need to have some discussion on how this relates to ABVD, which is a more commonly used regimen in the United States right now.” ABVD refers to a combination of doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, and dacarbazine.
Takeda funded the study. Dr. Borchmann reported ties with BMS, GmbH & Co, Incyte, MSD/Merck, Roche, Takeda/Millennium, Miltenyi, Amgen, and Novartis. Some of the other study authors reported various disclosures. Dr. Odejide and Dr. Gralow have no disclosures.
FROM ASCO 2024
In HPV-Positive Head and Neck Cancer, Treatment Is a Quandary
The topic of head and neck cancer is especially timely since the disease is evolving. A hematologist/oncologist with the Association of VA Hematology/Oncology (AVAHO) told colleagues that specialists are grappling with how to de-escalate treatment.
Molly Tokaz, MD, of Veterans Affairs Puget Sound Health Care and the University of Washington said tobacco is fading as a cause as fewer people smoke, and that human papillomavirus (HPV) is triggering more cases. HPV-positive patients have better prognoses, raising the prospect that their treatment could be adjusted.
“Instead of increasing the amount of therapy we're giving, we’re trying to peel it back,” she said. “If they’re going to respond no matter what we do, why are we going in with these huge weapons of mass destruction if we can get the same results with something more like a light infantry?”
Tokaz spoke about deescalating therapy at a May 2024 regional AVAHO meeting in Seattle that was focused on head and neck cancer. She elaborated on her presentation in an interview with Federal Practitioner. according to Tokaz, 90% of head and neck cancers are mucosal squamous cell carcinomas (SCC). HPV is associated specifically with nasopharyngeal cancer, which is distinct from SCC, and oropharyngeal cancer, which has been linked to better prognoses.
HPV-positive head and neck cancer is a unique entity with its own epidemiology, clinical prognosis, and treatment. “Patients tend to be younger without the same number of comorbid conditions,” Tokaz said. “Some of them are never smokers or light smokers. So, it's a different demographic than we’ve seen traditionally.”
The bad news is that HPV-associated head and neck cancer numbers are on the rise. Fortunately, outcomes tend to be better for the HPV-positive forms.
As for therapy for head and neck cancer, immunotherapy and targeted therapy play smaller roles than in some other cancers because the form tends to be diagnosed in early stages before metastases appear. Surgery, chemotherapy, and radiation remain the major treatments. According to Tokaz’s presentation, surgery, or radiation—often with minimal adjuvant chemotherapy—can be appropriate for the earliest stage I and II cases of head and neck SCC. (She noted that HPV-positive oropharyngeal squamous cell carcinoma has its own staging system.)
Stage I and II cases make up 15% of new diagnoses and have a 5-year survival rate of > 70%. “In the earliest days, our main role was to make radiation work better and reduce it while adding a minimum amount of toxicity mutations,” she said. “Chemotherapy can help, but it’s only demonstrated improvement in overall survival in patients with positive surgical margins and extracapsular extension.”
In Stage III, IVA, and IVB cases, which make up 70% of new diagnoses, chemotherapy plus radiation is recommended. Five-year survival drops to 30% to 50%. Finally, 10% of new diagnoses are Stage IVC, which is incurable and median survival is < 1 year.
Since HPV-positive patients generally have better prognoses, oncologists are considering how to adjust their treatment. However, Tokaz notes that clinical trials have not shown a benefit from less intensive treatment in these patients. “At this point, we still treat them the same way as HPV-negative patients. But it's an ongoing area of research.”
Researchers are also exploring how to optimize regimens in patients ineligible for treatment with the chemotherapy agent cisplatin. “These folks have been traditionally excluded from clinical trials because they’re sicker,” Tokaz explained. “Researchers normally want the fittest and the best patients [in trials]. If you give a drug to someone with a lot of other comorbid conditions, they might not do as well with it, and it makes your drug look bad.”
Figuring out how to treat these patients is an especially urgent task in head and neck cancer because so many patients are frail and have comorbidities. More globally, Tokaz said the rise of HPV-related head and neck cancer highlights the importance of HPV vaccination, which is crucial for preventing cervical and anal cancer in addition to head and neck cancer. “HPV vaccination for children and young adults is crucial.”
Molly Tokaz, MD, reported no relevant financial relationships.
The topic of head and neck cancer is especially timely since the disease is evolving. A hematologist/oncologist with the Association of VA Hematology/Oncology (AVAHO) told colleagues that specialists are grappling with how to de-escalate treatment.
Molly Tokaz, MD, of Veterans Affairs Puget Sound Health Care and the University of Washington said tobacco is fading as a cause as fewer people smoke, and that human papillomavirus (HPV) is triggering more cases. HPV-positive patients have better prognoses, raising the prospect that their treatment could be adjusted.
“Instead of increasing the amount of therapy we're giving, we’re trying to peel it back,” she said. “If they’re going to respond no matter what we do, why are we going in with these huge weapons of mass destruction if we can get the same results with something more like a light infantry?”
Tokaz spoke about deescalating therapy at a May 2024 regional AVAHO meeting in Seattle that was focused on head and neck cancer. She elaborated on her presentation in an interview with Federal Practitioner. according to Tokaz, 90% of head and neck cancers are mucosal squamous cell carcinomas (SCC). HPV is associated specifically with nasopharyngeal cancer, which is distinct from SCC, and oropharyngeal cancer, which has been linked to better prognoses.
HPV-positive head and neck cancer is a unique entity with its own epidemiology, clinical prognosis, and treatment. “Patients tend to be younger without the same number of comorbid conditions,” Tokaz said. “Some of them are never smokers or light smokers. So, it's a different demographic than we’ve seen traditionally.”
The bad news is that HPV-associated head and neck cancer numbers are on the rise. Fortunately, outcomes tend to be better for the HPV-positive forms.
As for therapy for head and neck cancer, immunotherapy and targeted therapy play smaller roles than in some other cancers because the form tends to be diagnosed in early stages before metastases appear. Surgery, chemotherapy, and radiation remain the major treatments. According to Tokaz’s presentation, surgery, or radiation—often with minimal adjuvant chemotherapy—can be appropriate for the earliest stage I and II cases of head and neck SCC. (She noted that HPV-positive oropharyngeal squamous cell carcinoma has its own staging system.)
Stage I and II cases make up 15% of new diagnoses and have a 5-year survival rate of > 70%. “In the earliest days, our main role was to make radiation work better and reduce it while adding a minimum amount of toxicity mutations,” she said. “Chemotherapy can help, but it’s only demonstrated improvement in overall survival in patients with positive surgical margins and extracapsular extension.”
In Stage III, IVA, and IVB cases, which make up 70% of new diagnoses, chemotherapy plus radiation is recommended. Five-year survival drops to 30% to 50%. Finally, 10% of new diagnoses are Stage IVC, which is incurable and median survival is < 1 year.
Since HPV-positive patients generally have better prognoses, oncologists are considering how to adjust their treatment. However, Tokaz notes that clinical trials have not shown a benefit from less intensive treatment in these patients. “At this point, we still treat them the same way as HPV-negative patients. But it's an ongoing area of research.”
Researchers are also exploring how to optimize regimens in patients ineligible for treatment with the chemotherapy agent cisplatin. “These folks have been traditionally excluded from clinical trials because they’re sicker,” Tokaz explained. “Researchers normally want the fittest and the best patients [in trials]. If you give a drug to someone with a lot of other comorbid conditions, they might not do as well with it, and it makes your drug look bad.”
Figuring out how to treat these patients is an especially urgent task in head and neck cancer because so many patients are frail and have comorbidities. More globally, Tokaz said the rise of HPV-related head and neck cancer highlights the importance of HPV vaccination, which is crucial for preventing cervical and anal cancer in addition to head and neck cancer. “HPV vaccination for children and young adults is crucial.”
Molly Tokaz, MD, reported no relevant financial relationships.
The topic of head and neck cancer is especially timely since the disease is evolving. A hematologist/oncologist with the Association of VA Hematology/Oncology (AVAHO) told colleagues that specialists are grappling with how to de-escalate treatment.
Molly Tokaz, MD, of Veterans Affairs Puget Sound Health Care and the University of Washington said tobacco is fading as a cause as fewer people smoke, and that human papillomavirus (HPV) is triggering more cases. HPV-positive patients have better prognoses, raising the prospect that their treatment could be adjusted.
“Instead of increasing the amount of therapy we're giving, we’re trying to peel it back,” she said. “If they’re going to respond no matter what we do, why are we going in with these huge weapons of mass destruction if we can get the same results with something more like a light infantry?”
Tokaz spoke about deescalating therapy at a May 2024 regional AVAHO meeting in Seattle that was focused on head and neck cancer. She elaborated on her presentation in an interview with Federal Practitioner. according to Tokaz, 90% of head and neck cancers are mucosal squamous cell carcinomas (SCC). HPV is associated specifically with nasopharyngeal cancer, which is distinct from SCC, and oropharyngeal cancer, which has been linked to better prognoses.
HPV-positive head and neck cancer is a unique entity with its own epidemiology, clinical prognosis, and treatment. “Patients tend to be younger without the same number of comorbid conditions,” Tokaz said. “Some of them are never smokers or light smokers. So, it's a different demographic than we’ve seen traditionally.”
The bad news is that HPV-associated head and neck cancer numbers are on the rise. Fortunately, outcomes tend to be better for the HPV-positive forms.
As for therapy for head and neck cancer, immunotherapy and targeted therapy play smaller roles than in some other cancers because the form tends to be diagnosed in early stages before metastases appear. Surgery, chemotherapy, and radiation remain the major treatments. According to Tokaz’s presentation, surgery, or radiation—often with minimal adjuvant chemotherapy—can be appropriate for the earliest stage I and II cases of head and neck SCC. (She noted that HPV-positive oropharyngeal squamous cell carcinoma has its own staging system.)
Stage I and II cases make up 15% of new diagnoses and have a 5-year survival rate of > 70%. “In the earliest days, our main role was to make radiation work better and reduce it while adding a minimum amount of toxicity mutations,” she said. “Chemotherapy can help, but it’s only demonstrated improvement in overall survival in patients with positive surgical margins and extracapsular extension.”
In Stage III, IVA, and IVB cases, which make up 70% of new diagnoses, chemotherapy plus radiation is recommended. Five-year survival drops to 30% to 50%. Finally, 10% of new diagnoses are Stage IVC, which is incurable and median survival is < 1 year.
Since HPV-positive patients generally have better prognoses, oncologists are considering how to adjust their treatment. However, Tokaz notes that clinical trials have not shown a benefit from less intensive treatment in these patients. “At this point, we still treat them the same way as HPV-negative patients. But it's an ongoing area of research.”
Researchers are also exploring how to optimize regimens in patients ineligible for treatment with the chemotherapy agent cisplatin. “These folks have been traditionally excluded from clinical trials because they’re sicker,” Tokaz explained. “Researchers normally want the fittest and the best patients [in trials]. If you give a drug to someone with a lot of other comorbid conditions, they might not do as well with it, and it makes your drug look bad.”
Figuring out how to treat these patients is an especially urgent task in head and neck cancer because so many patients are frail and have comorbidities. More globally, Tokaz said the rise of HPV-related head and neck cancer highlights the importance of HPV vaccination, which is crucial for preventing cervical and anal cancer in addition to head and neck cancer. “HPV vaccination for children and young adults is crucial.”
Molly Tokaz, MD, reported no relevant financial relationships.
Head and Neck Cancer in Spotlight at AVAHO Regional Meeting
In the US Department of Veterans Affairs (VA) health care system, head and neck cancer is one of the most complex oncologic conditions to treat because so many medical professionals are involved in its care. Specialists in speech therapy, nutrition, lymphedema, and dentistry are all part of the picture.
“It takes a complete team to treat cancer in a comprehensive manner, and specialists work hand-in-hand,” said Cindy Bowman, MSN, RN, OCN, president of the Association of VA Hematology/Oncology (AVAHO).
AVAHO held a regional meeting in Seattle on May 4, 2024, that was entirely devoted to head and neck cancer. “The goal was to help the VA oncology professionals gain a global view of how various team members can seamlessly work together,” said Bowman, an oncology nurse navigator and coordinator of the Cancer Care Navigation Program at Bay Pines VA Healthcare System in the Tampa-St. Petersburg, FL area.
According to a 2017 report, 2031 cases of head and neck cancer were diagnosed in 2010 among VA patients, accounting for 4.4% of all cancers. “Veterans are especially vulnerable to this type of cancer for several reasons, such as high rates of smoking and alcohol use,” Bowman said. In addition, she said veterans who served in parts of Southeast Asia, North Africa, and the Middle East are at higher risk of nasopharyngeal carcinoma, which has been linked to Epstein-Barr virus infections in those regions.
Radiation treatment were a significant topic at the regional meeting, and 1 session was focused on the importance of prompt care. “Head and neck cancers are very aggressive,” Bowman said. “The sooner we identify them, the sooner we get treatment started.”
Attendees also heard from a speech therapist and a dietician, who discussed a collaborative approach to improving treatment outcomes. “These are two very important pieces of the puzzle.” Bowman said.
On the nutrition front, a lot of newly diagnosed patients already have malnutrition because they have been having difficulty swallowing. So right up front, a registered dietician works with them and individualizes their nutrition treatment plans all the way into recovery. Some of these folks will end up with their relationship with their dietitian for many years.
“Speech therapists work with patients to design swallowing and tongue exercises that target their individual cancer.” Bowman said. The goal is to prevent the need for a feeding tube.
Another session at the regional conference focused on lymphedema—swelling that can develop due to radiation treatment. “All patients with head and neck cancer should be sent to a lymphedema specialist prior to starting treatment since the specialists can prevent this from happening by giving the patients tools, such as compression garments,” Bowman said. “This way, we don’t end up with somebody 15 or 20 years from now coming back and saying they’re not able to move their neck or unable to swallow the right way.”
Another session highlighted the important role of dental care for patients with head and neck cancer. “We send patients to the dentist prior to ever starting anything. We know that radiation therapy can cause osteoradionecrosis, in which people’s teeth begin to crumble. Fortunately, the VA is now covering dentures for these patients, and they automatically get dental care coverage.” Bowman said.
“In the big picture,” she said, “Attendees should come out of the regional meeting with new insight into the importance of teamwork in head and neck cancer care. We need to make sure that all the pieces to the puzzle are there, and everybody is working together to expedite care for the veterans so that they have the best outcomes possible.”
In the US Department of Veterans Affairs (VA) health care system, head and neck cancer is one of the most complex oncologic conditions to treat because so many medical professionals are involved in its care. Specialists in speech therapy, nutrition, lymphedema, and dentistry are all part of the picture.
“It takes a complete team to treat cancer in a comprehensive manner, and specialists work hand-in-hand,” said Cindy Bowman, MSN, RN, OCN, president of the Association of VA Hematology/Oncology (AVAHO).
AVAHO held a regional meeting in Seattle on May 4, 2024, that was entirely devoted to head and neck cancer. “The goal was to help the VA oncology professionals gain a global view of how various team members can seamlessly work together,” said Bowman, an oncology nurse navigator and coordinator of the Cancer Care Navigation Program at Bay Pines VA Healthcare System in the Tampa-St. Petersburg, FL area.
According to a 2017 report, 2031 cases of head and neck cancer were diagnosed in 2010 among VA patients, accounting for 4.4% of all cancers. “Veterans are especially vulnerable to this type of cancer for several reasons, such as high rates of smoking and alcohol use,” Bowman said. In addition, she said veterans who served in parts of Southeast Asia, North Africa, and the Middle East are at higher risk of nasopharyngeal carcinoma, which has been linked to Epstein-Barr virus infections in those regions.
Radiation treatment were a significant topic at the regional meeting, and 1 session was focused on the importance of prompt care. “Head and neck cancers are very aggressive,” Bowman said. “The sooner we identify them, the sooner we get treatment started.”
