Bony Metastatic Disease

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Extreme Presentation of Bony Metastatic Disease

A60‐year‐old man presented with agitation and a forehead mass (Figs. 1 and 2). His wife had noticed its rapid growth over several weeks and said he had recently become extremely confused and hostile. He had a history of smoking and exposures to silica and Agent Orange. His vitals and oxygen saturation were normal. He was cachectic but in no distress, and although he was uncooperative, his examination did not demonstrate an obvious neurological deficit. Routine electrolytes were within normal limits.

Figure 1
Frontal view.
Figure 2
Side view.

Noncontrast computed tomography of the skull revealed a 5.5 5.4 7.7cm frontal soft‐tissue density eroding his frontal bone and extending intracranially, with extensive displacement of both frontal lobes and invasion into his superior sagittal sinus (Fig. 3) and possible involvement of the brain parenchyma. A subsequent CT scan of the chest demonstrated a 7.8 7.9cm right mass in the lower lobe of the lung encasing the right pulmonary artery and 2 left renal masses.

Figure 3
Transverse CT section of the head and brain.

Biopsy of the forehead mass demonstrated a necrotic, poorly differentiated carcinoma with focal clear‐cell features. Immunohistochemical staining was consistent with squamous cell carcinoma.

The forehead mass was painless, and the lung mass unresectable. His behavioral changes persisted and were attributed to the tumor compressing and possibly invading both frontal lobes. At his wife's request, he was discharged on dexamethasone with home hospice and died 2 weeks later.

Although there is little literature on the epidemiology of skull metastases, the most common malignancies to metastasize to the skull are breast and lung carcinomas. Others include prostate, thyroid, myeloma, and melanoma. Symptomatic metastases, including neurological findings, are unusual, except for tumors that metastasize to the skull base and cause cranial nerve deficits. Skeletal metastasis as the first manifestation of lung cancer occurs in about 2% of lung cancer patients and is a marker of poor prognosis. Received 2 November 2006; revision received 15 December 2006; accepted 16 January 2007.

Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
110-111
Sections
Article PDF
Article PDF

A60‐year‐old man presented with agitation and a forehead mass (Figs. 1 and 2). His wife had noticed its rapid growth over several weeks and said he had recently become extremely confused and hostile. He had a history of smoking and exposures to silica and Agent Orange. His vitals and oxygen saturation were normal. He was cachectic but in no distress, and although he was uncooperative, his examination did not demonstrate an obvious neurological deficit. Routine electrolytes were within normal limits.

Figure 1
Frontal view.
Figure 2
Side view.

Noncontrast computed tomography of the skull revealed a 5.5 5.4 7.7cm frontal soft‐tissue density eroding his frontal bone and extending intracranially, with extensive displacement of both frontal lobes and invasion into his superior sagittal sinus (Fig. 3) and possible involvement of the brain parenchyma. A subsequent CT scan of the chest demonstrated a 7.8 7.9cm right mass in the lower lobe of the lung encasing the right pulmonary artery and 2 left renal masses.

Figure 3
Transverse CT section of the head and brain.

Biopsy of the forehead mass demonstrated a necrotic, poorly differentiated carcinoma with focal clear‐cell features. Immunohistochemical staining was consistent with squamous cell carcinoma.

The forehead mass was painless, and the lung mass unresectable. His behavioral changes persisted and were attributed to the tumor compressing and possibly invading both frontal lobes. At his wife's request, he was discharged on dexamethasone with home hospice and died 2 weeks later.

Although there is little literature on the epidemiology of skull metastases, the most common malignancies to metastasize to the skull are breast and lung carcinomas. Others include prostate, thyroid, myeloma, and melanoma. Symptomatic metastases, including neurological findings, are unusual, except for tumors that metastasize to the skull base and cause cranial nerve deficits. Skeletal metastasis as the first manifestation of lung cancer occurs in about 2% of lung cancer patients and is a marker of poor prognosis. Received 2 November 2006; revision received 15 December 2006; accepted 16 January 2007.

A60‐year‐old man presented with agitation and a forehead mass (Figs. 1 and 2). His wife had noticed its rapid growth over several weeks and said he had recently become extremely confused and hostile. He had a history of smoking and exposures to silica and Agent Orange. His vitals and oxygen saturation were normal. He was cachectic but in no distress, and although he was uncooperative, his examination did not demonstrate an obvious neurological deficit. Routine electrolytes were within normal limits.

Figure 1
Frontal view.
Figure 2
Side view.

Noncontrast computed tomography of the skull revealed a 5.5 5.4 7.7cm frontal soft‐tissue density eroding his frontal bone and extending intracranially, with extensive displacement of both frontal lobes and invasion into his superior sagittal sinus (Fig. 3) and possible involvement of the brain parenchyma. A subsequent CT scan of the chest demonstrated a 7.8 7.9cm right mass in the lower lobe of the lung encasing the right pulmonary artery and 2 left renal masses.

Figure 3
Transverse CT section of the head and brain.

Biopsy of the forehead mass demonstrated a necrotic, poorly differentiated carcinoma with focal clear‐cell features. Immunohistochemical staining was consistent with squamous cell carcinoma.

The forehead mass was painless, and the lung mass unresectable. His behavioral changes persisted and were attributed to the tumor compressing and possibly invading both frontal lobes. At his wife's request, he was discharged on dexamethasone with home hospice and died 2 weeks later.

Although there is little literature on the epidemiology of skull metastases, the most common malignancies to metastasize to the skull are breast and lung carcinomas. Others include prostate, thyroid, myeloma, and melanoma. Symptomatic metastases, including neurological findings, are unusual, except for tumors that metastasize to the skull base and cause cranial nerve deficits. Skeletal metastasis as the first manifestation of lung cancer occurs in about 2% of lung cancer patients and is a marker of poor prognosis. Received 2 November 2006; revision received 15 December 2006; accepted 16 January 2007.

Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
110-111
Page Number
110-111
Article Type
Display Headline
Extreme Presentation of Bony Metastatic Disease
Display Headline
Extreme Presentation of Bony Metastatic Disease
Sections
Article Source
Copyright © 2007 Society of Hospital Medicine
Disallow All Ads
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Variation in Ordering CBCs for Bronchiolitis

Article Type
Changed
Sun, 05/28/2017 - 22:42
Display Headline
Institutional variation in ordering complete blood counts for children hospitalized with bronchiolitis

Bronchiolitis was the most common primary diagnosis of infants hospitalized in the United States from 2000 to 2001.1 Consequently, much research has focused on the effectiveness of management24 and variation in care, especially the use of unproven diagnostic tests such as chest x‐rays.5 Such variation may have substantial financial and medical impact and has been shown to correlate significantly with hospital costs and length of stay.6

Because bronchiolitis is primarily a clinical diagnosis,7 there is no strong evidence to support the role of diagnostic testing, particularly that of complete blood counts (CBCs).8 Moreover, given the limited diagnostic utility of a single CBC, the benefit of obtaining a second CBC, especially with its associated physical discomfort and additional financial costs, is questionable. Yet despite the lack of evidence and rationale to support initial and repeated ordering of CBCs, we suspect that this practice may be more widespread and variable than currently appreciated.

Using a national database of children's hospitals, we sought to determine the frequency with which CBCs are ordered and repeated during hospitalizations for bronchiolitis, the extent to which these practices vary across institutions, and the relationship of these practices to average charges for a hospital stay.

METHODS

Data Source

We analyzed cases of children with bronchiolitis from the Pediatric Health Information System (PHIS) database of the Child Health Corporation of America.9 This database contains inpatient demographic, administrative, and diagnostic data from 36 freestanding, noncompeting children's hospitals in the United States. However, only 30 of the hospitals provided information on diagnostic testing during the period of our study. To protect the participating hospitals, hospitals were deidentified in this analysis. Diagnoses in the database are provided in the International Classification of Disease, 9th revision (ICD‐9), and the All‐Patient Refined Diagnostic Related Groups (APR‐DRGs), version 15 format.

Cases

We included in our sample children who had a primary ICD‐9 discharge code for bronchiolitis (469.11 or 469.19), an APR‐DRG for bronchiolitis/asthma (141), and a discharge date between October 2001 and September 2003.10 We further restricted cases to children less than 12 months of age because this is the age group most frequently hospitalized for bronchiolitis. Only the first admission per child was included in the analysis.

Outcome and Covariates

We identified the number of CBCs ordered using charge codes in the PHIS data. To avoid double counting, we required that the CBCs be charged on different dates of service, and we counted a maximum of 1 CBC per day per patient. We defined a child as having a repeated CBC if more than 1 CBC was charged during the child's hospital stay. Our outcome variable of repeat CBCs was measured dichotomously. We included age, male sex, Medicaid status, season of admission, intensive care unit (ICU) admission, APR‐DRG‐calculated severity scores for bronchiolitis/asthma (to adjust for disease severity), and length of stay as covariates in the regression and ANOVA analyses. All covariates were measured dichotomously, except for mean age and LOS, which were measured continuously.

Statistical Analyses

Bivariate analysis of baseline characteristics were compared across age groups using 2 tests to compare differences between categorical variables and the Student t test to compare differences between continuous variables.

To examine variability across hospitals in the initial and repeat ordering of CBCs, we performed multivariate ANOVA (MANOVA) controlling for age, sex, Medicaid status, illness severity, season of admission, ICU admission, and length of stay (LOS). Because the factors associated with repeat CBCs are not readily apparent, we performed logistic regression to determine which of these factors were significantly associated (P < .05) with having repeat CBCs performed. To account for the influence of age on the management and epidemiology of children with respiratory distress, we stratified MANOVA and regression analyses by age (< 3 months and 3 months. We clustered our regression analysis by hospital to determine whether there was hospital‐specific variation in repeating CBCs.

We performed post hoc analysis after noting additional variable relationships in our results. To determine whether CBC‐ordering patterns differed by severity, we stratified the analysis of repeat CBCs in both the bivariate and multivariate model by disease severity and ICU admission, respectively.

To determine if the number of CBCs ordered was related to admission charges, we categorized hospitals into tertiles (lowest, intermediate, highest) according to the proportion of admissions in which CBCs were ordered. We then calculated average admission hospital stay charges for each hospital. We used Student t tests to examine the relationship between the charges for admissions in hospitals with the intermediate and highest proportion of admissions with CBCs compared with those hospitals with the lowest proportion of admissions with CBCs.

We used Stata 8.0 to conduct our analyses.11 The Children's Hospital and Regional Medical Center Institutional Review Board (Seattle, WA) approved the analysis of the data for this study.

RESULTS

A total of 17,397 children met the inclusion criteria. Children under 3 months were more likely to be covered by Medicaid, be admitted to the ICU, have a longer length of stay, and have at least 1 CBC (Table 1). Of all children hospitalized, 48.2% had at least 1 CBC, and 7.8% had more than 1 CBC performed during their hospital stay. Notably, the proportion of all admissions with at least 1 CBC varied from 23.2% to 79.2% (Fig. 1), and those with repeat CBCs varied from 0% to 18.6% across hospitals (Fig. 2). This variation was significant when stratified by age and adjusted for covariates, which included length of stay and severity of illness (P < .001). In additional post hoc analyses we found differences in ordering pattern by disease severity that should be noted. The proportion of admissions with repeat CBCs varied significantly across severity groups (mild 3.9%, moderate 10.3%, and severe 21.3%, P < .001) and ICU admission status (ICU admission 5.5%, no ICU admission 23%, P <.001). Stratified analyses indicated an interaction between ICU utilization and disease severity, but neither covariate showed significant interactions with other variables in the model (data not shown).

Characteristics of Study Population
 < 3 Months of Age3‐11 Months of Age
  • Differences between groups are statistically significant (P < .01).

  • Differences between groups are statistically significant (P < .001).

Sample size733610,061
Mean age (months)1.45.8
Male (%)58.359.3
Medicaid (%)56.0*53.8
Admission Season
October‐February (%)71.070.4
APG‐DRG severity score
Mild63.063.4
Moderate22.422.7
Severe14.613.8
ICU admission (%)15.711.2
Mean length of stay (days)3.12.8
Received 1 CBC53.844.1
Received > 1 CBC9.26.8
Figure 1
Variation in proportion of admissions with initial CBCs across hospitals.
Figure 2
Variation in proportion of admissions with repeat CBCs across hospitals

With respect to repeat CBCs, for children at least 3 months old, the strongest predictor was ICU admission (odds ratio [OR] 2.53, 95% CI: 1.69‐3.77), followed by a severe or extreme APR‐DRG severity score (OR 1.75, 95% CI: 1.23‐2.49) and LOS (OR 1.22, 95% CI: 1.15‐1.28). For children less than 3 months old, some of these associations strengthened ICU admission (OR 2.58, 95% CI: 1.84‐3.61), followed by a severe or extreme APR‐DRG severity score (OR 2.31, 95% CI: 1.64‐3.24) and LOS (OR 1.24, 95% CI: 1.16‐1.32). Additional predictors for this age group were a moderate severity score (OR 1.67, 95% CI: 1.29‐2.16) and Medicaid status (OR 1.20, 95% CI: 1.0‐1.43) (Table 2).

Results of Multivariate Logistic Regression for Repeat CBCs
 < 3 Months of Age311 Months of Age
Adjusted OR*95% CIAdjusted OR*95% CI
  • Adjusted OR when all other variables were included in the model.

Mean Age (months)1.040.841.300.990.961.03
Male (%)1.010.851.190.880.741.05
Medicaid (%)1.201.001.430.950.791.15
Admission Season
OctoberFebruaryReferent Referent 
MarchSeptember (%)1.130.931.371.110.811.53
APGDRG severity score
MildReferent Referent 
Moderate1.671.292.161.280.941.76
Severe2.311.643.241.751.232.49
ICU admission (%)2.581.843.612.531.693.77
Length of stay (days)1.241.161.321.221.151.28

Compared with hospitals that had the lowest proportion of admissions in which CBCs were ordered, hospitals with higher proportions of CBCs ordered had significantly higher mean charges per hospital stay (Table 3).

Association of Hospital CBC Levels with Mean Charges for Hospital Stay
Hospital CBC LevelsPatientsMean Charge (95% CI)Mean Difference (95% CI)
  • P < .001 for middle versus lowest and for highest versus lowest.

Lowest (23%‐40%)5838$7293 ($70967489)Referent
Middle (41%59%)6673$8099 ($78598339)$807* ($491$1122)
Highest (60%79%)4886$8316 ($80548578)$1024* ($702$1345)

DISCUSSION

We found that in a nationwide sample of children hospitalized with bronchiolitis, 48% had at least 1 CBC and nearly 8% had a repeat CBC ordered during their hospital stay. Moreover, even after adjusting for covariates, the proportion of children with initial and repeat CBCs during a single admission varied widely and significantly across a nationwide sample of children's hospitals.

We can only speculate on the reasons for institutional variation. Although it is not unusual for some cases of illness to vary from a standard course and so trigger initial or repeat evaluations with a CBC, we do not have any a priori reason to expect the proportion of unusual cases to vary by institution in a national cohort of children's hospitals. One compelling explanation for this variation is differing institutional patterns of practice. For example, it may be that some institutions have protocols that require the ordering of a CBC on admission. This practice could prompt a costly and unnecessary testing cascade14 generated by an initially abnormal CBC and so could trigger additional testing and/or procedures, such as x‐rays and parental antibiotics. Such a cascade of testing and intervention could conceivably lead to additional, and dependent, costs not captured by a simple tally of the costs of individual CBCs. Indeed, in our analysis we found that those hospitals with higher proportion of admissions in which CBCs were ordered also had significantly higher admission charges that exceeded the cost of a CBC. Previous studies support the finding that institutional variation in care for viral respiratory illness is significantly correlated with hospital costs.6

Limitations of this study should be noted. First, the PHIS database does not provide indications for, results of, or hospital location of tests, so we cannot determine whether clinical condition or results prompted initial and/or repeat testing. However, because children with complicated courses or atypical disease presentations likely have longer hospital stays, severe disease, or additional diagnoses, we attempted to control for these factors in our analysis. Second, although we selected cases based on a discharge diagnosis of bronchiolitis, it is possible that admitting physicians obtained an initial CBC to rule out alternative diagnoses, such as bacteremia, which can occur but is rare in this population.12, 13 It is plausible that bacteremia is most likely in children with other comorbidities or higher disease severity. In additional stratified analyses we did find that the proportion of repeat CBCs increased with higher disease severity and that there was an interaction between severe disease status and ICU admission. However, all participating institutions are children's hospitals and so are likely to treat children with a range of severity of illness and comorbidities. Finally, as with other analyses of the PHIS database, we used charges to identify diagnostic tests.5

Given that more than 120,000 U.S. infants are hospitalized annually with bronchiolitis,15 the cost and discomfort associated with unnecessary testing warrants attention. The issue of cost is particularly relevant in light of recent research findings of increased costs for admissions at freestanding children's hospitals.16 We found that mean charges per hospital stay were significantly higher for hospitals that had a higher proportion of admissions during which multiple CBCs were ordered. Although we cannot exclude illness severity and age as explanations for the higher charges, we have no reason to believe that one freestanding children's hospital would have a sicker and younger population than another. An alternative and compelling explanation is that a variation in the standard of care exists across these hospitals.

The institutional variation in and the limited evidence for the utility of the ordering of CBCs in the evaluation of bronchiolitis call into question the necessity of this testing strategy. Exploration of the reasons for this institutional variation will help to create quality initiatives and directed interventions to improve and standardize care in bronchiolitis.

Acknowledgements

Supported by: Robert Wood Johnson (RWJ) Foundation through the Robert Wood Johnson Clinical Scholars Program. The views expressed do not necessarily represent the views of the Robert Wood Johnson Foundation or the University of Washington. The RWJ Foundation provided salary support for Dr. Tarini. The RWJ Foundation did not have a role in the study's design; collection, analysis and interpretation of data; writing of the report; or decision to submit the article for publication. Dr. Tarini wrote the first draft of the manuscript. All authors have seen and agree with the contents of this manuscript.

References
  1. Holman RC,Curns AT,Cheek JE, et al.Respiratory syncytial virus hospitalizations among American Indian and Alaska Native infants and the general United States infant population.Pediatrics. Oct2004;114:e437e444.
  2. King VJ,Viswanathan M,Bordley WC, et al.Pharmacologic treatment of bronchiolitis in infants and children: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):127137.
  3. Patel H,Platt R,Lozano JM,Wang EE.Glucocorticoids for acute viral bronchiolitis in infants and young children.Cochrane Database Syst Rev.2004(3):CD004878.
  4. Perrotta C,Ortiz Z,Roque M.Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old.Cochrane Database Syst Rev.2005;(2):CD004873.
  5. Christakis DA,Cowan CA,Garrison MM,Molteni R,Marcuse E,Zerr DM.Variation in inpatient diagnostic testing and management of bronchiolitis.Pediatrics.2005;115:878884.
  6. Willson DF,Horn SD,Hendley JO,Smout R,Gassaway J.Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness.Pediatrics.2001;108:851855.
  7. Goodman D.Bronchiolitis. In:Behrman Re KR,Jenson HB, eds.Nelson Textbook of Pediatrics.17th ed.Philadelphia:WB Saunders Co.;2004:14151417.
  8. Bordley WC,Viswanathan M,King VJ, et al.Diagnosis and testing in bronchiolitis: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):119126.
  9. Fletcher DM.Achieving data quality. How data from a pediatric health information system earns the trust of its users.J AHIMA.2004;75(10):2226.
  10. Averill RF,Goldfield NI,Muldoon J,Steinbeck BA,Grant TM.A closer look at all‐patient refined DRGs.J AHIMA.2002;73(1):4650.
  11. Stata Corp. College Station, TX.
  12. Purcell K,Fergie J.Concurrent serious bacterial infections in 2396 infants and children hospitalized with respiratory syncytial virus lower respiratory tract infections.Arch Pediatr Adolesc Med.2002;156:322324.
  13. Purcell K,Fergie J.Concurrent serious bacterial infections in 912 infants and children hospitalized for treatment of respiratory syncytial virus lower respiratory tract infection.Pediatr Infect Dis J.2004;23:267269.
  14. Mold JW,Stein HF.The cascade effect in the clinical care of patients.N Engl J Med.1986;314:512514.
  15. Shay DK,Holman RC,Newman RD,Liu LL,Stout JW,Anderson LJ.Bronchiolitis‐associated hospitalizations among US children, 1980‐1996.JAMA.1999;282:14401446.
  16. Merenstein D,Egleston B,Diener‐West M.Lengths of stay and costs associated with children's hospitals.Pediatrics.2005;115:839844.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
69-73
Legacy Keywords
bronchiolitis, diagnostic testing, variation in care, complete blood count (CBC)
Sections
Article PDF
Article PDF

Bronchiolitis was the most common primary diagnosis of infants hospitalized in the United States from 2000 to 2001.1 Consequently, much research has focused on the effectiveness of management24 and variation in care, especially the use of unproven diagnostic tests such as chest x‐rays.5 Such variation may have substantial financial and medical impact and has been shown to correlate significantly with hospital costs and length of stay.6

Because bronchiolitis is primarily a clinical diagnosis,7 there is no strong evidence to support the role of diagnostic testing, particularly that of complete blood counts (CBCs).8 Moreover, given the limited diagnostic utility of a single CBC, the benefit of obtaining a second CBC, especially with its associated physical discomfort and additional financial costs, is questionable. Yet despite the lack of evidence and rationale to support initial and repeated ordering of CBCs, we suspect that this practice may be more widespread and variable than currently appreciated.

Using a national database of children's hospitals, we sought to determine the frequency with which CBCs are ordered and repeated during hospitalizations for bronchiolitis, the extent to which these practices vary across institutions, and the relationship of these practices to average charges for a hospital stay.

METHODS

Data Source

We analyzed cases of children with bronchiolitis from the Pediatric Health Information System (PHIS) database of the Child Health Corporation of America.9 This database contains inpatient demographic, administrative, and diagnostic data from 36 freestanding, noncompeting children's hospitals in the United States. However, only 30 of the hospitals provided information on diagnostic testing during the period of our study. To protect the participating hospitals, hospitals were deidentified in this analysis. Diagnoses in the database are provided in the International Classification of Disease, 9th revision (ICD‐9), and the All‐Patient Refined Diagnostic Related Groups (APR‐DRGs), version 15 format.

Cases

We included in our sample children who had a primary ICD‐9 discharge code for bronchiolitis (469.11 or 469.19), an APR‐DRG for bronchiolitis/asthma (141), and a discharge date between October 2001 and September 2003.10 We further restricted cases to children less than 12 months of age because this is the age group most frequently hospitalized for bronchiolitis. Only the first admission per child was included in the analysis.

Outcome and Covariates

We identified the number of CBCs ordered using charge codes in the PHIS data. To avoid double counting, we required that the CBCs be charged on different dates of service, and we counted a maximum of 1 CBC per day per patient. We defined a child as having a repeated CBC if more than 1 CBC was charged during the child's hospital stay. Our outcome variable of repeat CBCs was measured dichotomously. We included age, male sex, Medicaid status, season of admission, intensive care unit (ICU) admission, APR‐DRG‐calculated severity scores for bronchiolitis/asthma (to adjust for disease severity), and length of stay as covariates in the regression and ANOVA analyses. All covariates were measured dichotomously, except for mean age and LOS, which were measured continuously.

Statistical Analyses

Bivariate analysis of baseline characteristics were compared across age groups using 2 tests to compare differences between categorical variables and the Student t test to compare differences between continuous variables.

To examine variability across hospitals in the initial and repeat ordering of CBCs, we performed multivariate ANOVA (MANOVA) controlling for age, sex, Medicaid status, illness severity, season of admission, ICU admission, and length of stay (LOS). Because the factors associated with repeat CBCs are not readily apparent, we performed logistic regression to determine which of these factors were significantly associated (P < .05) with having repeat CBCs performed. To account for the influence of age on the management and epidemiology of children with respiratory distress, we stratified MANOVA and regression analyses by age (< 3 months and 3 months. We clustered our regression analysis by hospital to determine whether there was hospital‐specific variation in repeating CBCs.

We performed post hoc analysis after noting additional variable relationships in our results. To determine whether CBC‐ordering patterns differed by severity, we stratified the analysis of repeat CBCs in both the bivariate and multivariate model by disease severity and ICU admission, respectively.

To determine if the number of CBCs ordered was related to admission charges, we categorized hospitals into tertiles (lowest, intermediate, highest) according to the proportion of admissions in which CBCs were ordered. We then calculated average admission hospital stay charges for each hospital. We used Student t tests to examine the relationship between the charges for admissions in hospitals with the intermediate and highest proportion of admissions with CBCs compared with those hospitals with the lowest proportion of admissions with CBCs.

We used Stata 8.0 to conduct our analyses.11 The Children's Hospital and Regional Medical Center Institutional Review Board (Seattle, WA) approved the analysis of the data for this study.

RESULTS

A total of 17,397 children met the inclusion criteria. Children under 3 months were more likely to be covered by Medicaid, be admitted to the ICU, have a longer length of stay, and have at least 1 CBC (Table 1). Of all children hospitalized, 48.2% had at least 1 CBC, and 7.8% had more than 1 CBC performed during their hospital stay. Notably, the proportion of all admissions with at least 1 CBC varied from 23.2% to 79.2% (Fig. 1), and those with repeat CBCs varied from 0% to 18.6% across hospitals (Fig. 2). This variation was significant when stratified by age and adjusted for covariates, which included length of stay and severity of illness (P < .001). In additional post hoc analyses we found differences in ordering pattern by disease severity that should be noted. The proportion of admissions with repeat CBCs varied significantly across severity groups (mild 3.9%, moderate 10.3%, and severe 21.3%, P < .001) and ICU admission status (ICU admission 5.5%, no ICU admission 23%, P <.001). Stratified analyses indicated an interaction between ICU utilization and disease severity, but neither covariate showed significant interactions with other variables in the model (data not shown).

Characteristics of Study Population
 < 3 Months of Age3‐11 Months of Age
  • Differences between groups are statistically significant (P < .01).

  • Differences between groups are statistically significant (P < .001).

Sample size733610,061
Mean age (months)1.45.8
Male (%)58.359.3
Medicaid (%)56.0*53.8
Admission Season
October‐February (%)71.070.4
APG‐DRG severity score
Mild63.063.4
Moderate22.422.7
Severe14.613.8
ICU admission (%)15.711.2
Mean length of stay (days)3.12.8
Received 1 CBC53.844.1
Received > 1 CBC9.26.8
Figure 1
Variation in proportion of admissions with initial CBCs across hospitals.
Figure 2
Variation in proportion of admissions with repeat CBCs across hospitals

With respect to repeat CBCs, for children at least 3 months old, the strongest predictor was ICU admission (odds ratio [OR] 2.53, 95% CI: 1.69‐3.77), followed by a severe or extreme APR‐DRG severity score (OR 1.75, 95% CI: 1.23‐2.49) and LOS (OR 1.22, 95% CI: 1.15‐1.28). For children less than 3 months old, some of these associations strengthened ICU admission (OR 2.58, 95% CI: 1.84‐3.61), followed by a severe or extreme APR‐DRG severity score (OR 2.31, 95% CI: 1.64‐3.24) and LOS (OR 1.24, 95% CI: 1.16‐1.32). Additional predictors for this age group were a moderate severity score (OR 1.67, 95% CI: 1.29‐2.16) and Medicaid status (OR 1.20, 95% CI: 1.0‐1.43) (Table 2).

Results of Multivariate Logistic Regression for Repeat CBCs
 < 3 Months of Age311 Months of Age
Adjusted OR*95% CIAdjusted OR*95% CI
  • Adjusted OR when all other variables were included in the model.

Mean Age (months)1.040.841.300.990.961.03
Male (%)1.010.851.190.880.741.05
Medicaid (%)1.201.001.430.950.791.15
Admission Season
OctoberFebruaryReferent Referent 
MarchSeptember (%)1.130.931.371.110.811.53
APGDRG severity score
MildReferent Referent 
Moderate1.671.292.161.280.941.76
Severe2.311.643.241.751.232.49
ICU admission (%)2.581.843.612.531.693.77
Length of stay (days)1.241.161.321.221.151.28

Compared with hospitals that had the lowest proportion of admissions in which CBCs were ordered, hospitals with higher proportions of CBCs ordered had significantly higher mean charges per hospital stay (Table 3).

Association of Hospital CBC Levels with Mean Charges for Hospital Stay
Hospital CBC LevelsPatientsMean Charge (95% CI)Mean Difference (95% CI)
  • P < .001 for middle versus lowest and for highest versus lowest.

Lowest (23%‐40%)5838$7293 ($70967489)Referent
Middle (41%59%)6673$8099 ($78598339)$807* ($491$1122)
Highest (60%79%)4886$8316 ($80548578)$1024* ($702$1345)

DISCUSSION

We found that in a nationwide sample of children hospitalized with bronchiolitis, 48% had at least 1 CBC and nearly 8% had a repeat CBC ordered during their hospital stay. Moreover, even after adjusting for covariates, the proportion of children with initial and repeat CBCs during a single admission varied widely and significantly across a nationwide sample of children's hospitals.