Attendees also heard from a speech therapist and a dietician, who discussed a collaborative approach to improving treatment outcomes. “These are two very important pieces of the puzzle.” Bowman said.
On the nutrition front, a lot of newly diagnosed patients already have malnutrition because they have been having difficulty swallowing. So right up front, a registered dietician works with them and individualizes their nutrition treatment plans all the way into recovery. Some of these folks will end up with their relationship with their dietitian for many years.
“Speech therapists work with patients to design swallowing and tongue exercises that target their individual cancer.” Bowman said. The goal is to prevent the need for a feeding tube.
Another session at the regional conference focused on lymphedema—swelling that can develop due to radiation treatment. “All patients with head and neck cancer should be sent to a lymphedema specialist prior to starting treatment since the specialists can prevent this from happening by giving the patients tools, such as compression garments,” Bowman said. “This way, we don’t end up with somebody 15 or 20 years from now coming back and saying they’re not able to move their neck or unable to swallow the right way.”
Another session highlighted the important role of dental care for patients with head and neck cancer. “We send patients to the dentist prior to ever starting anything. We know that radiation therapy can cause osteoradionecrosis, in which people’s teeth begin to crumble. Fortunately, the VA is now covering dentures for these patients, and they automatically get dental care coverage.” Bowman said.
“In the big picture,” she said, “Attendees should come out of the regional meeting with new insight into the importance of teamwork in head and neck cancer care. We need to make sure that all the pieces to the puzzle are there, and everybody is working together to expedite care for the veterans so that they have the best outcomes possible.”
In the US Department of Veterans Affairs (VA) health care system, head and neck cancer is one of the most complex oncologic conditions to treat because so many medical professionals are involved in its care. Specialists in speech therapy, nutrition, lymphedema, and dentistry are all part of the picture.
“It takes a complete team to treat cancer in a comprehensive manner, and specialists work hand-in-hand,” said Cindy Bowman, MSN, RN, OCN, president of the Association of VA Hematology/Oncology (AVAHO).
AVAHO held a regional meeting in Seattle on May 4, 2024, that was entirely devoted to head and neck cancer. “The goal was to help the VA oncology professionals gain a global view of how various team members can seamlessly work together,” said Bowman, an oncology nurse navigator and coordinator of the Cancer Care Navigation Program at Bay Pines VA Healthcare System in the Tampa-St. Petersburg, FL area.
According to a 2017 report, 2031 cases of head and neck cancer were diagnosed in 2010 among VA patients, accounting for 4.4% of all cancers. “Veterans are especially vulnerable to this type of cancer for several reasons, such as high rates of smoking and alcohol use,” Bowman said. In addition, she said veterans who served in parts of Southeast Asia, North Africa, and the Middle East are at higher risk of nasopharyngeal carcinoma, which has been linked to Epstein-Barr virus infections in those regions.
Radiation treatment were a significant topic at the regional meeting, and 1 session was focused on the importance of prompt care. “Head and neck cancers are very aggressive,” Bowman said. “The sooner we identify them, the sooner we get treatment started.”
Attendees also heard from a speech therapist and a dietician, who discussed a collaborative approach to improving treatment outcomes. “These are two very important pieces of the puzzle.” Bowman said.
On the nutrition front, a lot of newly diagnosed patients already have malnutrition because they have been having difficulty swallowing. So right up front, a registered dietician works with them and individualizes their nutrition treatment plans all the way into recovery. Some of these folks will end up with their relationship with their dietitian for many years.
“Speech therapists work with patients to design swallowing and tongue exercises that target their individual cancer.” Bowman said. The goal is to prevent the need for a feeding tube.
Another session at the regional conference focused on lymphedema—swelling that can develop due to radiation treatment. “All patients with head and neck cancer should be sent to a lymphedema specialist prior to starting treatment since the specialists can prevent this from happening by giving the patients tools, such as compression garments,” Bowman said. “This way, we don’t end up with somebody 15 or 20 years from now coming back and saying they’re not able to move their neck or unable to swallow the right way.”
Another session highlighted the important role of dental care for patients with head and neck cancer. “We send patients to the dentist prior to ever starting anything. We know that radiation therapy can cause osteoradionecrosis, in which people’s teeth begin to crumble. Fortunately, the VA is now covering dentures for these patients, and they automatically get dental care coverage.” Bowman said.
“In the big picture,” she said, “Attendees should come out of the regional meeting with new insight into the importance of teamwork in head and neck cancer care. We need to make sure that all the pieces to the puzzle are there, and everybody is working together to expedite care for the veterans so that they have the best outcomes possible.”
Global Quest to Cut CAR T Costs
In the United States, a stand-alone device could greatly reduce the expense of producing modified immune cells. In India, researchers hope homegrown technology is the key to getting costs under control. In Latin America, a partnership between the Brazilian government and a US nonprofit may be just the ticket.
At stake is expanded access to CAR T-cell therapy, a form of immunotherapy that in just the past few years has revolutionized the care of hematologic cancers.
“Among patients with lymphoma, leukemia, and myeloma, anywhere between 30% to 50% reach long-term remission after one CAR T-cell infusion,” Mayo Clinic–Rochester hematologist/oncologist Saad J. Kenderian, MB, ChB, said in an interview. “It’s such an important therapy.”
However, only a small percentage of eligible patients in the United States — perhaps 20% or fewer — are receiving the treatment, he added.
A 2024 report suggested that many patients in the United States who may benefit aren’t being treated because of a range of possible reasons, including high prices, manufacturing logistics, and far distance from the limited number of institutions offering the therapy.
“Taken together, the real-world cost of CAR T-cell therapy can range from $700,000 to $1 million, which may make the treatment unaffordable to those patients without robust financial and/or social support,” the report authors noted.
Outside Western countries, access to the therapy is even more limited, because of its exorbitant price. The 2024 report noted that “there is a wide use of CAR T-cell therapy in Europe and China, but access is limited in developing countries in Southeast Asia, Africa, and Latin America.”
Harnessing the Power of T-Cells
Several types of CAR T-cell therapy have been approved by the US Food and Drug Administration (FDA) for patients with relapsed/refractory blood cancers such as follicular lymphoma, large B-cell lymphoma, multiple myeloma, and B-cell precursor acute lymphoblastic leukemia. A 2023 review analyzed clinical trials and reported that complete response rates were 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B-cell lymphoma.
Pediatric hematologist/oncologist Kirsten Williams, MD, who specializes in pediatric blood and marrow transplant and cellular therapy at the Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, described CAR T-cell therapy as “a very unique form of immunotherapy” that harnesses the power of the immune system’s T-cells.
These cells are effective tumor killers, but they typically aren’t assigned to control cancer, she said in an interview. “We have very few of them, and most of our T cells are focused on killing various viruses,” she said. The therapy “allows us to take the T cell that would have killed the flu or mono and instead target leukemia, B-cell leukemia, or lymphoma.”
As she explained, “T cells are collected by a machine that reserves white blood cells and gives back the rest of the blood to the patient. We insert a gene into the T cells that encodes for a B-cell receptor. This receptor acts as a GPS signal, pulling T cells to the cancer so that they can kill it.”
In addition, “with this genetic change, we also add some things that allow the T cell to be stronger, to have a higher signal to kill the cancer cell once it locks on.”
The therapy is unique for each patient, Dr. Williams said. “We have collected and modified your specific T cells, and they can now only be infused into you. If we try to give your product to someone else, those cells would either cause harm by attacking the patient or would be immediately killed by that patient’s own immune system. This is very different than all the other kinds of therapies. When you take other medicines, it doesn’t matter who receives that pill.”
Treatment: Individual, Complex, and Costly
Why is CAR T-cell therapy so expensive? While only a single treatment is needed, the T cells have to go through an “individualized, bespoke manufacturing” process that’s “highly technical,” pediatric oncologist Stephan A. Grupp, MD, PhD, section chief of the Cellular Therapy and Transplant Section at Children’s Hospital of Philadelphia, said in an interview. As he explained, the cells for a single patient have to go through the same testing as with a drug that might be given to 1,000 people.
“The first thing we need to do is collect the cells from a patient,” said Dr. Williams. “For adults, that process involves putting in two big IVs — one in each arm — and then pulling the blood through a machine. This typically involves an 8-hour collection in the hospital and very highly specialized people to oversee the collection process.”
Secondly, at some institutions, “the cells get sent to a company where they undergo the process where the gene is inserted,” she said. “This process needs to be done in a very sterile environment so there’s no infections, and it needs to have a lot of oversight.”
Finally, “after the cells are generated, they are typically frozen and shipped back to the site where the patient is at the hospital,” she said. “Then we give chemotherapy to the patient, which prepares the patient’s blood system. It removes some of the T-cells that are there, allowing for the T cells that we’re about to infuse to quickly be activated, find the cancer, and kill it.”
Side effects can boost costs even more. “Unfortunately, some significant toxicities can occur after we infuse these cells,” Dr. Williams noted. “Patients can have trouble breathing and sometimes need ventilatory support. They can have trouble maintaining their blood pressure and become swollen as fluid seeps into tissues. Or they can have high fevers and organ dysfunction. Many of those patients go to the intensive care unit, which is obviously expensive as well.”
Taking Gene Therapy In-House
As Dr. Williams explained, one way to reduce costs is to “perform the genetic manipulation and expansion of the cells outside of a company.” Several academic institutions in the United States are embracing this approach, including Children’s Hospital of Philadelphia, which is experimenting with an automated device developed by the German company Miltenyi Biotec and known as the CliniMACS Prodigy machine.
“The current manufacturing process is very manual and requires a lot of interaction with the product and highly trained personnel,” Dr. Grupp said. “If you have an automated device, you have those cells in the device over the 7 to 12 days that you actually need to grow the cells. There’s much less interaction, so you need fewer trained personnel.”
The device is experimental and not yet FDA approved, Dr. Grupp noted, so that patients are all in clinical trials. Children’s Hospital of Philadelphia has treated more than a dozen patients with the device, he said.
Another member of Children’s Hospital of Philadelphia’s CAR T-cell team told WHYY-FM that a single patient’s treatment would run about $30,000 for labor and testing, but not other expenses such as facility costs.
Dr. Grupp estimated that about half a dozen of these devices are in use in the United States, and many more worldwide. “They’re all just like we are — at the absolute beginning. We’ve only been doing this for about a year.”
In the big picture, Dr. Grupp said, “this is where cell therapy is going. Whether it’s point of care or not, automated cell manufacturing is the obvious next step.”
India: Big Hopes for Homegrown Technology
In India, researchers are hoping that their homegrown approach to CAR T-cell therapy will expand access by greatly lowering treatment prices.
Last fall, India’s equivalent of the FDA-granted approval for actalycabtagene autoleucel (NexCAR19), which was developed by Indian scientists who worked closely with the US National Institutes of Health (NIH). The therapy’s developer is a company called ImmunoACT.
In an interview, ImmunoACT founder Rahul Purwar, PhD, MSc, associate professor at Indian Institute of Technology Bombay, said the treatment costs about $40,000. The price is much lower than in the United States because staffing, facility construction, and maintenance are less expensive in India, he said.
Results of small early clinical trials have been promising, with complete responses in 68% of 38 lymphoma patients and 72% of 15 leukemia patients. Updated data will be presented at the annual American Society of Hematology meeting in December 2024, Dr. Purwar said.
According to the NIH, at first ImmunoACT hopes to treat about 1,200 patients a year. The immediate goal is to “focus and stabilize our operation in India,” Dr. Purwar said. “Then, if opportunities come, we will try to bring CAR T to all who might benefit from these technologies. A majority of countries don’t have access to these technologies.”
A US-Brazil Partnership Holds Promise
Meanwhile, a US nonprofit known as Caring Cross announced this year that it has partnered with Fundação Oswaldo Cruz (Fiocruz), a Brazilian government foundation, to manufacture CAR T cells at point-of-care in South America.
“Our model is different than traditional biotech/pharma,” Boro Dropulic, PhD, MBA, cofounder and executive director of Caring Cross, said in an interview. “Our goal is to develop technologies and transfer them to organizations like Fiocruz to enable them to manufacture these transformative therapies for patients in their regions. We believe this model is an important solution for therapies that are priced so high that they are not accessible to many patients that need them, particularly underserved populations and those in low- and middle-income countries.”
According to Dr. Dropulic: “We have developed a production process where the material cost is about $20,000 per dose.” When labor and infrastructure costs are added, the total expense won’t be more than $37,000-$47,500, he said.
The research process for the CAR T-cell technology is at an earlier stage than in India. Scientists plan to start clinical trials of the technology in the United States by the end of 2024 and then begin them in Brazil in 2025, after safety and efficacy have been demonstrated. The first trial, a phase I/II study, will enroll about 20 patients, Dr. Dropulic said.
Dr. Kenderian reported ties with Novartis, Capstan Bio, Kite/Gilead, Juno/BMS, Humanigen, Tolero, Leah Labs, Lentigen, Luminary, Sunesis/Viracta, Morphosys, Troque, Carisma, Sendero, and LifEngine. Dr. Williams disclosed grants from National Institutes of Health and philanthropic organizations. Dr. Grupp reported relationships with Novartis, Kite, Vertex and Servier, Roche, GSK, Humanigen, CBMG, Eureka, Janssen/JNJ, Jazz, Adaptimmune, TCR2, Cellectis, Juno, Allogene, and Cabaletta. Dr. Purwar is the founder of ImmunoACT. Dr. Dropulic serves as executive director of Caring Cross and CEO of Vector BioMed, which provides vectors for gene therapy.
In the United States, a stand-alone device could greatly reduce the expense of producing modified immune cells. In India, researchers hope homegrown technology is the key to getting costs under control. In Latin America, a partnership between the Brazilian government and a US nonprofit may be just the ticket.
At stake is expanded access to CAR T-cell therapy, a form of immunotherapy that in just the past few years has revolutionized the care of hematologic cancers.
“Among patients with lymphoma, leukemia, and myeloma, anywhere between 30% to 50% reach long-term remission after one CAR T-cell infusion,” Mayo Clinic–Rochester hematologist/oncologist Saad J. Kenderian, MB, ChB, said in an interview. “It’s such an important therapy.”
However, only a small percentage of eligible patients in the United States — perhaps 20% or fewer — are receiving the treatment, he added.
A 2024 report suggested that many patients in the United States who may benefit aren’t being treated because of a range of possible reasons, including high prices, manufacturing logistics, and far distance from the limited number of institutions offering the therapy.
“Taken together, the real-world cost of CAR T-cell therapy can range from $700,000 to $1 million, which may make the treatment unaffordable to those patients without robust financial and/or social support,” the report authors noted.
Outside Western countries, access to the therapy is even more limited, because of its exorbitant price. The 2024 report noted that “there is a wide use of CAR T-cell therapy in Europe and China, but access is limited in developing countries in Southeast Asia, Africa, and Latin America.”
Harnessing the Power of T-Cells
Several types of CAR T-cell therapy have been approved by the US Food and Drug Administration (FDA) for patients with relapsed/refractory blood cancers such as follicular lymphoma, large B-cell lymphoma, multiple myeloma, and B-cell precursor acute lymphoblastic leukemia. A 2023 review analyzed clinical trials and reported that complete response rates were 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B-cell lymphoma.
Pediatric hematologist/oncologist Kirsten Williams, MD, who specializes in pediatric blood and marrow transplant and cellular therapy at the Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, described CAR T-cell therapy as “a very unique form of immunotherapy” that harnesses the power of the immune system’s T-cells.
These cells are effective tumor killers, but they typically aren’t assigned to control cancer, she said in an interview. “We have very few of them, and most of our T cells are focused on killing various viruses,” she said. The therapy “allows us to take the T cell that would have killed the flu or mono and instead target leukemia, B-cell leukemia, or lymphoma.”
As she explained, “T cells are collected by a machine that reserves white blood cells and gives back the rest of the blood to the patient. We insert a gene into the T cells that encodes for a B-cell receptor. This receptor acts as a GPS signal, pulling T cells to the cancer so that they can kill it.”