We can only speculate on the reasons for institutional variation. Although it is not unusual for some cases of illness to vary from a standard course and so trigger initial or repeat evaluations with a CBC, we do not have any a priori reason to expect the proportion of unusual cases to vary by institution in a national cohort of children's hospitals. One compelling explanation for this variation is differing institutional patterns of practice. For example, it may be that some institutions have protocols that require the ordering of a CBC on admission. This practice could prompt a costly and unnecessary testing cascade14 generated by an initially abnormal CBC and so could trigger additional testing and/or procedures, such as x‐rays and parental antibiotics. Such a cascade of testing and intervention could conceivably lead to additional, and dependent, costs not captured by a simple tally of the costs of individual CBCs. Indeed, in our analysis we found that those hospitals with higher proportion of admissions in which CBCs were ordered also had significantly higher admission charges that exceeded the cost of a CBC. Previous studies support the finding that institutional variation in care for viral respiratory illness is significantly correlated with hospital costs.6

Limitations of this study should be noted. First, the PHIS database does not provide indications for, results of, or hospital location of tests, so we cannot determine whether clinical condition or results prompted initial and/or repeat testing. However, because children with complicated courses or atypical disease presentations likely have longer hospital stays, severe disease, or additional diagnoses, we attempted to control for these factors in our analysis. Second, although we selected cases based on a discharge diagnosis of bronchiolitis, it is possible that admitting physicians obtained an initial CBC to rule out alternative diagnoses, such as bacteremia, which can occur but is rare in this population.12, 13 It is plausible that bacteremia is most likely in children with other comorbidities or higher disease severity. In additional stratified analyses we did find that the proportion of repeat CBCs increased with higher disease severity and that there was an interaction between severe disease status and ICU admission. However, all participating institutions are children's hospitals and so are likely to treat children with a range of severity of illness and comorbidities. Finally, as with other analyses of the PHIS database, we used charges to identify diagnostic tests.5

Given that more than 120,000 U.S. infants are hospitalized annually with bronchiolitis,15 the cost and discomfort associated with unnecessary testing warrants attention. The issue of cost is particularly relevant in light of recent research findings of increased costs for admissions at freestanding children's hospitals.16 We found that mean charges per hospital stay were significantly higher for hospitals that had a higher proportion of admissions during which multiple CBCs were ordered. Although we cannot exclude illness severity and age as explanations for the higher charges, we have no reason to believe that one freestanding children's hospital would have a sicker and younger population than another. An alternative and compelling explanation is that a variation in the standard of care exists across these hospitals.

The institutional variation in and the limited evidence for the utility of the ordering of CBCs in the evaluation of bronchiolitis call into question the necessity of this testing strategy. Exploration of the reasons for this institutional variation will help to create quality initiatives and directed interventions to improve and standardize care in bronchiolitis.

Acknowledgements

Supported by: Robert Wood Johnson (RWJ) Foundation through the Robert Wood Johnson Clinical Scholars Program. The views expressed do not necessarily represent the views of the Robert Wood Johnson Foundation or the University of Washington. The RWJ Foundation provided salary support for Dr. Tarini. The RWJ Foundation did not have a role in the study's design; collection, analysis and interpretation of data; writing of the report; or decision to submit the article for publication. Dr. Tarini wrote the first draft of the manuscript. All authors have seen and agree with the contents of this manuscript.

Bronchiolitis was the most common primary diagnosis of infants hospitalized in the United States from 2000 to 2001.1 Consequently, much research has focused on the effectiveness of management24 and variation in care, especially the use of unproven diagnostic tests such as chest x‐rays.5 Such variation may have substantial financial and medical impact and has been shown to correlate significantly with hospital costs and length of stay.6

Because bronchiolitis is primarily a clinical diagnosis,7 there is no strong evidence to support the role of diagnostic testing, particularly that of complete blood counts (CBCs).8 Moreover, given the limited diagnostic utility of a single CBC, the benefit of obtaining a second CBC, especially with its associated physical discomfort and additional financial costs, is questionable. Yet despite the lack of evidence and rationale to support initial and repeated ordering of CBCs, we suspect that this practice may be more widespread and variable than currently appreciated.

Using a national database of children's hospitals, we sought to determine the frequency with which CBCs are ordered and repeated during hospitalizations for bronchiolitis, the extent to which these practices vary across institutions, and the relationship of these practices to average charges for a hospital stay.

METHODS

Data Source

We analyzed cases of children with bronchiolitis from the Pediatric Health Information System (PHIS) database of the Child Health Corporation of America.9 This database contains inpatient demographic, administrative, and diagnostic data from 36 freestanding, noncompeting children's hospitals in the United States. However, only 30 of the hospitals provided information on diagnostic testing during the period of our study. To protect the participating hospitals, hospitals were deidentified in this analysis. Diagnoses in the database are provided in the International Classification of Disease, 9th revision (ICD‐9), and the All‐Patient Refined Diagnostic Related Groups (APR‐DRGs), version 15 format.

Cases

We included in our sample children who had a primary ICD‐9 discharge code for bronchiolitis (469.11 or 469.19), an APR‐DRG for bronchiolitis/asthma (141), and a discharge date between October 2001 and September 2003.10 We further restricted cases to children less than 12 months of age because this is the age group most frequently hospitalized for bronchiolitis. Only the first admission per child was included in the analysis.

Outcome and Covariates

We identified the number of CBCs ordered using charge codes in the PHIS data. To avoid double counting, we required that the CBCs be charged on different dates of service, and we counted a maximum of 1 CBC per day per patient. We defined a child as having a repeated CBC if more than 1 CBC was charged during the child's hospital stay. Our outcome variable of repeat CBCs was measured dichotomously. We included age, male sex, Medicaid status, season of admission, intensive care unit (ICU) admission, APR‐DRG‐calculated severity scores for bronchiolitis/asthma (to adjust for disease severity), and length of stay as covariates in the regression and ANOVA analyses. All covariates were measured dichotomously, except for mean age and LOS, which were measured continuously.

Statistical Analyses

Bivariate analysis of baseline characteristics were compared across age groups using 2 tests to compare differences between categorical variables and the Student t test to compare differences between continuous variables.

To examine variability across hospitals in the initial and repeat ordering of CBCs, we performed multivariate ANOVA (MANOVA) controlling for age, sex, Medicaid status, illness severity, season of admission, ICU admission, and length of stay (LOS). Because the factors associated with repeat CBCs are not readily apparent, we performed logistic regression to determine which of these factors were significantly associated (P < .05) with having repeat CBCs performed. To account for the influence of age on the management and epidemiology of children with respiratory distress, we stratified MANOVA and regression analyses by age (< 3 months and 3 months. We clustered our regression analysis by hospital to determine whether there was hospital‐specific variation in repeating CBCs.

We performed post hoc analysis after noting additional variable relationships in our results. To determine whether CBC‐ordering patterns differed by severity, we stratified the analysis of repeat CBCs in both the bivariate and multivariate model by disease severity and ICU admission, respectively.

To determine if the number of CBCs ordered was related to admission charges, we categorized hospitals into tertiles (lowest, intermediate, highest) according to the proportion of admissions in which CBCs were ordered. We then calculated average admission hospital stay charges for each hospital. We used Student t tests to examine the relationship between the charges for admissions in hospitals with the intermediate and highest proportion of admissions with CBCs compared with those hospitals with the lowest proportion of admissions with CBCs.

We used Stata 8.0 to conduct our analyses.11 The Children's Hospital and Regional Medical Center Institutional Review Board (Seattle, WA) approved the analysis of the data for this study.

RESULTS

A total of 17,397 children met the inclusion criteria. Children under 3 months were more likely to be covered by Medicaid, be admitted to the ICU, have a longer length of stay, and have at least 1 CBC (Table 1). Of all children hospitalized, 48.2% had at least 1 CBC, and 7.8% had more than 1 CBC performed during their hospital stay. Notably, the proportion of all admissions with at least 1 CBC varied from 23.2% to 79.2% (Fig. 1), and those with repeat CBCs varied from 0% to 18.6% across hospitals (Fig. 2). This variation was significant when stratified by age and adjusted for covariates, which included length of stay and severity of illness (P < .001). In additional post hoc analyses we found differences in ordering pattern by disease severity that should be noted. The proportion of admissions with repeat CBCs varied significantly across severity groups (mild 3.9%, moderate 10.3%, and severe 21.3%, P < .001) and ICU admission status (ICU admission 5.5%, no ICU admission 23%, P <.001). Stratified analyses indicated an interaction between ICU utilization and disease severity, but neither covariate showed significant interactions with other variables in the model (data not shown).

Characteristics of Study Population
 < 3 Months of Age3‐11 Months of Age
  • Differences between groups are statistically significant (P < .01).

  • Differences between groups are statistically significant (P < .001).

Sample size733610,061
Mean age (months)1.45.8
Male (%)58.359.3
Medicaid (%)56.0*53.8
Admission Season
October‐February (%)71.070.4
APG‐DRG severity score
Mild63.063.4
Moderate22.422.7
Severe14.613.8
ICU admission (%)15.711.2
Mean length of stay (days)3.12.8
Received 1 CBC53.844.1
Received > 1 CBC9.26.8
Figure 1
Variation in proportion of admissions with initial CBCs across hospitals.
Figure 2
Variation in proportion of admissions with repeat CBCs across hospitals

With respect to repeat CBCs, for children at least 3 months old, the strongest predictor was ICU admission (odds ratio [OR] 2.53, 95% CI: 1.69‐3.77), followed by a severe or extreme APR‐DRG severity score (OR 1.75, 95% CI: 1.23‐2.49) and LOS (OR 1.22, 95% CI: 1.15‐1.28). For children less than 3 months old, some of these associations strengthened ICU admission (OR 2.58, 95% CI: 1.84‐3.61), followed by a severe or extreme APR‐DRG severity score (OR 2.31, 95% CI: 1.64‐3.24) and LOS (OR 1.24, 95% CI: 1.16‐1.32). Additional predictors for this age group were a moderate severity score (OR 1.67, 95% CI: 1.29‐2.16) and Medicaid status (OR 1.20, 95% CI: 1.0‐1.43) (Table 2).

Results of Multivariate Logistic Regression for Repeat CBCs
 < 3 Months of Age311 Months of Age
Adjusted OR*95% CIAdjusted OR*95% CI
  • Adjusted OR when all other variables were included in the model.

Mean Age (months)1.040.841.300.990.961.03
Male (%)1.010.851.190.880.741.05
Medicaid (%)1.201.001.430.950.791.15
Admission Season
OctoberFebruaryReferent Referent 
MarchSeptember (%)1.130.931.371.110.811.53
APGDRG severity score
MildReferent Referent 
Moderate1.671.292.161.280.941.76
Severe2.311.643.241.751.232.49
ICU admission (%)2.581.843.612.531.693.77
Length of stay (days)1.241.161.321.221.151.28

Compared with hospitals that had the lowest proportion of admissions in which CBCs were ordered, hospitals with higher proportions of CBCs ordered had significantly higher mean charges per hospital stay (Table 3).

Association of Hospital CBC Levels with Mean Charges for Hospital Stay
Hospital CBC LevelsPatientsMean Charge (95% CI)Mean Difference (95% CI)
  • P < .001 for middle versus lowest and for highest versus lowest.

Lowest (23%‐40%)5838$7293 ($70967489)Referent
Middle (41%59%)6673$8099 ($78598339)$807* ($491$1122)
Highest (60%79%)4886$8316 ($80548578)$1024* ($702$1345)

DISCUSSION

We found that in a nationwide sample of children hospitalized with bronchiolitis, 48% had at least 1 CBC and nearly 8% had a repeat CBC ordered during their hospital stay. Moreover, even after adjusting for covariates, the proportion of children with initial and repeat CBCs during a single admission varied widely and significantly across a nationwide sample of children's hospitals.

We can only speculate on the reasons for institutional variation. Although it is not unusual for some cases of illness to vary from a standard course and so trigger initial or repeat evaluations with a CBC, we do not have any a priori reason to expect the proportion of unusual cases to vary by institution in a national cohort of children's hospitals. One compelling explanation for this variation is differing institutional patterns of practice. For example, it may be that some institutions have protocols that require the ordering of a CBC on admission. This practice could prompt a costly and unnecessary testing cascade14 generated by an initially abnormal CBC and so could trigger additional testing and/or procedures, such as x‐rays and parental antibiotics. Such a cascade of testing and intervention could conceivably lead to additional, and dependent, costs not captured by a simple tally of the costs of individual CBCs. Indeed, in our analysis we found that those hospitals with higher proportion of admissions in which CBCs were ordered also had significantly higher admission charges that exceeded the cost of a CBC. Previous studies support the finding that institutional variation in care for viral respiratory illness is significantly correlated with hospital costs.6

Limitations of this study should be noted. First, the PHIS database does not provide indications for, results of, or hospital location of tests, so we cannot determine whether clinical condition or results prompted initial and/or repeat testing. However, because children with complicated courses or atypical disease presentations likely have longer hospital stays, severe disease, or additional diagnoses, we attempted to control for these factors in our analysis. Second, although we selected cases based on a discharge diagnosis of bronchiolitis, it is possible that admitting physicians obtained an initial CBC to rule out alternative diagnoses, such as bacteremia, which can occur but is rare in this population.12, 13 It is plausible that bacteremia is most likely in children with other comorbidities or higher disease severity. In additional stratified analyses we did find that the proportion of repeat CBCs increased with higher disease severity and that there was an interaction between severe disease status and ICU admission. However, all participating institutions are children's hospitals and so are likely to treat children with a range of severity of illness and comorbidities. Finally, as with other analyses of the PHIS database, we used charges to identify diagnostic tests.5

Given that more than 120,000 U.S. infants are hospitalized annually with bronchiolitis,15 the cost and discomfort associated with unnecessary testing warrants attention. The issue of cost is particularly relevant in light of recent research findings of increased costs for admissions at freestanding children's hospitals.16 We found that mean charges per hospital stay were significantly higher for hospitals that had a higher proportion of admissions during which multiple CBCs were ordered. Although we cannot exclude illness severity and age as explanations for the higher charges, we have no reason to believe that one freestanding children's hospital would have a sicker and younger population than another. An alternative and compelling explanation is that a variation in the standard of care exists across these hospitals.

The institutional variation in and the limited evidence for the utility of the ordering of CBCs in the evaluation of bronchiolitis call into question the necessity of this testing strategy. Exploration of the reasons for this institutional variation will help to create quality initiatives and directed interventions to improve and standardize care in bronchiolitis.

Acknowledgements

Supported by: Robert Wood Johnson (RWJ) Foundation through the Robert Wood Johnson Clinical Scholars Program. The views expressed do not necessarily represent the views of the Robert Wood Johnson Foundation or the University of Washington. The RWJ Foundation provided salary support for Dr. Tarini. The RWJ Foundation did not have a role in the study's design; collection, analysis and interpretation of data; writing of the report; or decision to submit the article for publication. Dr. Tarini wrote the first draft of the manuscript. All authors have seen and agree with the contents of this manuscript.

References
  1. Holman RC,Curns AT,Cheek JE, et al.Respiratory syncytial virus hospitalizations among American Indian and Alaska Native infants and the general United States infant population.Pediatrics. Oct2004;114:e437e444.
  2. King VJ,Viswanathan M,Bordley WC, et al.Pharmacologic treatment of bronchiolitis in infants and children: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):127137.
  3. Patel H,Platt R,Lozano JM,Wang EE.Glucocorticoids for acute viral bronchiolitis in infants and young children.Cochrane Database Syst Rev.2004(3):CD004878.
  4. Perrotta C,Ortiz Z,Roque M.Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old.Cochrane Database Syst Rev.2005;(2):CD004873.
  5. Christakis DA,Cowan CA,Garrison MM,Molteni R,Marcuse E,Zerr DM.Variation in inpatient diagnostic testing and management of bronchiolitis.Pediatrics.2005;115:878884.
  6. Willson DF,Horn SD,Hendley JO,Smout R,Gassaway J.Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness.Pediatrics.2001;108:851855.
  7. Goodman D.Bronchiolitis. In:Behrman Re KR,Jenson HB, eds.Nelson Textbook of Pediatrics.17th ed.Philadelphia:WB Saunders Co.;2004:14151417.
  8. Bordley WC,Viswanathan M,King VJ, et al.Diagnosis and testing in bronchiolitis: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):119126.
  9. Fletcher DM.Achieving data quality. How data from a pediatric health information system earns the trust of its users.J AHIMA.2004;75(10):2226.
  10. Averill RF,Goldfield NI,Muldoon J,Steinbeck BA,Grant TM.A closer look at all‐patient refined DRGs.J AHIMA.2002;73(1):4650.
  11. Stata Corp. College Station, TX.
  12. Purcell K,Fergie J.Concurrent serious bacterial infections in 2396 infants and children hospitalized with respiratory syncytial virus lower respiratory tract infections.Arch Pediatr Adolesc Med.2002;156:322324.
  13. Purcell K,Fergie J.Concurrent serious bacterial infections in 912 infants and children hospitalized for treatment of respiratory syncytial virus lower respiratory tract infection.Pediatr Infect Dis J.2004;23:267269.
  14. Mold JW,Stein HF.The cascade effect in the clinical care of patients.N Engl J Med.1986;314:512514.
  15. Shay DK,Holman RC,Newman RD,Liu LL,Stout JW,Anderson LJ.Bronchiolitis‐associated hospitalizations among US children, 1980‐1996.JAMA.1999;282:14401446.
  16. Merenstein D,Egleston B,Diener‐West M.Lengths of stay and costs associated with children's hospitals.Pediatrics.2005;115:839844.
References
  1. Holman RC,Curns AT,Cheek JE, et al.Respiratory syncytial virus hospitalizations among American Indian and Alaska Native infants and the general United States infant population.Pediatrics. Oct2004;114:e437e444.
  2. King VJ,Viswanathan M,Bordley WC, et al.Pharmacologic treatment of bronchiolitis in infants and children: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):127137.
  3. Patel H,Platt R,Lozano JM,Wang EE.Glucocorticoids for acute viral bronchiolitis in infants and young children.Cochrane Database Syst Rev.2004(3):CD004878.
  4. Perrotta C,Ortiz Z,Roque M.Chest physiotherapy for acute bronchiolitis in paediatric patients between 0 and 24 months old.Cochrane Database Syst Rev.2005;(2):CD004873.
  5. Christakis DA,Cowan CA,Garrison MM,Molteni R,Marcuse E,Zerr DM.Variation in inpatient diagnostic testing and management of bronchiolitis.Pediatrics.2005;115:878884.
  6. Willson DF,Horn SD,Hendley JO,Smout R,Gassaway J.Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness.Pediatrics.2001;108:851855.
  7. Goodman D.Bronchiolitis. In:Behrman Re KR,Jenson HB, eds.Nelson Textbook of Pediatrics.17th ed.Philadelphia:WB Saunders Co.;2004:14151417.
  8. Bordley WC,Viswanathan M,King VJ, et al.Diagnosis and testing in bronchiolitis: a systematic review.Arch Pediatr Adolesc Med.2004;158(2):119126.
  9. Fletcher DM.Achieving data quality. How data from a pediatric health information system earns the trust of its users.J AHIMA.2004;75(10):2226.
  10. Averill RF,Goldfield NI,Muldoon J,Steinbeck BA,Grant TM.A closer look at all‐patient refined DRGs.J AHIMA.2002;73(1):4650.
  11. Stata Corp. College Station, TX.
  12. Purcell K,Fergie J.Concurrent serious bacterial infections in 2396 infants and children hospitalized with respiratory syncytial virus lower respiratory tract infections.Arch Pediatr Adolesc Med.2002;156:322324.
  13. Purcell K,Fergie J.Concurrent serious bacterial infections in 912 infants and children hospitalized for treatment of respiratory syncytial virus lower respiratory tract infection.Pediatr Infect Dis J.2004;23:267269.
  14. Mold JW,Stein HF.The cascade effect in the clinical care of patients.N Engl J Med.1986;314:512514.
  15. Shay DK,Holman RC,Newman RD,Liu LL,Stout JW,Anderson LJ.Bronchiolitis‐associated hospitalizations among US children, 1980‐1996.JAMA.1999;282:14401446.
  16. Merenstein D,Egleston B,Diener‐West M.Lengths of stay and costs associated with children's hospitals.Pediatrics.2005;115:839844.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
69-73
Page Number
69-73
Article Type
Display Headline
Institutional variation in ordering complete blood counts for children hospitalized with bronchiolitis
Display Headline
Institutional variation in ordering complete blood counts for children hospitalized with bronchiolitis
Legacy Keywords
bronchiolitis, diagnostic testing, variation in care, complete blood count (CBC)
Legacy Keywords
bronchiolitis, diagnostic testing, variation in care, complete blood count (CBC)
Sections
Article Source

Copyright © 2007 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Division of General Pediatrics, University of Michigan, 300 N. Ingalls St., Room 6C11, Ann Arbor, MI 48109‐0456
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

VTE PX in ED Admissions

Article Type
Changed
Sun, 05/28/2017 - 22:41
Display Headline
Venous thromboembolism prophylaxis in emergency department admissions

Venous thromboembolism prophylaxis (VTE PX) has been identified as an area of primary importance to improve patient safety in research and clinical practice.13 Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a common, often preventable life‐threatening condition for hospitalized patients.4 Up to half of patients admitted to the hospital are admitted from the emergency department (ED). Most of these patients are acutely ill with multiple risk factors for VTE. To reduce the incidence of VTE, these patients require routine evaluation to determine if thromboprophylaxis is needed, and when indicated, therapy should be started promptly on admission. The Seventh American College of Chest Physicians (ACCP) Consensus Conference on Antithrombotic Therapy outlines recommendations for VTE PX that reduce the development of DVT and PE.3 Despite there being effective VTE PX and the current focus on increasing its utilization to improve patient safety, VTE PX is underutilized. In particular, the subgroup of patients admitted from the ED, a group at high risk for VTE, has been neglected in the literature.

Our hypothesis was that VTE PX is underutilized in patients admitted through the ED. The specific objective of this study was to measure the rate at which hospitalized patients admitted though the ED received VTE PX.

METHODS

The study was conducted with the approval of and in accordance with the ethical standards of the Institutional Review Board of Baylor College of Medicine and Affiliated Hospitals. Prior to initiating chart review, passive consent was sought from physicians who were identified through the hospital medical records system as having admitted patients to this hospital through the ED in the preceding 6 months. Physicians were contacted twice in writing in a 1‐month period prior to study inception. Those who objected to their charts being reviewed were to notify the investigators. Otherwise, they were assumed to have consented to chart review. Fifteen percent of physicians declined chart review. Physicians were not informed of the particulars of the study, only that medication use in the ED was being evaluated.

This study was conducted at a private 900‐bed urban teaching hospital. The ED evaluates approximately 31,000 patients per year, predominantly a medical population. During the previous year, the ED had admitted roughly 30 patients per day, or 36% of all patients examined. Approximately 29% of admissions to this hospital (800/month) are admitted through the ED.

A convenience sample of every other hospital admission through the ED during 1 month was prospectively identified for inclusion in the study and chart review. Data were abstracted by a single reviewer on admission and at the time of discharge. The following data were collected: demographic characteristics, anticoagulant use or existing IVC filter, diagnoses, indications for full‐dose anticoagulation, indications for VTE PX (ie, immobilization, respiratory failure, congestive heart failure, limb trauma, surgery, or stroke), whether therapeutic anticoagulation or VTE PX was given, and date of initiation of this regimen, contraindications to anticoagulation, primary physician, and use of a standard order set. Patients were excluded if the attending physician declined chart review via the passive consent process. Other exclusion criteria were: receiving full‐dose anticoagulants before presentation to the ED, presence of an inferior vena cava (IVC) filter, indication for full‐dose anticoagulation (presented with DVT, PE, acute coronary syndrome), renal failure requiring hemodialysis (controversial risk for VTE59), length of stay (LOS) less than 2 days, and admission for psychiatric evaluation or treatment.

A modified Caprini's Risk Assessment Model for Surgical and Nonsurgical Patients was used to classify VTE risk.10 This tool assigns points to VTE risk factors so that risk and the need for VTE PX can be determined. For example, major surgery, central venous access, age older than 60 years, and bed rest for more than 72 hours are each assigned 2 points; higher‐risk factors such as hip or leg fractures or stroke are each assigned 5 points. This tool is generally in accord with the ACCP guidelines. Modifications made to this tool were to assign 3 points to patients in respiratory failure on ventilators and 5 points to patients who were critically ill on vasopressor medication. Decreased venous return associated with mechanical ventilation and peripheral vasoconstriction associated with the use of vasopressor medication justified the addition of these risk factors.11, 12 Patients were assigned to one of these risk categories: no risk (0 points), low risk (1 point), moderate risk (2 points), high risk (3‐4 points), or very high risk (5 or more points). As indicated by this risk assessment tool, those with moderate, high, or very high risk were considered in need of VTE PX.

Appropriate VTE PX was defined as any currently accepted medical (unfractionated heparin, low‐molecular‐weight heparin, or warfarin for orthopedic patients) or mechanical methods of VTE PX (sequential compression devices, and graduated compression stockings) for those in need and no VTE PX if none indicated. Aspirin, clopidogrel, or a combination of the 2 was not considered sufficient VTE PX.3 In addition, we established whether VTE PX as determined by the modified Caprini score was in line with ACCP guidelines, taking into account contraindications to anticoagulation. Preprinted order sets were divided into those that included VTE PX and those that did not. Order sets that included options for VTE PX were defined as standard order sets.

The primary objective of this study was to determine how frequently VTE PX was implemented in ED admissions. Secondary objectives were determining factors associated with correct VTE PX decision making and the proximity of orders for VTE PX to the time of admission.

Statistical Methods

The SAS system was used to perform chi‐square analysis of independent predictors of VTE PX. The dependent variable, which was dichotomous, was whether correct VTE PX decision making had occurred. Factors associated with VTE PX were considered significant if the P value was less than .05. Odds ratios were calculated along with 95% confidence intervals for all significant predictors of VTE PX. Multiple logistic regression analysis was performed to provide adjusted odds ratios and to arrive at a summary risk measure. Candidate independent variables for the multiple logistic regression analysis included all variables screened in the univariate analyses. A first‐pass stepwise model was developed, followed by a best‐subsets run with manual stepping. Although bed rest was on the margin of statistical significance (P = .059), we retained it in the model because it was is a well‐recognized risk factor for which the other model terms needed to be adjusted, and it was nine‐tenths of 1% above the critical value.

RESULTS

Four hundred and fourteen charts of patient admissions were reviewed, of which 254 met the inclusion criteria. One‐hundred and sixty patients were excluded because they received full‐dose anticoagulation or had an existing IVC filter prior to admission (49 patients), received treatment with full‐dose anticoagulation in the ED (42 patients), had a LOS of less than 2 days (39 patients), or had end‐stage renal disease requiring hemodialysis (30 patients; Fig. 1).

Figure 1
Study flow diagram (†appropriately defined as no prophylaxis when not indicated and prophylaxis when risk level indicated need; *160 excluded included 49 with full‐dose anticoagulation or IVC filter in place, 42 treated with full‐dose anticoagulation in the ED, 30 whose length of stay was less than 2 days, 30 with end‐stage renal disease; VTE PX, venous thromboembolism prophylaxis).

Eighty percent of patients were admitted for medical problems, and 20% were admitted for surgery (Table 1). The most frequent admitting diagnoses were abdominal pain, congestive heart failure, chronic obstructive pulmonary disease, altered mental status, cerebral vascular accident, and pneumonia. The average patient had 5 comorbid conditions, the most frequently noted were hypertension, diabetes mellitus, anemia, urinary tract infections, and coronary artery disease. The principal admitting services were general medicine, pulmonary, cardiology, hematology‐oncology, neurology, surgery, and gastroenterology. Six patients died (2.4%), and 2 patients were diagnosed with pulmonary emboli (0.8%). The study group's average length of stay was 6.7 days (range 2‐52 days), 48.8% were male, and average age was 61 19.7 years. Overall, the correct VTE PX decision making occurred in 44.9% of patients admitted, including the 49 of 254 patients who did not require and did not receive VTE PX. Of the 254 patients, 201 (79%) had indications for VTE PX, 65 of whom (32.3%) received it (Table 2). For those receiving VTE PX, 78% of orders were written within the first day of hospitalization.

Patient Mix
CategoryPrimary DiagnosisNumber of PatientsPercent
Medical (80%)Neurological4719%
 Cardiovascular3915%
 Pulmonary3514%
 Gastrointestinal2711%
 Other medical229%
 Renal94%
 Cancer73%
 Hematological73%
 Musculoskeletal62%
 Endocrine31%
Total Medical 202 
Surgical (20%)Gastrointestinal2811%
 Orthopedic/spine114%
 Other surgical83%
 Neurosurgical31%
 Cancer10%
 Genitourinary10%
Total Surgical 52
Total (100%) 254100%
Rate of Prophylaxis
 PatientsPercent
  • Appropriate decision was defined as those who needed VTE PX receiving it and those with no indications for VTE PX not receiving it.

  • VTE PX,= venous thromboembolism prophylaxis.

  • SOS, standardized order set.

Appropriate decisions made regarding VTE PX*114/25444.9%
Indications for VTE PX201/25479%
Required active VTE PX and received it65/20132%
Utilized SOS and ordered VTE PX18/2669%

When the data were reanalyzed per ACCP guidelines using the modified Caprini's risk assessment tool, the results were consistent with the initial findings. Overall, 46% of all patients (116 of 254) received prophylaxis in compliance with ACCP guidelines. In this group, 52 of 116 patients (44.8%) did not require and did not receive VTE PX. Sixty‐four patients (32% of those with indications for prophylaxis) had indications for VTE PX, were in compliance with ACCP guidelines, and received the indicated prophylaxis (30 patients received mechanical prophylaxis, 19 patients received medical prophylaxis, and 15 patients received both medical and mechanical prophylaxis). The difference between the assessments was explained by high‐risk patients with no contraindications to medical prophylaxis who received only mechanical prophylaxis but required medical prophylaxis through ACCP guidelines. Note, the Caprini tool recommended medical prophylaxis for these high‐risk patients; however, our original application was simply to assess if prophylaxis was employed. In addition, several patients with a prolonged INR suggestive of bleeding risk or autoprophylaxis were reclassified as compliant and not needing prophylaxis.

Fifty‐five patients with indications for VTE prophylaxis had contraindications to medical prophylaxis: 44 had bleeding risk, 8 had spine injury or surgery, and 3 had brain metastases and thrombocytopenia. Twenty of the 55 patients (36%) received mechanical prophylaxis; they were considered in compliance with ACCP guidelines and were included in the appropriate decisions regarding VTE PX count. Prophylaxed patients at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of those prophylaxed patients who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

Standard order sets increased the likelihood of appropriate VTE PX. Increasing age and a primary cardiovascular diagnosis (chest pain, congestive heart failure, syncope/near‐syncope, chronic ischemic heart disease, sinus tachycardia) decreased the likelihood of VTE PX (Table 3). VTE PX was not significantly related to bed rest (OR = 1.46, P = .14). In 26 of the 254 patient admissions, standard order sets that included VTE PX were utilized. Of these 26 patients, 69.2% (18; P = .01) received appropriate VTE PX compared with the overall rate of 44.9% receiving appropriate VTE PX. The use of VTE PX was significantly associated with level of risk: from 0% in patients at no or low risk of VTE to 47% in patients at very high risk (P = .0001). This significance persisted when controlling for age greater than 60 years (Table 4).

Predictors of Appropriate Prophylaxis
 Patients Received Appropriate PX    
Variablen%n%Odds Ratio*95% CIP
  • For dichotomous variables, the odds ratio represents a test against a reference category whose referent odds ratio is equal to 1. For continuous data, the odds ratio refers to the increase in odds associated with a one‐unit increase in the variable value. Although continuous data are presented in quartiles, the odds ratios are against the continuous variable.

  • 95% CI, 95% confidence interval. This reflects the units against which its companion odds ratio is computed. Confidence intervals are test‐based.

  • P = probability of type I statistical error (common P value). Values without parentheses are Pearson chi‐square probabilities. Probability values in parentheses are univariate logistic regression likelihood ratio P values.

  • CV diagnosis, cardiovascular diagnosis.

  • PX, venous thromboembolism prophylaxis.

Overall254(100.0)114(44.9)   
Age (years)       
16‐4759(23.2)37(62.7)0.970.96‐0.98.0001
48‐6468(26.8)38(55.9)  (.0001)
65‐7861(24.0)17(27.9)   
79‐9566(25.0)22(33.3)   
CV diagnosis       
Yes39(15.4)6(15.4)0.180.07‐0.45.0001
No215(84.6)108(50.2)1  
Bedrest       
Yes125(49.2)62(49.6)1.460.89‐2.40.14
No 129(50.8)52(40.3)1 
Standardized orders       
Yes26(10.2)18(69.2)3.091.29‐7.41.009
No228(89.8)96(42.1)1  
VTE PX by Risk Level and Age Group
Risk LevelAge < 60 YearsAge > 60 Years
Number Prophylaxed/Number at Risk LevelPercent ProphylaxedNumber Prophylaxed/Number at Risk LevelPercent ProphylaxedTotal Percent VTE PX
  • Two hundred and one of 254 patients had indications for VTE PX, and 65 of the 201 patients, or 32%, actually received VTE PX.

  • Risk level was highly associated with the probability of VTE PX (P < .0001).

  • VTE PX, venous thromboembolism prophylaxis

Very high (93)10/2050%34/7347%47%
High (71)10/3529%6/3617%23%
Moderate (53)4/2516%1/284%9%
Low (29)0/290%00%0%
None (8)0/80%00%0%
Total (254)24/117 41/137 65/254*

Aspirin and other antiplatelet medications (clopidogrel, dipyridamole, and cilostazol) were ordered for 22 and 5 patients, respectively, of the 39 patients with primary cardiovascular diagnosis who had indications for VTE PX but did not receive it. Forty‐seven percent (17 of 36 with activity orders) of those in our cardiovascular at‐risk but not prophylaxed group had activity orders of ambulatory ad lib or had physical therapy ordered.

DISCUSSION

An estimated 200,000‐300,000 cases of VTE with 60,000‐200,000 fatal pulmonary emboli occur annually.1316 The inpatient fatality rate due to PE is estimated to be 12%.13 The frequency of VTE varies with risk that relates to the population studied and the diagnosis. VTE rates range from 3%‐55% for medical patients to 80% for patients who receive total hip replacement or have multiple trauma, though the higher numbers cited are based on studies using fibrinogen uptake scanning or venography, with the true rates probably between the extremes noted.3, 4, 17, 18 Many of these acutely ill patients are admitted through the ED. Though VTE is common in patients admitted through the ED, with respect to VTE PX, this population is understudied.

In this study, the first to our knowledge to focus on VTE PX in an unselected cohort of ED admissions, the most significant findings were: 79% of ED admissions had indications for VTE PX, yet only 32% of those received it, and 78% of these orders were written within the first day of hospitalization. We also noted a direct association of the use of VTE PX with the level of risk, which increased from 9% in the moderate‐risk group to 23% for high‐risk patients and 47% for very‐high‐risk patients (P < .0001; Table 4.). Thus, most of our patients, including those at highest risk for VTE never received prophylaxis at any time during their hospitalization. Also explored in this study was the relationship of risk factors for VTE with the use of prophylaxis. These risk factors were age, cardiovascular diagnosis, and use of standard order sets. Increasing age and having a primary cardiovascular diagnosis (ie, congestive heart failure, atrial fibrillation) were the risk factors that increased the likelihood of receiving VTE. Therefore, it was expected that the rate of VTE PX would be higher for patients who were older or had these diagnoses. However, in the current study, increasing age alone did not influence the likelihood of physicians ordering VTE PX. In addition, we found markedly decreased rates of VTE PX in cardiac patients.

Other investigators have reported similar findings in selected groups of hospitalized patients.1922 A retrospective chart review of internal medicine discharges from 2 Italian hospitals determined that VTE PX was prescribed in 46.4% and 58.3% of at‐risk patients in nonteaching and teaching hospitals, respectively.20 In a retrospective study of surgical patients in 20 hospitals, 38% of patients received VTE PX.21 Similar results were found in a registry of hospitalized patients who developed VTE, in which only 42% of patients who developed VTE received VTE PX within 30 days prior to diagnosis.23

Bosson et al. reported no increased use of VTE PX in patients with myocardial infarction, similar to that in the current study, though they did find VTE PX administered more frequently to patients with congestive heart failure.22 Antiplatelet medications and activity orders are commonly prescribed for cardiac patients. According to reports that indicated a degree of protection from antiplatelet agents,24, 25 frequent use of activity orders, and the belief that ambulation eliminates the risk of VTE, it is possible physicians believed patients were sufficiently prophylaxed. However, although early ambulation and antiplatelet medications decrease risk of VTE, neither is sufficient to prevent it.3 The administration of aspirin and other antiplatelet medications implies that in our study group bleeding risk was not the primary deterrent to ordering VTE PX. Furthermore, bleeding risk would not be a deterrent to mechanical VTE PX.

In the current study, use of standard order sets was associated with correct decision making and increased use of VTE PX. Risk of VTE might be decreased through the use of standard order sets that result in increased utilization of VTE PX. However, despite evidence that standard order sets can successfully modify prescribing patterns,2629 Cook et al. found that only 5 of 29 Canadian ICU directors surveyed for their approach to VTE prevention and diagnosis in critically ill patients used preprinted orders.30

The present study had several limitations. First, determination of VTE was not an end point. As a single‐center study of prospectively selected subjects, this would have required too large a sample to be feasible. Our data may be biased by not including patients admitted by physicians who declined to allow their charts to be reviewed. However, although physicians were informed that we were examining drug use of patients admitted through the ED, they were not aware that the study focused on VTE PX. Our results are consistent with results of inpatient studies citing inadequate VTE PX.19, 21, 31, 32 Using the modified Caprini Scoring System, we found that only 32% of patients with indications for VTE PX received it. This result was unchanged when stratifying using ACCP guidelines. Finally, we found that prophylaxed patients who were at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of patients who received prophylaxis who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

CONCLUSIONS

Most patients needing VTE PX did not receive it, and those who did receive VTE PX usually had it prescribed in the first 24 hours. As risk factors increased, patients were more often prophylaxed, though fewer than 50% of those in the very‐high‐risk group received VTE PX. This study suggests that in hospital systems similar to ours with 30% or more of hospital admissions coming from the ED implementing a standard order set for patients admitted through the ED may increase VTE PX, which, in turn, could have a major impact on their course. Future studies need to determine the best way to implement these changes.

References
  1. Kohn LT,Corrigan JM,Donaldson MS, eds.To Err Is Human: Building a Safer Health System.Washington, DC:National Academy Press;1999.
  2. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 (prepared by the University of California at San Francisco–Stanford Evidence‐Based Practice Center under Contract No. 290‐97‐0013), AHRQ Publication No. 01‐E058,Rockville, MD:Agency for Healthcare Research and Quality; July2001.
  3. Geerts WH,Pineo GF,Heit JA, et al.Prevention of venous thromboembolism.Chest.2004;126:338S400S.
  4. Heit JA,O'Fallon WM,Petterson TM, et al.Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population‐based study.Arch Intern Med.2002;162:12451248.
  5. Tveit DP,Hshieh P,Cruess D,Agodoa LY,Welch PG,Abbott KC.Risk factors for pulmonary embolism in chronic dialysis patients.J Nephrol.2002;15:241247.
  6. Casserly L,Dember LM.Thrombosis in end‐stage renal disease.Sem Dialysis.2003;16:245256.
  7. Casserly LF,Reddy SM,Dember LM.Venous thromboembolism in end‐stage renal disease.Am J Kidney Dis.2000;36:405411.
  8. Guntupalli K,Soffer O,Baciewicz P.Pulmonary embolism in end stage renal disease.Intensive Care Med.1990;16:405407.
  9. Ifudu O,Delaney VB,Barth RH,Friedman EA.Deep vein thrombosis in end‐stage renal disease.ASAIO J.1994;40:103105.
  10. Caprini JA,Arcelus JI,Reyna JJ.Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease.Sem Hematol.2001;38(suppl 5):1219.
  11. Jellinek H,Krenn H,Oczenski W,Viet F,Schwartz S,Fitzgerald RD.Influence of positive airway pressure on the pressure gradient for venous return in humans.J Appl Physiol.2000;88:926932.
  12. Ibrahim EH,Iregui M,Prentice D,Sherman G,Kollef MH,Shannon W.Deep vein thrombosis during prolonged mechanical ventilation despite prophylaxis.Crit Care Med.2002;30:771774.
  13. Anderson FA,Wheeler HB,Goldberg RJ, et al.A population‐based perspective of the hospital incidence and case‐fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study.Arch Intern Med.1991;151:933938.
  14. Silverstein MD,Heit JA,Mohr DN,Petterson TM,O'Fallon WM,Melton LJ.Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25‐year population‐based study.Arch Intern Med.1998;158:585593.
  15. Heit JA.Venous Thromboembolism epidemiology: implications for prevention and management.Semin Thromb Hemost.2002;28(suppl 2):313.
  16. Wood KE.Major Pulmonary embolism.Chest.2002;121:877905.
  17. Samama MM,Cohen AT,Darmon JY, et al.A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients.N Engl J Med.1999;341:793800.
  18. Leizorovicz A,Cohen A,Turpie AG,Olsson CG,Vaitkus PT,Goldhaber SZ.Randomized, placebo‐controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients.Circulation.2004;110:874879.
  19. Goldhaber SZ,Dunn K,MacDougal RC.New onset venous thromboembolism among hospitalized patients at Brigham and Women's Hospital is caused more often by prophylaxis failure than by withholding treatment.Chest.2000;118:16801684.
  20. Ageno W,Squizzato A,Ambrosini F, et al.Thrombosis prophylaxis in medical patients: a retrospective review of clinical practice patterns. Thrombosis.Haematologica.2002;87:746750.
  21. Bratzler DW,Raskob GE,Murray CK,Bumpus LJ,Piatt DS.Underuse of venous thromboembolism prophylaxis for general surgery patients.Arch Intern Med.1998;158:19091912.
  22. Bosson JL,Labarere J,Sevestere MA, et al.Deep vein thrombosis in elderly patients hospitalized in subacute care facilities.Arch Intern Med.2003;163:26132618.
  23. Goldhaber SZ,Tapson VF.A prospective registry of 5451 patients with ultrasound‐confirmed deep vein thrombosis.Am J Cardiol.2004;93:259262.
  24. Sobieszczyk P,Fishbein MC,Goldhaber SZ.Acute pulmonary embolism: don't ignore the platelet.Circulation.2002;106:17481749.
  25. Collaborative overview of randomized trials of antiplatelet therapy—III: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients.BMJ.1994;308:235246.
  26. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Changing clinical practice. Prospective study of the impact of the continuing medical education and quality assurance programs on use of prophylaxis for venous thromboembolism.Arch Intern Med.1994;154:669677.
  27. Dexter PR,Perkins S,Overhage JM, et al.A computerized reminder system to increase the use of preventive care for hospitalized patients.N Engl J Med.2001;345:965970.
  28. Avorn J,Soumerai SB,Taylor W,Wessels MR,Janousek J,Weiner M.Reduction of incorrect antibiotic dosing through a structured educational order form.Arch Intern Med.1988;148:17201724.
  29. Echols RM,Kowalsky SF.The use of an antibiotic order form for antibiotic utilization review: influence on physicians' prescribing patterns.J Infect Dis.1984;150:803807.
  30. Cook D,McMullin J,Hodder R, et al.Prevention and diagnosis of venous thromboembolism in critically ill patients: a Canadian survey.Crit Care.2001;5:336342.
  31. Arnold DM,Kahn SR,Shrier I.Missed opportunities for prevention of venous thromboembolism: an evaluation of the use of thromboprophylaxis guidelines.Chest.2001;120:19641971.
  32. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Physician practices in the prevention of venous thromboembolism.Ann Intern Med.1991;115:591595.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
79-85
Sections
Article PDF
Article PDF

Venous thromboembolism prophylaxis (VTE PX) has been identified as an area of primary importance to improve patient safety in research and clinical practice.13 Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a common, often preventable life‐threatening condition for hospitalized patients.4 Up to half of patients admitted to the hospital are admitted from the emergency department (ED). Most of these patients are acutely ill with multiple risk factors for VTE. To reduce the incidence of VTE, these patients require routine evaluation to determine if thromboprophylaxis is needed, and when indicated, therapy should be started promptly on admission. The Seventh American College of Chest Physicians (ACCP) Consensus Conference on Antithrombotic Therapy outlines recommendations for VTE PX that reduce the development of DVT and PE.3 Despite there being effective VTE PX and the current focus on increasing its utilization to improve patient safety, VTE PX is underutilized. In particular, the subgroup of patients admitted from the ED, a group at high risk for VTE, has been neglected in the literature.

Our hypothesis was that VTE PX is underutilized in patients admitted through the ED. The specific objective of this study was to measure the rate at which hospitalized patients admitted though the ED received VTE PX.

METHODS

The study was conducted with the approval of and in accordance with the ethical standards of the Institutional Review Board of Baylor College of Medicine and Affiliated Hospitals. Prior to initiating chart review, passive consent was sought from physicians who were identified through the hospital medical records system as having admitted patients to this hospital through the ED in the preceding 6 months. Physicians were contacted twice in writing in a 1‐month period prior to study inception. Those who objected to their charts being reviewed were to notify the investigators. Otherwise, they were assumed to have consented to chart review. Fifteen percent of physicians declined chart review. Physicians were not informed of the particulars of the study, only that medication use in the ED was being evaluated.

This study was conducted at a private 900‐bed urban teaching hospital. The ED evaluates approximately 31,000 patients per year, predominantly a medical population. During the previous year, the ED had admitted roughly 30 patients per day, or 36% of all patients examined. Approximately 29% of admissions to this hospital (800/month) are admitted through the ED.

A convenience sample of every other hospital admission through the ED during 1 month was prospectively identified for inclusion in the study and chart review. Data were abstracted by a single reviewer on admission and at the time of discharge. The following data were collected: demographic characteristics, anticoagulant use or existing IVC filter, diagnoses, indications for full‐dose anticoagulation, indications for VTE PX (ie, immobilization, respiratory failure, congestive heart failure, limb trauma, surgery, or stroke), whether therapeutic anticoagulation or VTE PX was given, and date of initiation of this regimen, contraindications to anticoagulation, primary physician, and use of a standard order set. Patients were excluded if the attending physician declined chart review via the passive consent process. Other exclusion criteria were: receiving full‐dose anticoagulants before presentation to the ED, presence of an inferior vena cava (IVC) filter, indication for full‐dose anticoagulation (presented with DVT, PE, acute coronary syndrome), renal failure requiring hemodialysis (controversial risk for VTE59), length of stay (LOS) less than 2 days, and admission for psychiatric evaluation or treatment.

A modified Caprini's Risk Assessment Model for Surgical and Nonsurgical Patients was used to classify VTE risk.10 This tool assigns points to VTE risk factors so that risk and the need for VTE PX can be determined. For example, major surgery, central venous access, age older than 60 years, and bed rest for more than 72 hours are each assigned 2 points; higher‐risk factors such as hip or leg fractures or stroke are each assigned 5 points. This tool is generally in accord with the ACCP guidelines. Modifications made to this tool were to assign 3 points to patients in respiratory failure on ventilators and 5 points to patients who were critically ill on vasopressor medication. Decreased venous return associated with mechanical ventilation and peripheral vasoconstriction associated with the use of vasopressor medication justified the addition of these risk factors.11, 12 Patients were assigned to one of these risk categories: no risk (0 points), low risk (1 point), moderate risk (2 points), high risk (3‐4 points), or very high risk (5 or more points). As indicated by this risk assessment tool, those with moderate, high, or very high risk were considered in need of VTE PX.

Appropriate VTE PX was defined as any currently accepted medical (unfractionated heparin, low‐molecular‐weight heparin, or warfarin for orthopedic patients) or mechanical methods of VTE PX (sequential compression devices, and graduated compression stockings) for those in need and no VTE PX if none indicated. Aspirin, clopidogrel, or a combination of the 2 was not considered sufficient VTE PX.3 In addition, we established whether VTE PX as determined by the modified Caprini score was in line with ACCP guidelines, taking into account contraindications to anticoagulation. Preprinted order sets were divided into those that included VTE PX and those that did not. Order sets that included options for VTE PX were defined as standard order sets.

The primary objective of this study was to determine how frequently VTE PX was implemented in ED admissions. Secondary objectives were determining factors associated with correct VTE PX decision making and the proximity of orders for VTE PX to the time of admission.

Statistical Methods

The SAS system was used to perform chi‐square analysis of independent predictors of VTE PX. The dependent variable, which was dichotomous, was whether correct VTE PX decision making had occurred. Factors associated with VTE PX were considered significant if the P value was less than .05. Odds ratios were calculated along with 95% confidence intervals for all significant predictors of VTE PX. Multiple logistic regression analysis was performed to provide adjusted odds ratios and to arrive at a summary risk measure. Candidate independent variables for the multiple logistic regression analysis included all variables screened in the univariate analyses. A first‐pass stepwise model was developed, followed by a best‐subsets run with manual stepping. Although bed rest was on the margin of statistical significance (P = .059), we retained it in the model because it was is a well‐recognized risk factor for which the other model terms needed to be adjusted, and it was nine‐tenths of 1% above the critical value.

RESULTS

Four hundred and fourteen charts of patient admissions were reviewed, of which 254 met the inclusion criteria. One‐hundred and sixty patients were excluded because they received full‐dose anticoagulation or had an existing IVC filter prior to admission (49 patients), received treatment with full‐dose anticoagulation in the ED (42 patients), had a LOS of less than 2 days (39 patients), or had end‐stage renal disease requiring hemodialysis (30 patients; Fig. 1).

Figure 1
Study flow diagram (†appropriately defined as no prophylaxis when not indicated and prophylaxis when risk level indicated need; *160 excluded included 49 with full‐dose anticoagulation or IVC filter in place, 42 treated with full‐dose anticoagulation in the ED, 30 whose length of stay was less than 2 days, 30 with end‐stage renal disease; VTE PX, venous thromboembolism prophylaxis).

Eighty percent of patients were admitted for medical problems, and 20% were admitted for surgery (Table 1). The most frequent admitting diagnoses were abdominal pain, congestive heart failure, chronic obstructive pulmonary disease, altered mental status, cerebral vascular accident, and pneumonia. The average patient had 5 comorbid conditions, the most frequently noted were hypertension, diabetes mellitus, anemia, urinary tract infections, and coronary artery disease. The principal admitting services were general medicine, pulmonary, cardiology, hematology‐oncology, neurology, surgery, and gastroenterology. Six patients died (2.4%), and 2 patients were diagnosed with pulmonary emboli (0.8%). The study group's average length of stay was 6.7 days (range 2‐52 days), 48.8% were male, and average age was 61 19.7 years. Overall, the correct VTE PX decision making occurred in 44.9% of patients admitted, including the 49 of 254 patients who did not require and did not receive VTE PX. Of the 254 patients, 201 (79%) had indications for VTE PX, 65 of whom (32.3%) received it (Table 2). For those receiving VTE PX, 78% of orders were written within the first day of hospitalization.

Patient Mix
CategoryPrimary DiagnosisNumber of PatientsPercent
Medical (80%)Neurological4719%
 Cardiovascular3915%
 Pulmonary3514%
 Gastrointestinal2711%
 Other medical229%
 Renal94%
 Cancer73%
 Hematological73%
 Musculoskeletal62%
 Endocrine31%
Total Medical 202 
Surgical (20%)Gastrointestinal2811%
 Orthopedic/spine114%
 Other surgical83%
 Neurosurgical31%
 Cancer10%
 Genitourinary10%
Total Surgical 52
Total (100%) 254100%
Rate of Prophylaxis
 PatientsPercent
  • Appropriate decision was defined as those who needed VTE PX receiving it and those with no indications for VTE PX not receiving it.

  • VTE PX,= venous thromboembolism prophylaxis.

  • SOS, standardized order set.

Appropriate decisions made regarding VTE PX*114/25444.9%
Indications for VTE PX201/25479%
Required active VTE PX and received it65/20132%
Utilized SOS and ordered VTE PX18/2669%

When the data were reanalyzed per ACCP guidelines using the modified Caprini's risk assessment tool, the results were consistent with the initial findings. Overall, 46% of all patients (116 of 254) received prophylaxis in compliance with ACCP guidelines. In this group, 52 of 116 patients (44.8%) did not require and did not receive VTE PX. Sixty‐four patients (32% of those with indications for prophylaxis) had indications for VTE PX, were in compliance with ACCP guidelines, and received the indicated prophylaxis (30 patients received mechanical prophylaxis, 19 patients received medical prophylaxis, and 15 patients received both medical and mechanical prophylaxis). The difference between the assessments was explained by high‐risk patients with no contraindications to medical prophylaxis who received only mechanical prophylaxis but required medical prophylaxis through ACCP guidelines. Note, the Caprini tool recommended medical prophylaxis for these high‐risk patients; however, our original application was simply to assess if prophylaxis was employed. In addition, several patients with a prolonged INR suggestive of bleeding risk or autoprophylaxis were reclassified as compliant and not needing prophylaxis.

Fifty‐five patients with indications for VTE prophylaxis had contraindications to medical prophylaxis: 44 had bleeding risk, 8 had spine injury or surgery, and 3 had brain metastases and thrombocytopenia. Twenty of the 55 patients (36%) received mechanical prophylaxis; they were considered in compliance with ACCP guidelines and were included in the appropriate decisions regarding VTE PX count. Prophylaxed patients at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of those prophylaxed patients who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

Standard order sets increased the likelihood of appropriate VTE PX. Increasing age and a primary cardiovascular diagnosis (chest pain, congestive heart failure, syncope/near‐syncope, chronic ischemic heart disease, sinus tachycardia) decreased the likelihood of VTE PX (Table 3). VTE PX was not significantly related to bed rest (OR = 1.46, P = .14). In 26 of the 254 patient admissions, standard order sets that included VTE PX were utilized. Of these 26 patients, 69.2% (18; P = .01) received appropriate VTE PX compared with the overall rate of 44.9% receiving appropriate VTE PX. The use of VTE PX was significantly associated with level of risk: from 0% in patients at no or low risk of VTE to 47% in patients at very high risk (P = .0001). This significance persisted when controlling for age greater than 60 years (Table 4).

Predictors of Appropriate Prophylaxis
 Patients Received Appropriate PX    
Variablen%n%Odds Ratio*95% CIP
  • For dichotomous variables, the odds ratio represents a test against a reference category whose referent odds ratio is equal to 1. For continuous data, the odds ratio refers to the increase in odds associated with a one‐unit increase in the variable value. Although continuous data are presented in quartiles, the odds ratios are against the continuous variable.

  • 95% CI, 95% confidence interval. This reflects the units against which its companion odds ratio is computed. Confidence intervals are test‐based.

  • P = probability of type I statistical error (common P value). Values without parentheses are Pearson chi‐square probabilities. Probability values in parentheses are univariate logistic regression likelihood ratio P values.

  • CV diagnosis, cardiovascular diagnosis.

  • PX, venous thromboembolism prophylaxis.

Overall254(100.0)114(44.9)   
Age (years)       
16‐4759(23.2)37(62.7)0.970.96‐0.98.0001
48‐6468(26.8)38(55.9)  (.0001)
65‐7861(24.0)17(27.9)   
79‐9566(25.0)22(33.3)   
CV diagnosis       
Yes39(15.4)6(15.4)0.180.07‐0.45.0001
No215(84.6)108(50.2)1  
Bedrest       
Yes125(49.2)62(49.6)1.460.89‐2.40.14
No 129(50.8)52(40.3)1 
Standardized orders       
Yes26(10.2)18(69.2)3.091.29‐7.41.009
No228(89.8)96(42.1)1  
VTE PX by Risk Level and Age Group
Risk LevelAge < 60 YearsAge > 60 Years
Number Prophylaxed/Number at Risk LevelPercent ProphylaxedNumber Prophylaxed/Number at Risk LevelPercent ProphylaxedTotal Percent VTE PX
  • Two hundred and one of 254 patients had indications for VTE PX, and 65 of the 201 patients, or 32%, actually received VTE PX.

  • Risk level was highly associated with the probability of VTE PX (P < .0001).

  • VTE PX, venous thromboembolism prophylaxis

Very high (93)10/2050%34/7347%47%
High (71)10/3529%6/3617%23%
Moderate (53)4/2516%1/284%9%
Low (29)0/290%00%0%
None (8)0/80%00%0%
Total (254)24/117 41/137 65/254*

Aspirin and other antiplatelet medications (clopidogrel, dipyridamole, and cilostazol) were ordered for 22 and 5 patients, respectively, of the 39 patients with primary cardiovascular diagnosis who had indications for VTE PX but did not receive it. Forty‐seven percent (17 of 36 with activity orders) of those in our cardiovascular at‐risk but not prophylaxed group had activity orders of ambulatory ad lib or had physical therapy ordered.

DISCUSSION

An estimated 200,000‐300,000 cases of VTE with 60,000‐200,000 fatal pulmonary emboli occur annually.1316 The inpatient fatality rate due to PE is estimated to be 12%.13 The frequency of VTE varies with risk that relates to the population studied and the diagnosis. VTE rates range from 3%‐55% for medical patients to 80% for patients who receive total hip replacement or have multiple trauma, though the higher numbers cited are based on studies using fibrinogen uptake scanning or venography, with the true rates probably between the extremes noted.3, 4, 17, 18 Many of these acutely ill patients are admitted through the ED. Though VTE is common in patients admitted through the ED, with respect to VTE PX, this population is understudied.

In this study, the first to our knowledge to focus on VTE PX in an unselected cohort of ED admissions, the most significant findings were: 79% of ED admissions had indications for VTE PX, yet only 32% of those received it, and 78% of these orders were written within the first day of hospitalization. We also noted a direct association of the use of VTE PX with the level of risk, which increased from 9% in the moderate‐risk group to 23% for high‐risk patients and 47% for very‐high‐risk patients (P < .0001; Table 4.). Thus, most of our patients, including those at highest risk for VTE never received prophylaxis at any time during their hospitalization. Also explored in this study was the relationship of risk factors for VTE with the use of prophylaxis. These risk factors were age, cardiovascular diagnosis, and use of standard order sets. Increasing age and having a primary cardiovascular diagnosis (ie, congestive heart failure, atrial fibrillation) were the risk factors that increased the likelihood of receiving VTE. Therefore, it was expected that the rate of VTE PX would be higher for patients who were older or had these diagnoses. However, in the current study, increasing age alone did not influence the likelihood of physicians ordering VTE PX. In addition, we found markedly decreased rates of VTE PX in cardiac patients.