In addition, “with this genetic change, we also add some things that allow the T cell to be stronger, to have a higher signal to kill the cancer cell once it locks on.”
The therapy is unique for each patient, Dr. Williams said. “We have collected and modified your specific T cells, and they can now only be infused into you. If we try to give your product to someone else, those cells would either cause harm by attacking the patient or would be immediately killed by that patient’s own immune system. This is very different than all the other kinds of therapies. When you take other medicines, it doesn’t matter who receives that pill.”
Treatment: Individual, Complex, and Costly
Why is CAR T-cell therapy so expensive? While only a single treatment is needed, the T cells have to go through an “individualized, bespoke manufacturing” process that’s “highly technical,” pediatric oncologist Stephan A. Grupp, MD, PhD, section chief of the Cellular Therapy and Transplant Section at Children’s Hospital of Philadelphia, said in an interview. As he explained, the cells for a single patient have to go through the same testing as with a drug that might be given to 1,000 people.
“The first thing we need to do is collect the cells from a patient,” said Dr. Williams. “For adults, that process involves putting in two big IVs — one in each arm — and then pulling the blood through a machine. This typically involves an 8-hour collection in the hospital and very highly specialized people to oversee the collection process.”
Secondly, at some institutions, “the cells get sent to a company where they undergo the process where the gene is inserted,” she said. “This process needs to be done in a very sterile environment so there’s no infections, and it needs to have a lot of oversight.”
Finally, “after the cells are generated, they are typically frozen and shipped back to the site where the patient is at the hospital,” she said. “Then we give chemotherapy to the patient, which prepares the patient’s blood system. It removes some of the T-cells that are there, allowing for the T cells that we’re about to infuse to quickly be activated, find the cancer, and kill it.”
Side effects can boost costs even more. “Unfortunately, some significant toxicities can occur after we infuse these cells,” Dr. Williams noted. “Patients can have trouble breathing and sometimes need ventilatory support. They can have trouble maintaining their blood pressure and become swollen as fluid seeps into tissues. Or they can have high fevers and organ dysfunction. Many of those patients go to the intensive care unit, which is obviously expensive as well.”
Taking Gene Therapy In-House
As Dr. Williams explained, one way to reduce costs is to “perform the genetic manipulation and expansion of the cells outside of a company.” Several academic institutions in the United States are embracing this approach, including Children’s Hospital of Philadelphia, which is experimenting with an automated device developed by the German company Miltenyi Biotec and known as the CliniMACS Prodigy machine.
“The current manufacturing process is very manual and requires a lot of interaction with the product and highly trained personnel,” Dr. Grupp said. “If you have an automated device, you have those cells in the device over the 7 to 12 days that you actually need to grow the cells. There’s much less interaction, so you need fewer trained personnel.”
The device is experimental and not yet FDA approved, Dr. Grupp noted, so that patients are all in clinical trials. Children’s Hospital of Philadelphia has treated more than a dozen patients with the device, he said.
Another member of Children’s Hospital of Philadelphia’s CAR T-cell team told WHYY-FM that a single patient’s treatment would run about $30,000 for labor and testing, but not other expenses such as facility costs.
Dr. Grupp estimated that about half a dozen of these devices are in use in the United States, and many more worldwide. “They’re all just like we are — at the absolute beginning. We’ve only been doing this for about a year.”
In the big picture, Dr. Grupp said, “this is where cell therapy is going. Whether it’s point of care or not, automated cell manufacturing is the obvious next step.”
India: Big Hopes for Homegrown Technology
In India, researchers are hoping that their homegrown approach to CAR T-cell therapy will expand access by greatly lowering treatment prices.
Last fall, India’s equivalent of the FDA-granted approval for actalycabtagene autoleucel (NexCAR19), which was developed by Indian scientists who worked closely with the US National Institutes of Health (NIH). The therapy’s developer is a company called ImmunoACT.
In an interview, ImmunoACT founder Rahul Purwar, PhD, MSc, associate professor at Indian Institute of Technology Bombay, said the treatment costs about $40,000. The price is much lower than in the United States because staffing, facility construction, and maintenance are less expensive in India, he said.
Results of small early clinical trials have been promising, with complete responses in 68% of 38 lymphoma patients and 72% of 15 leukemia patients. Updated data will be presented at the annual American Society of Hematology meeting in December 2024, Dr. Purwar said.
According to the NIH, at first ImmunoACT hopes to treat about 1,200 patients a year. The immediate goal is to “focus and stabilize our operation in India,” Dr. Purwar said. “Then, if opportunities come, we will try to bring CAR T to all who might benefit from these technologies. A majority of countries don’t have access to these technologies.”
A US-Brazil Partnership Holds Promise
Meanwhile, a US nonprofit known as Caring Cross announced this year that it has partnered with Fundação Oswaldo Cruz (Fiocruz), a Brazilian government foundation, to manufacture CAR T cells at point-of-care in South America.
“Our model is different than traditional biotech/pharma,” Boro Dropulic, PhD, MBA, cofounder and executive director of Caring Cross, said in an interview. “Our goal is to develop technologies and transfer them to organizations like Fiocruz to enable them to manufacture these transformative therapies for patients in their regions. We believe this model is an important solution for therapies that are priced so high that they are not accessible to many patients that need them, particularly underserved populations and those in low- and middle-income countries.”
According to Dr. Dropulic: “We have developed a production process where the material cost is about $20,000 per dose.” When labor and infrastructure costs are added, the total expense won’t be more than $37,000-$47,500, he said.
The research process for the CAR T-cell technology is at an earlier stage than in India. Scientists plan to start clinical trials of the technology in the United States by the end of 2024 and then begin them in Brazil in 2025, after safety and efficacy have been demonstrated. The first trial, a phase I/II study, will enroll about 20 patients, Dr. Dropulic said.
Dr. Kenderian reported ties with Novartis, Capstan Bio, Kite/Gilead, Juno/BMS, Humanigen, Tolero, Leah Labs, Lentigen, Luminary, Sunesis/Viracta, Morphosys, Troque, Carisma, Sendero, and LifEngine. Dr. Williams disclosed grants from National Institutes of Health and philanthropic organizations. Dr. Grupp reported relationships with Novartis, Kite, Vertex and Servier, Roche, GSK, Humanigen, CBMG, Eureka, Janssen/JNJ, Jazz, Adaptimmune, TCR2, Cellectis, Juno, Allogene, and Cabaletta. Dr. Purwar is the founder of ImmunoACT. Dr. Dropulic serves as executive director of Caring Cross and CEO of Vector BioMed, which provides vectors for gene therapy.
In the United States, a stand-alone device could greatly reduce the expense of producing modified immune cells. In India, researchers hope homegrown technology is the key to getting costs under control. In Latin America, a partnership between the Brazilian government and a US nonprofit may be just the ticket.
At stake is expanded access to CAR T-cell therapy, a form of immunotherapy that in just the past few years has revolutionized the care of hematologic cancers.
“Among patients with lymphoma, leukemia, and myeloma, anywhere between 30% to 50% reach long-term remission after one CAR T-cell infusion,” Mayo Clinic–Rochester hematologist/oncologist Saad J. Kenderian, MB, ChB, said in an interview. “It’s such an important therapy.”
However, only a small percentage of eligible patients in the United States — perhaps 20% or fewer — are receiving the treatment, he added.
A 2024 report suggested that many patients in the United States who may benefit aren’t being treated because of a range of possible reasons, including high prices, manufacturing logistics, and far distance from the limited number of institutions offering the therapy.
“Taken together, the real-world cost of CAR T-cell therapy can range from $700,000 to $1 million, which may make the treatment unaffordable to those patients without robust financial and/or social support,” the report authors noted.
Outside Western countries, access to the therapy is even more limited, because of its exorbitant price. The 2024 report noted that “there is a wide use of CAR T-cell therapy in Europe and China, but access is limited in developing countries in Southeast Asia, Africa, and Latin America.”
Harnessing the Power of T-Cells
Several types of CAR T-cell therapy have been approved by the US Food and Drug Administration (FDA) for patients with relapsed/refractory blood cancers such as follicular lymphoma, large B-cell lymphoma, multiple myeloma, and B-cell precursor acute lymphoblastic leukemia. A 2023 review analyzed clinical trials and reported that complete response rates were 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B-cell lymphoma.
Pediatric hematologist/oncologist Kirsten Williams, MD, who specializes in pediatric blood and marrow transplant and cellular therapy at the Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, described CAR T-cell therapy as “a very unique form of immunotherapy” that harnesses the power of the immune system’s T-cells.
These cells are effective tumor killers, but they typically aren’t assigned to control cancer, she said in an interview. “We have very few of them, and most of our T cells are focused on killing various viruses,” she said. The therapy “allows us to take the T cell that would have killed the flu or mono and instead target leukemia, B-cell leukemia, or lymphoma.”
As she explained, “T cells are collected by a machine that reserves white blood cells and gives back the rest of the blood to the patient. We insert a gene into the T cells that encodes for a B-cell receptor. This receptor acts as a GPS signal, pulling T cells to the cancer so that they can kill it.”
In addition, “with this genetic change, we also add some things that allow the T cell to be stronger, to have a higher signal to kill the cancer cell once it locks on.”
The therapy is unique for each patient, Dr. Williams said. “We have collected and modified your specific T cells, and they can now only be infused into you. If we try to give your product to someone else, those cells would either cause harm by attacking the patient or would be immediately killed by that patient’s own immune system. This is very different than all the other kinds of therapies. When you take other medicines, it doesn’t matter who receives that pill.”
Treatment: Individual, Complex, and Costly
Why is CAR T-cell therapy so expensive? While only a single treatment is needed, the T cells have to go through an “individualized, bespoke manufacturing” process that’s “highly technical,” pediatric oncologist Stephan A. Grupp, MD, PhD, section chief of the Cellular Therapy and Transplant Section at Children’s Hospital of Philadelphia, said in an interview. As he explained, the cells for a single patient have to go through the same testing as with a drug that might be given to 1,000 people.
“The first thing we need to do is collect the cells from a patient,” said Dr. Williams. “For adults, that process involves putting in two big IVs — one in each arm — and then pulling the blood through a machine. This typically involves an 8-hour collection in the hospital and very highly specialized people to oversee the collection process.”
Secondly, at some institutions, “the cells get sent to a company where they undergo the process where the gene is inserted,” she said. “This process needs to be done in a very sterile environment so there’s no infections, and it needs to have a lot of oversight.”
Finally, “after the cells are generated, they are typically frozen and shipped back to the site where the patient is at the hospital,” she said. “Then we give chemotherapy to the patient, which prepares the patient’s blood system. It removes some of the T-cells that are there, allowing for the T cells that we’re about to infuse to quickly be activated, find the cancer, and kill it.”
Side effects can boost costs even more. “Unfortunately, some significant toxicities can occur after we infuse these cells,” Dr. Williams noted. “Patients can have trouble breathing and sometimes need ventilatory support. They can have trouble maintaining their blood pressure and become swollen as fluid seeps into tissues. Or they can have high fevers and organ dysfunction. Many of those patients go to the intensive care unit, which is obviously expensive as well.”
Taking Gene Therapy In-House
As Dr. Williams explained, one way to reduce costs is to “perform the genetic manipulation and expansion of the cells outside of a company.” Several academic institutions in the United States are embracing this approach, including Children’s Hospital of Philadelphia, which is experimenting with an automated device developed by the German company Miltenyi Biotec and known as the CliniMACS Prodigy machine.
“The current manufacturing process is very manual and requires a lot of interaction with the product and highly trained personnel,” Dr. Grupp said. “If you have an automated device, you have those cells in the device over the 7 to 12 days that you actually need to grow the cells. There’s much less interaction, so you need fewer trained personnel.”
The device is experimental and not yet FDA approved, Dr. Grupp noted, so that patients are all in clinical trials. Children’s Hospital of Philadelphia has treated more than a dozen patients with the device, he said.
Another member of Children’s Hospital of Philadelphia’s CAR T-cell team told WHYY-FM that a single patient’s treatment would run about $30,000 for labor and testing, but not other expenses such as facility costs.
Dr. Grupp estimated that about half a dozen of these devices are in use in the United States, and many more worldwide. “They’re all just like we are — at the absolute beginning. We’ve only been doing this for about a year.”
In the big picture, Dr. Grupp said, “this is where cell therapy is going. Whether it’s point of care or not, automated cell manufacturing is the obvious next step.”
India: Big Hopes for Homegrown Technology
In India, researchers are hoping that their homegrown approach to CAR T-cell therapy will expand access by greatly lowering treatment prices.
Last fall, India’s equivalent of the FDA-granted approval for actalycabtagene autoleucel (NexCAR19), which was developed by Indian scientists who worked closely with the US National Institutes of Health (NIH). The therapy’s developer is a company called ImmunoACT.
In an interview, ImmunoACT founder Rahul Purwar, PhD, MSc, associate professor at Indian Institute of Technology Bombay, said the treatment costs about $40,000. The price is much lower than in the United States because staffing, facility construction, and maintenance are less expensive in India, he said.
Results of small early clinical trials have been promising, with complete responses in 68% of 38 lymphoma patients and 72% of 15 leukemia patients. Updated data will be presented at the annual American Society of Hematology meeting in December 2024, Dr. Purwar said.
According to the NIH, at first ImmunoACT hopes to treat about 1,200 patients a year. The immediate goal is to “focus and stabilize our operation in India,” Dr. Purwar said. “Then, if opportunities come, we will try to bring CAR T to all who might benefit from these technologies. A majority of countries don’t have access to these technologies.”
A US-Brazil Partnership Holds Promise
Meanwhile, a US nonprofit known as Caring Cross announced this year that it has partnered with Fundação Oswaldo Cruz (Fiocruz), a Brazilian government foundation, to manufacture CAR T cells at point-of-care in South America.
“Our model is different than traditional biotech/pharma,” Boro Dropulic, PhD, MBA, cofounder and executive director of Caring Cross, said in an interview. “Our goal is to develop technologies and transfer them to organizations like Fiocruz to enable them to manufacture these transformative therapies for patients in their regions. We believe this model is an important solution for therapies that are priced so high that they are not accessible to many patients that need them, particularly underserved populations and those in low- and middle-income countries.”
According to Dr. Dropulic: “We have developed a production process where the material cost is about $20,000 per dose.” When labor and infrastructure costs are added, the total expense won’t be more than $37,000-$47,500, he said.
The research process for the CAR T-cell technology is at an earlier stage than in India. Scientists plan to start clinical trials of the technology in the United States by the end of 2024 and then begin them in Brazil in 2025, after safety and efficacy have been demonstrated. The first trial, a phase I/II study, will enroll about 20 patients, Dr. Dropulic said.
Dr. Kenderian reported ties with Novartis, Capstan Bio, Kite/Gilead, Juno/BMS, Humanigen, Tolero, Leah Labs, Lentigen, Luminary, Sunesis/Viracta, Morphosys, Troque, Carisma, Sendero, and LifEngine. Dr. Williams disclosed grants from National Institutes of Health and philanthropic organizations. Dr. Grupp reported relationships with Novartis, Kite, Vertex and Servier, Roche, GSK, Humanigen, CBMG, Eureka, Janssen/JNJ, Jazz, Adaptimmune, TCR2, Cellectis, Juno, Allogene, and Cabaletta. Dr. Purwar is the founder of ImmunoACT. Dr. Dropulic serves as executive director of Caring Cross and CEO of Vector BioMed, which provides vectors for gene therapy.
New Trial Deepens Debate Over Late-Preterm Steroids
The early cancellation of a trial in southern India suggests that the use of antenatal steroids to prevent respiratory complications after late-preterm birth — a recommended practice in the United States — may not be effective in the developing world.