Other investigators have reported similar findings in selected groups of hospitalized patients.1922 A retrospective chart review of internal medicine discharges from 2 Italian hospitals determined that VTE PX was prescribed in 46.4% and 58.3% of at‐risk patients in nonteaching and teaching hospitals, respectively.20 In a retrospective study of surgical patients in 20 hospitals, 38% of patients received VTE PX.21 Similar results were found in a registry of hospitalized patients who developed VTE, in which only 42% of patients who developed VTE received VTE PX within 30 days prior to diagnosis.23

Bosson et al. reported no increased use of VTE PX in patients with myocardial infarction, similar to that in the current study, though they did find VTE PX administered more frequently to patients with congestive heart failure.22 Antiplatelet medications and activity orders are commonly prescribed for cardiac patients. According to reports that indicated a degree of protection from antiplatelet agents,24, 25 frequent use of activity orders, and the belief that ambulation eliminates the risk of VTE, it is possible physicians believed patients were sufficiently prophylaxed. However, although early ambulation and antiplatelet medications decrease risk of VTE, neither is sufficient to prevent it.3 The administration of aspirin and other antiplatelet medications implies that in our study group bleeding risk was not the primary deterrent to ordering VTE PX. Furthermore, bleeding risk would not be a deterrent to mechanical VTE PX.

In the current study, use of standard order sets was associated with correct decision making and increased use of VTE PX. Risk of VTE might be decreased through the use of standard order sets that result in increased utilization of VTE PX. However, despite evidence that standard order sets can successfully modify prescribing patterns,2629 Cook et al. found that only 5 of 29 Canadian ICU directors surveyed for their approach to VTE prevention and diagnosis in critically ill patients used preprinted orders.30

The present study had several limitations. First, determination of VTE was not an end point. As a single‐center study of prospectively selected subjects, this would have required too large a sample to be feasible. Our data may be biased by not including patients admitted by physicians who declined to allow their charts to be reviewed. However, although physicians were informed that we were examining drug use of patients admitted through the ED, they were not aware that the study focused on VTE PX. Our results are consistent with results of inpatient studies citing inadequate VTE PX.19, 21, 31, 32 Using the modified Caprini Scoring System, we found that only 32% of patients with indications for VTE PX received it. This result was unchanged when stratifying using ACCP guidelines. Finally, we found that prophylaxed patients who were at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of patients who received prophylaxis who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

CONCLUSIONS

Most patients needing VTE PX did not receive it, and those who did receive VTE PX usually had it prescribed in the first 24 hours. As risk factors increased, patients were more often prophylaxed, though fewer than 50% of those in the very‐high‐risk group received VTE PX. This study suggests that in hospital systems similar to ours with 30% or more of hospital admissions coming from the ED implementing a standard order set for patients admitted through the ED may increase VTE PX, which, in turn, could have a major impact on their course. Future studies need to determine the best way to implement these changes.

Venous thromboembolism prophylaxis (VTE PX) has been identified as an area of primary importance to improve patient safety in research and clinical practice.13 Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a common, often preventable life‐threatening condition for hospitalized patients.4 Up to half of patients admitted to the hospital are admitted from the emergency department (ED). Most of these patients are acutely ill with multiple risk factors for VTE. To reduce the incidence of VTE, these patients require routine evaluation to determine if thromboprophylaxis is needed, and when indicated, therapy should be started promptly on admission. The Seventh American College of Chest Physicians (ACCP) Consensus Conference on Antithrombotic Therapy outlines recommendations for VTE PX that reduce the development of DVT and PE.3 Despite there being effective VTE PX and the current focus on increasing its utilization to improve patient safety, VTE PX is underutilized. In particular, the subgroup of patients admitted from the ED, a group at high risk for VTE, has been neglected in the literature.

Our hypothesis was that VTE PX is underutilized in patients admitted through the ED. The specific objective of this study was to measure the rate at which hospitalized patients admitted though the ED received VTE PX.

METHODS

The study was conducted with the approval of and in accordance with the ethical standards of the Institutional Review Board of Baylor College of Medicine and Affiliated Hospitals. Prior to initiating chart review, passive consent was sought from physicians who were identified through the hospital medical records system as having admitted patients to this hospital through the ED in the preceding 6 months. Physicians were contacted twice in writing in a 1‐month period prior to study inception. Those who objected to their charts being reviewed were to notify the investigators. Otherwise, they were assumed to have consented to chart review. Fifteen percent of physicians declined chart review. Physicians were not informed of the particulars of the study, only that medication use in the ED was being evaluated.

This study was conducted at a private 900‐bed urban teaching hospital. The ED evaluates approximately 31,000 patients per year, predominantly a medical population. During the previous year, the ED had admitted roughly 30 patients per day, or 36% of all patients examined. Approximately 29% of admissions to this hospital (800/month) are admitted through the ED.

A convenience sample of every other hospital admission through the ED during 1 month was prospectively identified for inclusion in the study and chart review. Data were abstracted by a single reviewer on admission and at the time of discharge. The following data were collected: demographic characteristics, anticoagulant use or existing IVC filter, diagnoses, indications for full‐dose anticoagulation, indications for VTE PX (ie, immobilization, respiratory failure, congestive heart failure, limb trauma, surgery, or stroke), whether therapeutic anticoagulation or VTE PX was given, and date of initiation of this regimen, contraindications to anticoagulation, primary physician, and use of a standard order set. Patients were excluded if the attending physician declined chart review via the passive consent process. Other exclusion criteria were: receiving full‐dose anticoagulants before presentation to the ED, presence of an inferior vena cava (IVC) filter, indication for full‐dose anticoagulation (presented with DVT, PE, acute coronary syndrome), renal failure requiring hemodialysis (controversial risk for VTE59), length of stay (LOS) less than 2 days, and admission for psychiatric evaluation or treatment.

A modified Caprini's Risk Assessment Model for Surgical and Nonsurgical Patients was used to classify VTE risk.10 This tool assigns points to VTE risk factors so that risk and the need for VTE PX can be determined. For example, major surgery, central venous access, age older than 60 years, and bed rest for more than 72 hours are each assigned 2 points; higher‐risk factors such as hip or leg fractures or stroke are each assigned 5 points. This tool is generally in accord with the ACCP guidelines. Modifications made to this tool were to assign 3 points to patients in respiratory failure on ventilators and 5 points to patients who were critically ill on vasopressor medication. Decreased venous return associated with mechanical ventilation and peripheral vasoconstriction associated with the use of vasopressor medication justified the addition of these risk factors.11, 12 Patients were assigned to one of these risk categories: no risk (0 points), low risk (1 point), moderate risk (2 points), high risk (3‐4 points), or very high risk (5 or more points). As indicated by this risk assessment tool, those with moderate, high, or very high risk were considered in need of VTE PX.

Appropriate VTE PX was defined as any currently accepted medical (unfractionated heparin, low‐molecular‐weight heparin, or warfarin for orthopedic patients) or mechanical methods of VTE PX (sequential compression devices, and graduated compression stockings) for those in need and no VTE PX if none indicated. Aspirin, clopidogrel, or a combination of the 2 was not considered sufficient VTE PX.3 In addition, we established whether VTE PX as determined by the modified Caprini score was in line with ACCP guidelines, taking into account contraindications to anticoagulation. Preprinted order sets were divided into those that included VTE PX and those that did not. Order sets that included options for VTE PX were defined as standard order sets.

The primary objective of this study was to determine how frequently VTE PX was implemented in ED admissions. Secondary objectives were determining factors associated with correct VTE PX decision making and the proximity of orders for VTE PX to the time of admission.

Statistical Methods

The SAS system was used to perform chi‐square analysis of independent predictors of VTE PX. The dependent variable, which was dichotomous, was whether correct VTE PX decision making had occurred. Factors associated with VTE PX were considered significant if the P value was less than .05. Odds ratios were calculated along with 95% confidence intervals for all significant predictors of VTE PX. Multiple logistic regression analysis was performed to provide adjusted odds ratios and to arrive at a summary risk measure. Candidate independent variables for the multiple logistic regression analysis included all variables screened in the univariate analyses. A first‐pass stepwise model was developed, followed by a best‐subsets run with manual stepping. Although bed rest was on the margin of statistical significance (P = .059), we retained it in the model because it was is a well‐recognized risk factor for which the other model terms needed to be adjusted, and it was nine‐tenths of 1% above the critical value.

RESULTS

Four hundred and fourteen charts of patient admissions were reviewed, of which 254 met the inclusion criteria. One‐hundred and sixty patients were excluded because they received full‐dose anticoagulation or had an existing IVC filter prior to admission (49 patients), received treatment with full‐dose anticoagulation in the ED (42 patients), had a LOS of less than 2 days (39 patients), or had end‐stage renal disease requiring hemodialysis (30 patients; Fig. 1).

Figure 1
Study flow diagram (†appropriately defined as no prophylaxis when not indicated and prophylaxis when risk level indicated need; *160 excluded included 49 with full‐dose anticoagulation or IVC filter in place, 42 treated with full‐dose anticoagulation in the ED, 30 whose length of stay was less than 2 days, 30 with end‐stage renal disease; VTE PX, venous thromboembolism prophylaxis).

Eighty percent of patients were admitted for medical problems, and 20% were admitted for surgery (Table 1). The most frequent admitting diagnoses were abdominal pain, congestive heart failure, chronic obstructive pulmonary disease, altered mental status, cerebral vascular accident, and pneumonia. The average patient had 5 comorbid conditions, the most frequently noted were hypertension, diabetes mellitus, anemia, urinary tract infections, and coronary artery disease. The principal admitting services were general medicine, pulmonary, cardiology, hematology‐oncology, neurology, surgery, and gastroenterology. Six patients died (2.4%), and 2 patients were diagnosed with pulmonary emboli (0.8%). The study group's average length of stay was 6.7 days (range 2‐52 days), 48.8% were male, and average age was 61 19.7 years. Overall, the correct VTE PX decision making occurred in 44.9% of patients admitted, including the 49 of 254 patients who did not require and did not receive VTE PX. Of the 254 patients, 201 (79%) had indications for VTE PX, 65 of whom (32.3%) received it (Table 2). For those receiving VTE PX, 78% of orders were written within the first day of hospitalization.

Patient Mix
CategoryPrimary DiagnosisNumber of PatientsPercent
Medical (80%)Neurological4719%
 Cardiovascular3915%
 Pulmonary3514%
 Gastrointestinal2711%
 Other medical229%
 Renal94%
 Cancer73%
 Hematological73%
 Musculoskeletal62%
 Endocrine31%
Total Medical 202 
Surgical (20%)Gastrointestinal2811%
 Orthopedic/spine114%
 Other surgical83%
 Neurosurgical31%
 Cancer10%
 Genitourinary10%
Total Surgical 52
Total (100%) 254100%
Rate of Prophylaxis
 PatientsPercent
  • Appropriate decision was defined as those who needed VTE PX receiving it and those with no indications for VTE PX not receiving it.

  • VTE PX,= venous thromboembolism prophylaxis.

  • SOS, standardized order set.

Appropriate decisions made regarding VTE PX*114/25444.9%
Indications for VTE PX201/25479%
Required active VTE PX and received it65/20132%
Utilized SOS and ordered VTE PX18/2669%

When the data were reanalyzed per ACCP guidelines using the modified Caprini's risk assessment tool, the results were consistent with the initial findings. Overall, 46% of all patients (116 of 254) received prophylaxis in compliance with ACCP guidelines. In this group, 52 of 116 patients (44.8%) did not require and did not receive VTE PX. Sixty‐four patients (32% of those with indications for prophylaxis) had indications for VTE PX, were in compliance with ACCP guidelines, and received the indicated prophylaxis (30 patients received mechanical prophylaxis, 19 patients received medical prophylaxis, and 15 patients received both medical and mechanical prophylaxis). The difference between the assessments was explained by high‐risk patients with no contraindications to medical prophylaxis who received only mechanical prophylaxis but required medical prophylaxis through ACCP guidelines. Note, the Caprini tool recommended medical prophylaxis for these high‐risk patients; however, our original application was simply to assess if prophylaxis was employed. In addition, several patients with a prolonged INR suggestive of bleeding risk or autoprophylaxis were reclassified as compliant and not needing prophylaxis.

Fifty‐five patients with indications for VTE prophylaxis had contraindications to medical prophylaxis: 44 had bleeding risk, 8 had spine injury or surgery, and 3 had brain metastases and thrombocytopenia. Twenty of the 55 patients (36%) received mechanical prophylaxis; they were considered in compliance with ACCP guidelines and were included in the appropriate decisions regarding VTE PX count. Prophylaxed patients at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of those prophylaxed patients who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

Standard order sets increased the likelihood of appropriate VTE PX. Increasing age and a primary cardiovascular diagnosis (chest pain, congestive heart failure, syncope/near‐syncope, chronic ischemic heart disease, sinus tachycardia) decreased the likelihood of VTE PX (Table 3). VTE PX was not significantly related to bed rest (OR = 1.46, P = .14). In 26 of the 254 patient admissions, standard order sets that included VTE PX were utilized. Of these 26 patients, 69.2% (18; P = .01) received appropriate VTE PX compared with the overall rate of 44.9% receiving appropriate VTE PX. The use of VTE PX was significantly associated with level of risk: from 0% in patients at no or low risk of VTE to 47% in patients at very high risk (P = .0001). This significance persisted when controlling for age greater than 60 years (Table 4).

Predictors of Appropriate Prophylaxis
 Patients Received Appropriate PX    
Variablen%n%Odds Ratio*95% CIP
  • For dichotomous variables, the odds ratio represents a test against a reference category whose referent odds ratio is equal to 1. For continuous data, the odds ratio refers to the increase in odds associated with a one‐unit increase in the variable value. Although continuous data are presented in quartiles, the odds ratios are against the continuous variable.

  • 95% CI, 95% confidence interval. This reflects the units against which its companion odds ratio is computed. Confidence intervals are test‐based.

  • P = probability of type I statistical error (common P value). Values without parentheses are Pearson chi‐square probabilities. Probability values in parentheses are univariate logistic regression likelihood ratio P values.

  • CV diagnosis, cardiovascular diagnosis.

  • PX, venous thromboembolism prophylaxis.

Overall254(100.0)114(44.9)   
Age (years)       
16‐4759(23.2)37(62.7)0.970.96‐0.98.0001
48‐6468(26.8)38(55.9)  (.0001)
65‐7861(24.0)17(27.9)   
79‐9566(25.0)22(33.3)   
CV diagnosis       
Yes39(15.4)6(15.4)0.180.07‐0.45.0001
No215(84.6)108(50.2)1  
Bedrest       
Yes125(49.2)62(49.6)1.460.89‐2.40.14
No 129(50.8)52(40.3)1 
Standardized orders       
Yes26(10.2)18(69.2)3.091.29‐7.41.009
No228(89.8)96(42.1)1  
VTE PX by Risk Level and Age Group
Risk LevelAge < 60 YearsAge > 60 Years
Number Prophylaxed/Number at Risk LevelPercent ProphylaxedNumber Prophylaxed/Number at Risk LevelPercent ProphylaxedTotal Percent VTE PX
  • Two hundred and one of 254 patients had indications for VTE PX, and 65 of the 201 patients, or 32%, actually received VTE PX.

  • Risk level was highly associated with the probability of VTE PX (P < .0001).

  • VTE PX, venous thromboembolism prophylaxis

Very high (93)10/2050%34/7347%47%
High (71)10/3529%6/3617%23%
Moderate (53)4/2516%1/284%9%
Low (29)0/290%00%0%
None (8)0/80%00%0%
Total (254)24/117 41/137 65/254*

Aspirin and other antiplatelet medications (clopidogrel, dipyridamole, and cilostazol) were ordered for 22 and 5 patients, respectively, of the 39 patients with primary cardiovascular diagnosis who had indications for VTE PX but did not receive it. Forty‐seven percent (17 of 36 with activity orders) of those in our cardiovascular at‐risk but not prophylaxed group had activity orders of ambulatory ad lib or had physical therapy ordered.

DISCUSSION

An estimated 200,000‐300,000 cases of VTE with 60,000‐200,000 fatal pulmonary emboli occur annually.1316 The inpatient fatality rate due to PE is estimated to be 12%.13 The frequency of VTE varies with risk that relates to the population studied and the diagnosis. VTE rates range from 3%‐55% for medical patients to 80% for patients who receive total hip replacement or have multiple trauma, though the higher numbers cited are based on studies using fibrinogen uptake scanning or venography, with the true rates probably between the extremes noted.3, 4, 17, 18 Many of these acutely ill patients are admitted through the ED. Though VTE is common in patients admitted through the ED, with respect to VTE PX, this population is understudied.

In this study, the first to our knowledge to focus on VTE PX in an unselected cohort of ED admissions, the most significant findings were: 79% of ED admissions had indications for VTE PX, yet only 32% of those received it, and 78% of these orders were written within the first day of hospitalization. We also noted a direct association of the use of VTE PX with the level of risk, which increased from 9% in the moderate‐risk group to 23% for high‐risk patients and 47% for very‐high‐risk patients (P < .0001; Table 4.). Thus, most of our patients, including those at highest risk for VTE never received prophylaxis at any time during their hospitalization. Also explored in this study was the relationship of risk factors for VTE with the use of prophylaxis. These risk factors were age, cardiovascular diagnosis, and use of standard order sets. Increasing age and having a primary cardiovascular diagnosis (ie, congestive heart failure, atrial fibrillation) were the risk factors that increased the likelihood of receiving VTE. Therefore, it was expected that the rate of VTE PX would be higher for patients who were older or had these diagnoses. However, in the current study, increasing age alone did not influence the likelihood of physicians ordering VTE PX. In addition, we found markedly decreased rates of VTE PX in cardiac patients.

Other investigators have reported similar findings in selected groups of hospitalized patients.1922 A retrospective chart review of internal medicine discharges from 2 Italian hospitals determined that VTE PX was prescribed in 46.4% and 58.3% of at‐risk patients in nonteaching and teaching hospitals, respectively.20 In a retrospective study of surgical patients in 20 hospitals, 38% of patients received VTE PX.21 Similar results were found in a registry of hospitalized patients who developed VTE, in which only 42% of patients who developed VTE received VTE PX within 30 days prior to diagnosis.23

Bosson et al. reported no increased use of VTE PX in patients with myocardial infarction, similar to that in the current study, though they did find VTE PX administered more frequently to patients with congestive heart failure.22 Antiplatelet medications and activity orders are commonly prescribed for cardiac patients. According to reports that indicated a degree of protection from antiplatelet agents,24, 25 frequent use of activity orders, and the belief that ambulation eliminates the risk of VTE, it is possible physicians believed patients were sufficiently prophylaxed. However, although early ambulation and antiplatelet medications decrease risk of VTE, neither is sufficient to prevent it.3 The administration of aspirin and other antiplatelet medications implies that in our study group bleeding risk was not the primary deterrent to ordering VTE PX. Furthermore, bleeding risk would not be a deterrent to mechanical VTE PX.

In the current study, use of standard order sets was associated with correct decision making and increased use of VTE PX. Risk of VTE might be decreased through the use of standard order sets that result in increased utilization of VTE PX. However, despite evidence that standard order sets can successfully modify prescribing patterns,2629 Cook et al. found that only 5 of 29 Canadian ICU directors surveyed for their approach to VTE prevention and diagnosis in critically ill patients used preprinted orders.30

The present study had several limitations. First, determination of VTE was not an end point. As a single‐center study of prospectively selected subjects, this would have required too large a sample to be feasible. Our data may be biased by not including patients admitted by physicians who declined to allow their charts to be reviewed. However, although physicians were informed that we were examining drug use of patients admitted through the ED, they were not aware that the study focused on VTE PX. Our results are consistent with results of inpatient studies citing inadequate VTE PX.19, 21, 31, 32 Using the modified Caprini Scoring System, we found that only 32% of patients with indications for VTE PX received it. This result was unchanged when stratifying using ACCP guidelines. Finally, we found that prophylaxed patients who were at moderate to high risk were more likely to receive mechanical prophylaxis, whereas two‐thirds of patients who received prophylaxis who were at very high risk received medical prophylaxis or a combination of medical and mechanical prophylaxis.

CONCLUSIONS

Most patients needing VTE PX did not receive it, and those who did receive VTE PX usually had it prescribed in the first 24 hours. As risk factors increased, patients were more often prophylaxed, though fewer than 50% of those in the very‐high‐risk group received VTE PX. This study suggests that in hospital systems similar to ours with 30% or more of hospital admissions coming from the ED implementing a standard order set for patients admitted through the ED may increase VTE PX, which, in turn, could have a major impact on their course. Future studies need to determine the best way to implement these changes.

References
  1. Kohn LT,Corrigan JM,Donaldson MS, eds.To Err Is Human: Building a Safer Health System.Washington, DC:National Academy Press;1999.
  2. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 (prepared by the University of California at San Francisco–Stanford Evidence‐Based Practice Center under Contract No. 290‐97‐0013), AHRQ Publication No. 01‐E058,Rockville, MD:Agency for Healthcare Research and Quality; July2001.
  3. Geerts WH,Pineo GF,Heit JA, et al.Prevention of venous thromboembolism.Chest.2004;126:338S400S.
  4. Heit JA,O'Fallon WM,Petterson TM, et al.Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population‐based study.Arch Intern Med.2002;162:12451248.
  5. Tveit DP,Hshieh P,Cruess D,Agodoa LY,Welch PG,Abbott KC.Risk factors for pulmonary embolism in chronic dialysis patients.J Nephrol.2002;15:241247.
  6. Casserly L,Dember LM.Thrombosis in end‐stage renal disease.Sem Dialysis.2003;16:245256.
  7. Casserly LF,Reddy SM,Dember LM.Venous thromboembolism in end‐stage renal disease.Am J Kidney Dis.2000;36:405411.
  8. Guntupalli K,Soffer O,Baciewicz P.Pulmonary embolism in end stage renal disease.Intensive Care Med.1990;16:405407.
  9. Ifudu O,Delaney VB,Barth RH,Friedman EA.Deep vein thrombosis in end‐stage renal disease.ASAIO J.1994;40:103105.
  10. Caprini JA,Arcelus JI,Reyna JJ.Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease.Sem Hematol.2001;38(suppl 5):1219.
  11. Jellinek H,Krenn H,Oczenski W,Viet F,Schwartz S,Fitzgerald RD.Influence of positive airway pressure on the pressure gradient for venous return in humans.J Appl Physiol.2000;88:926932.
  12. Ibrahim EH,Iregui M,Prentice D,Sherman G,Kollef MH,Shannon W.Deep vein thrombosis during prolonged mechanical ventilation despite prophylaxis.Crit Care Med.2002;30:771774.
  13. Anderson FA,Wheeler HB,Goldberg RJ, et al.A population‐based perspective of the hospital incidence and case‐fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study.Arch Intern Med.1991;151:933938.
  14. Silverstein MD,Heit JA,Mohr DN,Petterson TM,O'Fallon WM,Melton LJ.Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25‐year population‐based study.Arch Intern Med.1998;158:585593.
  15. Heit JA.Venous Thromboembolism epidemiology: implications for prevention and management.Semin Thromb Hemost.2002;28(suppl 2):313.
  16. Wood KE.Major Pulmonary embolism.Chest.2002;121:877905.
  17. Samama MM,Cohen AT,Darmon JY, et al.A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients.N Engl J Med.1999;341:793800.
  18. Leizorovicz A,Cohen A,Turpie AG,Olsson CG,Vaitkus PT,Goldhaber SZ.Randomized, placebo‐controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients.Circulation.2004;110:874879.
  19. Goldhaber SZ,Dunn K,MacDougal RC.New onset venous thromboembolism among hospitalized patients at Brigham and Women's Hospital is caused more often by prophylaxis failure than by withholding treatment.Chest.2000;118:16801684.
  20. Ageno W,Squizzato A,Ambrosini F, et al.Thrombosis prophylaxis in medical patients: a retrospective review of clinical practice patterns. Thrombosis.Haematologica.2002;87:746750.
  21. Bratzler DW,Raskob GE,Murray CK,Bumpus LJ,Piatt DS.Underuse of venous thromboembolism prophylaxis for general surgery patients.Arch Intern Med.1998;158:19091912.
  22. Bosson JL,Labarere J,Sevestere MA, et al.Deep vein thrombosis in elderly patients hospitalized in subacute care facilities.Arch Intern Med.2003;163:26132618.
  23. Goldhaber SZ,Tapson VF.A prospective registry of 5451 patients with ultrasound‐confirmed deep vein thrombosis.Am J Cardiol.2004;93:259262.
  24. Sobieszczyk P,Fishbein MC,Goldhaber SZ.Acute pulmonary embolism: don't ignore the platelet.Circulation.2002;106:17481749.
  25. Collaborative overview of randomized trials of antiplatelet therapy—III: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients.BMJ.1994;308:235246.
  26. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Changing clinical practice. Prospective study of the impact of the continuing medical education and quality assurance programs on use of prophylaxis for venous thromboembolism.Arch Intern Med.1994;154:669677.
  27. Dexter PR,Perkins S,Overhage JM, et al.A computerized reminder system to increase the use of preventive care for hospitalized patients.N Engl J Med.2001;345:965970.
  28. Avorn J,Soumerai SB,Taylor W,Wessels MR,Janousek J,Weiner M.Reduction of incorrect antibiotic dosing through a structured educational order form.Arch Intern Med.1988;148:17201724.
  29. Echols RM,Kowalsky SF.The use of an antibiotic order form for antibiotic utilization review: influence on physicians' prescribing patterns.J Infect Dis.1984;150:803807.
  30. Cook D,McMullin J,Hodder R, et al.Prevention and diagnosis of venous thromboembolism in critically ill patients: a Canadian survey.Crit Care.2001;5:336342.
  31. Arnold DM,Kahn SR,Shrier I.Missed opportunities for prevention of venous thromboembolism: an evaluation of the use of thromboprophylaxis guidelines.Chest.2001;120:19641971.
  32. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Physician practices in the prevention of venous thromboembolism.Ann Intern Med.1991;115:591595.
References
  1. Kohn LT,Corrigan JM,Donaldson MS, eds.To Err Is Human: Building a Safer Health System.Washington, DC:National Academy Press;1999.
  2. Shojania KG,Duncan BW,McDonald KM,Wachter RM,Markowitz AJ.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 (prepared by the University of California at San Francisco–Stanford Evidence‐Based Practice Center under Contract No. 290‐97‐0013), AHRQ Publication No. 01‐E058,Rockville, MD:Agency for Healthcare Research and Quality; July2001.
  3. Geerts WH,Pineo GF,Heit JA, et al.Prevention of venous thromboembolism.Chest.2004;126:338S400S.
  4. Heit JA,O'Fallon WM,Petterson TM, et al.Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population‐based study.Arch Intern Med.2002;162:12451248.
  5. Tveit DP,Hshieh P,Cruess D,Agodoa LY,Welch PG,Abbott KC.Risk factors for pulmonary embolism in chronic dialysis patients.J Nephrol.2002;15:241247.
  6. Casserly L,Dember LM.Thrombosis in end‐stage renal disease.Sem Dialysis.2003;16:245256.
  7. Casserly LF,Reddy SM,Dember LM.Venous thromboembolism in end‐stage renal disease.Am J Kidney Dis.2000;36:405411.
  8. Guntupalli K,Soffer O,Baciewicz P.Pulmonary embolism in end stage renal disease.Intensive Care Med.1990;16:405407.
  9. Ifudu O,Delaney VB,Barth RH,Friedman EA.Deep vein thrombosis in end‐stage renal disease.ASAIO J.1994;40:103105.
  10. Caprini JA,Arcelus JI,Reyna JJ.Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease.Sem Hematol.2001;38(suppl 5):1219.
  11. Jellinek H,Krenn H,Oczenski W,Viet F,Schwartz S,Fitzgerald RD.Influence of positive airway pressure on the pressure gradient for venous return in humans.J Appl Physiol.2000;88:926932.
  12. Ibrahim EH,Iregui M,Prentice D,Sherman G,Kollef MH,Shannon W.Deep vein thrombosis during prolonged mechanical ventilation despite prophylaxis.Crit Care Med.2002;30:771774.
  13. Anderson FA,Wheeler HB,Goldberg RJ, et al.A population‐based perspective of the hospital incidence and case‐fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study.Arch Intern Med.1991;151:933938.
  14. Silverstein MD,Heit JA,Mohr DN,Petterson TM,O'Fallon WM,Melton LJ.Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25‐year population‐based study.Arch Intern Med.1998;158:585593.
  15. Heit JA.Venous Thromboembolism epidemiology: implications for prevention and management.Semin Thromb Hemost.2002;28(suppl 2):313.
  16. Wood KE.Major Pulmonary embolism.Chest.2002;121:877905.
  17. Samama MM,Cohen AT,Darmon JY, et al.A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients.N Engl J Med.1999;341:793800.
  18. Leizorovicz A,Cohen A,Turpie AG,Olsson CG,Vaitkus PT,Goldhaber SZ.Randomized, placebo‐controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients.Circulation.2004;110:874879.
  19. Goldhaber SZ,Dunn K,MacDougal RC.New onset venous thromboembolism among hospitalized patients at Brigham and Women's Hospital is caused more often by prophylaxis failure than by withholding treatment.Chest.2000;118:16801684.
  20. Ageno W,Squizzato A,Ambrosini F, et al.Thrombosis prophylaxis in medical patients: a retrospective review of clinical practice patterns. Thrombosis.Haematologica.2002;87:746750.
  21. Bratzler DW,Raskob GE,Murray CK,Bumpus LJ,Piatt DS.Underuse of venous thromboembolism prophylaxis for general surgery patients.Arch Intern Med.1998;158:19091912.
  22. Bosson JL,Labarere J,Sevestere MA, et al.Deep vein thrombosis in elderly patients hospitalized in subacute care facilities.Arch Intern Med.2003;163:26132618.
  23. Goldhaber SZ,Tapson VF.A prospective registry of 5451 patients with ultrasound‐confirmed deep vein thrombosis.Am J Cardiol.2004;93:259262.
  24. Sobieszczyk P,Fishbein MC,Goldhaber SZ.Acute pulmonary embolism: don't ignore the platelet.Circulation.2002;106:17481749.
  25. Collaborative overview of randomized trials of antiplatelet therapy—III: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients.BMJ.1994;308:235246.
  26. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Changing clinical practice. Prospective study of the impact of the continuing medical education and quality assurance programs on use of prophylaxis for venous thromboembolism.Arch Intern Med.1994;154:669677.
  27. Dexter PR,Perkins S,Overhage JM, et al.A computerized reminder system to increase the use of preventive care for hospitalized patients.N Engl J Med.2001;345:965970.
  28. Avorn J,Soumerai SB,Taylor W,Wessels MR,Janousek J,Weiner M.Reduction of incorrect antibiotic dosing through a structured educational order form.Arch Intern Med.1988;148:17201724.
  29. Echols RM,Kowalsky SF.The use of an antibiotic order form for antibiotic utilization review: influence on physicians' prescribing patterns.J Infect Dis.1984;150:803807.
  30. Cook D,McMullin J,Hodder R, et al.Prevention and diagnosis of venous thromboembolism in critically ill patients: a Canadian survey.Crit Care.2001;5:336342.
  31. Arnold DM,Kahn SR,Shrier I.Missed opportunities for prevention of venous thromboembolism: an evaluation of the use of thromboprophylaxis guidelines.Chest.2001;120:19641971.
  32. Anderson FA,Wheeler HB,Goldberg RJ,Hosmer DW,Forcier A,Patwardhan NA.Physician practices in the prevention of venous thromboembolism.Ann Intern Med.1991;115:591595.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
79-85
Page Number
79-85
Article Type
Display Headline
Venous thromboembolism prophylaxis in emergency department admissions
Display Headline
Venous thromboembolism prophylaxis in emergency department admissions
Sections
Article Source

Copyright © 2007 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
University of Texas Health Science Center at Houston, Department of Neurosurgery and Neurosurgical Intensive Care, 6431 Fannin Street, Suite 7.142, Houston, TX 77030; Fax: (713) 500‐7787
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Stress‐Ulcer Prophylaxis for General Medical Patients

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Stress‐ulcer prophylaxis for general medical patients: A review of the evidence

Patients suffering from a critical life‐threatening illness have long been known to have an increased risk of spontaneous upper gastrointestinal bleeding, even in the absence of previously known gastrointestinal pathology. This phenomenon is generally known as the stress‐ulcer syndrome or stress‐related mucosal disease. Although the incidence in critically ill patients has declined in recent years to less than 10%, the mortality rate in patients experiencing bleeding is often considered to be nearly 50%.1, 2 Various pathophysiological processes including respiratory failure, sepsis, coagulopathy, burns, and severe trauma have been implicated in the development of stress ulcers in critically ill patients.1, 3 The administration of acid‐suppressing medications such as histamine‐2 receptor antagonists, proton‐pump inhibitors, and sucralfate has been shown to decrease the risk of stress‐related gastrointestinal bleeding in these patients.46 As a result, it is standard practice in many intensive care units to use such medications, commonly referred to as stress‐ulcer prophylaxis, to reduce the production of gastric acid and raise intragastric pH. Many intensivists prescribe stress‐ulcer prophylaxis to all ICU patients, including those without risk factors.7

Patients admitted to general medical wards also experience gastrointestinal bleeding. There appears to be an association between stress‐ulcer bleeding in general medical patients and overall severity of illness, similar to that in critically ill patients. Risk factors may include ischemic heart disease, chronic renal failure, and a prior intensive care unit stay or mechanical ventilation.8, 9 Studies in limited populations found that 3% of patients admitted with acute stroke and 13% of patients admitted with renal failure have experienced bleeding. However, only about half these episodes were clinically significant.10, 11 A more recent review that included a much larger and medically diverse population found a rate of less than 1%. In this study mortality did not differ between patients with and without bleeding.12 An older report found that mortality in a set of 125 hospitalized patients with secondary gastrointestinal bleeding was 28%, but only a small fraction of the deaths was directly attributable to the bleeding episode.13

Widespread use of acid‐suppressive therapy for stress‐ulcer prophylaxis in general medical settings has been recognized, especially among patients cared for by medical residents. However, this practice has been significantly less well characterized than the use of stress‐ulcer prophylaxis in critical care settings.1416 This article reports a systematic review of the literature to answer 2 questions: (1) What is the frequency of prescription of acid‐suppressive therapy for stress‐ulcer prophylaxis among adult general medical inpatients? (2) What evidence exists to support this practice?

METHODS

Data Sources

This review was designed and conducted using the principles of systematic reviews set forth by Cook, Counsell, and Meade and reported elsewhere.1719 The MEDLINE database (from 1966 to October 2005) and the Cochrane Central Register of Controlled Trials (fourth quarter 2005) were searched using the following medical subject heading search terms: stress ulcer, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding and prophylaxis, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding, and hospital, and stress‐related mucosal disease. The retrieved articles were then limited to those written in English that involved human subjects. The titles and abstracts of all articles were individually reviewed, and the full text of any potentially relevant article was obtained and evaluated for inclusion. The bibliographies of studies chosen for inclusion were also reviewed.

Study Selection

Studies were chosen for entry if they contained significant data about either of the 2 objectives of this review: (1) the frequency of use of stress‐ulcer prophylaxis in general medical patients and (2) gastrointestinal bleeding outcomes in patients prescribed such prophylaxis. Articles that focused primarily or exclusively on surgical, trauma, pediatric, or nonhospitalized medical patients, as well as those that clearly stated that the subjects were drawn from an intensive care unit setting, were excluded. For this purpose, studies focusing primarily on patients on mechanical ventilation were assumed to be referencing an intensive care unit population and were excluded.

Articles chosen to fulfill the first objective were required to contain information on prophylaxis use in a diverse medical population. Studies that did not clearly delineate the indications for acid‐suppressive therapy were excluded. Those chosen to fulfill the second objective were excluded if acid‐suppressive therapy was prescribed for an indication other than stress‐ulcer prophylaxis. This would include the treatment of any other gastrointestinal pathology, including gastrointestinal bleeding present on admission to the hospital. Finally, articles chosen for the second objective were required to be randomized and controlled.

Study Evaluation

The controlled trials selected for review were examined according to the methodology in the CONSORT statement, as reported elsewhere, and its subsequent revision.20, 21 The primary author exclusively determined which articles met inclusion criteria.

RESULTS

The search criteria identified 3979 citations from the electronic databases and 106 references from the included studies. After eliminating non‐English‐language articles and articles that did not have human subjects, 2912 articles were examined. Of these, only 5 citations met the inclusion criteria (Fig. 1).

Figure 1
Results of the literature search. *The 5 citations included were represented a total of 17 times in the literature search due to overlapping results from the search strategy; this accounts for the discrepancy in the total.

Frequency of Use of Stress‐Ulcer Prophylaxis in General Medical Patients:

Three descriptive reports addressed this issue. The first, by Nardino et al., examined all patients admitted to a general medical ward of a community teaching hospital over a 3‐month period.22 Of the 226 patients studied, 122 (54%) received some form of acid‐suppressive therapy, with 47 (21% of the total) receiving therapy as either stress‐ulcer prophylaxis or for no specific indication. Most of these (62%) received H2 receptor antagonists. The most frequent indication, reported in 33 patients (15% of the total population), was stress‐ulcer prophylaxis in patients believed to be at low risk of bleeding. In an additional 12 patients (5%), no clear rationale for use could be discerned from the medical record. The authors believed that 2 patients who received acid‐suppressive therapy as prophylaxis were at sufficiently high risk to justify such use because of previous prolonged mechanical ventilation.

The second report by Parente et al. studied all patients admitted to a general medical and surgical ward over a 1‐month period.23 Of the 799 patients reviewed, 71% were admitted to the medical or neurology service. Acid‐suppressive therapy was prescribed to 374, with 246 receiving therapy either as prophylaxis for stress ulcer or for no indication (47% and 31% of the total population, respectively). Proton‐pump inhibitors were the most commonly used drugs. Again, the most common indication was stress‐ulcer prophylaxis in low‐risk patients, which occurred in 177 (22% of the total population). An additional 22 patients (3%) had no clearly documented indication. Forty‐seven patients (6%) were judged by the authors to warrant stress‐ulcer prophylaxis based on risk of bleeding. Data specific to the medical service was not reported.

Finally, Gulotta et al. examined the records of 3685 inpatients at 20 hospitals on a randomly selected day. Of these inpatients, 1758 were admitted to an internal medicine service.24 There were 987 patients (28.6%) from the total population and 396 (22.5%) from those admitted to the medical services treated with an acid‐suppressive agent. Prevention of stress ulceration was the documented indication for 205 (21% of patients prescribed acid‐suppressive therapy and 6% of the total population), but the authors did not provide specific data for the medical service (Table 1). Unfortunately, as all these studies were cross‐sectional, no subsequent information on bleeding outcomes was provided.

Frequency of Acid Suppressant Use and Indications for Stress‐Ulcer Prophylaxis
  • Data specific to the medical service was not provided; therefore, the rates listed are for the overall study population.

  • No stratification of risk for stress‐ulcer prophylaxis was reported.

  • Both Nardino and Parente defined high‐risk patients as those who had coagulopathy or had received prolonged mechanical ventilation, but Parente also included patients who had experienced sepsis, shock, or multiorgan failure.

  • NR, not reported

Author, year of publication, reference Nardino, 200021 Parente, 200322 Gullota, 199723
Total population 226 799 3685
Admitted to medical service (%) 226 (100) 568 (71) 1758 (48)
Receiving acid suppression for any indication (%) 122 (54) 374 (47)* 987 (29)*
Receiving acid suppression as stress‐ulcer prophylaxis: all risk groups, including patients with no clear indication for use (%) 47 (21) 246 (31) 205 (6)
Acid suppression as stress ulcer prophylaxis: high risk patients (%) 2 (0.9) 47 (6) NR
Acid suppression as stress‐ulcer prophylaxis: low risk patients and those without a clear indication (%) 45 (20) 199 (25) NR

Gastrointestinal Bleeding Outcomes in Patients on Prophylaxis

Only 2 trials sufficiently met the inclusion criteria and were included for review. The first trial, by Estruch et al., was a placebo‐controlled, randomized trial of magaldrate for gastrointestinal bleeding prophylaxis.25 Magaldrate is an aluminum and magnesium containing antacid sold under various trade names. One hundred patients admitted to a general hospital ward were studied. These patients were consecutive admissions with presumed risk factors for stress‐ulcer disease. Risk factors were defined as respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, treatment with corticosteroids (more than 250 mg of prednisone per day), nonsteroidal anti‐inflammatories, heparin, or warfarin. Patients with recognized gastrointestinal bleeding, including occult blood in the stool at study entry and those who were on an outpatient acid‐suppressive regimen were excluded. A total of 52 patients were randomized to magaldrate, 800 mg 5 times per day, and 48 to placebo. Gastrointestinal bleeding was defined broadly to include patients with overt bleeding as well as those with only occult blood in the stool.

The intervention and placebo groups were well matched by age, previous history of peptic ulcer or gastritis, and previous use of corticosteroids, NSAIDs, or warfarin. There were significantly more men in the placebo group (69% vs. 46%). The patients were examined daily for evidence of gastrointestinal bleeding including occult blood in the stool. One patient (1.9%) receiving magaldrate and 11 patients (22.9%) receiving placebo had evidence of gastrointestinal bleeding (P < .01, ARR = 21%, NNT = 5). The lone patient in the magaldrate group who experienced bleeding was found to have only occult blood in the stool and experienced a drop in hematocrit of 2%. Three of the patients in the placebo group who bled presented with frank melena, whereas the rest were found to have occult blood in the stool. Endoscopic examination showed an ulcer in 2 patients and erosive gastritis in eight. Three of these bleeding episodes were clinically significant (6% of the placebo group), as shown by a drop in hematocrit of more than 10% and a requirement for transfusion of 2 or more units of blood. The authors did not state whether these clinically significant bleeds presented first with melena or only occult blood in the stool.

One patient in the placebo group died, which was a result of a hemorrhagic stroke, and 2 patients in the magaldrate group died, both due to malignancy. The investigators did not attribute any of these deaths to the intervention studied or to gastrointestinal causes. Side effects were minimal in both groups, and no patient discontinued therapy prematurely. A subgroup analysis was performed comparing rates of bleeding between groups based on number of presumed risk factors. There was no significant difference in bleeding between the magaldrate and placebo group for patients with only 1 risk factor, but there was a significant absolute risk reduction of 20.8% for prophylaxis when the patient had 2 risk factors and a 35.4% absolute risk reduction when the patient had 3 or more risk factors. This corresponds to a NNT of only 3 for these more seriously ill patients. Both of these were statistically significant (Table 2). Based on this analysis, the authors concluded that seriously ill general ward patients had a relatively high rate of stress‐ulcer bleeding and therefore should receive stress‐ulcer prophylaxis.

Summary of Randomized, Controlled, Single‐Blinded Study by Estruch et al. (1991) Comparing Magaldrate with Placebo for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Magaldrate Placebo
  • Requiring transfusion.

  • Risk factors for bleeding were respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, and treatment with corticosteroids, NSAIDs, heparin, or warfarin.

  • NS, not significant; NR, not reported; AR, absolute risk; ARR, absolute risk reduction; NNT, number needed to treat.

Patients enrolled 52 48
Age (SD) 64.5 (16.8) 67.4 (16.1)
Men (%) 24 (46) 33 (69)
Average days in study 6.78 7.34
Deaths 2 1
Bleeding episodes
Total (AR), P < 0.01 1 (1.9) 11 (22.9)
Severe* (AR), P = NR 0 (0) 3 (6.3)
ARR for any bleeding (NNT) 21 (5) N/A
Episodes of bleeding per number of risk factors
1 (AR), P = NS 0/12 (0) 1/11 (9.1)
2 (AR), P = 0.02 0/24 (0) 5/24 (20.8)
3 (AR), P = 0.03 1/16 (6.2) 5/12 (41.6)
ARR for any bleeding in patients with 3 risk factors (NNT) 35.4 (3) N/A

The second trial, by Grau et al., was conducted in the same hospital as the previous investigation.26 Over a 10‐month period, the authors evaluated consecutive patients admitted to a general hospital ward with the same risk factors as in the previous study. Patients with respiratory failure, heart failure, sepsis, stroke, liver or kidney failure, or who were being treated with corticosteroids, heparin, or warfarin were included. Eligible patients were randomized to a single nightly dose of cimetidine 800 mg or sucralfate 1 g every 6 hours. Again, patients with evidence of gastrointestinal bleeding on admission or outpatient use of acid suppressants were excluded. These authors also broadly defined gastrointestinal bleeding to include symptomatic patients as well as those who developed occult blood in the stool during the index admission.

A total of 144 patients met inclusion criteria and were randomized, 74 to cimetidine and 70 to sucralfate. Both groups were well matched in age and length of hospital stay, but there were more men in the cimetidine group (66% vs. 53%), and more patients in the cimetidine group (16 vs. 7) were readmitted to the hospital during the study period. None of these readmissions were attributed to gastrointestinal bleeding. Again, the patients were examined daily for overt bleeding as well as for occult blood in the stool. Two patients in each group bled during the study. In both patients in the cimetidine group, bleeding was detected by stool occult blood testing and was not clinically significant. Endoscopy was normal in 1 patient and showed mild gastritis in the other; neither patient required transfusion. The bleeding in the patients in the sucralfate group was more severe and presented with melena and coffee‐ground emesis. Endoscopic examination found erosive esophagitis in 1 and a duodenal ulcer in the other; both required transfusion. Therefore, the rate of clinically significant bleeding was 2.9% in the sucralfate group and 0 in the cimetidine group. Although all patients were considered at risk of bleeding because of inclusion criteria, a subgroup analysis failed to find any significant difference in risk factors between patients who bled and those who did not.

During the study, 3 patients in the cimetidine group and 2 in the sucralfate group died. The causes were cardiac failure, sepsis, pulmonary embolism, and malignancy. The authors did not attribute any of these deaths to gastrointestinal bleeding or the studied intervention and they were excluded from the final analysis. Side effects in both groups were mild and did not lead to discontinuation in any patient.

The authors concluded that the overall rate of bleeding episodes in this investigation was similar to that of the patients treated with magaldrate in the previous study (approximately 3%), and therefore, seriously ill patients admitted to general medical wards benefit from stress‐ulcer prophylaxis. However, there was no evidence to recommend a specific class of medication for this purpose (Table 3).

Summary of Randomized, Controlled, Unblinded Study by Grau et al. (1993) Comparing Cimetidine with Sucralfate for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Cimetidine Sucralfate
  • Symptomatic bleeding that required transfusion.

  • AR, absolute risk; NS, not significant; NR, not reported.

Patients enrolled 74 70
Age (SD) 67 (12) 64 (13)
Men (%) 47 (66) 36 (53)
Days in study 8.8 8.7
Readmissions (P < 0.05) 16 7
Deaths (P = NS) 3 2
Number included for analysis 71 68
Bleeding episodes
Total (AR), P = NR 2 (2.7) 2 (2.9)
Severe* (AR), P = NR 0 2 (2.9)

DISCUSSION

To our knowledge, this is the first systematic review of the literature that examined the use of acid‐suppressing medications as stress‐ulcer bleeding prophylaxis among general medical patients. Results indicate that there is widespread use of these medications among general medical patients, but little evidence demonstrating a reduction in clinically important gastrointestinal bleeding.

Nardino et al., Parente et al., and Gullota et al. indicated that acid‐suppressive therapies are prescribed to 29%‐54% of hospitalized inpatients. The most common indication for such therapy is stress‐ulcer prophylaxis in patients believed to be at low or no risk, which was true for 20%‐25% of all such patients. Interestingly, both Nardino et al. and Parente et al. assumed there were risk factors that place some general medical patients in a higher‐risk category. In their assessment, these patients warrant prophylaxis. This is somewhat problematic though, as such risk factors have yet to be firmly established. All studies were localized, and results should be confirmed in a larger series that spans multiple institutions. Widespread use of stress‐ulcer prophylaxis may be driven by fear of the previously reported high mortality rates associated with stress‐ulcer bleeding. This fear may be largely unjustified, as overall rates of bleeding episodes appear low.12 Furthermore, patients who die with stress‐ulcer‐related bleeding likely die from their underlying severe illness rather than the bleed itself.

We identified only 2 studies that tested the effectiveness of stress‐ulcer prophylaxis in general medical populations. Both indicated a relatively low risk of gastrointestinal bleeding in patients receiving prophylaxis. Most notably, the work by Estruch et al. comparing an antacid regimen (magaldrate) to placebo showed a significant reduction in bleeding in the active treatment group. However, these trials possess characteristics that limit their applicability to a broad medical population. In particular, these trials were designed to represent only patients with severe illness, many of whom possessed presumed risk factors for stress‐ulcer bleeding. Although all the patients in these 2 series were managed on a general medical ward, many (eg, heart failure patients requiring inotropic support) would likely qualify for intensive care at some institutions. The rate of minor gastrointestinal hemorrhages in the placebo group of the magaldrate trial was significantly higher than in previous observational trials, further suggesting that this population had greater severity of illness than a typical medical population. In addition, although the studies contributed some useful information about severely ill patients, both controlled trials had design limitations. Neither study described why the respective populations were chosen or how the sample sizes were derived. More important, neither was double‐blinded. In sum, given the small number of trials, the limited generalizability to more severely ill patients, and design limitations, the existing literature provides minimal guidance about stress‐ulcer prophylaxis in a diverse inpatient service.

There were no major drug‐related adverse effects reported in these trials, and all the acid‐suppressive drugs currently available are considered relatively safe. However, widespread prophylaxis could result in adverse outcomes on balance. For example, in intensive care populations, there is evidence of an increased risk of nosocomial pneumonia associated with universal acid suppression.27 Many of these patients, however, have other risk factors for pneumonia such as mechanical ventilation.28, 29 Similarly, there has been an association between proton‐pump inhibitor use and increased risk for Clostridium difficileassociated diarrhea.30, 31 Also, H2 receptor antagonists have been implicated in thrombocytopenia, but this is still somewhat controversial.32 Whether these or any other adverse events occur commonly in general medical patients is unclear. Finally, every medication prescribed to inpatients increases the cost of the hospitalization and places a further strain on the financial resources of many already troubled health care delivery systems. For example, a 1997 study found that the use of ranitidine for stress‐ulcer prophylaxis cost $84.81 per day and omeprazole cost $39.52 per day, and those costs would presumably be higher today.33 These costs increase more if patients are continued on such medications after discharge. Clinicians have an obligation to ensure that the therapies they prescribe do not result in increased cost or harm, unless there is at least a reasonable expectation for average net benefit. More information is needed to guide such judgments for stress‐ulcer prophylaxis in non‐ICU patients.

As with all reviews, this one had some limitations. Although we searched a wide body of medical literature, some relevant work may not have been considered. Any published work not indexed by the Medline database or not listed in the Cochrane database of controlled trials would not have been part of this review. In addition, articles written in a language other than English and unpublished works were not examined. Therefore, it is possible that others have investigated this topic and collected information that would alter our results. However, this seems unlikely given the paucity of relevant studies in the wide body of literature that was examined. Finally, the primary author was exclusively responsible for identifying which studies met the inclusion criteria. It is conceivable that additional reviewers would have considered other studies to be relevant to the analysis.

Because stress‐ulcer prophylaxis appears to be widely used in patients hospitalized outside the intensive care unit, it is necessary to determine the efficacy and safety of this practice. Unfortunately, research in this area is sparse. The only 2 trials evaluating this topic, although suggesting a benefit for prophylaxis in selected higher‐risk populations, did not provide guidance for prophylaxis among a broad population of hospitalized medical patients. The present body of evidence does not clearly support or refute the use of stress‐ulcer prophylaxis in a general medical population. An appropriately powered randomized, controlled trial in a diverse population of general medical patients would clarify this issue.

References
  1. Cook DJ,Fuller HD,Guyatt GH, et al.Risk factors for gastrointestinal bleeding in critically ill patients.Canadian Critical Care Trials Group.N Engl J Med.1994;330:377381.
  2. Faisy C,Guerot E,Diehl JL,Iftimovici E,Fagon JY.Clinically significant gastrointestinal bleeding in critically ill patients with and without stress‐ulcer prophylaxis.Intensive Care Med.2003;29:13061313.
  3. Pimentel M,Roberts DE,Bernstein CN,Hoppensack M,Duerksen DR.Clinically significant gastrointestinal bleeding in critically ill patients in an era of prophylaxis.Am J Gastroenterol.2000;95:28012806.
  4. Navab F,Steingrub J.Stress ulcer: is routine prophylaxis necessary?Am J Gastroenterol.1995;90:708712.
  5. Lasky MR,Metzler MH,Phillips JO.A prospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcers in mechanically ventilated trauma patients.J Trauma.1998;44:527533.
  6. Darlong V,Jayalakhsmi TS,Kaul HL,Tandon R.Stress ulcer prophylaxis in patients on ventilator.Trop Gastroenterol.2003;24:124128.
  7. Daley RJ,Rebuck JA,Welage LS,Rogers FB.Prevention of stress ulceration: current trends in critical care.Crit Care Med.2004;32:20082013.
  8. Terdiman JP,Ostroff JW.Gastrointestinal bleeding in the hospitalized patient: a case‐control study to assess risk factors, causes, and outcome.Am J Med.1998;104:349354.
  9. Zimmerman J,Meroz Y,Siguencia J,Tsvang E,Arnon R.Upper gastrointestinal hemorrhage. Comparison of the causes and prognosis in primary and secondary bleeders.Scand J Gastroenterol.1994;29:795798.
  10. Davenport RJ,Dennis MS,Warlow CP.Gastrointestinal hemorrhage after acute stroke.Stroke.1996;27:421424.
  11. Fiaccadori E,Maggiore U,Clima B,Melfa L,Rotelli C,Borghetti A.Incidence, risk factors, and prognosis of gastrointestinal hemorrhage complicating acute renal failure.Kidney Int.2001;59:15101519.
  12. Qadeer M,Richter J,Brotman D.Hospital‐acquired gastrointestinal bleeding outside the critical care unit.J Hosp Med.2006:1:1320.
  13. Zimmerman J,Meroz Y,Arnon R,Tsvang E,Siguencia J.Predictors of mortality in hospitalized patients with secondary upper gastrointestinal haemorrhage.J Intern Med.1995;237:331337.
  14. Niklasson A,Bajor A,Bergendal L,Simren M,Strid H,Bjornsson E.Overuse of acid suppressive therapy in hospitalised patients with pulmonary diseases.Respir Med.2003;97:11431150.
  15. Kowalsky SF,Hamilton RA,Figge HL.Drug usage evaluation: H2‐receptor antagonist use in 30 hospitals.Hosp Formul.1991;26:725736
  16. Liberman JD,Whelan CT.Reducing inappropriate usage of stress ulcer prophylaxis among internal medicine residents: A practice‐based educational intervention.J Gen Intern Med.2006:21:498500.
  17. Cook DJ,Mulrow CD,Haynes RB.Systematic reviews: synthesis of best evidence for clinical decisions.Ann Intern Med.1997;126:376380.
  18. Counsell C.Formulating questions and locating primary studies for inclusion in systematic reviews.Ann Intern Med.1997;127:380387.
  19. Meade MO,Richardson WS.Selecting and appraising studies for a systematic review.Ann Intern Med.1997;127:531537.
  20. Begg C,Cho M,Eastwood S, et al.Improving the quality of reporting of randomized controlled trials. The CONSORT statement.JAMA.1996;276:637639.
  21. Moher D,Schulz KF,Altman D.The CONSORT statement: revised recommendations for improving the quality of reports of parallel‐group randomized trials.JAMA.2001;285:19871991.
  22. Nardino RJ,Vender RJ,Herbert PN.Overuse of acid‐suppressive therapy in hospitalized patients.Am J Gastroenterol.2000;95:31183122.
  23. Parente F,Cucino C,Gallus S, et al.Hospital use of acid‐suppressive medications and its fall‐out on prescribing in general practice: a 1‐month survey.Aliment Pharmacol Ther.2003;17:15031506.
  24. Gullota R,Ferraris L,Cortelezzi C.Are we correctly using the inhibitors of gastric acid secretion and cytoprotective drugs? Results of a multicentre study.Ital J Gastroenterol Hepatol.1997;29:325329.
  25. Estruch R,Pedrol E,Castells A, et al.Prophylaxis of gastrointestinal tract bleeding with magaldrate in patients admitted to a general hospital ward.Scand J Gastroenterol.1991;26:819826.
  26. Grau JM,Casademont J,Fernandez‐Sola J,Cardellach F,Urbano‐Marquez A.Prophylaxis of gastrointestinal tract bleeding in patients admitted to a general hospital ward. Comparative study of sucralfate and cimetidine.Scand J Gastroenterol.1993;28:244248.
  27. Cook DJ,Reeve BK,Guyatt GH, et al.Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta‐analyses.JAMA.1996;275:308314.
  28. Yologlu S,Durmaz B,Bayindir Y.Nosocomial infections and risk factors in intensive care units.New Microbiol.2003;26:299303.
  29. Joshi N,Localio AR,Hamory BH.A predictive risk index for nosocomial pneumonia in the intensive care unit.Am J Med.1992;93:135142.
  30. Dial S,Alrasadi K,Manoukian C, et. al.Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case‐control studies.CMAJ.2004:171:3338.
  31. Dial S,Delaney J,Barkun A,Suissa S.Use of gastric acid‐suppressive agents and the risk of community‐acquired clostridium difficile‐associated disease.JAMA.2005:294:29892995.
  32. Wade EE,Rebuck JA,Healey MA,Rogers FB.H‐2 antagonist‐induced thrombocytopenia: is this a real phenomenon?Intensive Care Med.2002;28:459465.
  33. Levy M,Seelig C,Robinson N,Ranney J.Comparison of omeprazole and ranitidine for stress ulcer prophylaxis.Dig Dis Sci.1997:42:12551259.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
86-92
Legacy Keywords
stress ulcer, prophylaxis, gastrointestinal bleeding
Sections
Article PDF
Article PDF

Patients suffering from a critical life‐threatening illness have long been known to have an increased risk of spontaneous upper gastrointestinal bleeding, even in the absence of previously known gastrointestinal pathology. This phenomenon is generally known as the stress‐ulcer syndrome or stress‐related mucosal disease. Although the incidence in critically ill patients has declined in recent years to less than 10%, the mortality rate in patients experiencing bleeding is often considered to be nearly 50%.1, 2 Various pathophysiological processes including respiratory failure, sepsis, coagulopathy, burns, and severe trauma have been implicated in the development of stress ulcers in critically ill patients.1, 3 The administration of acid‐suppressing medications such as histamine‐2 receptor antagonists, proton‐pump inhibitors, and sucralfate has been shown to decrease the risk of stress‐related gastrointestinal bleeding in these patients.46 As a result, it is standard practice in many intensive care units to use such medications, commonly referred to as stress‐ulcer prophylaxis, to reduce the production of gastric acid and raise intragastric pH. Many intensivists prescribe stress‐ulcer prophylaxis to all ICU patients, including those without risk factors.7

Patients admitted to general medical wards also experience gastrointestinal bleeding. There appears to be an association between stress‐ulcer bleeding in general medical patients and overall severity of illness, similar to that in critically ill patients. Risk factors may include ischemic heart disease, chronic renal failure, and a prior intensive care unit stay or mechanical ventilation.8, 9 Studies in limited populations found that 3% of patients admitted with acute stroke and 13% of patients admitted with renal failure have experienced bleeding. However, only about half these episodes were clinically significant.10, 11 A more recent review that included a much larger and medically diverse population found a rate of less than 1%. In this study mortality did not differ between patients with and without bleeding.12 An older report found that mortality in a set of 125 hospitalized patients with secondary gastrointestinal bleeding was 28%, but only a small fraction of the deaths was directly attributable to the bleeding episode.13

Widespread use of acid‐suppressive therapy for stress‐ulcer prophylaxis in general medical settings has been recognized, especially among patients cared for by medical residents. However, this practice has been significantly less well characterized than the use of stress‐ulcer prophylaxis in critical care settings.1416 This article reports a systematic review of the literature to answer 2 questions: (1) What is the frequency of prescription of acid‐suppressive therapy for stress‐ulcer prophylaxis among adult general medical inpatients? (2) What evidence exists to support this practice?