As reported in Obstetrics & Gynecology, researchers led by Hilda Yenuberi, MD, of Christian Medical College, Vellore, Tamil Nadu, India, stopped the randomized, triple-blinded, placebo-controlled CLAP (Corticosteroids in Late Pregnancy) study at 70% enrollment. An interim analysis found no benefit from prescribing betamethasone vs placebo to women at risk of late-preterm delivery between 34 and 36 and 6/7 weeks of gestation (primary outcome of respiratory distress: 4.9% vs 4.8%, respectively, relative risk [RR], 1.03; 95% CI, 0.57-1.84; number needed to treat = 786).
“These findings may suggest differing efficacy of antenatal corticosteroids in developing countries compared with developed countries ... that should be considered when late-preterm antenatal corticosteroids are administered,” the researchers wrote.
The use of steroids in patients at risk of delivery before 34 weeks is widely accepted as a way to prevent neonatal respiratory distress, a common and potentially deadly condition in premature infants whose lungs are not fully developed. However, there’s debate over steroid treatment in women who are expected to deliver later than 34 weeks but still preterm.
As the study notes, “the American College of Obstetricians and Gynecologists recommends a single course of betamethasone for pregnant individuals at risk of delivering between 34 and 36 6/7 weeks of gestation on the basis of the ALPS (Antenatal Late Preterm Steroid) trial.”
But other randomized trials have reached different conclusions, and steroids are not without risks. Studies have linked prenatal steroids to neurosensory disorders in babies, meaning they’re more likely to need hearing aids and eyeglasses, said Kellie Murphy, MD, MSc, professor of obstetrics and gynecology, University of Toronto, Toronto, Ontario, Canada, in an interview. Dr. Murphy, who was not involved in the new trial, added that there are links between steroids and greater likelihood of poorer performance in school,
For the new study, conducted from 2020 to 2022 at Christian Medical College and Hospital in Vellore, India, researchers randomly assigned 423 patients to betamethasone (410 in the interim analysis; average age, 26.8 years) and 424 to placebo (415 in the interim analysis; average age, 26.2 years).
The average age of participants was 26.8 years. All were between 34 and 36 6/7 weeks of gestation and expected to give birth within the next week. A quarter of participants delivered at term, which the authors wrote “may have influenced the primary outcome.” The total number of neonates was 883, including 58 twin pregnancies.
There was no significant difference in respiratory distress between groups, “defined as need for oxygen or continuous positive airway pressure or mechanical ventilation for at least 2 hours in the first 72 hours of life.” There also were no significant differences in maternal outcomes such as chorioamnionitis or length of hospitalization or neonatal secondary outcomes such as transient tachypnea of the newborn, respiratory distress syndrome, necrotizing enterocolitis, sepsis, hyperbilirubinemia, stillbirth, and early neonatal death.
Serious adverse events occurred in four neonates but none were linked to the intervention.
The study doesn’t discuss cost, but a 2019 report suggests that use of betamethasone to prevent neonatal respiratory distress is cost-effective.
“Our findings are contradictory to those of a systematic review, the major contributor of which was the ALPS trial,” the authors of the new study reported. “The primary outcome of the ALPS trial, the composite of neonatal treatment in the first 72 hours, was significantly less in the group who received betamethasone (11.6%), compared with the placebo group (14.4%; relative risk [RR], 0.80; 95% CI, 0.66-0.97).”
The study authors, who didn’t respond to requests for comment, noted that their trial included twin pregnancies and patients with gestational diabetes; the ALPS trial did not.
Perinatologist Cynthia Gyamfi-Bannerman, MD, MS, chair and professor of Obstetrics, Gynecology, and Reproductive Sciences at the University of California,San Diego, and principal investigator of the ALPS study, said in an interview that the inclusion of twins in the new trial is “a fundamental flaw.”
“Because antenatal corticosteroids have not been shown to be useful in twins at any gestational age, it is not surprising that including twins likely moved the findings to the null in this study,” she said. “Twins were purposefully excluded from the ALPS trial for this reason.”
According to the new study, “the primary outcome among singleton neonates occurred in 4.8% (18/374) who received betamethasone and 5.1% (20/393) who received placebo (RR, 0.94; 95% CI, 0.51-1.75)
What should clinicians take from the study findings? In an accompanying commentary, Blair J. Wylie, MD, MPH, of Columbia University Medical Center, New York, NY, and Syed Asad Ali, MBBS, MPH, of Aga Khan University, Karachi, Pakistan, wrote that, “in settings similar to the US-based ALPS trial, the practice of administering a course of late-preterm antenatal corticosteroids should be continued, as espoused by our professional organizations.”
However, the new study suggests that “research in high-resource environments may not be generalizable to low-resource settings,” they write.
Neonatologist Elizabeth Asztalos, MD, MSc, an associate scientist with Sunnybrook Health Sciences Center in Toronto, Canada, said in an interview that she doesn’t worry about pregnant mothers not getting steroids later than 34 weeks. “We have tools in our armamentarium in the NICU setting to help babies if they need it,” said Dr. Asztalos, who didn’t take part in the new trial. “We can put them on CPAP if they have wet lung. If they have an element of respiratory distress, we can give them surfactants. These bigger babies have more ability to recover from all this compared to a baby who was born at 24, 25, 26 weeks.”
For her part, the University of Toronto’s Dr. Murphy said decision-making about late-preterm steroids is complicated. “You don’t want to miss the opportunity to give to provide benefits for the patients” via steroids, she said. “But on the flip side, it’s a double-edged sword. It’s not easy. It’s not straightforward.”
In the big picture, she said, “people need to be really clear why they’re giving an intervention and what they hope to achieve.”
Christian Medical College supported the study. The authors, Dr. Murphy, Dr. Asztalos, and commentary co-author Dr. Ali have no disclosures. Dr. Gyamfi-Bannerman discloses being principal investigator of the ALPS trial. Commentary co-author Dr. Wylie serves on the ultrasound quality assurance committee of a trial discussed in the commentary.
The early cancellation of a trial in southern India suggests that the use of antenatal steroids to prevent respiratory complications after late-preterm birth — a recommended practice in the United States — may not be effective in the developing world.
As reported in Obstetrics & Gynecology, researchers led by Hilda Yenuberi, MD, of Christian Medical College, Vellore, Tamil Nadu, India, stopped the randomized, triple-blinded, placebo-controlled CLAP (Corticosteroids in Late Pregnancy) study at 70% enrollment. An interim analysis found no benefit from prescribing betamethasone vs placebo to women at risk of late-preterm delivery between 34 and 36 and 6/7 weeks of gestation (primary outcome of respiratory distress: 4.9% vs 4.8%, respectively, relative risk [RR], 1.03; 95% CI, 0.57-1.84; number needed to treat = 786).
“These findings may suggest differing efficacy of antenatal corticosteroids in developing countries compared with developed countries ... that should be considered when late-preterm antenatal corticosteroids are administered,” the researchers wrote.
The use of steroids in patients at risk of delivery before 34 weeks is widely accepted as a way to prevent neonatal respiratory distress, a common and potentially deadly condition in premature infants whose lungs are not fully developed. However, there’s debate over steroid treatment in women who are expected to deliver later than 34 weeks but still preterm.
As the study notes, “the American College of Obstetricians and Gynecologists recommends a single course of betamethasone for pregnant individuals at risk of delivering between 34 and 36 6/7 weeks of gestation on the basis of the ALPS (Antenatal Late Preterm Steroid) trial.”
But other randomized trials have reached different conclusions, and steroids are not without risks. Studies have linked prenatal steroids to neurosensory disorders in babies, meaning they’re more likely to need hearing aids and eyeglasses, said Kellie Murphy, MD, MSc, professor of obstetrics and gynecology, University of Toronto, Toronto, Ontario, Canada, in an interview. Dr. Murphy, who was not involved in the new trial, added that there are links between steroids and greater likelihood of poorer performance in school,
For the new study, conducted from 2020 to 2022 at Christian Medical College and Hospital in Vellore, India, researchers randomly assigned 423 patients to betamethasone (410 in the interim analysis; average age, 26.8 years) and 424 to placebo (415 in the interim analysis; average age, 26.2 years).
The average age of participants was 26.8 years. All were between 34 and 36 6/7 weeks of gestation and expected to give birth within the next week. A quarter of participants delivered at term, which the authors wrote “may have influenced the primary outcome.” The total number of neonates was 883, including 58 twin pregnancies.
There was no significant difference in respiratory distress between groups, “defined as need for oxygen or continuous positive airway pressure or mechanical ventilation for at least 2 hours in the first 72 hours of life.” There also were no significant differences in maternal outcomes such as chorioamnionitis or length of hospitalization or neonatal secondary outcomes such as transient tachypnea of the newborn, respiratory distress syndrome, necrotizing enterocolitis, sepsis, hyperbilirubinemia, stillbirth, and early neonatal death.
Serious adverse events occurred in four neonates but none were linked to the intervention.
The study doesn’t discuss cost, but a 2019 report suggests that use of betamethasone to prevent neonatal respiratory distress is cost-effective.
“Our findings are contradictory to those of a systematic review, the major contributor of which was the ALPS trial,” the authors of the new study reported. “The primary outcome of the ALPS trial, the composite of neonatal treatment in the first 72 hours, was significantly less in the group who received betamethasone (11.6%), compared with the placebo group (14.4%; relative risk [RR], 0.80; 95% CI, 0.66-0.97).”
The study authors, who didn’t respond to requests for comment, noted that their trial included twin pregnancies and patients with gestational diabetes; the ALPS trial did not.
Perinatologist Cynthia Gyamfi-Bannerman, MD, MS, chair and professor of Obstetrics, Gynecology, and Reproductive Sciences at the University of California,San Diego, and principal investigator of the ALPS study, said in an interview that the inclusion of twins in the new trial is “a fundamental flaw.”
“Because antenatal corticosteroids have not been shown to be useful in twins at any gestational age, it is not surprising that including twins likely moved the findings to the null in this study,” she said. “Twins were purposefully excluded from the ALPS trial for this reason.”
According to the new study, “the primary outcome among singleton neonates occurred in 4.8% (18/374) who received betamethasone and 5.1% (20/393) who received placebo (RR, 0.94; 95% CI, 0.51-1.75)
What should clinicians take from the study findings? In an accompanying commentary, Blair J. Wylie, MD, MPH, of Columbia University Medical Center, New York, NY, and Syed Asad Ali, MBBS, MPH, of Aga Khan University, Karachi, Pakistan, wrote that, “in settings similar to the US-based ALPS trial, the practice of administering a course of late-preterm antenatal corticosteroids should be continued, as espoused by our professional organizations.”
However, the new study suggests that “research in high-resource environments may not be generalizable to low-resource settings,” they write.
Neonatologist Elizabeth Asztalos, MD, MSc, an associate scientist with Sunnybrook Health Sciences Center in Toronto, Canada, said in an interview that she doesn’t worry about pregnant mothers not getting steroids later than 34 weeks. “We have tools in our armamentarium in the NICU setting to help babies if they need it,” said Dr. Asztalos, who didn’t take part in the new trial. “We can put them on CPAP if they have wet lung. If they have an element of respiratory distress, we can give them surfactants. These bigger babies have more ability to recover from all this compared to a baby who was born at 24, 25, 26 weeks.”
For her part, the University of Toronto’s Dr. Murphy said decision-making about late-preterm steroids is complicated. “You don’t want to miss the opportunity to give to provide benefits for the patients” via steroids, she said. “But on the flip side, it’s a double-edged sword. It’s not easy. It’s not straightforward.”
In the big picture, she said, “people need to be really clear why they’re giving an intervention and what they hope to achieve.”
Christian Medical College supported the study. The authors, Dr. Murphy, Dr. Asztalos, and commentary co-author Dr. Ali have no disclosures. Dr. Gyamfi-Bannerman discloses being principal investigator of the ALPS trial. Commentary co-author Dr. Wylie serves on the ultrasound quality assurance committee of a trial discussed in the commentary.
The early cancellation of a trial in southern India suggests that the use of antenatal steroids to prevent respiratory complications after late-preterm birth — a recommended practice in the United States — may not be effective in the developing world.
As reported in Obstetrics & Gynecology, researchers led by Hilda Yenuberi, MD, of Christian Medical College, Vellore, Tamil Nadu, India, stopped the randomized, triple-blinded, placebo-controlled CLAP (Corticosteroids in Late Pregnancy) study at 70% enrollment. An interim analysis found no benefit from prescribing betamethasone vs placebo to women at risk of late-preterm delivery between 34 and 36 and 6/7 weeks of gestation (primary outcome of respiratory distress: 4.9% vs 4.8%, respectively, relative risk [RR], 1.03; 95% CI, 0.57-1.84; number needed to treat = 786).
“These findings may suggest differing efficacy of antenatal corticosteroids in developing countries compared with developed countries ... that should be considered when late-preterm antenatal corticosteroids are administered,” the researchers wrote.
The use of steroids in patients at risk of delivery before 34 weeks is widely accepted as a way to prevent neonatal respiratory distress, a common and potentially deadly condition in premature infants whose lungs are not fully developed. However, there’s debate over steroid treatment in women who are expected to deliver later than 34 weeks but still preterm.
As the study notes, “the American College of Obstetricians and Gynecologists recommends a single course of betamethasone for pregnant individuals at risk of delivering between 34 and 36 6/7 weeks of gestation on the basis of the ALPS (Antenatal Late Preterm Steroid) trial.”
But other randomized trials have reached different conclusions, and steroids are not without risks. Studies have linked prenatal steroids to neurosensory disorders in babies, meaning they’re more likely to need hearing aids and eyeglasses, said Kellie Murphy, MD, MSc, professor of obstetrics and gynecology, University of Toronto, Toronto, Ontario, Canada, in an interview. Dr. Murphy, who was not involved in the new trial, added that there are links between steroids and greater likelihood of poorer performance in school,
For the new study, conducted from 2020 to 2022 at Christian Medical College and Hospital in Vellore, India, researchers randomly assigned 423 patients to betamethasone (410 in the interim analysis; average age, 26.8 years) and 424 to placebo (415 in the interim analysis; average age, 26.2 years).
The average age of participants was 26.8 years. All were between 34 and 36 6/7 weeks of gestation and expected to give birth within the next week. A quarter of participants delivered at term, which the authors wrote “may have influenced the primary outcome.” The total number of neonates was 883, including 58 twin pregnancies.
There was no significant difference in respiratory distress between groups, “defined as need for oxygen or continuous positive airway pressure or mechanical ventilation for at least 2 hours in the first 72 hours of life.” There also were no significant differences in maternal outcomes such as chorioamnionitis or length of hospitalization or neonatal secondary outcomes such as transient tachypnea of the newborn, respiratory distress syndrome, necrotizing enterocolitis, sepsis, hyperbilirubinemia, stillbirth, and early neonatal death.
Serious adverse events occurred in four neonates but none were linked to the intervention.
The study doesn’t discuss cost, but a 2019 report suggests that use of betamethasone to prevent neonatal respiratory distress is cost-effective.
“Our findings are contradictory to those of a systematic review, the major contributor of which was the ALPS trial,” the authors of the new study reported. “The primary outcome of the ALPS trial, the composite of neonatal treatment in the first 72 hours, was significantly less in the group who received betamethasone (11.6%), compared with the placebo group (14.4%; relative risk [RR], 0.80; 95% CI, 0.66-0.97).”
The study authors, who didn’t respond to requests for comment, noted that their trial included twin pregnancies and patients with gestational diabetes; the ALPS trial did not.
Perinatologist Cynthia Gyamfi-Bannerman, MD, MS, chair and professor of Obstetrics, Gynecology, and Reproductive Sciences at the University of California,San Diego, and principal investigator of the ALPS study, said in an interview that the inclusion of twins in the new trial is “a fundamental flaw.”
“Because antenatal corticosteroids have not been shown to be useful in twins at any gestational age, it is not surprising that including twins likely moved the findings to the null in this study,” she said. “Twins were purposefully excluded from the ALPS trial for this reason.”