METHODS

Data Sources

This review was designed and conducted using the principles of systematic reviews set forth by Cook, Counsell, and Meade and reported elsewhere.1719 The MEDLINE database (from 1966 to October 2005) and the Cochrane Central Register of Controlled Trials (fourth quarter 2005) were searched using the following medical subject heading search terms: stress ulcer, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding and prophylaxis, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding, and hospital, and stress‐related mucosal disease. The retrieved articles were then limited to those written in English that involved human subjects. The titles and abstracts of all articles were individually reviewed, and the full text of any potentially relevant article was obtained and evaluated for inclusion. The bibliographies of studies chosen for inclusion were also reviewed.

Study Selection

Studies were chosen for entry if they contained significant data about either of the 2 objectives of this review: (1) the frequency of use of stress‐ulcer prophylaxis in general medical patients and (2) gastrointestinal bleeding outcomes in patients prescribed such prophylaxis. Articles that focused primarily or exclusively on surgical, trauma, pediatric, or nonhospitalized medical patients, as well as those that clearly stated that the subjects were drawn from an intensive care unit setting, were excluded. For this purpose, studies focusing primarily on patients on mechanical ventilation were assumed to be referencing an intensive care unit population and were excluded.

Articles chosen to fulfill the first objective were required to contain information on prophylaxis use in a diverse medical population. Studies that did not clearly delineate the indications for acid‐suppressive therapy were excluded. Those chosen to fulfill the second objective were excluded if acid‐suppressive therapy was prescribed for an indication other than stress‐ulcer prophylaxis. This would include the treatment of any other gastrointestinal pathology, including gastrointestinal bleeding present on admission to the hospital. Finally, articles chosen for the second objective were required to be randomized and controlled.

Study Evaluation

The controlled trials selected for review were examined according to the methodology in the CONSORT statement, as reported elsewhere, and its subsequent revision.20, 21 The primary author exclusively determined which articles met inclusion criteria.

RESULTS

The search criteria identified 3979 citations from the electronic databases and 106 references from the included studies. After eliminating non‐English‐language articles and articles that did not have human subjects, 2912 articles were examined. Of these, only 5 citations met the inclusion criteria (Fig. 1).

Figure 1
Results of the literature search. *The 5 citations included were represented a total of 17 times in the literature search due to overlapping results from the search strategy; this accounts for the discrepancy in the total.

Frequency of Use of Stress‐Ulcer Prophylaxis in General Medical Patients:

Three descriptive reports addressed this issue. The first, by Nardino et al., examined all patients admitted to a general medical ward of a community teaching hospital over a 3‐month period.22 Of the 226 patients studied, 122 (54%) received some form of acid‐suppressive therapy, with 47 (21% of the total) receiving therapy as either stress‐ulcer prophylaxis or for no specific indication. Most of these (62%) received H2 receptor antagonists. The most frequent indication, reported in 33 patients (15% of the total population), was stress‐ulcer prophylaxis in patients believed to be at low risk of bleeding. In an additional 12 patients (5%), no clear rationale for use could be discerned from the medical record. The authors believed that 2 patients who received acid‐suppressive therapy as prophylaxis were at sufficiently high risk to justify such use because of previous prolonged mechanical ventilation.

The second report by Parente et al. studied all patients admitted to a general medical and surgical ward over a 1‐month period.23 Of the 799 patients reviewed, 71% were admitted to the medical or neurology service. Acid‐suppressive therapy was prescribed to 374, with 246 receiving therapy either as prophylaxis for stress ulcer or for no indication (47% and 31% of the total population, respectively). Proton‐pump inhibitors were the most commonly used drugs. Again, the most common indication was stress‐ulcer prophylaxis in low‐risk patients, which occurred in 177 (22% of the total population). An additional 22 patients (3%) had no clearly documented indication. Forty‐seven patients (6%) were judged by the authors to warrant stress‐ulcer prophylaxis based on risk of bleeding. Data specific to the medical service was not reported.

Finally, Gulotta et al. examined the records of 3685 inpatients at 20 hospitals on a randomly selected day. Of these inpatients, 1758 were admitted to an internal medicine service.24 There were 987 patients (28.6%) from the total population and 396 (22.5%) from those admitted to the medical services treated with an acid‐suppressive agent. Prevention of stress ulceration was the documented indication for 205 (21% of patients prescribed acid‐suppressive therapy and 6% of the total population), but the authors did not provide specific data for the medical service (Table 1). Unfortunately, as all these studies were cross‐sectional, no subsequent information on bleeding outcomes was provided.

Frequency of Acid Suppressant Use and Indications for Stress‐Ulcer Prophylaxis
  • Data specific to the medical service was not provided; therefore, the rates listed are for the overall study population.

  • No stratification of risk for stress‐ulcer prophylaxis was reported.

  • Both Nardino and Parente defined high‐risk patients as those who had coagulopathy or had received prolonged mechanical ventilation, but Parente also included patients who had experienced sepsis, shock, or multiorgan failure.

  • NR, not reported

Author, year of publication, reference Nardino, 200021 Parente, 200322 Gullota, 199723
Total population 226 799 3685
Admitted to medical service (%) 226 (100) 568 (71) 1758 (48)
Receiving acid suppression for any indication (%) 122 (54) 374 (47)* 987 (29)*
Receiving acid suppression as stress‐ulcer prophylaxis: all risk groups, including patients with no clear indication for use (%) 47 (21) 246 (31) 205 (6)
Acid suppression as stress ulcer prophylaxis: high risk patients (%) 2 (0.9) 47 (6) NR
Acid suppression as stress‐ulcer prophylaxis: low risk patients and those without a clear indication (%) 45 (20) 199 (25) NR

Gastrointestinal Bleeding Outcomes in Patients on Prophylaxis

Only 2 trials sufficiently met the inclusion criteria and were included for review. The first trial, by Estruch et al., was a placebo‐controlled, randomized trial of magaldrate for gastrointestinal bleeding prophylaxis.25 Magaldrate is an aluminum and magnesium containing antacid sold under various trade names. One hundred patients admitted to a general hospital ward were studied. These patients were consecutive admissions with presumed risk factors for stress‐ulcer disease. Risk factors were defined as respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, treatment with corticosteroids (more than 250 mg of prednisone per day), nonsteroidal anti‐inflammatories, heparin, or warfarin. Patients with recognized gastrointestinal bleeding, including occult blood in the stool at study entry and those who were on an outpatient acid‐suppressive regimen were excluded. A total of 52 patients were randomized to magaldrate, 800 mg 5 times per day, and 48 to placebo. Gastrointestinal bleeding was defined broadly to include patients with overt bleeding as well as those with only occult blood in the stool.

The intervention and placebo groups were well matched by age, previous history of peptic ulcer or gastritis, and previous use of corticosteroids, NSAIDs, or warfarin. There were significantly more men in the placebo group (69% vs. 46%). The patients were examined daily for evidence of gastrointestinal bleeding including occult blood in the stool. One patient (1.9%) receiving magaldrate and 11 patients (22.9%) receiving placebo had evidence of gastrointestinal bleeding (P < .01, ARR = 21%, NNT = 5). The lone patient in the magaldrate group who experienced bleeding was found to have only occult blood in the stool and experienced a drop in hematocrit of 2%. Three of the patients in the placebo group who bled presented with frank melena, whereas the rest were found to have occult blood in the stool. Endoscopic examination showed an ulcer in 2 patients and erosive gastritis in eight. Three of these bleeding episodes were clinically significant (6% of the placebo group), as shown by a drop in hematocrit of more than 10% and a requirement for transfusion of 2 or more units of blood. The authors did not state whether these clinically significant bleeds presented first with melena or only occult blood in the stool.

One patient in the placebo group died, which was a result of a hemorrhagic stroke, and 2 patients in the magaldrate group died, both due to malignancy. The investigators did not attribute any of these deaths to the intervention studied or to gastrointestinal causes. Side effects were minimal in both groups, and no patient discontinued therapy prematurely. A subgroup analysis was performed comparing rates of bleeding between groups based on number of presumed risk factors. There was no significant difference in bleeding between the magaldrate and placebo group for patients with only 1 risk factor, but there was a significant absolute risk reduction of 20.8% for prophylaxis when the patient had 2 risk factors and a 35.4% absolute risk reduction when the patient had 3 or more risk factors. This corresponds to a NNT of only 3 for these more seriously ill patients. Both of these were statistically significant (Table 2). Based on this analysis, the authors concluded that seriously ill general ward patients had a relatively high rate of stress‐ulcer bleeding and therefore should receive stress‐ulcer prophylaxis.

Summary of Randomized, Controlled, Single‐Blinded Study by Estruch et al. (1991) Comparing Magaldrate with Placebo for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Magaldrate Placebo
  • Requiring transfusion.

  • Risk factors for bleeding were respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, and treatment with corticosteroids, NSAIDs, heparin, or warfarin.

  • NS, not significant; NR, not reported; AR, absolute risk; ARR, absolute risk reduction; NNT, number needed to treat.

Patients enrolled 52 48
Age (SD) 64.5 (16.8) 67.4 (16.1)
Men (%) 24 (46) 33 (69)
Average days in study 6.78 7.34
Deaths 2 1
Bleeding episodes
Total (AR), P < 0.01 1 (1.9) 11 (22.9)
Severe* (AR), P = NR 0 (0) 3 (6.3)
ARR for any bleeding (NNT) 21 (5) N/A
Episodes of bleeding per number of risk factors
1 (AR), P = NS 0/12 (0) 1/11 (9.1)
2 (AR), P = 0.02 0/24 (0) 5/24 (20.8)
3 (AR), P = 0.03 1/16 (6.2) 5/12 (41.6)
ARR for any bleeding in patients with 3 risk factors (NNT) 35.4 (3) N/A

The second trial, by Grau et al., was conducted in the same hospital as the previous investigation.26 Over a 10‐month period, the authors evaluated consecutive patients admitted to a general hospital ward with the same risk factors as in the previous study. Patients with respiratory failure, heart failure, sepsis, stroke, liver or kidney failure, or who were being treated with corticosteroids, heparin, or warfarin were included. Eligible patients were randomized to a single nightly dose of cimetidine 800 mg or sucralfate 1 g every 6 hours. Again, patients with evidence of gastrointestinal bleeding on admission or outpatient use of acid suppressants were excluded. These authors also broadly defined gastrointestinal bleeding to include symptomatic patients as well as those who developed occult blood in the stool during the index admission.

A total of 144 patients met inclusion criteria and were randomized, 74 to cimetidine and 70 to sucralfate. Both groups were well matched in age and length of hospital stay, but there were more men in the cimetidine group (66% vs. 53%), and more patients in the cimetidine group (16 vs. 7) were readmitted to the hospital during the study period. None of these readmissions were attributed to gastrointestinal bleeding. Again, the patients were examined daily for overt bleeding as well as for occult blood in the stool. Two patients in each group bled during the study. In both patients in the cimetidine group, bleeding was detected by stool occult blood testing and was not clinically significant. Endoscopy was normal in 1 patient and showed mild gastritis in the other; neither patient required transfusion. The bleeding in the patients in the sucralfate group was more severe and presented with melena and coffee‐ground emesis. Endoscopic examination found erosive esophagitis in 1 and a duodenal ulcer in the other; both required transfusion. Therefore, the rate of clinically significant bleeding was 2.9% in the sucralfate group and 0 in the cimetidine group. Although all patients were considered at risk of bleeding because of inclusion criteria, a subgroup analysis failed to find any significant difference in risk factors between patients who bled and those who did not.

During the study, 3 patients in the cimetidine group and 2 in the sucralfate group died. The causes were cardiac failure, sepsis, pulmonary embolism, and malignancy. The authors did not attribute any of these deaths to gastrointestinal bleeding or the studied intervention and they were excluded from the final analysis. Side effects in both groups were mild and did not lead to discontinuation in any patient.

The authors concluded that the overall rate of bleeding episodes in this investigation was similar to that of the patients treated with magaldrate in the previous study (approximately 3%), and therefore, seriously ill patients admitted to general medical wards benefit from stress‐ulcer prophylaxis. However, there was no evidence to recommend a specific class of medication for this purpose (Table 3).

Summary of Randomized, Controlled, Unblinded Study by Grau et al. (1993) Comparing Cimetidine with Sucralfate for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Cimetidine Sucralfate
  • Symptomatic bleeding that required transfusion.

  • AR, absolute risk; NS, not significant; NR, not reported.

Patients enrolled 74 70
Age (SD) 67 (12) 64 (13)
Men (%) 47 (66) 36 (53)
Days in study 8.8 8.7
Readmissions (P < 0.05) 16 7
Deaths (P = NS) 3 2
Number included for analysis 71 68
Bleeding episodes
Total (AR), P = NR 2 (2.7) 2 (2.9)
Severe* (AR), P = NR 0 2 (2.9)

DISCUSSION

To our knowledge, this is the first systematic review of the literature that examined the use of acid‐suppressing medications as stress‐ulcer bleeding prophylaxis among general medical patients. Results indicate that there is widespread use of these medications among general medical patients, but little evidence demonstrating a reduction in clinically important gastrointestinal bleeding.

Nardino et al., Parente et al., and Gullota et al. indicated that acid‐suppressive therapies are prescribed to 29%‐54% of hospitalized inpatients. The most common indication for such therapy is stress‐ulcer prophylaxis in patients believed to be at low or no risk, which was true for 20%‐25% of all such patients. Interestingly, both Nardino et al. and Parente et al. assumed there were risk factors that place some general medical patients in a higher‐risk category. In their assessment, these patients warrant prophylaxis. This is somewhat problematic though, as such risk factors have yet to be firmly established. All studies were localized, and results should be confirmed in a larger series that spans multiple institutions. Widespread use of stress‐ulcer prophylaxis may be driven by fear of the previously reported high mortality rates associated with stress‐ulcer bleeding. This fear may be largely unjustified, as overall rates of bleeding episodes appear low.12 Furthermore, patients who die with stress‐ulcer‐related bleeding likely die from their underlying severe illness rather than the bleed itself.

We identified only 2 studies that tested the effectiveness of stress‐ulcer prophylaxis in general medical populations. Both indicated a relatively low risk of gastrointestinal bleeding in patients receiving prophylaxis. Most notably, the work by Estruch et al. comparing an antacid regimen (magaldrate) to placebo showed a significant reduction in bleeding in the active treatment group. However, these trials possess characteristics that limit their applicability to a broad medical population. In particular, these trials were designed to represent only patients with severe illness, many of whom possessed presumed risk factors for stress‐ulcer bleeding. Although all the patients in these 2 series were managed on a general medical ward, many (eg, heart failure patients requiring inotropic support) would likely qualify for intensive care at some institutions. The rate of minor gastrointestinal hemorrhages in the placebo group of the magaldrate trial was significantly higher than in previous observational trials, further suggesting that this population had greater severity of illness than a typical medical population. In addition, although the studies contributed some useful information about severely ill patients, both controlled trials had design limitations. Neither study described why the respective populations were chosen or how the sample sizes were derived. More important, neither was double‐blinded. In sum, given the small number of trials, the limited generalizability to more severely ill patients, and design limitations, the existing literature provides minimal guidance about stress‐ulcer prophylaxis in a diverse inpatient service.

There were no major drug‐related adverse effects reported in these trials, and all the acid‐suppressive drugs currently available are considered relatively safe. However, widespread prophylaxis could result in adverse outcomes on balance. For example, in intensive care populations, there is evidence of an increased risk of nosocomial pneumonia associated with universal acid suppression.27 Many of these patients, however, have other risk factors for pneumonia such as mechanical ventilation.28, 29 Similarly, there has been an association between proton‐pump inhibitor use and increased risk for Clostridium difficileassociated diarrhea.30, 31 Also, H2 receptor antagonists have been implicated in thrombocytopenia, but this is still somewhat controversial.32 Whether these or any other adverse events occur commonly in general medical patients is unclear. Finally, every medication prescribed to inpatients increases the cost of the hospitalization and places a further strain on the financial resources of many already troubled health care delivery systems. For example, a 1997 study found that the use of ranitidine for stress‐ulcer prophylaxis cost $84.81 per day and omeprazole cost $39.52 per day, and those costs would presumably be higher today.33 These costs increase more if patients are continued on such medications after discharge. Clinicians have an obligation to ensure that the therapies they prescribe do not result in increased cost or harm, unless there is at least a reasonable expectation for average net benefit. More information is needed to guide such judgments for stress‐ulcer prophylaxis in non‐ICU patients.

As with all reviews, this one had some limitations. Although we searched a wide body of medical literature, some relevant work may not have been considered. Any published work not indexed by the Medline database or not listed in the Cochrane database of controlled trials would not have been part of this review. In addition, articles written in a language other than English and unpublished works were not examined. Therefore, it is possible that others have investigated this topic and collected information that would alter our results. However, this seems unlikely given the paucity of relevant studies in the wide body of literature that was examined. Finally, the primary author was exclusively responsible for identifying which studies met the inclusion criteria. It is conceivable that additional reviewers would have considered other studies to be relevant to the analysis.

Because stress‐ulcer prophylaxis appears to be widely used in patients hospitalized outside the intensive care unit, it is necessary to determine the efficacy and safety of this practice. Unfortunately, research in this area is sparse. The only 2 trials evaluating this topic, although suggesting a benefit for prophylaxis in selected higher‐risk populations, did not provide guidance for prophylaxis among a broad population of hospitalized medical patients. The present body of evidence does not clearly support or refute the use of stress‐ulcer prophylaxis in a general medical population. An appropriately powered randomized, controlled trial in a diverse population of general medical patients would clarify this issue.

Patients suffering from a critical life‐threatening illness have long been known to have an increased risk of spontaneous upper gastrointestinal bleeding, even in the absence of previously known gastrointestinal pathology. This phenomenon is generally known as the stress‐ulcer syndrome or stress‐related mucosal disease. Although the incidence in critically ill patients has declined in recent years to less than 10%, the mortality rate in patients experiencing bleeding is often considered to be nearly 50%.1, 2 Various pathophysiological processes including respiratory failure, sepsis, coagulopathy, burns, and severe trauma have been implicated in the development of stress ulcers in critically ill patients.1, 3 The administration of acid‐suppressing medications such as histamine‐2 receptor antagonists, proton‐pump inhibitors, and sucralfate has been shown to decrease the risk of stress‐related gastrointestinal bleeding in these patients.46 As a result, it is standard practice in many intensive care units to use such medications, commonly referred to as stress‐ulcer prophylaxis, to reduce the production of gastric acid and raise intragastric pH. Many intensivists prescribe stress‐ulcer prophylaxis to all ICU patients, including those without risk factors.7

Patients admitted to general medical wards also experience gastrointestinal bleeding. There appears to be an association between stress‐ulcer bleeding in general medical patients and overall severity of illness, similar to that in critically ill patients. Risk factors may include ischemic heart disease, chronic renal failure, and a prior intensive care unit stay or mechanical ventilation.8, 9 Studies in limited populations found that 3% of patients admitted with acute stroke and 13% of patients admitted with renal failure have experienced bleeding. However, only about half these episodes were clinically significant.10, 11 A more recent review that included a much larger and medically diverse population found a rate of less than 1%. In this study mortality did not differ between patients with and without bleeding.12 An older report found that mortality in a set of 125 hospitalized patients with secondary gastrointestinal bleeding was 28%, but only a small fraction of the deaths was directly attributable to the bleeding episode.13

Widespread use of acid‐suppressive therapy for stress‐ulcer prophylaxis in general medical settings has been recognized, especially among patients cared for by medical residents. However, this practice has been significantly less well characterized than the use of stress‐ulcer prophylaxis in critical care settings.1416 This article reports a systematic review of the literature to answer 2 questions: (1) What is the frequency of prescription of acid‐suppressive therapy for stress‐ulcer prophylaxis among adult general medical inpatients? (2) What evidence exists to support this practice?

METHODS

Data Sources

This review was designed and conducted using the principles of systematic reviews set forth by Cook, Counsell, and Meade and reported elsewhere.1719 The MEDLINE database (from 1966 to October 2005) and the Cochrane Central Register of Controlled Trials (fourth quarter 2005) were searched using the following medical subject heading search terms: stress ulcer, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding and prophylaxis, gastrointestinal hemorrhage/peptic ulcer hemorrhage/gastrointestinal bleeding, and hospital, and stress‐related mucosal disease. The retrieved articles were then limited to those written in English that involved human subjects. The titles and abstracts of all articles were individually reviewed, and the full text of any potentially relevant article was obtained and evaluated for inclusion. The bibliographies of studies chosen for inclusion were also reviewed.

Study Selection

Studies were chosen for entry if they contained significant data about either of the 2 objectives of this review: (1) the frequency of use of stress‐ulcer prophylaxis in general medical patients and (2) gastrointestinal bleeding outcomes in patients prescribed such prophylaxis. Articles that focused primarily or exclusively on surgical, trauma, pediatric, or nonhospitalized medical patients, as well as those that clearly stated that the subjects were drawn from an intensive care unit setting, were excluded. For this purpose, studies focusing primarily on patients on mechanical ventilation were assumed to be referencing an intensive care unit population and were excluded.

Articles chosen to fulfill the first objective were required to contain information on prophylaxis use in a diverse medical population. Studies that did not clearly delineate the indications for acid‐suppressive therapy were excluded. Those chosen to fulfill the second objective were excluded if acid‐suppressive therapy was prescribed for an indication other than stress‐ulcer prophylaxis. This would include the treatment of any other gastrointestinal pathology, including gastrointestinal bleeding present on admission to the hospital. Finally, articles chosen for the second objective were required to be randomized and controlled.

Study Evaluation

The controlled trials selected for review were examined according to the methodology in the CONSORT statement, as reported elsewhere, and its subsequent revision.20, 21 The primary author exclusively determined which articles met inclusion criteria.

RESULTS

The search criteria identified 3979 citations from the electronic databases and 106 references from the included studies. After eliminating non‐English‐language articles and articles that did not have human subjects, 2912 articles were examined. Of these, only 5 citations met the inclusion criteria (Fig. 1).

Figure 1
Results of the literature search. *The 5 citations included were represented a total of 17 times in the literature search due to overlapping results from the search strategy; this accounts for the discrepancy in the total.

Frequency of Use of Stress‐Ulcer Prophylaxis in General Medical Patients:

Three descriptive reports addressed this issue. The first, by Nardino et al., examined all patients admitted to a general medical ward of a community teaching hospital over a 3‐month period.22 Of the 226 patients studied, 122 (54%) received some form of acid‐suppressive therapy, with 47 (21% of the total) receiving therapy as either stress‐ulcer prophylaxis or for no specific indication. Most of these (62%) received H2 receptor antagonists. The most frequent indication, reported in 33 patients (15% of the total population), was stress‐ulcer prophylaxis in patients believed to be at low risk of bleeding. In an additional 12 patients (5%), no clear rationale for use could be discerned from the medical record. The authors believed that 2 patients who received acid‐suppressive therapy as prophylaxis were at sufficiently high risk to justify such use because of previous prolonged mechanical ventilation.

The second report by Parente et al. studied all patients admitted to a general medical and surgical ward over a 1‐month period.23 Of the 799 patients reviewed, 71% were admitted to the medical or neurology service. Acid‐suppressive therapy was prescribed to 374, with 246 receiving therapy either as prophylaxis for stress ulcer or for no indication (47% and 31% of the total population, respectively). Proton‐pump inhibitors were the most commonly used drugs. Again, the most common indication was stress‐ulcer prophylaxis in low‐risk patients, which occurred in 177 (22% of the total population). An additional 22 patients (3%) had no clearly documented indication. Forty‐seven patients (6%) were judged by the authors to warrant stress‐ulcer prophylaxis based on risk of bleeding. Data specific to the medical service was not reported.

Finally, Gulotta et al. examined the records of 3685 inpatients at 20 hospitals on a randomly selected day. Of these inpatients, 1758 were admitted to an internal medicine service.24 There were 987 patients (28.6%) from the total population and 396 (22.5%) from those admitted to the medical services treated with an acid‐suppressive agent. Prevention of stress ulceration was the documented indication for 205 (21% of patients prescribed acid‐suppressive therapy and 6% of the total population), but the authors did not provide specific data for the medical service (Table 1). Unfortunately, as all these studies were cross‐sectional, no subsequent information on bleeding outcomes was provided.

Frequency of Acid Suppressant Use and Indications for Stress‐Ulcer Prophylaxis
  • Data specific to the medical service was not provided; therefore, the rates listed are for the overall study population.

  • No stratification of risk for stress‐ulcer prophylaxis was reported.

  • Both Nardino and Parente defined high‐risk patients as those who had coagulopathy or had received prolonged mechanical ventilation, but Parente also included patients who had experienced sepsis, shock, or multiorgan failure.

  • NR, not reported

Author, year of publication, reference Nardino, 200021 Parente, 200322 Gullota, 199723
Total population 226 799 3685
Admitted to medical service (%) 226 (100) 568 (71) 1758 (48)
Receiving acid suppression for any indication (%) 122 (54) 374 (47)* 987 (29)*
Receiving acid suppression as stress‐ulcer prophylaxis: all risk groups, including patients with no clear indication for use (%) 47 (21) 246 (31) 205 (6)
Acid suppression as stress ulcer prophylaxis: high risk patients (%) 2 (0.9) 47 (6) NR
Acid suppression as stress‐ulcer prophylaxis: low risk patients and those without a clear indication (%) 45 (20) 199 (25) NR

Gastrointestinal Bleeding Outcomes in Patients on Prophylaxis

Only 2 trials sufficiently met the inclusion criteria and were included for review. The first trial, by Estruch et al., was a placebo‐controlled, randomized trial of magaldrate for gastrointestinal bleeding prophylaxis.25 Magaldrate is an aluminum and magnesium containing antacid sold under various trade names. One hundred patients admitted to a general hospital ward were studied. These patients were consecutive admissions with presumed risk factors for stress‐ulcer disease. Risk factors were defined as respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, treatment with corticosteroids (more than 250 mg of prednisone per day), nonsteroidal anti‐inflammatories, heparin, or warfarin. Patients with recognized gastrointestinal bleeding, including occult blood in the stool at study entry and those who were on an outpatient acid‐suppressive regimen were excluded. A total of 52 patients were randomized to magaldrate, 800 mg 5 times per day, and 48 to placebo. Gastrointestinal bleeding was defined broadly to include patients with overt bleeding as well as those with only occult blood in the stool.

The intervention and placebo groups were well matched by age, previous history of peptic ulcer or gastritis, and previous use of corticosteroids, NSAIDs, or warfarin. There were significantly more men in the placebo group (69% vs. 46%). The patients were examined daily for evidence of gastrointestinal bleeding including occult blood in the stool. One patient (1.9%) receiving magaldrate and 11 patients (22.9%) receiving placebo had evidence of gastrointestinal bleeding (P < .01, ARR = 21%, NNT = 5). The lone patient in the magaldrate group who experienced bleeding was found to have only occult blood in the stool and experienced a drop in hematocrit of 2%. Three of the patients in the placebo group who bled presented with frank melena, whereas the rest were found to have occult blood in the stool. Endoscopic examination showed an ulcer in 2 patients and erosive gastritis in eight. Three of these bleeding episodes were clinically significant (6% of the placebo group), as shown by a drop in hematocrit of more than 10% and a requirement for transfusion of 2 or more units of blood. The authors did not state whether these clinically significant bleeds presented first with melena or only occult blood in the stool.

One patient in the placebo group died, which was a result of a hemorrhagic stroke, and 2 patients in the magaldrate group died, both due to malignancy. The investigators did not attribute any of these deaths to the intervention studied or to gastrointestinal causes. Side effects were minimal in both groups, and no patient discontinued therapy prematurely. A subgroup analysis was performed comparing rates of bleeding between groups based on number of presumed risk factors. There was no significant difference in bleeding between the magaldrate and placebo group for patients with only 1 risk factor, but there was a significant absolute risk reduction of 20.8% for prophylaxis when the patient had 2 risk factors and a 35.4% absolute risk reduction when the patient had 3 or more risk factors. This corresponds to a NNT of only 3 for these more seriously ill patients. Both of these were statistically significant (Table 2). Based on this analysis, the authors concluded that seriously ill general ward patients had a relatively high rate of stress‐ulcer bleeding and therefore should receive stress‐ulcer prophylaxis.

Summary of Randomized, Controlled, Single‐Blinded Study by Estruch et al. (1991) Comparing Magaldrate with Placebo for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Magaldrate Placebo
  • Requiring transfusion.