According to the new study, “the primary outcome among singleton neonates occurred in 4.8% (18/374) who received betamethasone and 5.1% (20/393) who received placebo (RR, 0.94; 95% CI, 0.51-1.75)
What should clinicians take from the study findings? In an accompanying commentary, Blair J. Wylie, MD, MPH, of Columbia University Medical Center, New York, NY, and Syed Asad Ali, MBBS, MPH, of Aga Khan University, Karachi, Pakistan, wrote that, “in settings similar to the US-based ALPS trial, the practice of administering a course of late-preterm antenatal corticosteroids should be continued, as espoused by our professional organizations.”
However, the new study suggests that “research in high-resource environments may not be generalizable to low-resource settings,” they write.
Neonatologist Elizabeth Asztalos, MD, MSc, an associate scientist with Sunnybrook Health Sciences Center in Toronto, Canada, said in an interview that she doesn’t worry about pregnant mothers not getting steroids later than 34 weeks. “We have tools in our armamentarium in the NICU setting to help babies if they need it,” said Dr. Asztalos, who didn’t take part in the new trial. “We can put them on CPAP if they have wet lung. If they have an element of respiratory distress, we can give them surfactants. These bigger babies have more ability to recover from all this compared to a baby who was born at 24, 25, 26 weeks.”
For her part, the University of Toronto’s Dr. Murphy said decision-making about late-preterm steroids is complicated. “You don’t want to miss the opportunity to give to provide benefits for the patients” via steroids, she said. “But on the flip side, it’s a double-edged sword. It’s not easy. It’s not straightforward.”
In the big picture, she said, “people need to be really clear why they’re giving an intervention and what they hope to achieve.”
Christian Medical College supported the study. The authors, Dr. Murphy, Dr. Asztalos, and commentary co-author Dr. Ali have no disclosures. Dr. Gyamfi-Bannerman discloses being principal investigator of the ALPS trial. Commentary co-author Dr. Wylie serves on the ultrasound quality assurance committee of a trial discussed in the commentary.
FROM OBSTETRICS & GYNECOLOGY
Consider Skin Cancer, Infection Risks in Solid Organ Transplant Recipients
SAN DIEGO —
because of their suppressed immune systems.“There are over 450,000 people with a solid organ transplant living in the United States. If you do the math, that works out to about 40 organ transplant recipients for every dermatologist, so there’s a lot of them out there for us to take care of,” Sean Christensen, MD, PhD, associate professor of dermatology, Yale University, New Haven, Connecticut, said at the annual meeting of the American Academy of Dermatology (AAD). “If we expand that umbrella to include all types of immunosuppression, that’s over 4 million adults in the US.”
Dr. Christensen encouraged dermatologists to be aware of the varying risks for immunosuppressive drugs and best screening practices for these patients, and to take advantage of a validated skin cancer risk assessment tool for transplant patients.
During his presentation, he highlighted five classes of immunosuppressive drugs and their associated skin cancer risks:
- Calcineurin inhibitors (tacrolimus or cyclosporine), which cause severe immune suppression and pose a severe skin cancer risk. They may also cause gingival hyperplasia and sebaceous hyperplasia.
- Antimetabolites (mycophenolate mofetil or azathioprine), which cause moderate to severe immune suppression and pose a severe skin cancer risk.
- Mammalian target of rapamycin inhibitors (sirolimus or everolimus), which cause severe immune suppression and pose a moderate skin cancer risk. They also impair wound healing.
- Corticosteroids (prednisone), which cause mild to severe immune suppression and pose a minimal skin cancer risk.
- A decoy receptor protein (belatacept), which causes severe immune suppression and poses a mild skin cancer risk.
“Most of our solid-organ transplant recipients will be on both a calcineurin inhibitor and an antimetabolite,” Dr. Christensen said. “In addition to the skin cancer risk associated with immunosuppression, there is an additive risk” that is a direct effect of these medications on the skin. “That means our transplant recipients have a severely and disproportionate increase in skin cancer,” he noted.
Up to half of solid-organ transplant recipients will develop skin cancer, Dr. Christensen said. These patients have a sixfold to 10-fold increased risk for basal cell carcinoma (BCC), a 35- to 65-fold increased risk for squamous cell carcinoma (SCC), a twofold to sevenfold increased risk for melanoma, and a 16- to 100-fold increased risk for Merkel cell carcinoma.
Transplant recipients with SCC, he said, have a twofold to threefold higher risk for metastasis (4%-8% nodal metastasis) and twofold to fivefold higher risk for death (2%-7% mortality) from SCC.
As for other kinds of immunosuppression, HIV positivity, treatment with 6-mercaptopurine or azathioprine (for inflammatory bowel disease and rheumatoid arthritis), and antitumor necrosis factor agents (for psoriasis, inflammatory bowel disease, and rheumatoid arthritis) have been linked in studies to a higher risk for nonmelanoma skin cancer.
Dr. Christensen also highlighted graft-versus-host disease (GVHD). “It does look like there is a disproportionate and increased risk of SCC of the oropharynx and of the skin in patients who have chronic GVHD. This is probably due to a combination of both the immunosuppressive medications that are required but also from chronic and ongoing inflammation in the skin.”
Chronic GVHD has been linked to a 5.3-fold increase in the risk for SCC and a twofold increase in the risk for BCC, he added.
Moreover, new medications for treating GVHD have been linked to an increased risk for SCC, including a 3.2-fold increased risk for SCC associated with ruxolitinib, a Janus kinase (JAK) 1 and JAK2 inhibitor, in a study of patients with polycythemia vera and myelofibrosis; and a case report of SCC in a patient treated with belumosudil, a rho-associated coiled-coil-containing protein kinase-2 kinase inhibitor, for chronic GVHD. Risk for SCC appears to increase based on duration of use with voriconazole, an antifungal, which, he said, is a potent photosynthesizer.
Dr. Christensen also noted the higher risk for infections in immunocompromised patients and added that these patients can develop inflammatory disease despite immunosuppression:
Staphylococcus, Streptococcus, and Dermatophytes are the most common skin pathogens in these patients. There’s a significantly increased risk for reactivation of herpes simplex, varicella-zoster viruses, and cytomegalovirus. Opportunistic and disseminated fungal infections, such as mycobacteria, Candida, histoplasma, cryptococcus, aspergillus, and mucormycosis, can also appear.
More than 80% of transplant recipients develop molluscum and verruca vulgaris/human papillomavirus infection. They may also develop noninfectious inflammatory dermatoses.
Risk Calculator
What can dermatologists do to help transplant patients? Dr. Christensen highlighted the Skin and UV Neoplasia Transplant Risk Assessment Calculator, which predicts skin cancer risk based on points given for race, gender, skin cancer history, age at transplant, and site of transplant.
The tool, validated in a 2023 study of transplant recipients in Europe, is available online and as an app. It makes recommendations to users about when patients should have initial skin screening exams. Those with the most risk — 45% at 5 years — should be screened within 6 months. “We can use [the tool] to triage these cases when we first meet them and get them plugged into the appropriate care,” Dr. Christensen said.
He recommended seeing high-risk patients at least annually. Patients with a prior SCC and a heavy burden of actinic keratosis should be followed more frequently, he said.
In regard to SCC, he highlighted a 2024 study of solid organ transplant recipients that found the risk for a second SCC after a first SCC was 74%, the risk for a third SCC after a second SCC was 83%, and the risk for another SCC after five SCCs was 92%.
Dr. Christensen disclosed relationships with Canfield Scientific Inc. (consulting), Inhibitor Therapeutics (advisory board), and Sol-Gel Technologies Ltd. (grants/research funding).
A version of this article first appeared on Medscape.com.
SAN DIEGO —
because of their suppressed immune systems.“There are over 450,000 people with a solid organ transplant living in the United States. If you do the math, that works out to about 40 organ transplant recipients for every dermatologist, so there’s a lot of them out there for us to take care of,” Sean Christensen, MD, PhD, associate professor of dermatology, Yale University, New Haven, Connecticut, said at the annual meeting of the American Academy of Dermatology (AAD). “If we expand that umbrella to include all types of immunosuppression, that’s over 4 million adults in the US.”
Dr. Christensen encouraged dermatologists to be aware of the varying risks for immunosuppressive drugs and best screening practices for these patients, and to take advantage of a validated skin cancer risk assessment tool for transplant patients.
During his presentation, he highlighted five classes of immunosuppressive drugs and their associated skin cancer risks:
- Calcineurin inhibitors (tacrolimus or cyclosporine), which cause severe immune suppression and pose a severe skin cancer risk. They may also cause gingival hyperplasia and sebaceous hyperplasia.
- Antimetabolites (mycophenolate mofetil or azathioprine), which cause moderate to severe immune suppression and pose a severe skin cancer risk.
- Mammalian target of rapamycin inhibitors (sirolimus or everolimus), which cause severe immune suppression and pose a moderate skin cancer risk. They also impair wound healing.
- Corticosteroids (prednisone), which cause mild to severe immune suppression and pose a minimal skin cancer risk.
- A decoy receptor protein (belatacept), which causes severe immune suppression and poses a mild skin cancer risk.
“Most of our solid-organ transplant recipients will be on both a calcineurin inhibitor and an antimetabolite,” Dr. Christensen said. “In addition to the skin cancer risk associated with immunosuppression, there is an additive risk” that is a direct effect of these medications on the skin. “That means our transplant recipients have a severely and disproportionate increase in skin cancer,” he noted.
Up to half of solid-organ transplant recipients will develop skin cancer, Dr. Christensen said. These patients have a sixfold to 10-fold increased risk for basal cell carcinoma (BCC), a 35- to 65-fold increased risk for squamous cell carcinoma (SCC), a twofold to sevenfold increased risk for melanoma, and a 16- to 100-fold increased risk for Merkel cell carcinoma.
Transplant recipients with SCC, he said, have a twofold to threefold higher risk for metastasis (4%-8% nodal metastasis) and twofold to fivefold higher risk for death (2%-7% mortality) from SCC.
As for other kinds of immunosuppression, HIV positivity, treatment with 6-mercaptopurine or azathioprine (for inflammatory bowel disease and rheumatoid arthritis), and antitumor necrosis factor agents (for psoriasis, inflammatory bowel disease, and rheumatoid arthritis) have been linked in studies to a higher risk for nonmelanoma skin cancer.
Dr. Christensen also highlighted graft-versus-host disease (GVHD). “It does look like there is a disproportionate and increased risk of SCC of the oropharynx and of the skin in patients who have chronic GVHD. This is probably due to a combination of both the immunosuppressive medications that are required but also from chronic and ongoing inflammation in the skin.”
Chronic GVHD has been linked to a 5.3-fold increase in the risk for SCC and a twofold increase in the risk for BCC, he added.
Moreover, new medications for treating GVHD have been linked to an increased risk for SCC, including a 3.2-fold increased risk for SCC associated with ruxolitinib, a Janus kinase (JAK) 1 and JAK2 inhibitor, in a study of patients with polycythemia vera and myelofibrosis; and a case report of SCC in a patient treated with belumosudil, a rho-associated coiled-coil-containing protein kinase-2 kinase inhibitor, for chronic GVHD. Risk for SCC appears to increase based on duration of use with voriconazole, an antifungal, which, he said, is a potent photosynthesizer.
Dr. Christensen also noted the higher risk for infections in immunocompromised patients and added that these patients can develop inflammatory disease despite immunosuppression:
Staphylococcus, Streptococcus, and Dermatophytes are the most common skin pathogens in these patients. There’s a significantly increased risk for reactivation of herpes simplex, varicella-zoster viruses, and cytomegalovirus. Opportunistic and disseminated fungal infections, such as mycobacteria, Candida, histoplasma, cryptococcus, aspergillus, and mucormycosis, can also appear.
More than 80% of transplant recipients develop molluscum and verruca vulgaris/human papillomavirus infection. They may also develop noninfectious inflammatory dermatoses.
Risk Calculator
What can dermatologists do to help transplant patients? Dr. Christensen highlighted the Skin and UV Neoplasia Transplant Risk Assessment Calculator, which predicts skin cancer risk based on points given for race, gender, skin cancer history, age at transplant, and site of transplant.
The tool, validated in a 2023 study of transplant recipients in Europe, is available online and as an app. It makes recommendations to users about when patients should have initial skin screening exams. Those with the most risk — 45% at 5 years — should be screened within 6 months. “We can use [the tool] to triage these cases when we first meet them and get them plugged into the appropriate care,” Dr. Christensen said.
He recommended seeing high-risk patients at least annually. Patients with a prior SCC and a heavy burden of actinic keratosis should be followed more frequently, he said.
In regard to SCC, he highlighted a 2024 study of solid organ transplant recipients that found the risk for a second SCC after a first SCC was 74%, the risk for a third SCC after a second SCC was 83%, and the risk for another SCC after five SCCs was 92%.
Dr. Christensen disclosed relationships with Canfield Scientific Inc. (consulting), Inhibitor Therapeutics (advisory board), and Sol-Gel Technologies Ltd. (grants/research funding).
A version of this article first appeared on Medscape.com.
SAN DIEGO —
because of their suppressed immune systems.“There are over 450,000 people with a solid organ transplant living in the United States. If you do the math, that works out to about 40 organ transplant recipients for every dermatologist, so there’s a lot of them out there for us to take care of,” Sean Christensen, MD, PhD, associate professor of dermatology, Yale University, New Haven, Connecticut, said at the annual meeting of the American Academy of Dermatology (AAD). “If we expand that umbrella to include all types of immunosuppression, that’s over 4 million adults in the US.”
Dr. Christensen encouraged dermatologists to be aware of the varying risks for immunosuppressive drugs and best screening practices for these patients, and to take advantage of a validated skin cancer risk assessment tool for transplant patients.
During his presentation, he highlighted five classes of immunosuppressive drugs and their associated skin cancer risks:
- Calcineurin inhibitors (tacrolimus or cyclosporine), which cause severe immune suppression and pose a severe skin cancer risk. They may also cause gingival hyperplasia and sebaceous hyperplasia.
- Antimetabolites (mycophenolate mofetil or azathioprine), which cause moderate to severe immune suppression and pose a severe skin cancer risk.
- Mammalian target of rapamycin inhibitors (sirolimus or everolimus), which cause severe immune suppression and pose a moderate skin cancer risk. They also impair wound healing.
- Corticosteroids (prednisone), which cause mild to severe immune suppression and pose a minimal skin cancer risk.
- A decoy receptor protein (belatacept), which causes severe immune suppression and poses a mild skin cancer risk.
“Most of our solid-organ transplant recipients will be on both a calcineurin inhibitor and an antimetabolite,” Dr. Christensen said. “In addition to the skin cancer risk associated with immunosuppression, there is an additive risk” that is a direct effect of these medications on the skin. “That means our transplant recipients have a severely and disproportionate increase in skin cancer,” he noted.
Up to half of solid-organ transplant recipients will develop skin cancer, Dr. Christensen said. These patients have a sixfold to 10-fold increased risk for basal cell carcinoma (BCC), a 35- to 65-fold increased risk for squamous cell carcinoma (SCC), a twofold to sevenfold increased risk for melanoma, and a 16- to 100-fold increased risk for Merkel cell carcinoma.
Transplant recipients with SCC, he said, have a twofold to threefold higher risk for metastasis (4%-8% nodal metastasis) and twofold to fivefold higher risk for death (2%-7% mortality) from SCC.
As for other kinds of immunosuppression, HIV positivity, treatment with 6-mercaptopurine or azathioprine (for inflammatory bowel disease and rheumatoid arthritis), and antitumor necrosis factor agents (for psoriasis, inflammatory bowel disease, and rheumatoid arthritis) have been linked in studies to a higher risk for nonmelanoma skin cancer.
Dr. Christensen also highlighted graft-versus-host disease (GVHD). “It does look like there is a disproportionate and increased risk of SCC of the oropharynx and of the skin in patients who have chronic GVHD. This is probably due to a combination of both the immunosuppressive medications that are required but also from chronic and ongoing inflammation in the skin.”
Chronic GVHD has been linked to a 5.3-fold increase in the risk for SCC and a twofold increase in the risk for BCC, he added.
Moreover, new medications for treating GVHD have been linked to an increased risk for SCC, including a 3.2-fold increased risk for SCC associated with ruxolitinib, a Janus kinase (JAK) 1 and JAK2 inhibitor, in a study of patients with polycythemia vera and myelofibrosis; and a case report of SCC in a patient treated with belumosudil, a rho-associated coiled-coil-containing protein kinase-2 kinase inhibitor, for chronic GVHD. Risk for SCC appears to increase based on duration of use with voriconazole, an antifungal, which, he said, is a potent photosynthesizer.
Dr. Christensen also noted the higher risk for infections in immunocompromised patients and added that these patients can develop inflammatory disease despite immunosuppression:
Staphylococcus, Streptococcus, and Dermatophytes are the most common skin pathogens in these patients. There’s a significantly increased risk for reactivation of herpes simplex, varicella-zoster viruses, and cytomegalovirus. Opportunistic and disseminated fungal infections, such as mycobacteria, Candida, histoplasma, cryptococcus, aspergillus, and mucormycosis, can also appear.
More than 80% of transplant recipients develop molluscum and verruca vulgaris/human papillomavirus infection. They may also develop noninfectious inflammatory dermatoses.
Risk Calculator
What can dermatologists do to help transplant patients? Dr. Christensen highlighted the Skin and UV Neoplasia Transplant Risk Assessment Calculator, which predicts skin cancer risk based on points given for race, gender, skin cancer history, age at transplant, and site of transplant.
The tool, validated in a 2023 study of transplant recipients in Europe, is available online and as an app. It makes recommendations to users about when patients should have initial skin screening exams. Those with the most risk — 45% at 5 years — should be screened within 6 months. “We can use [the tool] to triage these cases when we first meet them and get them plugged into the appropriate care,” Dr. Christensen said.
He recommended seeing high-risk patients at least annually. Patients with a prior SCC and a heavy burden of actinic keratosis should be followed more frequently, he said.
In regard to SCC, he highlighted a 2024 study of solid organ transplant recipients that found the risk for a second SCC after a first SCC was 74%, the risk for a third SCC after a second SCC was 83%, and the risk for another SCC after five SCCs was 92%.
Dr. Christensen disclosed relationships with Canfield Scientific Inc. (consulting), Inhibitor Therapeutics (advisory board), and Sol-Gel Technologies Ltd. (grants/research funding).
A version of this article first appeared on Medscape.com.
FROM AAD 2024
MS and Epstein-Barr Virus: What Do We Know and Where Do We Go From Here?
The Epstein-Barr virus (EBV) is our constant companion, infecting an estimated 90%-95% of adults. Many of us are first infected as children, when the germ may trigger cold and flu symptoms. EBV also causes mononucleosis, or kissing disease, a glandular fever that has afflicted generations of amorous young people.
Post infection, EBV settles in for the long haul and remains in the body until death. It’s thought to be largely innocuous, but EBV is now implicated as a cause of several types of cancer — including lymphoma and nasopharyngeal tumors – and multiple sclerosis (MS). In 2022, a landmark study in Science suggested that previous EBV infection is the primary cause of MS.
While there aren’t many implications for current treatment, greater insight into the origin story of MS may eventually help neurologists better diagnose and treat patients, experts said. The goal is to uncover clues that “can help us understand MS a little bit better and reveal insights that could lead to new disease-modifying therapy,” Bruce Bebo, PhD, executive vice president of research with the National MS Society, said in an interview.
EBV Boosts MS Risk 32-Fold
EBV was first linked to MS back in 1981. For the 2022 study, researchers at the Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, analyzed blood serum from 10 million active-duty members of the US military. They focused on 801 recruits with MS and matched them with more than 1500 controls. All but one of those with MS had been infected with EBV; infection appeared to boost the risk for MS 32-fold (95% CI, 4.3-245.3; P < .001).
Neurologist and associate professor Michael Levy, MD, PhD, of Harvard Medical School and Massachusetts General Hospital, said in an interview that the findings are “groundbreaking” and confirm that EBV is “likely the primary cause of MS.”
According to Dr. Levy, there are two main theories about why EBV causes MS. The first hypothesis, known as the “molecular mimicry” theory, suggests that “EBV is a trigger of MS, possibly when the immune system mistakes a viral protein for a myelin protein and then attacks myelin,” Dr. Levy said. In MS, the immune system attacks the protective myelin sheath and the axons it insulates.
“After that point, the virus is not necessary to maintain the disease state and eradicating the virus likely won’t have much effect since the immune response is already triggered,” he said.
The second theory is that “EBV is a driver of MS where there is an ongoing, lifelong immunological response to EBV that continuously causes damage in the central nervous system [CNS]. In theory, if we could eradicate the virus, the destructive immune response could also resolve. Thus, an EBV antiviral treatment could potentially treat and maybe cure MS,” Dr. Levy explained, noting that “removing the pathogenic antigen may be a more effective strategy than removing the immune response.”
However, “we don’t yet know which hypothesis is correct,” he said. But “there is preliminary evidence in favor of each one.”
‘Additional Fuses Must Be Ignited’
It’s also unclear why most people infected with EBV do not develop MS. It appears that “additional fuses must be ignited,” for MS to take hold, according to a commentary accompanying the landmark 2022 study.
“As far as clinical implications, knowing whether a patient has a medical or family history of mononucleosis may be a small clue, a small piece of evidence, to help with diagnosis,” Dr. Bebo said.
He agreed with Dr. Levy that an antiviral could be a promising approach “If the problem in MS is a dysfunctional immune response to EBV.”
Natalia Drosu, MD, PhD, a postdoctoral fellow at Harvard-MIT Biomedical Engineering Center, said that a clinical trial of a non-immunosuppressive antiviral targeting EBV in patients with MS would be a crucial step toward better understanding the MS-EBV connection. “If we learn that antivirals are effective in MS, we should develop non-immunosuppressive therapies for patients with MS as soon as possible,” she said.
Stanford University’s Lawrence Steinman, MD, professor of neurology and neurological sciences, pediatrics, and genetics, who coauthored the commentary on the original Science paper, agreed that it’s worth investigating whether antiviral therapies targeting EBV will benefit patients who already have MS. But he cautioned against clinicians experimenting on their own outside of a research study. “You’d want to use the right antiviral and a properly designed trial,” he said.
Antivirals May Place a Crucial Role in MS Control
While there are no approved therapies for EBV, several MS disease-modifying therapies have anti-EBV effects, Dr. Levy said, citing anti-CD20 therapy as a clear example. It depletes B cells from the circulation, and it depletes EBV because the virus lives in the B-cell compartment. “Some MS treatments may be inadvertent EBV antivirals,” he said.
Researchers are also thinking about how they might exploit the MS-EBV link to prevent MS from developing in the first place, but there are uncertainties on that front too.
Conceivably, there may be some way to intervene in patients to treat EBV and prevent MS, such as a unique treatment for infectious mononucleosis (IM), Dr. Levy said.
Researchers are especially intrigued by signs that the timing of infection may play a role, with people infected with EBV via IM after early childhood at especially a high risk of developing MS. A 2022 German study calculated that people who developed IM were almost twice as likely as those who didn’t to develop MS within 10 years, although the risks in both groups were very small. Subgroup analysis revealed the strongest association between IM and MS was in the group infected between age 14 and 20 years (hazard ratio, 3.52; 95% CI, 1.00-12.37). They also saw a stronger association in men than in women.
The authors of a 2023 review in Clinical & Translational Immunology wrote that “further understanding of IM may be critical in solving the mystery” of EBV’s role in MS.
Dr. Levy said this line of questioning is important.
However, “remember that while most of the world gets EBV infections, only 1 in 1000 will get MS. So, it might not be feasible to test everyone before neurological manifestations occur,” he said.
More Questions to Answer About EBV and MS
Researchers hope to answer several questions moving forward. For one, why is EBV uniquely connected to MS? “You would think that if there were cross-reactivity to myelin, there are many viruses that could cause MS. But the association seems to be very restricted to EBV,” Dr. Levy said. “It is probably due to the fact that EBV is one of the only human viruses that can infect B cells, which play important roles in controlling immune responses.”
The molecular mimicry theory also opens up a potential treatment pathway.
A 2022 study reported “high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM)”. Antibodies against EBNA1 and GlialCAM are prevalent in patients with MS. In a mouse model of MS, the researchers showed that EBNA1 immunization exacerbates disease. The authors wrote that “Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.”
Could an EBV Vaccine Be the Answer?
On the prevention front, perhaps the most obvious question is whether an EBV vaccine could eliminate MS for good?
Dr. Bebo, from the National MS Society, said it will be important to determine which kind of vaccine is best. Is it one that neutralizes infection with EBV? Or is it enough to simply prevent clinical manifestations?
Both types of vaccines are in development, and at least two clinical trials are now in the works. The National Institute of Allergy and Infectious Diseases is sponsoring a phase 1 study of an adjuvanted EBV gp350-Ferritin nanoparticle vaccine. Forty subjects aged 18-29 years will take part: 20 with EBV and 20 who are not infected. The study is expected to end in 2025.
There is also a phase 1 placebo-controlled study in progress testing an EBV vaccine based on mRNA-1189 in 422 subjects aged 12-30 years. This trial is also due to end in 2025.
“This is very exciting, but it may take a decade or two to determine whether a vaccine is effective at preventing MS,” Dr. Levy said.
Dr. Levy, Dr. Steinman, Dr. Drosu, and Dr. Bebo had no disclosures.
A version of this article appeared on Medscape.com.
The Epstein-Barr virus (EBV) is our constant companion, infecting an estimated 90%-95% of adults. Many of us are first infected as children, when the germ may trigger cold and flu symptoms. EBV also causes mononucleosis, or kissing disease, a glandular fever that has afflicted generations of amorous young people.
Post infection, EBV settles in for the long haul and remains in the body until death. It’s thought to be largely innocuous, but EBV is now implicated as a cause of several types of cancer — including lymphoma and nasopharyngeal tumors – and multiple sclerosis (MS). In 2022, a landmark study in Science suggested that previous EBV infection is the primary cause of MS.
While there aren’t many implications for current treatment, greater insight into the origin story of MS may eventually help neurologists better diagnose and treat patients, experts said. The goal is to uncover clues that “can help us understand MS a little bit better and reveal insights that could lead to new disease-modifying therapy,” Bruce Bebo, PhD, executive vice president of research with the National MS Society, said in an interview.
EBV Boosts MS Risk 32-Fold
EBV was first linked to MS back in 1981. For the 2022 study, researchers at the Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, analyzed blood serum from 10 million active-duty members of the US military. They focused on 801 recruits with MS and matched them with more than 1500 controls. All but one of those with MS had been infected with EBV; infection appeared to boost the risk for MS 32-fold (95% CI, 4.3-245.3; P < .001).
Neurologist and associate professor Michael Levy, MD, PhD, of Harvard Medical School and Massachusetts General Hospital, said in an interview that the findings are “groundbreaking” and confirm that EBV is “likely the primary cause of MS.”
According to Dr. Levy, there are two main theories about why EBV causes MS. The first hypothesis, known as the “molecular mimicry” theory, suggests that “EBV is a trigger of MS, possibly when the immune system mistakes a viral protein for a myelin protein and then attacks myelin,” Dr. Levy said. In MS, the immune system attacks the protective myelin sheath and the axons it insulates.
“After that point, the virus is not necessary to maintain the disease state and eradicating the virus likely won’t have much effect since the immune response is already triggered,” he said.
The second theory is that “EBV is a driver of MS where there is an ongoing, lifelong immunological response to EBV that continuously causes damage in the central nervous system [CNS]. In theory, if we could eradicate the virus, the destructive immune response could also resolve. Thus, an EBV antiviral treatment could potentially treat and maybe cure MS,” Dr. Levy explained, noting that “removing the pathogenic antigen may be a more effective strategy than removing the immune response.”
However, “we don’t yet know which hypothesis is correct,” he said. But “there is preliminary evidence in favor of each one.”
‘Additional Fuses Must Be Ignited’
It’s also unclear why most people infected with EBV do not develop MS. It appears that “additional fuses must be ignited,” for MS to take hold, according to a commentary accompanying the landmark 2022 study.
“As far as clinical implications, knowing whether a patient has a medical or family history of mononucleosis may be a small clue, a small piece of evidence, to help with diagnosis,” Dr. Bebo said.
He agreed with Dr. Levy that an antiviral could be a promising approach “If the problem in MS is a dysfunctional immune response to EBV.”
Natalia Drosu, MD, PhD, a postdoctoral fellow at Harvard-MIT Biomedical Engineering Center, said that a clinical trial of a non-immunosuppressive antiviral targeting EBV in patients with MS would be a crucial step toward better understanding the MS-EBV connection. “If we learn that antivirals are effective in MS, we should develop non-immunosuppressive therapies for patients with MS as soon as possible,” she said.
Stanford University’s Lawrence Steinman, MD, professor of neurology and neurological sciences, pediatrics, and genetics, who coauthored the commentary on the original Science paper, agreed that it’s worth investigating whether antiviral therapies targeting EBV will benefit patients who already have MS. But he cautioned against clinicians experimenting on their own outside of a research study. “You’d want to use the right antiviral and a properly designed trial,” he said.
Antivirals May Place a Crucial Role in MS Control
While there are no approved therapies for EBV, several MS disease-modifying therapies have anti-EBV effects, Dr. Levy said, citing anti-CD20 therapy as a clear example. It depletes B cells from the circulation, and it depletes EBV because the virus lives in the B-cell compartment. “Some MS treatments may be inadvertent EBV antivirals,” he said.
Researchers are also thinking about how they might exploit the MS-EBV link to prevent MS from developing in the first place, but there are uncertainties on that front too.
Conceivably, there may be some way to intervene in patients to treat EBV and prevent MS, such as a unique treatment for infectious mononucleosis (IM), Dr. Levy said.
Researchers are especially intrigued by signs that the timing of infection may play a role, with people infected with EBV via IM after early childhood at especially a high risk of developing MS. A 2022 German study calculated that people who developed IM were almost twice as likely as those who didn’t to develop MS within 10 years, although the risks in both groups were very small. Subgroup analysis revealed the strongest association between IM and MS was in the group infected between age 14 and 20 years (hazard ratio, 3.52; 95% CI, 1.00-12.37). They also saw a stronger association in men than in women.
The authors of a 2023 review in Clinical & Translational Immunology wrote that “further understanding of IM may be critical in solving the mystery” of EBV’s role in MS.
Dr. Levy said this line of questioning is important.
However, “remember that while most of the world gets EBV infections, only 1 in 1000 will get MS. So, it might not be feasible to test everyone before neurological manifestations occur,” he said.
More Questions to Answer About EBV and MS
Researchers hope to answer several questions moving forward. For one, why is EBV uniquely connected to MS? “You would think that if there were cross-reactivity to myelin, there are many viruses that could cause MS. But the association seems to be very restricted to EBV,” Dr. Levy said. “It is probably due to the fact that EBV is one of the only human viruses that can infect B cells, which play important roles in controlling immune responses.”
The molecular mimicry theory also opens up a potential treatment pathway.
A 2022 study reported “high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM)”. Antibodies against EBNA1 and GlialCAM are prevalent in patients with MS. In a mouse model of MS, the researchers showed that EBNA1 immunization exacerbates disease. The authors wrote that “Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.”
Could an EBV Vaccine Be the Answer?
On the prevention front, perhaps the most obvious question is whether an EBV vaccine could eliminate MS for good?
Dr. Bebo, from the National MS Society, said it will be important to determine which kind of vaccine is best. Is it one that neutralizes infection with EBV? Or is it enough to simply prevent clinical manifestations?