  • Risk factors for bleeding were respiratory failure with a PO2 less than 60 (not requiring intubation), heart failure requiring inotropic support, sepsis, stroke, hepatic encephalopathy or jaundice, renal failure, hypotension, previous gastrointestinal disease, and treatment with corticosteroids, NSAIDs, heparin, or warfarin.

  • NS, not significant; NR, not reported; AR, absolute risk; ARR, absolute risk reduction; NNT, number needed to treat.

Patients enrolled 52 48
Age (SD) 64.5 (16.8) 67.4 (16.1)
Men (%) 24 (46) 33 (69)
Average days in study 6.78 7.34
Deaths 2 1
Bleeding episodes
Total (AR), P < 0.01 1 (1.9) 11 (22.9)
Severe* (AR), P = NR 0 (0) 3 (6.3)
ARR for any bleeding (NNT) 21 (5) N/A
Episodes of bleeding per number of risk factors
1 (AR), P = NS 0/12 (0) 1/11 (9.1)
2 (AR), P = 0.02 0/24 (0) 5/24 (20.8)
3 (AR), P = 0.03 1/16 (6.2) 5/12 (41.6)
ARR for any bleeding in patients with 3 risk factors (NNT) 35.4 (3) N/A

The second trial, by Grau et al., was conducted in the same hospital as the previous investigation.26 Over a 10‐month period, the authors evaluated consecutive patients admitted to a general hospital ward with the same risk factors as in the previous study. Patients with respiratory failure, heart failure, sepsis, stroke, liver or kidney failure, or who were being treated with corticosteroids, heparin, or warfarin were included. Eligible patients were randomized to a single nightly dose of cimetidine 800 mg or sucralfate 1 g every 6 hours. Again, patients with evidence of gastrointestinal bleeding on admission or outpatient use of acid suppressants were excluded. These authors also broadly defined gastrointestinal bleeding to include symptomatic patients as well as those who developed occult blood in the stool during the index admission.

A total of 144 patients met inclusion criteria and were randomized, 74 to cimetidine and 70 to sucralfate. Both groups were well matched in age and length of hospital stay, but there were more men in the cimetidine group (66% vs. 53%), and more patients in the cimetidine group (16 vs. 7) were readmitted to the hospital during the study period. None of these readmissions were attributed to gastrointestinal bleeding. Again, the patients were examined daily for overt bleeding as well as for occult blood in the stool. Two patients in each group bled during the study. In both patients in the cimetidine group, bleeding was detected by stool occult blood testing and was not clinically significant. Endoscopy was normal in 1 patient and showed mild gastritis in the other; neither patient required transfusion. The bleeding in the patients in the sucralfate group was more severe and presented with melena and coffee‐ground emesis. Endoscopic examination found erosive esophagitis in 1 and a duodenal ulcer in the other; both required transfusion. Therefore, the rate of clinically significant bleeding was 2.9% in the sucralfate group and 0 in the cimetidine group. Although all patients were considered at risk of bleeding because of inclusion criteria, a subgroup analysis failed to find any significant difference in risk factors between patients who bled and those who did not.

During the study, 3 patients in the cimetidine group and 2 in the sucralfate group died. The causes were cardiac failure, sepsis, pulmonary embolism, and malignancy. The authors did not attribute any of these deaths to gastrointestinal bleeding or the studied intervention and they were excluded from the final analysis. Side effects in both groups were mild and did not lead to discontinuation in any patient.

The authors concluded that the overall rate of bleeding episodes in this investigation was similar to that of the patients treated with magaldrate in the previous study (approximately 3%), and therefore, seriously ill patients admitted to general medical wards benefit from stress‐ulcer prophylaxis. However, there was no evidence to recommend a specific class of medication for this purpose (Table 3).

Summary of Randomized, Controlled, Unblinded Study by Grau et al. (1993) Comparing Cimetidine with Sucralfate for Prevention of Stress‐Ulcer Bleeding in General Medical Patients
Cimetidine Sucralfate
  • Symptomatic bleeding that required transfusion.

  • AR, absolute risk; NS, not significant; NR, not reported.

Patients enrolled 74 70
Age (SD) 67 (12) 64 (13)
Men (%) 47 (66) 36 (53)
Days in study 8.8 8.7
Readmissions (P < 0.05) 16 7
Deaths (P = NS) 3 2
Number included for analysis 71 68
Bleeding episodes
Total (AR), P = NR 2 (2.7) 2 (2.9)
Severe* (AR), P = NR 0 2 (2.9)

DISCUSSION

To our knowledge, this is the first systematic review of the literature that examined the use of acid‐suppressing medications as stress‐ulcer bleeding prophylaxis among general medical patients. Results indicate that there is widespread use of these medications among general medical patients, but little evidence demonstrating a reduction in clinically important gastrointestinal bleeding.

Nardino et al., Parente et al., and Gullota et al. indicated that acid‐suppressive therapies are prescribed to 29%‐54% of hospitalized inpatients. The most common indication for such therapy is stress‐ulcer prophylaxis in patients believed to be at low or no risk, which was true for 20%‐25% of all such patients. Interestingly, both Nardino et al. and Parente et al. assumed there were risk factors that place some general medical patients in a higher‐risk category. In their assessment, these patients warrant prophylaxis. This is somewhat problematic though, as such risk factors have yet to be firmly established. All studies were localized, and results should be confirmed in a larger series that spans multiple institutions. Widespread use of stress‐ulcer prophylaxis may be driven by fear of the previously reported high mortality rates associated with stress‐ulcer bleeding. This fear may be largely unjustified, as overall rates of bleeding episodes appear low.12 Furthermore, patients who die with stress‐ulcer‐related bleeding likely die from their underlying severe illness rather than the bleed itself.

We identified only 2 studies that tested the effectiveness of stress‐ulcer prophylaxis in general medical populations. Both indicated a relatively low risk of gastrointestinal bleeding in patients receiving prophylaxis. Most notably, the work by Estruch et al. comparing an antacid regimen (magaldrate) to placebo showed a significant reduction in bleeding in the active treatment group. However, these trials possess characteristics that limit their applicability to a broad medical population. In particular, these trials were designed to represent only patients with severe illness, many of whom possessed presumed risk factors for stress‐ulcer bleeding. Although all the patients in these 2 series were managed on a general medical ward, many (eg, heart failure patients requiring inotropic support) would likely qualify for intensive care at some institutions. The rate of minor gastrointestinal hemorrhages in the placebo group of the magaldrate trial was significantly higher than in previous observational trials, further suggesting that this population had greater severity of illness than a typical medical population. In addition, although the studies contributed some useful information about severely ill patients, both controlled trials had design limitations. Neither study described why the respective populations were chosen or how the sample sizes were derived. More important, neither was double‐blinded. In sum, given the small number of trials, the limited generalizability to more severely ill patients, and design limitations, the existing literature provides minimal guidance about stress‐ulcer prophylaxis in a diverse inpatient service.

There were no major drug‐related adverse effects reported in these trials, and all the acid‐suppressive drugs currently available are considered relatively safe. However, widespread prophylaxis could result in adverse outcomes on balance. For example, in intensive care populations, there is evidence of an increased risk of nosocomial pneumonia associated with universal acid suppression.27 Many of these patients, however, have other risk factors for pneumonia such as mechanical ventilation.28, 29 Similarly, there has been an association between proton‐pump inhibitor use and increased risk for Clostridium difficileassociated diarrhea.30, 31 Also, H2 receptor antagonists have been implicated in thrombocytopenia, but this is still somewhat controversial.32 Whether these or any other adverse events occur commonly in general medical patients is unclear. Finally, every medication prescribed to inpatients increases the cost of the hospitalization and places a further strain on the financial resources of many already troubled health care delivery systems. For example, a 1997 study found that the use of ranitidine for stress‐ulcer prophylaxis cost $84.81 per day and omeprazole cost $39.52 per day, and those costs would presumably be higher today.33 These costs increase more if patients are continued on such medications after discharge. Clinicians have an obligation to ensure that the therapies they prescribe do not result in increased cost or harm, unless there is at least a reasonable expectation for average net benefit. More information is needed to guide such judgments for stress‐ulcer prophylaxis in non‐ICU patients.

As with all reviews, this one had some limitations. Although we searched a wide body of medical literature, some relevant work may not have been considered. Any published work not indexed by the Medline database or not listed in the Cochrane database of controlled trials would not have been part of this review. In addition, articles written in a language other than English and unpublished works were not examined. Therefore, it is possible that others have investigated this topic and collected information that would alter our results. However, this seems unlikely given the paucity of relevant studies in the wide body of literature that was examined. Finally, the primary author was exclusively responsible for identifying which studies met the inclusion criteria. It is conceivable that additional reviewers would have considered other studies to be relevant to the analysis.

Because stress‐ulcer prophylaxis appears to be widely used in patients hospitalized outside the intensive care unit, it is necessary to determine the efficacy and safety of this practice. Unfortunately, research in this area is sparse. The only 2 trials evaluating this topic, although suggesting a benefit for prophylaxis in selected higher‐risk populations, did not provide guidance for prophylaxis among a broad population of hospitalized medical patients. The present body of evidence does not clearly support or refute the use of stress‐ulcer prophylaxis in a general medical population. An appropriately powered randomized, controlled trial in a diverse population of general medical patients would clarify this issue.

References
  1. Cook DJ,Fuller HD,Guyatt GH, et al.Risk factors for gastrointestinal bleeding in critically ill patients.Canadian Critical Care Trials Group.N Engl J Med.1994;330:377381.
  2. Faisy C,Guerot E,Diehl JL,Iftimovici E,Fagon JY.Clinically significant gastrointestinal bleeding in critically ill patients with and without stress‐ulcer prophylaxis.Intensive Care Med.2003;29:13061313.
  3. Pimentel M,Roberts DE,Bernstein CN,Hoppensack M,Duerksen DR.Clinically significant gastrointestinal bleeding in critically ill patients in an era of prophylaxis.Am J Gastroenterol.2000;95:28012806.
  4. Navab F,Steingrub J.Stress ulcer: is routine prophylaxis necessary?Am J Gastroenterol.1995;90:708712.
  5. Lasky MR,Metzler MH,Phillips JO.A prospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcers in mechanically ventilated trauma patients.J Trauma.1998;44:527533.
  6. Darlong V,Jayalakhsmi TS,Kaul HL,Tandon R.Stress ulcer prophylaxis in patients on ventilator.Trop Gastroenterol.2003;24:124128.
  7. Daley RJ,Rebuck JA,Welage LS,Rogers FB.Prevention of stress ulceration: current trends in critical care.Crit Care Med.2004;32:20082013.
  8. Terdiman JP,Ostroff JW.Gastrointestinal bleeding in the hospitalized patient: a case‐control study to assess risk factors, causes, and outcome.Am J Med.1998;104:349354.
  9. Zimmerman J,Meroz Y,Siguencia J,Tsvang E,Arnon R.Upper gastrointestinal hemorrhage. Comparison of the causes and prognosis in primary and secondary bleeders.Scand J Gastroenterol.1994;29:795798.
  10. Davenport RJ,Dennis MS,Warlow CP.Gastrointestinal hemorrhage after acute stroke.Stroke.1996;27:421424.
  11. Fiaccadori E,Maggiore U,Clima B,Melfa L,Rotelli C,Borghetti A.Incidence, risk factors, and prognosis of gastrointestinal hemorrhage complicating acute renal failure.Kidney Int.2001;59:15101519.
  12. Qadeer M,Richter J,Brotman D.Hospital‐acquired gastrointestinal bleeding outside the critical care unit.J Hosp Med.2006:1:1320.
  13. Zimmerman J,Meroz Y,Arnon R,Tsvang E,Siguencia J.Predictors of mortality in hospitalized patients with secondary upper gastrointestinal haemorrhage.J Intern Med.1995;237:331337.
  14. Niklasson A,Bajor A,Bergendal L,Simren M,Strid H,Bjornsson E.Overuse of acid suppressive therapy in hospitalised patients with pulmonary diseases.Respir Med.2003;97:11431150.
  15. Kowalsky SF,Hamilton RA,Figge HL.Drug usage evaluation: H2‐receptor antagonist use in 30 hospitals.Hosp Formul.1991;26:725736
  16. Liberman JD,Whelan CT.Reducing inappropriate usage of stress ulcer prophylaxis among internal medicine residents: A practice‐based educational intervention.J Gen Intern Med.2006:21:498500.
  17. Cook DJ,Mulrow CD,Haynes RB.Systematic reviews: synthesis of best evidence for clinical decisions.Ann Intern Med.1997;126:376380.
  18. Counsell C.Formulating questions and locating primary studies for inclusion in systematic reviews.Ann Intern Med.1997;127:380387.
  19. Meade MO,Richardson WS.Selecting and appraising studies for a systematic review.Ann Intern Med.1997;127:531537.
  20. Begg C,Cho M,Eastwood S, et al.Improving the quality of reporting of randomized controlled trials. The CONSORT statement.JAMA.1996;276:637639.
  21. Moher D,Schulz KF,Altman D.The CONSORT statement: revised recommendations for improving the quality of reports of parallel‐group randomized trials.JAMA.2001;285:19871991.
  22. Nardino RJ,Vender RJ,Herbert PN.Overuse of acid‐suppressive therapy in hospitalized patients.Am J Gastroenterol.2000;95:31183122.
  23. Parente F,Cucino C,Gallus S, et al.Hospital use of acid‐suppressive medications and its fall‐out on prescribing in general practice: a 1‐month survey.Aliment Pharmacol Ther.2003;17:15031506.
  24. Gullota R,Ferraris L,Cortelezzi C.Are we correctly using the inhibitors of gastric acid secretion and cytoprotective drugs? Results of a multicentre study.Ital J Gastroenterol Hepatol.1997;29:325329.
  25. Estruch R,Pedrol E,Castells A, et al.Prophylaxis of gastrointestinal tract bleeding with magaldrate in patients admitted to a general hospital ward.Scand J Gastroenterol.1991;26:819826.
  26. Grau JM,Casademont J,Fernandez‐Sola J,Cardellach F,Urbano‐Marquez A.Prophylaxis of gastrointestinal tract bleeding in patients admitted to a general hospital ward. Comparative study of sucralfate and cimetidine.Scand J Gastroenterol.1993;28:244248.
  27. Cook DJ,Reeve BK,Guyatt GH, et al.Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta‐analyses.JAMA.1996;275:308314.
  28. Yologlu S,Durmaz B,Bayindir Y.Nosocomial infections and risk factors in intensive care units.New Microbiol.2003;26:299303.
  29. Joshi N,Localio AR,Hamory BH.A predictive risk index for nosocomial pneumonia in the intensive care unit.Am J Med.1992;93:135142.
  30. Dial S,Alrasadi K,Manoukian C, et. al.Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case‐control studies.CMAJ.2004:171:3338.
  31. Dial S,Delaney J,Barkun A,Suissa S.Use of gastric acid‐suppressive agents and the risk of community‐acquired clostridium difficile‐associated disease.JAMA.2005:294:29892995.
  32. Wade EE,Rebuck JA,Healey MA,Rogers FB.H‐2 antagonist‐induced thrombocytopenia: is this a real phenomenon?Intensive Care Med.2002;28:459465.
  33. Levy M,Seelig C,Robinson N,Ranney J.Comparison of omeprazole and ranitidine for stress ulcer prophylaxis.Dig Dis Sci.1997:42:12551259.
References
  1. Cook DJ,Fuller HD,Guyatt GH, et al.Risk factors for gastrointestinal bleeding in critically ill patients.Canadian Critical Care Trials Group.N Engl J Med.1994;330:377381.
  2. Faisy C,Guerot E,Diehl JL,Iftimovici E,Fagon JY.Clinically significant gastrointestinal bleeding in critically ill patients with and without stress‐ulcer prophylaxis.Intensive Care Med.2003;29:13061313.
  3. Pimentel M,Roberts DE,Bernstein CN,Hoppensack M,Duerksen DR.Clinically significant gastrointestinal bleeding in critically ill patients in an era of prophylaxis.Am J Gastroenterol.2000;95:28012806.
  4. Navab F,Steingrub J.Stress ulcer: is routine prophylaxis necessary?Am J Gastroenterol.1995;90:708712.
  5. Lasky MR,Metzler MH,Phillips JO.A prospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcers in mechanically ventilated trauma patients.J Trauma.1998;44:527533.
  6. Darlong V,Jayalakhsmi TS,Kaul HL,Tandon R.Stress ulcer prophylaxis in patients on ventilator.Trop Gastroenterol.2003;24:124128.
  7. Daley RJ,Rebuck JA,Welage LS,Rogers FB.Prevention of stress ulceration: current trends in critical care.Crit Care Med.2004;32:20082013.
  8. Terdiman JP,Ostroff JW.Gastrointestinal bleeding in the hospitalized patient: a case‐control study to assess risk factors, causes, and outcome.Am J Med.1998;104:349354.
  9. Zimmerman J,Meroz Y,Siguencia J,Tsvang E,Arnon R.Upper gastrointestinal hemorrhage. Comparison of the causes and prognosis in primary and secondary bleeders.Scand J Gastroenterol.1994;29:795798.
  10. Davenport RJ,Dennis MS,Warlow CP.Gastrointestinal hemorrhage after acute stroke.Stroke.1996;27:421424.
  11. Fiaccadori E,Maggiore U,Clima B,Melfa L,Rotelli C,Borghetti A.Incidence, risk factors, and prognosis of gastrointestinal hemorrhage complicating acute renal failure.Kidney Int.2001;59:15101519.
  12. Qadeer M,Richter J,Brotman D.Hospital‐acquired gastrointestinal bleeding outside the critical care unit.J Hosp Med.2006:1:1320.
  13. Zimmerman J,Meroz Y,Arnon R,Tsvang E,Siguencia J.Predictors of mortality in hospitalized patients with secondary upper gastrointestinal haemorrhage.J Intern Med.1995;237:331337.
  14. Niklasson A,Bajor A,Bergendal L,Simren M,Strid H,Bjornsson E.Overuse of acid suppressive therapy in hospitalised patients with pulmonary diseases.Respir Med.2003;97:11431150.
  15. Kowalsky SF,Hamilton RA,Figge HL.Drug usage evaluation: H2‐receptor antagonist use in 30 hospitals.Hosp Formul.1991;26:725736
  16. Liberman JD,Whelan CT.Reducing inappropriate usage of stress ulcer prophylaxis among internal medicine residents: A practice‐based educational intervention.J Gen Intern Med.2006:21:498500.
  17. Cook DJ,Mulrow CD,Haynes RB.Systematic reviews: synthesis of best evidence for clinical decisions.Ann Intern Med.1997;126:376380.
  18. Counsell C.Formulating questions and locating primary studies for inclusion in systematic reviews.Ann Intern Med.1997;127:380387.
  19. Meade MO,Richardson WS.Selecting and appraising studies for a systematic review.Ann Intern Med.1997;127:531537.
  20. Begg C,Cho M,Eastwood S, et al.Improving the quality of reporting of randomized controlled trials. The CONSORT statement.JAMA.1996;276:637639.
  21. Moher D,Schulz KF,Altman D.The CONSORT statement: revised recommendations for improving the quality of reports of parallel‐group randomized trials.JAMA.2001;285:19871991.
  22. Nardino RJ,Vender RJ,Herbert PN.Overuse of acid‐suppressive therapy in hospitalized patients.Am J Gastroenterol.2000;95:31183122.
  23. Parente F,Cucino C,Gallus S, et al.Hospital use of acid‐suppressive medications and its fall‐out on prescribing in general practice: a 1‐month survey.Aliment Pharmacol Ther.2003;17:15031506.
  24. Gullota R,Ferraris L,Cortelezzi C.Are we correctly using the inhibitors of gastric acid secretion and cytoprotective drugs? Results of a multicentre study.Ital J Gastroenterol Hepatol.1997;29:325329.
  25. Estruch R,Pedrol E,Castells A, et al.Prophylaxis of gastrointestinal tract bleeding with magaldrate in patients admitted to a general hospital ward.Scand J Gastroenterol.1991;26:819826.
  26. Grau JM,Casademont J,Fernandez‐Sola J,Cardellach F,Urbano‐Marquez A.Prophylaxis of gastrointestinal tract bleeding in patients admitted to a general hospital ward. Comparative study of sucralfate and cimetidine.Scand J Gastroenterol.1993;28:244248.
  27. Cook DJ,Reeve BK,Guyatt GH, et al.Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta‐analyses.JAMA.1996;275:308314.
  28. Yologlu S,Durmaz B,Bayindir Y.Nosocomial infections and risk factors in intensive care units.New Microbiol.2003;26:299303.
  29. Joshi N,Localio AR,Hamory BH.A predictive risk index for nosocomial pneumonia in the intensive care unit.Am J Med.1992;93:135142.
  30. Dial S,Alrasadi K,Manoukian C, et. al.Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case‐control studies.CMAJ.2004:171:3338.
  31. Dial S,Delaney J,Barkun A,Suissa S.Use of gastric acid‐suppressive agents and the risk of community‐acquired clostridium difficile‐associated disease.JAMA.2005:294:29892995.
  32. Wade EE,Rebuck JA,Healey MA,Rogers FB.H‐2 antagonist‐induced thrombocytopenia: is this a real phenomenon?Intensive Care Med.2002;28:459465.
  33. Levy M,Seelig C,Robinson N,Ranney J.Comparison of omeprazole and ranitidine for stress ulcer prophylaxis.Dig Dis Sci.1997:42:12551259.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
86-92
Page Number
86-92
Article Type
Display Headline
Stress‐ulcer prophylaxis for general medical patients: A review of the evidence
Display Headline
Stress‐ulcer prophylaxis for general medical patients: A review of the evidence
Legacy Keywords
stress ulcer, prophylaxis, gastrointestinal bleeding
Legacy Keywords
stress ulcer, prophylaxis, gastrointestinal bleeding
Sections
Article Source
Copyright © 2007 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
462 Grider St., Buffalo, NY 14215
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Editorial

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Innovations in hospital medicine theme issue: A call for papers

In 10 short years, the explosive growth in the number of hospitalists has made hospital medicine programs the cornerstone of many innovations that support the institutions they serve: expanded inpatient care, developing consultative and comanagement services, hospital capacity management, improved patient quality and safety practices, and more. Hospitalist teams have demonstrated a genuine commitment to improving the hospital system, with literature supporting that hospitalists can positively affect cost, length of stay, quality of care, and, at academic institutions, education.1 To the casual observer, these hospitalist groups and the solutions they bring may seem fairly uniform; however, to the discerning eye, nothing could be farther from the truth. Hospital medicine programs, and their innovations, are as varied as the hospitals they serve.

Although the challenges encountered in hospital systems have clear, institution‐specific elements, common themes are often encountered by clinicians that parallel those seen at other facilities. Unfortunately, widely disseminated articles from peer‐reviewed journals on hospital‐based innovations have not been available for other hospitalists to use and glean ideas from for use at their home institutionsuntil now. The Journal of Hospital Medicine is pleased to announce the creation of that opportunity.

This year, the Journal of Hospital Medicine will publish articles on and later a supplement dedicated to innovations in hospital medicine. We invite authors to submit manuscripts related to any successful innovation they initiated in their hospital. We will consider any original work that pertains to hospital medicine, including but not limited to clinical innovations, educational programs, quality and safety initiatives, and administrative or academic issues. When available and appropriate, we encourage outcomes to be reported.

To be able to publish articles on a significant number of innovations, we request manuscripts be a maximum of 1500 words with no more than 2 tables or figures and fewer than 15 references. The deadline for submissions is August 1, 2007. All submitted manuscripts will undergo both editorial review by JHM staff and peer review. Authors should consult JHM's instructions for authors2 for guidelines on manuscript submission and preparation.

References
  1. How hospitalists add value: a special supplement to the Hospitalist.The Hospitalist.2005;9 (suppl 1).
  2. Journal of Hospital Medicine information for authors available at: www3.interscience.wiley.com/cgi‐bin/jabout/111081937/ForAuthors.html.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
57-57
Sections
Article PDF
Article PDF

In 10 short years, the explosive growth in the number of hospitalists has made hospital medicine programs the cornerstone of many innovations that support the institutions they serve: expanded inpatient care, developing consultative and comanagement services, hospital capacity management, improved patient quality and safety practices, and more. Hospitalist teams have demonstrated a genuine commitment to improving the hospital system, with literature supporting that hospitalists can positively affect cost, length of stay, quality of care, and, at academic institutions, education.1 To the casual observer, these hospitalist groups and the solutions they bring may seem fairly uniform; however, to the discerning eye, nothing could be farther from the truth. Hospital medicine programs, and their innovations, are as varied as the hospitals they serve.

Although the challenges encountered in hospital systems have clear, institution‐specific elements, common themes are often encountered by clinicians that parallel those seen at other facilities. Unfortunately, widely disseminated articles from peer‐reviewed journals on hospital‐based innovations have not been available for other hospitalists to use and glean ideas from for use at their home institutionsuntil now. The Journal of Hospital Medicine is pleased to announce the creation of that opportunity.

This year, the Journal of Hospital Medicine will publish articles on and later a supplement dedicated to innovations in hospital medicine. We invite authors to submit manuscripts related to any successful innovation they initiated in their hospital. We will consider any original work that pertains to hospital medicine, including but not limited to clinical innovations, educational programs, quality and safety initiatives, and administrative or academic issues. When available and appropriate, we encourage outcomes to be reported.

To be able to publish articles on a significant number of innovations, we request manuscripts be a maximum of 1500 words with no more than 2 tables or figures and fewer than 15 references. The deadline for submissions is August 1, 2007. All submitted manuscripts will undergo both editorial review by JHM staff and peer review. Authors should consult JHM's instructions for authors2 for guidelines on manuscript submission and preparation.

In 10 short years, the explosive growth in the number of hospitalists has made hospital medicine programs the cornerstone of many innovations that support the institutions they serve: expanded inpatient care, developing consultative and comanagement services, hospital capacity management, improved patient quality and safety practices, and more. Hospitalist teams have demonstrated a genuine commitment to improving the hospital system, with literature supporting that hospitalists can positively affect cost, length of stay, quality of care, and, at academic institutions, education.1 To the casual observer, these hospitalist groups and the solutions they bring may seem fairly uniform; however, to the discerning eye, nothing could be farther from the truth. Hospital medicine programs, and their innovations, are as varied as the hospitals they serve.

Although the challenges encountered in hospital systems have clear, institution‐specific elements, common themes are often encountered by clinicians that parallel those seen at other facilities. Unfortunately, widely disseminated articles from peer‐reviewed journals on hospital‐based innovations have not been available for other hospitalists to use and glean ideas from for use at their home institutionsuntil now. The Journal of Hospital Medicine is pleased to announce the creation of that opportunity.

This year, the Journal of Hospital Medicine will publish articles on and later a supplement dedicated to innovations in hospital medicine. We invite authors to submit manuscripts related to any successful innovation they initiated in their hospital. We will consider any original work that pertains to hospital medicine, including but not limited to clinical innovations, educational programs, quality and safety initiatives, and administrative or academic issues. When available and appropriate, we encourage outcomes to be reported.

To be able to publish articles on a significant number of innovations, we request manuscripts be a maximum of 1500 words with no more than 2 tables or figures and fewer than 15 references. The deadline for submissions is August 1, 2007. All submitted manuscripts will undergo both editorial review by JHM staff and peer review. Authors should consult JHM's instructions for authors2 for guidelines on manuscript submission and preparation.

References
  1. How hospitalists add value: a special supplement to the Hospitalist.The Hospitalist.2005;9 (suppl 1).
  2. Journal of Hospital Medicine information for authors available at: www3.interscience.wiley.com/cgi‐bin/jabout/111081937/ForAuthors.html.
References
  1. How hospitalists add value: a special supplement to the Hospitalist.The Hospitalist.2005;9 (suppl 1).
  2. Journal of Hospital Medicine information for authors available at: www3.interscience.wiley.com/cgi‐bin/jabout/111081937/ForAuthors.html.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
57-57
Page Number
57-57
Article Type
Display Headline
Innovations in hospital medicine theme issue: A call for papers
Display Headline
Innovations in hospital medicine theme issue: A call for papers
Sections
Article Source
Copyright © 2007 Society of Hospital Medicine
Disallow All Ads
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media

Expanding Hospitalist Roles to Public Health

Article Type
Changed
Sun, 05/28/2017 - 22:40
Display Headline
Expanding the roles of hospitalist physicians to include public health

The field of hospital medicine came into being in response to numerous factors involving physicians, patients, and hospitals themselves1 Now, years later, hospital medicine is a specialty that is growing, both in size and sophistication such that the role of the hospitalist is constantly evolving.2 A compelling function that has not yet been clearly articulated is the opportunity for hospitalists to serve as public health practitioners in their unique clinical environment. There is precedence for the power of collaboration between medicine and public health as has been seen with emergency medicine's willingness to embrace opportunities to advance public health.35

In public health, the programs, services, and institutions involved emphasize the prevention of disease and the health needs of the population as a whole. Public health activities vary with changing technology and social values, but the goals remain the same: to reduce the amount of disease, premature death, and disease‐associated discomfort and disability in the population.6 The authors of a leading textbook of public health, Scutchfield and Keck, contend that the most important skill for public health practice is the capacity to visualize the potential for health that exists in a community.6

Hospitalists care for a distinct subset of the general populationinpatients, only a small percentage of society in a given year. Yet over time hospitalists affect a substantial subset of the larger population that uses considerable health care resources.79 Furthermore, hospitalization can be a sentinel event with public health implications (eg, newly diagnosed HIV infection or acute myocardial infarction in a patient with an extended family of cigarette smokers). This presents an opportunity to educate and counsel both the patient and the patient's social network. One model of public health practice by hospitalists is to influence the patient, his or her family, and the community by touching and inspiring the hospitalized patient.