Both types of vaccines are in development, and at least two clinical trials are now in the works. The National Institute of Allergy and Infectious Diseases is sponsoring a phase 1 study of an adjuvanted EBV gp350-Ferritin nanoparticle vaccine. Forty subjects aged 18-29 years will take part: 20 with EBV and 20 who are not infected. The study is expected to end in 2025.
There is also a phase 1 placebo-controlled study in progress testing an EBV vaccine based on mRNA-1189 in 422 subjects aged 12-30 years. This trial is also due to end in 2025.
“This is very exciting, but it may take a decade or two to determine whether a vaccine is effective at preventing MS,” Dr. Levy said.
Dr. Levy, Dr. Steinman, Dr. Drosu, and Dr. Bebo had no disclosures.
A version of this article appeared on Medscape.com.
The Epstein-Barr virus (EBV) is our constant companion, infecting an estimated 90%-95% of adults. Many of us are first infected as children, when the germ may trigger cold and flu symptoms. EBV also causes mononucleosis, or kissing disease, a glandular fever that has afflicted generations of amorous young people.
Post infection, EBV settles in for the long haul and remains in the body until death. It’s thought to be largely innocuous, but EBV is now implicated as a cause of several types of cancer — including lymphoma and nasopharyngeal tumors – and multiple sclerosis (MS). In 2022, a landmark study in Science suggested that previous EBV infection is the primary cause of MS.
While there aren’t many implications for current treatment, greater insight into the origin story of MS may eventually help neurologists better diagnose and treat patients, experts said. The goal is to uncover clues that “can help us understand MS a little bit better and reveal insights that could lead to new disease-modifying therapy,” Bruce Bebo, PhD, executive vice president of research with the National MS Society, said in an interview.
EBV Boosts MS Risk 32-Fold
EBV was first linked to MS back in 1981. For the 2022 study, researchers at the Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, analyzed blood serum from 10 million active-duty members of the US military. They focused on 801 recruits with MS and matched them with more than 1500 controls. All but one of those with MS had been infected with EBV; infection appeared to boost the risk for MS 32-fold (95% CI, 4.3-245.3; P < .001).
Neurologist and associate professor Michael Levy, MD, PhD, of Harvard Medical School and Massachusetts General Hospital, said in an interview that the findings are “groundbreaking” and confirm that EBV is “likely the primary cause of MS.”
According to Dr. Levy, there are two main theories about why EBV causes MS. The first hypothesis, known as the “molecular mimicry” theory, suggests that “EBV is a trigger of MS, possibly when the immune system mistakes a viral protein for a myelin protein and then attacks myelin,” Dr. Levy said. In MS, the immune system attacks the protective myelin sheath and the axons it insulates.
“After that point, the virus is not necessary to maintain the disease state and eradicating the virus likely won’t have much effect since the immune response is already triggered,” he said.
The second theory is that “EBV is a driver of MS where there is an ongoing, lifelong immunological response to EBV that continuously causes damage in the central nervous system [CNS]. In theory, if we could eradicate the virus, the destructive immune response could also resolve. Thus, an EBV antiviral treatment could potentially treat and maybe cure MS,” Dr. Levy explained, noting that “removing the pathogenic antigen may be a more effective strategy than removing the immune response.”
However, “we don’t yet know which hypothesis is correct,” he said. But “there is preliminary evidence in favor of each one.”
‘Additional Fuses Must Be Ignited’
It’s also unclear why most people infected with EBV do not develop MS. It appears that “additional fuses must be ignited,” for MS to take hold, according to a commentary accompanying the landmark 2022 study.
“As far as clinical implications, knowing whether a patient has a medical or family history of mononucleosis may be a small clue, a small piece of evidence, to help with diagnosis,” Dr. Bebo said.
He agreed with Dr. Levy that an antiviral could be a promising approach “If the problem in MS is a dysfunctional immune response to EBV.”
Natalia Drosu, MD, PhD, a postdoctoral fellow at Harvard-MIT Biomedical Engineering Center, said that a clinical trial of a non-immunosuppressive antiviral targeting EBV in patients with MS would be a crucial step toward better understanding the MS-EBV connection. “If we learn that antivirals are effective in MS, we should develop non-immunosuppressive therapies for patients with MS as soon as possible,” she said.
Stanford University’s Lawrence Steinman, MD, professor of neurology and neurological sciences, pediatrics, and genetics, who coauthored the commentary on the original Science paper, agreed that it’s worth investigating whether antiviral therapies targeting EBV will benefit patients who already have MS. But he cautioned against clinicians experimenting on their own outside of a research study. “You’d want to use the right antiviral and a properly designed trial,” he said.
Antivirals May Place a Crucial Role in MS Control
While there are no approved therapies for EBV, several MS disease-modifying therapies have anti-EBV effects, Dr. Levy said, citing anti-CD20 therapy as a clear example. It depletes B cells from the circulation, and it depletes EBV because the virus lives in the B-cell compartment. “Some MS treatments may be inadvertent EBV antivirals,” he said.
Researchers are also thinking about how they might exploit the MS-EBV link to prevent MS from developing in the first place, but there are uncertainties on that front too.
Conceivably, there may be some way to intervene in patients to treat EBV and prevent MS, such as a unique treatment for infectious mononucleosis (IM), Dr. Levy said.
Researchers are especially intrigued by signs that the timing of infection may play a role, with people infected with EBV via IM after early childhood at especially a high risk of developing MS. A 2022 German study calculated that people who developed IM were almost twice as likely as those who didn’t to develop MS within 10 years, although the risks in both groups were very small. Subgroup analysis revealed the strongest association between IM and MS was in the group infected between age 14 and 20 years (hazard ratio, 3.52; 95% CI, 1.00-12.37). They also saw a stronger association in men than in women.
The authors of a 2023 review in Clinical & Translational Immunology wrote that “further understanding of IM may be critical in solving the mystery” of EBV’s role in MS.
Dr. Levy said this line of questioning is important.
However, “remember that while most of the world gets EBV infections, only 1 in 1000 will get MS. So, it might not be feasible to test everyone before neurological manifestations occur,” he said.
More Questions to Answer About EBV and MS
Researchers hope to answer several questions moving forward. For one, why is EBV uniquely connected to MS? “You would think that if there were cross-reactivity to myelin, there are many viruses that could cause MS. But the association seems to be very restricted to EBV,” Dr. Levy said. “It is probably due to the fact that EBV is one of the only human viruses that can infect B cells, which play important roles in controlling immune responses.”
The molecular mimicry theory also opens up a potential treatment pathway.
A 2022 study reported “high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM)”. Antibodies against EBNA1 and GlialCAM are prevalent in patients with MS. In a mouse model of MS, the researchers showed that EBNA1 immunization exacerbates disease. The authors wrote that “Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.”
Could an EBV Vaccine Be the Answer?
On the prevention front, perhaps the most obvious question is whether an EBV vaccine could eliminate MS for good?
Dr. Bebo, from the National MS Society, said it will be important to determine which kind of vaccine is best. Is it one that neutralizes infection with EBV? Or is it enough to simply prevent clinical manifestations?
Both types of vaccines are in development, and at least two clinical trials are now in the works. The National Institute of Allergy and Infectious Diseases is sponsoring a phase 1 study of an adjuvanted EBV gp350-Ferritin nanoparticle vaccine. Forty subjects aged 18-29 years will take part: 20 with EBV and 20 who are not infected. The study is expected to end in 2025.
There is also a phase 1 placebo-controlled study in progress testing an EBV vaccine based on mRNA-1189 in 422 subjects aged 12-30 years. This trial is also due to end in 2025.
“This is very exciting, but it may take a decade or two to determine whether a vaccine is effective at preventing MS,” Dr. Levy said.
Dr. Levy, Dr. Steinman, Dr. Drosu, and Dr. Bebo had no disclosures.
A version of this article appeared on Medscape.com.
Blood Cancer Emergencies: Hematologists’ Late-Night Calls
When a patient with a blood-cancer crisis comes in, “I can recognize what’s going on, and I can initiate treatment. But if you do have a true hematologic emergency, then you need a hematologist to be able to contribute to your care,” Molly Estes, MD, an emergency physician with California’s Loma Linda University, said in an interview.
In situations such as a patient with an extraordinarily high white blood count, “you’ll be calling your hematologist for treatment recommendations and calling your nephrologist for assistance managing electrolyte disorders,” Megan Boysen-Osborn, MD, an emergency physician with the University of California at Irvine, said in an interview.
Here’s a look at three emergency hematologic conditions that lead to late-night phone calls:
Leukocytosis
Blood cancers can cause white blood cell counts to skyrocket, a condition known as leukocytosis, but a high count is not necessarily an emergency. The key is to figure out whether the high count is normal for the patient — perhaps due to the disease or the medical treatment — or a sign of an internal medical crisis, Dr. Estes said.
“Let’s say you stubbed your toe in the night, and I happened to get blood work on you and incidentally notice that your white blood cells are high. But they’re the same high level that they always are,” Dr. Estes said. “That’s a completely different scenario than if I’m seeing you for fever, vomiting, and stomach pain.”
Indeed, there’s no cut-off that differentiates a dangerously high white blood count from one that’s acceptable, Mikkael A. Sekeres, MD, MS, chief of hematology at Sylvester Comprehensive Cancer Center at the University of Miami Health System, said in an interview.
“In the past, I’ve taken care of a couple of patients who had chronic lymphocytic leukemia and white blood cell counts that were 200,000 or 300,000 [white blood cells per microliter] and worked out in the gym every day,” he said. “It didn’t negatively affect them. On the flip side, I have also taken care of patients with acute myeloid leukemia with a white blood cell count of 50,000. That landed them in the intensive care unit.”
Dr. Estes said that her first impulse in cases of high white blood cell count is to give IV fluids to dilute the blood and prevent the cells from turning blood into sludge via hyperviscosity syndrome. Dr. Sekeres said this makes sense, since the condition can lead to blockages in vessels and cause heart attacks and strokes.
There are other options, depending on the severity of the case. Hydroxyurea can be administered to lower white blood cell counts along with allopurinol to protect the kidneys, Dr. Sekeres said. In some situations, he said, “we’ll consider initiating chemotherapy immediately to reduce the level of the white blood cells. Or we will consider placing a patient on dialysis to take off some of those white blood cells.”
Tumor lysis syndrome
While it’s rare, tumor lysis syndrome can occur when tumors release their content into blood stream. According to Dr. Sekeres, this can happen when “cancers that grow so quickly that they can start to outgrow their own blood supply and start dying before we even treat patients. When this happens, it causes electrolyte disarray.”
It’s crucial to understand the potential for patients to quickly get worse, he said. He advises clinicians to aggressively check lab values for electrolyte abnormalities and aggressively administer IV fluids and electrolyte replacement when needed. “It’s also important to let the intensive care unit know that they may need to be activated,” he said. Fortunately, he noted, patients can often be stabilized.
Differentiation syndrome
According to the Cleveland Clinic, medications used to treat acute myeloid leukemia and acute promyelocytic leukemia cause cancer cells to differentiate from immature states to mature normal states. But the process can go awry when fluid leaks out of blood vessels in a condition called differentiation syndrome. This can cause multiple problems, Dr. Sekeres said.
A 2020 report noted the potential for “acute end-organ damage with peripheral edema, hypotension, acute renal failure, and interstitial pulmonary infiltrates.”
In these cases, aggressive supportive management is key, Dr. Sekeres said. If a patient is having difficulty breathing, for example, they’ll need electrolyte management and perhaps support via a respirator, he said.
“Most people with acute promyelocytic leukemia can fully recover from differentiation syndrome with prompt, effective treatment,” the Cleveland Clinic notes. It adds that the disease is “highly curable.”
In all of these emergent crises, Dr. Sekeres said, it’s important for hematologists understand that “patients can get very sick very quickly,” and it’s important to intervene early and often.
Dr. Sekeres serves on advisory boards for BMS and Curium Pharma. Dr. Estes and Dr. Boysen-Osborn have no disclosures.
When a patient with a blood-cancer crisis comes in, “I can recognize what’s going on, and I can initiate treatment. But if you do have a true hematologic emergency, then you need a hematologist to be able to contribute to your care,” Molly Estes, MD, an emergency physician with California’s Loma Linda University, said in an interview.
In situations such as a patient with an extraordinarily high white blood count, “you’ll be calling your hematologist for treatment recommendations and calling your nephrologist for assistance managing electrolyte disorders,” Megan Boysen-Osborn, MD, an emergency physician with the University of California at Irvine, said in an interview.
Here’s a look at three emergency hematologic conditions that lead to late-night phone calls:
Leukocytosis
Blood cancers can cause white blood cell counts to skyrocket, a condition known as leukocytosis, but a high count is not necessarily an emergency. The key is to figure out whether the high count is normal for the patient — perhaps due to the disease or the medical treatment — or a sign of an internal medical crisis, Dr. Estes said.
“Let’s say you stubbed your toe in the night, and I happened to get blood work on you and incidentally notice that your white blood cells are high. But they’re the same high level that they always are,” Dr. Estes said. “That’s a completely different scenario than if I’m seeing you for fever, vomiting, and stomach pain.”
Indeed, there’s no cut-off that differentiates a dangerously high white blood count from one that’s acceptable, Mikkael A. Sekeres, MD, MS, chief of hematology at Sylvester Comprehensive Cancer Center at the University of Miami Health System, said in an interview.
“In the past, I’ve taken care of a couple of patients who had chronic lymphocytic leukemia and white blood cell counts that were 200,000 or 300,000 [white blood cells per microliter] and worked out in the gym every day,” he said. “It didn’t negatively affect them. On the flip side, I have also taken care of patients with acute myeloid leukemia with a white blood cell count of 50,000. That landed them in the intensive care unit.”
Dr. Estes said that her first impulse in cases of high white blood cell count is to give IV fluids to dilute the blood and prevent the cells from turning blood into sludge via hyperviscosity syndrome. Dr. Sekeres said this makes sense, since the condition can lead to blockages in vessels and cause heart attacks and strokes.
There are other options, depending on the severity of the case. Hydroxyurea can be administered to lower white blood cell counts along with allopurinol to protect the kidneys, Dr. Sekeres said. In some situations, he said, “we’ll consider initiating chemotherapy immediately to reduce the level of the white blood cells. Or we will consider placing a patient on dialysis to take off some of those white blood cells.”
Tumor lysis syndrome
While it’s rare, tumor lysis syndrome can occur when tumors release their content into blood stream. According to Dr. Sekeres, this can happen when “cancers that grow so quickly that they can start to outgrow their own blood supply and start dying before we even treat patients. When this happens, it causes electrolyte disarray.”
It’s crucial to understand the potential for patients to quickly get worse, he said. He advises clinicians to aggressively check lab values for electrolyte abnormalities and aggressively administer IV fluids and electrolyte replacement when needed. “It’s also important to let the intensive care unit know that they may need to be activated,” he said. Fortunately, he noted, patients can often be stabilized.
Differentiation syndrome
According to the Cleveland Clinic, medications used to treat acute myeloid leukemia and acute promyelocytic leukemia cause cancer cells to differentiate from immature states to mature normal states. But the process can go awry when fluid leaks out of blood vessels in a condition called differentiation syndrome. This can cause multiple problems, Dr. Sekeres said.
A 2020 report noted the potential for “acute end-organ damage with peripheral edema, hypotension, acute renal failure, and interstitial pulmonary infiltrates.”
In these cases, aggressive supportive management is key, Dr. Sekeres said. If a patient is having difficulty breathing, for example, they’ll need electrolyte management and perhaps support via a respirator, he said.
“Most people with acute promyelocytic leukemia can fully recover from differentiation syndrome with prompt, effective treatment,” the Cleveland Clinic notes. It adds that the disease is “highly curable.”
In all of these emergent crises, Dr. Sekeres said, it’s important for hematologists understand that “patients can get very sick very quickly,” and it’s important to intervene early and often.
Dr. Sekeres serves on advisory boards for BMS and Curium Pharma. Dr. Estes and Dr. Boysen-Osborn have no disclosures.
When a patient with a blood-cancer crisis comes in, “I can recognize what’s going on, and I can initiate treatment. But if you do have a true hematologic emergency, then you need a hematologist to be able to contribute to your care,” Molly Estes, MD, an emergency physician with California’s Loma Linda University, said in an interview.
In situations such as a patient with an extraordinarily high white blood count, “you’ll be calling your hematologist for treatment recommendations and calling your nephrologist for assistance managing electrolyte disorders,” Megan Boysen-Osborn, MD, an emergency physician with the University of California at Irvine, said in an interview.
Here’s a look at three emergency hematologic conditions that lead to late-night phone calls:
Leukocytosis
Blood cancers can cause white blood cell counts to skyrocket, a condition known as leukocytosis, but a high count is not necessarily an emergency. The key is to figure out whether the high count is normal for the patient — perhaps due to the disease or the medical treatment — or a sign of an internal medical crisis, Dr. Estes said.
“Let’s say you stubbed your toe in the night, and I happened to get blood work on you and incidentally notice that your white blood cells are high. But they’re the same high level that they always are,” Dr. Estes said. “That’s a completely different scenario than if I’m seeing you for fever, vomiting, and stomach pain.”
Indeed, there’s no cut-off that differentiates a dangerously high white blood count from one that’s acceptable, Mikkael A. Sekeres, MD, MS, chief of hematology at Sylvester Comprehensive Cancer Center at the University of Miami Health System, said in an interview.
“In the past, I’ve taken care of a couple of patients who had chronic lymphocytic leukemia and white blood cell counts that were 200,000 or 300,000 [white blood cells per microliter] and worked out in the gym every day,” he said. “It didn’t negatively affect them. On the flip side, I have also taken care of patients with acute myeloid leukemia with a white blood cell count of 50,000. That landed them in the intensive care unit.”
Dr. Estes said that her first impulse in cases of high white blood cell count is to give IV fluids to dilute the blood and prevent the cells from turning blood into sludge via hyperviscosity syndrome. Dr. Sekeres said this makes sense, since the condition can lead to blockages in vessels and cause heart attacks and strokes.
There are other options, depending on the severity of the case. Hydroxyurea can be administered to lower white blood cell counts along with allopurinol to protect the kidneys, Dr. Sekeres said. In some situations, he said, “we’ll consider initiating chemotherapy immediately to reduce the level of the white blood cells. Or we will consider placing a patient on dialysis to take off some of those white blood cells.”
Tumor lysis syndrome
While it’s rare, tumor lysis syndrome can occur when tumors release their content into blood stream. According to Dr. Sekeres, this can happen when “cancers that grow so quickly that they can start to outgrow their own blood supply and start dying before we even treat patients. When this happens, it causes electrolyte disarray.”
It’s crucial to understand the potential for patients to quickly get worse, he said. He advises clinicians to aggressively check lab values for electrolyte abnormalities and aggressively administer IV fluids and electrolyte replacement when needed. “It’s also important to let the intensive care unit know that they may need to be activated,” he said. Fortunately, he noted, patients can often be stabilized.
Differentiation syndrome
According to the Cleveland Clinic, medications used to treat acute myeloid leukemia and acute promyelocytic leukemia cause cancer cells to differentiate from immature states to mature normal states. But the process can go awry when fluid leaks out of blood vessels in a condition called differentiation syndrome. This can cause multiple problems, Dr. Sekeres said.
A 2020 report noted the potential for “acute end-organ damage with peripheral edema, hypotension, acute renal failure, and interstitial pulmonary infiltrates.”
In these cases, aggressive supportive management is key, Dr. Sekeres said. If a patient is having difficulty breathing, for example, they’ll need electrolyte management and perhaps support via a respirator, he said.
“Most people with acute promyelocytic leukemia can fully recover from differentiation syndrome with prompt, effective treatment,” the Cleveland Clinic notes. It adds that the disease is “highly curable.”
In all of these emergent crises, Dr. Sekeres said, it’s important for hematologists understand that “patients can get very sick very quickly,” and it’s important to intervene early and often.
Dr. Sekeres serves on advisory boards for BMS and Curium Pharma. Dr. Estes and Dr. Boysen-Osborn have no disclosures.
Acne in Transmasculine Patients: Management Recommendations
SAN DIEGO — , a dermatologist told colleagues in a session at the American Academy of Dermatology annual meeting.
In these patients, treatment of acne is crucial, said Howa Yeung, MD, MSc, assistant professor of dermatology, Emory University, Atlanta. “These are patients who are suffering and reporting that they’re having mental health impacts” related to acne.
In transmasculine patients — those who were biologically female at birth but identify as masculine — testosterone therapy greatly boosts the risk for acne, even in adults who are long past adolescence, Dr. Yeung said. Data suggest that acne appears within the first 6 months after testosterone therapy begins, he said, “and the maximal and complete effect occurs within 1-2 years.”
A 2021 study tracked 988 transgender patients receiving testosterone at Fenway Health in Boston and found that 31% had a diagnosis of acne, up from 6.3% prior to taking hormones. And 2 years following the start of therapy, 25.1% had acne, with cases especially common among those aged 18-20.75 years (29.6%). Even among those aged 28.25-66.5 years, 17.1% had acne.
Transmasculine patients may develop acne in areas across the body “in places that you normally won’t see by just looking at the patient,” Dr. Yeung said. Excoriation in addition to comedones, papules, pustules, and nodules can be common, he added.
Dr. Yeung highlighted a 2019 study of transgender men that linked higher levels of acne to higher levels of serum testosterone, higher body mass index, and current smoking. And in a 2014 study, 6% of 50 transmasculine patients had moderate to severe acne after an average of 10 years on testosterone therapy.
A 2020 study of 696 transgender adults surveyed in California and Georgia found that 14% of transmasculine patients had moderate to severe acne — two thirds attributed it to hormone therapy — vs 1% of transfeminine patients, said Dr. Yeung, the lead author of the study. However, transmasculine patients were less likely to have seen a dermatologist.
Dr. Yeung also highlighted a 2021 study he coauthored that linked current moderate to severe acne in transmasculine patients taking testosterone to higher levels of depression and anxiety vs counterparts who had never had those forms of acne.
Another factor affecting acne in transmasculine patients is the use of chest binders to reduce breast size. “Wearing a chest binder is really helpful for a lot of our patients and is associated with improved self-esteem, mood, mental health, and safety in public,” Dr. Yeung said. However, the binders can contribute to skin problems.
Dr. Yeung said he and his colleagues emphasize the importance of breathable material in binders and suggest to patients that they not wear them when they’re in “safe spaces.”
Isotretinoin, Contraception Considerations
As for treatment of acne in transgender patients, Dr. Yeung cautioned colleagues to not automatically reject isotretinoin as an option for transgender patients who have a history of depression. Dermatologists may be tempted to avoid the drug in these patients because of its link to suicide, he said. (This apparent association has long been debated.) But, Dr. Yeung said, it’s important to consider that many of these patients suffered from anxiety and depression because of the lack of access to proper gender-reassignment treatment.
When using isotretinoin, he emphasized, it’s crucial to consider whether transmasculine patients could become pregnant while on this therapy. Consider whether the patient has the organs needed to become pregnant and ask questions about the potential that they could be impregnated.
“Remember that sexual behavior is different from gender identity,” Dr. Yeung said. A transmasculine person with a uterus and vagina, for example, may still have vaginal intercourse with males and potentially become pregnant. “So, we need to assess what kind of sexual behavior our patients are taking part in.”
Contraceptives such as intrauterine devices, implants, and injectable options may be helpful for transmasculine patients because they can reduce menstrual symptoms like spotting that can be distressing to them, he said. By helping a patient take a contraceptive, “you may actually be helping with their gender dysphoria and helping them get on isotretinoin.”
Dr. Yeung disclosed fees from JAMA and American Academy of Dermatology; grants/research funding from the American Acne & Rosacea Society, Dermatology Foundation, Department of Veterans Affairs, National Eczema Association, and National Institutes of Health; and speaker/faculty education honoraria from Dermatology Digest.
A version of this article appeared on Medscape.com.
SAN DIEGO — , a dermatologist told colleagues in a session at the American Academy of Dermatology annual meeting.
In these patients, treatment of acne is crucial, said Howa Yeung, MD, MSc, assistant professor of dermatology, Emory University, Atlanta. “These are patients who are suffering and reporting that they’re having mental health impacts” related to acne.
In transmasculine patients — those who were biologically female at birth but identify as masculine — testosterone therapy greatly boosts the risk for acne, even in adults who are long past adolescence, Dr. Yeung said. Data suggest that acne appears within the first 6 months after testosterone therapy begins, he said, “and the maximal and complete effect occurs within 1-2 years.”
A 2021 study tracked 988 transgender patients receiving testosterone at Fenway Health in Boston and found that 31% had a diagnosis of acne, up from 6.3% prior to taking hormones. And 2 years following the start of therapy, 25.1% had acne, with cases especially common among those aged 18-20.75 years (29.6%). Even among those aged 28.25-66.5 years, 17.1% had acne.
Transmasculine patients may develop acne in areas across the body “in places that you normally won’t see by just looking at the patient,” Dr. Yeung said. Excoriation in addition to comedones, papules, pustules, and nodules can be common, he added.
Dr. Yeung highlighted a 2019 study of transgender men that linked higher levels of acne to higher levels of serum testosterone, higher body mass index, and current smoking. And in a 2014 study, 6% of 50 transmasculine patients had moderate to severe acne after an average of 10 years on testosterone therapy.
A 2020 study of 696 transgender adults surveyed in California and Georgia found that 14% of transmasculine patients had moderate to severe acne — two thirds attributed it to hormone therapy — vs 1% of transfeminine patients, said Dr. Yeung, the lead author of the study. However, transmasculine patients were less likely to have seen a dermatologist.
Dr. Yeung also highlighted a 2021 study he coauthored that linked current moderate to severe acne in transmasculine patients taking testosterone to higher levels of depression and anxiety vs counterparts who had never had those forms of acne.
Another factor affecting acne in transmasculine patients is the use of chest binders to reduce breast size. “Wearing a chest binder is really helpful for a lot of our patients and is associated with improved self-esteem, mood, mental health, and safety in public,” Dr. Yeung said. However, the binders can contribute to skin problems.
Dr. Yeung said he and his colleagues emphasize the importance of breathable material in binders and suggest to patients that they not wear them when they’re in “safe spaces.”
Isotretinoin, Contraception Considerations
As for treatment of acne in transgender patients, Dr. Yeung cautioned colleagues to not automatically reject isotretinoin as an option for transgender patients who have a history of depression. Dermatologists may be tempted to avoid the drug in these patients because of its link to suicide, he said. (This apparent association has long been debated.) But, Dr. Yeung said, it’s important to consider that many of these patients suffered from anxiety and depression because of the lack of access to proper gender-reassignment treatment.
When using isotretinoin, he emphasized, it’s crucial to consider whether transmasculine patients could become pregnant while on this therapy. Consider whether the patient has the organs needed to become pregnant and ask questions about the potential that they could be impregnated.
“Remember that sexual behavior is different from gender identity,” Dr. Yeung said. A transmasculine person with a uterus and vagina, for example, may still have vaginal intercourse with males and potentially become pregnant. “So, we need to assess what kind of sexual behavior our patients are taking part in.”
Contraceptives such as intrauterine devices, implants, and injectable options may be helpful for transmasculine patients because they can reduce menstrual symptoms like spotting that can be distressing to them, he said. By helping a patient take a contraceptive, “you may actually be helping with their gender dysphoria and helping them get on isotretinoin.”
Dr. Yeung disclosed fees from JAMA and American Academy of Dermatology; grants/research funding from the American Acne & Rosacea Society, Dermatology Foundation, Department of Veterans Affairs, National Eczema Association, and National Institutes of Health; and speaker/faculty education honoraria from Dermatology Digest.
A version of this article appeared on Medscape.com.
SAN DIEGO — , a dermatologist told colleagues in a session at the American Academy of Dermatology annual meeting.
In these patients, treatment of acne is crucial, said Howa Yeung, MD, MSc, assistant professor of dermatology, Emory University, Atlanta. “These are patients who are suffering and reporting that they’re having mental health impacts” related to acne.
In transmasculine patients — those who were biologically female at birth but identify as masculine — testosterone therapy greatly boosts the risk for acne, even in adults who are long past adolescence, Dr. Yeung said. Data suggest that acne appears within the first 6 months after testosterone therapy begins, he said, “and the maximal and complete effect occurs within 1-2 years.”
A 2021 study tracked 988 transgender patients receiving testosterone at Fenway Health in Boston and found that 31% had a diagnosis of acne, up from 6.3% prior to taking hormones. And 2 years following the start of therapy, 25.1% had acne, with cases especially common among those aged 18-20.75 years (29.6%). Even among those aged 28.25-66.5 years, 17.1% had acne.
Transmasculine patients may develop acne in areas across the body “in places that you normally won’t see by just looking at the patient,” Dr. Yeung said. Excoriation in addition to comedones, papules, pustules, and nodules can be common, he added.
Dr. Yeung highlighted a 2019 study of transgender men that linked higher levels of acne to higher levels of serum testosterone, higher body mass index, and current smoking. And in a 2014 study, 6% of 50 transmasculine patients had moderate to severe acne after an average of 10 years on testosterone therapy.
A 2020 study of 696 transgender adults surveyed in California and Georgia found that 14% of transmasculine patients had moderate to severe acne — two thirds attributed it to hormone therapy — vs 1% of transfeminine patients, said Dr. Yeung, the lead author of the study. However, transmasculine patients were less likely to have seen a dermatologist.
Dr. Yeung also highlighted a 2021 study he coauthored that linked current moderate to severe acne in transmasculine patients taking testosterone to higher levels of depression and anxiety vs counterparts who had never had those forms of acne.
Another factor affecting acne in transmasculine patients is the use of chest binders to reduce breast size. “Wearing a chest binder is really helpful for a lot of our patients and is associated with improved self-esteem, mood, mental health, and safety in public,” Dr. Yeung said. However, the binders can contribute to skin problems.
Dr. Yeung said he and his colleagues emphasize the importance of breathable material in binders and suggest to patients that they not wear them when they’re in “safe spaces.”
Isotretinoin, Contraception Considerations
As for treatment of acne in transgender patients, Dr. Yeung cautioned colleagues to not automatically reject isotretinoin as an option for transgender patients who have a history of depression. Dermatologists may be tempted to avoid the drug in these patients because of its link to suicide, he said. (This apparent association has long been debated.) But, Dr. Yeung said, it’s important to consider that many of these patients suffered from anxiety and depression because of the lack of access to proper gender-reassignment treatment.
When using isotretinoin, he emphasized, it’s crucial to consider whether transmasculine patients could become pregnant while on this therapy. Consider whether the patient has the organs needed to become pregnant and ask questions about the potential that they could be impregnated.
“Remember that sexual behavior is different from gender identity,” Dr. Yeung said. A transmasculine person with a uterus and vagina, for example, may still have vaginal intercourse with males and potentially become pregnant. “So, we need to assess what kind of sexual behavior our patients are taking part in.”
Contraceptives such as intrauterine devices, implants, and injectable options may be helpful for transmasculine patients because they can reduce menstrual symptoms like spotting that can be distressing to them, he said. By helping a patient take a contraceptive, “you may actually be helping with their gender dysphoria and helping them get on isotretinoin.”
Dr. Yeung disclosed fees from JAMA and American Academy of Dermatology; grants/research funding from the American Acne & Rosacea Society, Dermatology Foundation, Department of Veterans Affairs, National Eczema Association, and National Institutes of Health; and speaker/faculty education honoraria from Dermatology Digest.
A version of this article appeared on Medscape.com.
FROM AAD 2024