Hospitalists are already involved in many of the core functions of public health (assessment, assurance, and policy development; Fig. 1).10 Achieving ongoing success in this arena means developing hospitalists who are consciously in tune with their roles as public health practitioners.

Figure 1
Selected public health roles of hospitalist physicians. The Institute of Medicine (IOM) has delineated the core functions of public health as assessment, assurance, and policy development. Various potential roles are organized around the IOM's defined core public health functions as outlined in the text (*examples of preventive care are HIV testing and initiation of antilipidemic medications in the hospital; †hospitalists could recognize and have an impact on epidemics such as influenza and SARS; ‡roles in the core functions yet to be described).

In this article we define the specific public health contributions that hospitalists have made and describe the possibilities for further innovative advances. To this end, we outline specific public health roles under the broad categories of assessment, assurance, and policy. We point to advances in public health accomplished by hospitalists as well as those being performed by nonhospitalists in the hospital setting. We conclude by describing some of the barriers to and implications of hospitalists taking on public health roles.

ASSESSMENT

Assessment is the systematic collection, analysis, and dissemination of health status information.10 These activities include disease surveillance and investigation of acute outbreaks or changes in the epidemiology of chronic diseases. Assessment also involves understanding the health of a population and the key determinants of a population's health from a variety of perspectives: physical, biological, behavioral, social, cultural, and spiritual.6 Human health has been defined as a state characterized by anatomic integrity; ability to perform personally valued family work and community roles; ability to deal with physical, biologic, and social stress; a feeling of well‐being; and freedom from the risk of disease and untimely death.6 Hospitalists interact with individuals at times of stress and acute illness and thus have a unique opportunity to assess the strength, viability, and resources available to individuals. Key roles that may fall within the auspices of assessment in hospital medicine are infection control, epidemic recognition, disaster response, preventive care, substance abuse treatment, and chronic disease management.

Infection Control

Physicians caring for inpatients have a crucial stake in controlling hospital infection as exemplified by the work of Flanders et al. on preventing nosocomial infections, especially nosocomial pneumonia.11 They describe specific strategies to prevent iatrogenic spread such as washing hands before and after patient contact, establishing guidelines against the use of artificial fingernails, using indwelling devices such as catheters only when absolutely necessary, and using sterile barriers.11 Hospitalists such as Sanjay Saint have led the way in studying methods to reduce bladder catheterization, which has been associated with urinary tract infections12; others have collaborated on work to prevent infections in nursing homes.13 Given the importance of this field, there is room for further hospitalist involvement. Novel methods for infection control in hospitals have been studied by nonhospitalists such as Wisnivesky, who prospectively validated a clinical decision rule to predict the need for respiratory isolation of inpatients with suspected tuberculosis (TB). This prediction rule, which is based on clinical and chest radiographic findings, was able to accurately identify patients at low risk for TB from among inpatients with suspected active pulmonary TB isolated on admission to the hospital.14 Retrospective application of the prediction rule showed respiratory precautions were inappropriately implemented for a third of patients.14 These studies are examples of empiric public health research performed in the inpatient setting. In the infection control domain, candidate issues for further study could include interventions aimed at reducing rates of Clostridium difficile, developing programs for standardized surveillance of hospital infection, validating electronic markers for nosocomial infection, and taking innovative approaches to improving hand‐washing practices in the hospital.15, 16

Recognizing Epidemics

An excellent example of the importance of hospitalists embracing public health and remembering their patients are part of a community was the severe acute respiratory syndrome (SARS) outbreak in Toronto, Ontario, Canada. The outbreak is thought to have begun with a single traveler. With the transfer of patients and the movement of visitors and health care workers among facilities, SARS quickly spread through Toronto, making it the largest SARS‐affected area outside Asia.17 Approximately a month after the outbreak was recognized in Toronto, it was thought to be over, and the World Health Organization (WHO) removed Toronto from its SARS‐affected list.17 Unfortunately, patients with unrecognized SARS remained in health care institutions, including a patient transferred to a rehabilitation center. Infection quickly spread again, resulting in a second phase of the outbreak.17

The SARS outbreak served as a reminder that a global public health system is essential and taught many lessons17 germane to pandemics that recur annually (eg, influenza viruses) as well those that episodically threaten the health of the population (eg, avian flu). Proposed actions to prevent a repeat of the scenario that occurred with SARS in Toronto include assessing the current facilities (eg, isolation rooms and respiratory masks) at each institution, identifying health care workers willing to serve as an outbreak team, and the hiring staff to train hospital personnel in personal protective equipment (PPE) and infection control policies.18 The Centers for Disease Control and Prevention (CDC) contends that planning for the possibility of a virulent pandemic at the local, national, and global levels is critical to limiting the mortality and morbidity should such occur.19, 20 In a previous article, Pile and Gordon declared hospitalists are key players in institutional efforts to prepare for a viral pandemic such as influenza and should be aware of lessons that may be applied from responses to pandemics such as SARS.19 Well placed to recognize clinical trends that may herald epidemics, hospitalists can fulfill some of the necessary public health responsibilities delineated above.

Disaster Response

Natural disasters and terrorism are in the forefront of the popular press and are also high priorities in health care and public health.21 Terrorism and natural disasters cause significant injury, illness, and death.22 Hospital‐based health care providers fulfill a variety of roles when terrorist acts and disasters occur, including reporting, diagnosing, and managing illness, providing preventive measures (eg, vaccines and preparedness kits), preventing the secondary spread of disease, assisting in the investigation of the causes of disease outbreaks, participating in preparedness planning, and evaluating preparedness policies and programs.22 The experience gained in the aftermaths of Hurricanes Katrina and Rita with their unprecedented death, injury, destruction, and displacement should help to guide future response and recovery activities.23 Hospitalists were at the forefront of delivering care, living in their hospitals for days after Hurricane Katrina. Without question, hospitalists will be called on again to serve those affected by disasters.

Preventive Care

For many patients admitted to the hospital, meeting a hospitalist is their first encounter with a physician in years.24, 25 In these instances, hospitalists must ensure that patients' immunizations are up‐to‐date and arrange appropriate follow‐up care with primary care providers. Greenwald described an important role that hospitalists could play in HIV prevention by promoting HIV testing in the hospital.26 The CDC recently confirmed the wisdom of this approach and estimates that the 250,000 to 1.2 million people in the United States with HIV infection who do not know their serostatus play a significant role in HIV transmission.26, 27 In an effort to promote testing, the CDC has initiated a program aimed at incorporating HIV testing into routine medical care, as recommended by others.28 More than a quarter of patients with HIV in the United States are diagnosed in the hospital, and for many other patients, hospitalization is their only real opportunity to be tested.26, 29 Similarly, when hospitalists find elevated cholesterol or triglycerides in routine evaluations of patients who present with chest pain, they have to decide whether to initiate lipid‐lowering medications.30 The hospitalist is sometimes the only physician that patients repeatedly admitted, may see over prolonged periods. It follows that if hospitalists are remiss in delivering preventive care to such patients, they lose the opportunity to positively affect their long‐term health. In practice, hospitalists perform myriad preventive‐care functions, although there is scant literature supporting this role. Hospitalists have an opportunity to collaborate in research projects of hospital‐initiated preventive care that measure outcomes at the community level.

Substance Abuse

In the Unites States, 25%‐40% of hospital admissions are related to substance abuse and its sequelae.31 These patients frequently are admitted to general medicine services for detoxification or treatment of substance‐abuse‐related morbidity, although some American hospitals have specialized treatment and detoxification centers. There is a pressing need for more models of comprehensive care that address the complex issues of addiction, including the biological, social, cultural, spiritual, and developmental needs of patients.32

Hospitalists routinely counsel their patients with substance abuse problems and often consult a chemical dependency counselor, who provides patients with additional information about outpatient or inpatient facilities that may help them after their hospitalization. Unfortunately, because of the natural history of substance abuse, many of these patients are rehospitalized with the same problems even after going through rehabilitation. The adoption of a public health philosophy and approach by hospitalists may assist patients who have addictions through innovative multidisciplinary interventions while these patient are being detoxified. Traditionally, these responsibilities have fallen to primary care providers and psychologists in substance abuse medicine; but, as mentioned previously, many such patients are rehospitalized before they make it to their follow‐up appointments.

In a study examining smoking cessation practices among Norwegian hospital physicians, 98% of the doctors stated they ask their patients about their smoking habits, but fewer than 7% of these physicians regularly offer smoking‐cessation counseling, hand out materials, or give patients other advice about smoking cessation.33 That study illustrates that hospital doctors often ask about problems but can certainly improve in terms of intervention and follow‐up. Other works by nonhospitalist physicians have examined the real potential of inpatient interventions for smoking cessation. Most of this work involves a multidisciplinary approach that relies heavily on nurses. For example, Davies et al. evaluated the effectiveness of a hospital‐based intervention for smoking cessation among low‐income smokers using public health methodologies. The intervention was effective and promising as a way to affect smokers in underserved communities.34

Chronic Disease Management

Public health roles involving chronic disease management include surveillance, intervention design, and implementation of control programs.6 Given their access to data on hospitalized patients, hospitalists can carry out surveillance and empirical population‐based research about hospitalized patients with chronic illnesses. Thoughtfully designed protocols can measure the success of interventions initiated in patients while hospitalized, with further data collection and follow‐up after patients have returned to the community.35 Such endeavors can improve the likelihood that patients with chronic conditions are effectively referred to programs that will maintain their health and functional status.36 If hospitalists consider themselves public health providers, encounters with these hospitalized patients will go beyond noting that their chronic conditions are stable and instead will lay the groundwork to prospectively control these conditions. This approach would have the potential to reduce the number of future hospitalizations and lead to healthier communities.37 To truly carry this out effectively, coordinated collaboration between primary care providers and hospitalists will be necessary.

ASSURANCE

Assurance is the provision of access to necessary health services. It entails efforts to solve problems that threaten the health of populations and empowers individuals to maintain their own health. This is accomplished by either encouraging action, delegating to other entities (private or public sector), mandating specific requirements through regulation, or providing services directly.10 Hospitalist teams aim to ensure that the high‐quality services needed to protect the health of their community (hospitalized patients) are available and that this population receives proper consideration in the allocation of resources. The few studies to date that have directly examined the quality of care that hospitalists provide38 have done so using evidence‐based measures believed to correlate with improved health care outcomes.38 The ambiguities in assessing quality may in part limit such studies.39 Specific hospitalist roles that fall under the assurance umbrella include antibiotic optimization, palliative care, patient safety, and medical error management.

Antibiotic Optimization

Inappropriate use of antimicrobial treatment for infectious diseases has cost and public health implications.40 These inappropriate uses include giving antibiotics when not indicated, overusing broad‐spectrum antibiotics, making mismatches between microbes and medicines when cultures and information on test sensitivity are available, and using intravenous formulations when oral therapy would suffice.41 The public health impact goes way beyond increasing selective pressure for antimicrobial resistance to include safety, adverse events, and increased costs to both patient and hospitals.40 At our institution, the hospital medicine service and infectious disease division have jointly developed and implemented an intervention to reduce inappropriate antibiotic use. At other institutions, hospitalist teams have developed protocols for treating infectious diseases commonly encountered in the hospitalized patient.42 The recommendations of both Amin and Reddy for management of community‐ and hospital‐acquired pneumonia acknowledged that through establishment of clinical care pathways, variation in prescribing patterns among hospitalists can be decreased while optimizing outcomes.42 The work of Williams and colleagues is another example of advances by hospitalists. They reviewed the literature to determine that the use of combination antibiotics as empiric therapy for community‐acquired pneumonia is superior to the use of a single effective antibiotic in treating bacteremic patients with pneumococcal community‐acquired pneumonia.43

Palliative Care

Mortality is a vital outcome measure of public health research and interventions. Not surprisingly, many people are hospitalized in the final months of their life and often die in a hospital. Pantilat showed that hospitalists can respond to these circumstances and have the opportunity to improve care of the dying.4446 Muir et al. evaluated the convergence of the fields of palliative care medicine and hospital medicine and reviewed the opportunities for mutual education and improved patient care.47 They described how the confluence of the changing nature and site of death in the United States coupled with the reorganization of hospital care provides a strategic opportunity to improve end‐of‐life care.47 Hospitalists can ensure that care of the dying is delivered with skill, compassion, and expertise. And so it is imperative they be trained to accomplish this objective.47, 49

Fortunately, hospitalists already appear to enhance patientphysician communication. Auerbach looked at communication, care patterns, and outcomes of dying patients, comparing patients being cared for by hospitalists with those being care for by community‐based physicians. Hospitalists had discussions with patients or their families about care more often than did nonhospitalist physicians (91% versus 73%, respectively, P = .006).49 Because the delivery of high‐quality palliative care is time consuming and complex, alternative models for billing or the use of physician extenders or consultants may be necessary at some institutions.

Patient Safety and Medical Error Management

Hospitalists have been in the forefront of promoting a culture of patient safety.50 Their continuous presence in the hospital and their interactions with members of health care teams from multiple disciplines who share this goal make them important facilitators. Hospitalists have increasing involvement in systems‐based efforts aimed at reducing medical errors.50 Hospitalists are being asked to lead committees that adopt multidisciplinary approaches to reduce adverse events, morbidity, and mortality.50 These committees often have representation from pharmacy, nursing, and other key hospital stakeholders including from the administration.51 Quality assurance activities assess locally collected data and compare results with local and national benchmarks. There are several published examples of hospitalists engaged in patient safety and medical error management. For example, Shojania et al compiled evidence based safety practices in an effort to promote patient safety.52, 53 Schnipper studied the role of pharmacist counseling in preventing adverse drug events (ADEs) after hospitalization and found that pharmacist medication review, patient counseling, and telephone follow‐up were associated with a lower rate of preventable ADEs 30 days after hospital discharge.54 Moreover, Syed paired hospitalists and pharmacists to collaboratively prescribe medications appropriately. In one study there were fewer medication errors and adverse drug reactions in patients treated by a team led by hospitalists than in those treated by the control group, made up of nonhospitalist attendings.55

POLICY

Policy development defines health control goals and objectives and develops implementation plans for those goals.10 By necessity, it operates at the intersection of legislative, political, and regulatory processes.10 At many institutions, hospitalists have been involved in the development of policies ensuring that the core functions of assessment and assurance are addressed and maintained. In fact, hospitalists report that development of quality assurance and practice guidelines accounts for most of their nonclinical time.56 This role of hospitalists is supported by anecdotal reports rather than published empiric evidence.57 For example, at Johns Hopkins Bayview Medical Center, hospitalist‐led teams have developed triage and patient handoff policies designed to improve patient safety. Parameters for admission to the general medicine ward have been elaborated and are periodically refined by the hospitalist team.

Another area that falls within the genre of policy is development of clinical practice guidelines. Guidelines for the treatment of pneumonia, congestive heart failure, deep‐vein thrombosis prophylaxis, alcohol and drug withdrawal, pain management, delirium, and chronic obstructive pulmonary disease have been developed by nonhospitalists.58, 59 These areas are considered core competencies in hospital medicine, and as such, hospitalists have an obligation to review and refine these guidelines to ensure the best provision of care to our patients.59

Hospitalists have been engaged in upholding guidelines that affect community practice. For example, in a study comparing treatment of patients admitted with congestive heart failure by hospitalists compared with that by nonhospitalists, hospitalists were found to be more likely to document left ventricular function, a core measure of quality as defined by JCAHO.39, 60 Knowledge about cardiac function can direct future care for patients when they return to the community and into the care of their primary care providers. In another example, Rifkin found that patients with community‐acquired pneumonia treated by hospitalists were more rapidly converted to oral antibiotics from intravenous antibiotics, facilitating a shorter length of stay,61 which reduced the opportunity for nosocomial infections to propagate. Because hospitalists are skilled at following guidelines,59 it follows that they should seize the opportunity to develop more of them.

As the hospitalist movement continues to grow, hospitalists will likely be engaged in implementing citywide, statewide, and even national policies that ensure optimal care of the hospitalized patient.

BARRIERS TO HOSPITALISTS FOCUSING ON PUBLIC HEALTH

Hospitalists are involved in public health activities even though they may not recognize the extent of this involvement. However, there may be some drawbacks to hospitalists viewing each patient encounter as an opportunity for a public health intervention. First, in viewing a patient as part of a cohort, the individual needs of the patient may be overlooked. There is inherent tension between population‐based and individual‐based care, which is a challenge. Second, hospitalists are busy clinicians who may be most highly valued because of their focus on efficiency and cost savings in the acute care setting. This factor alone may prevent substantive involvement by hospitalists in public health practice. Moving beyond the management of an acute illness may interfere with this efficiency and cost effectiveness from the hospital's perspective. However, interventions that promote health and prevent or reduce rehospitalizations may be cost effective to society in the long run. Third, current billing systems do not adequately reward or reimburse providers for the extra time that may be necessary to engage in public health practice. Fourth, hospitalists may not have the awareness, interest, training, or commitment to engage in public health practice. Finally, there may not be effective collaboration and communication systems between primary care providers and hospitalists. This barrier limits or hinders many possibilities for the effective execution of several public health initiatives.

CONCLUSIONS AND IMPLICATIONS

Hospitalists and the specialty of hospital medicine materialized because of myriad economic forces and the need to provide safe, high‐quality care to hospitalized patients. In this article we have described the ways in which hospitalists can be explicitly involved in public health practice. Traditionally, physicians caring for hospitalized patients have collected information through histories and physical examinations, interpreted laboratory data and tests, and formulated assessments and plans of care. To become public health practitioners, hospitalists have to go beyond these tasks and consider public health thought processes, such as problem‐solving paradigms and theories of behavior change. In adopting this public health perspective, hospitalists may begin to think of a patient in the context of the larger community in order to define the problems facing the community, not just the patient, determine the magnitude of such problems, identify key stakeholders, create intervention/prevention strategies, set priorities and recommend interventions, and implement and evaluate those interventions. This approach forces providers to move beyond the physicianpatient model and draw on public health models to invoke change. Hopefully, future research will further convince hospitalists of the benefits of this approach. Although it may be easier to defer care and management decisions to an outpatient physician, data suggest that intervening when patients are in the hospital may be most effective.62, 63 For example, is it possible that patients are more likely to quit smoking when they are sick in the hospital than when they are in their usual state of health on a routine visit at their primary care provider's office?64 Further, although deferring care to a primary care provider (PCP) may be easier, it is not always possible given these barriers: (1) some patients are routinely rehospitalized, precluding primary care visits, (2) some recommendations may not be received by PCPs, and (3) PCPpatient encounters are brief and the agendas full, and there are limited resources to address recommendations from the hospital.

As hospitalists become more involved in public health practice, their collaboration with physicians and researchers in other fields, nurses, policymakers, and administrators will expand. Succeeding in this arena requires integrity, motivation, capacity, understanding, knowledge, and experience.65 It is hoped that hospitalists will embrace the opportunity and master the requisite skill set necessary to practice in and advance this field. As hospitalist fellowship programs are developed, public health practice skills could be incorporated into the curriculum. Currently 6 of 16 fellowship programs offer either a master of public health degree or public health courses.66 Public health skills can also be taught at Society of Hospital Medicine meetings and other continuing medical education events.

With the evolution of hospital medicine, hospitalists have to be malleable in order to optimally meet the needs of the population they serve. The possibilities are endless.

References
  1. Wachter R,Goldman L.The Hospitalist movement 5 years later.JAMA.2002;287:487494.
  2. Hospitals and Health Networks. Hospitalists: a specialty coming into its own. Available at: http://www.hhmag.com. Accessed February 27,2006.
  3. Pollock D,Lowery D,O'Brien P.Emergency medicine and public health: new steps in old directions.Ann Emerg Med.2001;38:675683.
  4. Bernstein E,Godfrank LRKellermann AL, et al.A public health approach to emergency medicine: preparing for the twenty‐first century.Acad Emerg Med.1994;1:277286.
  5. Clancy CM,Eisenberg JM.Emergency medicine in population‐based systems of care.Ann Emerg Med.1997;30:800803.
  6. Scutchfield D,Keck W.Principles of Public Health Practice.Albany, NY:Delmar Publishing;1997.
  7. Centers for Medicare and Medicaid. Health care spending and growth rate continue to decline in 2004. Available at: http://www.cms.hhs.gov. Accessed October 31,2006.
  8. Cowan C,Catlin A,Smith C, et al.National health expenditures, 2002.Health Care Financ Rev. Summer2004;25:4.
  9. Borger C,Smith S,Truffer C, et al.Health spending Projections Through 2015: Changes on the Horizon.Health Affairs2006;25:w61w73.
  10. Institute of Medicine.Recommendations from the Future of Public Health. InThe Future of the Public's Health.Washington, DC:National Academic Press;2003:411420.
  11. Flanders S,Collard H,Saint S.Nosocomial pneumonia: state of the science.Am J Infect Control.2006;34:8493.
  12. Saint S,Kaufman S,Thompson M,Rogers M,Chenoweth C.A reminder reduces urinary catheterization in hospitalized patients.Jt Comm J Qual Patient Saf.2005;31:455462.
  13. Mody L,Langa K,Saint S,Bradley S.Preventing infections in nursing homes: A survey of infection control practices in southeast Michigan.Am J Infect Control.2005;33:489492.
  14. Wisnivesky J,Henschke C,Balentine J,Willner C.Prospective validation of a prediction model for isolating inpatients with suspected pulmonary tuberculosis.Arch Intern Med.2005;165:453457.
  15. McLaws M,Taylor P.The Hospital Infection Standardised Surveillance (HISS) programme: analysis of a two‐year pilot.J Hosp Infect.2003;53:259267.
  16. Brosette S,Hacek D,Gavin P,Kamdar M.A Laboratory‐Based, Hospital‐Wide, Electronic Marker for Nosocomial Infection.Am J Clin Pathol.2006;125:3439.
  17. Mazzulli T,Kain K,Butany J.Severe acute respiratory syndrome.Arch Pathol Lab Med.2004;128:13461350.
  18. Marshall A,Rachlis A,Chen J.Severe acute respiratory syndrome: responses of the healthcare system to a global epidemic.Curr Opin Otolaryngol Head Neck Surg.2005;13:161164.
  19. Pile C,Gordon S.Pandemic influenza and the hospitalist: apocalypse when?J Hosp Med.2006;1:118123.
  20. Center for Disease Control and Prevention. Pandemic Influenza information for Health Professionals. Available at: http://www.cdc.gov/flu/pandemic/. Accessed October 31,2006.
  21. Rosenbaum S.US health policy in the aftermath of Hurricane Katrina.JAMA.2006;295:43740
  22. Levy B,Sidel V, eds.Terrorism and Public Health.New York:Oxford University Press;2003.
  23. Centers for Disease Control and Prevention (CDC).Public health response to Hurricanes Katrina and Rita—United States 2005.MMWR Morb Mortal Wkly Rep.2006;55:229231.
  24. Kaplan S,Calman N,Golub M,Davis J,Ruddock C,Billings J.Racial and ethnic disparities in health: a view from the South Bronx.J Health Care Poor Underserved.2006;17:116127.
  25. Hewins‐Maroney B,Schumaker A.Williams E. Health Seeking behaviors of African Americans: implications for health administration.J Health Hum Serv Adm.2005;28(1):6895.
  26. Greenwald J.Routine rapid HIV testing in hospitals: another opportunity for hospitalists to improve care.J Hosp Med.2006;1:106112.
  27. Centers for Disease Control and Prevention.Advancing HIV prevention: new strategies for a changing epidemic—United States, 2003.MMWR Morb Mortal Wkly Rep.2003;52:329332.
  28. Paltiel AD,Weinstein MC,Kimmel AD, et al.Expanded screening for HIV in the United States—an analysis of cost‐effectiveness.N Engl J Med.2005;352:586595.
  29. Walensky RP,Losina E,Steger‐Craven KA,Freedberg KA.Identifying undiagnosed human immunodeficiency virus: the yield for routine, voluntary, inpatient testing.Arch Intern Med.2002;162:887892.
  30. Howell E,Scott W,Bush D,Chandra‐Strobos N,Henrikson C.Insufficient treatment of hypercholestrolemia among patients hospitalized with chest pain.Clin Cardiol.2006;29:259262.
  31. Kissen B.Medical management of alcoholic patients. In:Kissen B,Besleiter H, eds.Treatment and Rehabilitation of the Chronic Alcoholic.New York:Plenum Publishing Co.;1997.
  32. Amodia DS,Cano C,Eliason MJ.An integral approach to substance abuse.J Psychoactive Drugs.2005;37:363371.
  33. Bakke PS,Boker T,Diep TT, et al.Smoking cessation practice among Norwegian hospital physicians.Tiddskr Nor laegeforen.2000;120:16291632.
  34. Davies S,Kohler C,Fish L et al.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  35. Coleman EA.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs [review].J Am Geriatr Soc.2003;51:549555.
  36. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  37. Phillips C,Wright S,Kern D,Singa R,Shepperd S,Rubin H.Comprehensive discharge planning with post discharge support for older patients with congestive heart failure.JAMA.2004;291:13581367.
  38. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62:379406.
  39. Lindenauer PK,Chehabeddine R,Pekow P,Fitzgerald J,Benjamin EM,Quality of care for patients hospitalized with heart failure: assessing the impact of hospitalists.Arch Intern Med.2002;162:12511256.
  40. Finch R,Metlay J,Davey P,Baker L.Educational interventions to improve antibiotic use in the community: report from the International Forum on Antibiotic Resistance (IFAR) colloquim, 2002.Lancet Infect Dis.2004;4:4453.
  41. Davey P,Brown E,Fenelon L, et al.Systematic review of antimicrobial drug prescribing in hospitals.Emerg Infect Dis.2006;12:211216.
  42. Amin A,Feinbloom D,Krekun S,Li J,Pak M,Rauch D,Borik A.Recommendations for management of community and hospital acquired pneumonia‐the hospitalist perspective.Curr Opin Pulm Med.2004;10(suppl 1):S23S27.
  43. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  44. Pantilat S.End‐of‐life care for the hospitalized patient.Med Clin N Am.2002;86:749770.
  45. Pantilat SZ,Steimle AE.Palliative care for patients with heart failure.JAMA.2004;291:24762482.
  46. Pantilat SZ,Billings JA.Prevalence and structure of palliative care services in California hospitals.Arch Intern Med.2003;163:10841088.
  47. Muir J,Arnold R.Palliative care and the hospitalist: an opportunity for cross‐fertilization.J Med.2001;111:10S14S.
  48. Meier D.Palliative care in hospitals.J Hosp Med.2006;1:2128.
  49. Auerbach A,Pantilat S.End‐of‐life care in a voluntary hospitalist model: effects on communication, process of care, and patient symptoms.Am J Med.2004;116:669675.
  50. Shojania KG,Wald H,Gross R,Understanding medical error and improving patient safety in the inpatient setting,Med Clin N Am2002;86:847867.
  51. Wachter RM, The hospitalist movement: ten issues to consider, hospital practice. Available at: http://www.hosppract.com/issues/1999/02/wachter.htm. Accessed March 14,2006.
  52. Shojania KG,Duncan BW,McDonald KM,Wachter RM, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 from the Agency for Healthcare Research and Quality: AHRQ Publication No. 01‐E058;2001. Available at: http://www.ahrq.gov/clinic/ptsafety/.
  53. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  54. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  55. Hospitalists, pharmacists partner to cut errors: shorter lengths of stay, lower med costs result. HealthCare Benchmarks and Quality Improvement.American Health Consultants, Inc.,2005.
  56. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130:343349.
  57. Dressler D,Pistoria M,Budnitz T,McKean S,Amin A.Core competencies in hospital medicine: Development and methodology.J Hosp Med.2006;1:4856.
  58. National guideline clearing house. Available at: http://www.guideline.gov. Accessed June 26,2006.
  59. Pistoria M,Amin A,Dressler D,McKean S,Budnitz T, eds.The core competencies in hospital medicine.J Hosp Med.2006;1(suppl 1).
  60. Joint Commission on Accreditation of Healthcare Organizations. Core Measures overview. Available at: http://www.jcaho.org/perfeas/coremeas/cm.ovrvw.html. Accessed February 1,2006.
  61. Rifkin WD,Conner D,Silver A,Eichorn A.,Comparison of processes and outcomes of pneumonia care between hospitalists and community‐based primary care physicians.Mayo Clin Proc.2002;77:10531058.
  62. Chouinard M,Robichaud‐Ekstrand S.The effectiveness of a nursing inpatient smoking cessation program in individuals with cardiovascular disease.Nurs Res.2005;54:243254.
  63. Davis S,Kohler C,Fish L,Taylor B,Foster G,Annang, L.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  64. Wallace‐Bell M.Smoking cessation: the case for hospital‐based interventions.Prof Nurse.2003;19(3):145148..
  65. Waldrop MM. Dee Hock's management principles, in his own words. Fast Company.1996;5:79. Available at: http://www.fastcompany.com/magazine/05/dee2.html.
  66. Ranji S,Rosenman D,Amin A,Kripalani S.Hospital Medicine Fellowships: Works in progress.Am J Med.2006;119(1):72.e1e7.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
93-101
Legacy Keywords
public health, hospital medicine
Sections
Article PDF
Article PDF

The field of hospital medicine came into being in response to numerous factors involving physicians, patients, and hospitals themselves1 Now, years later, hospital medicine is a specialty that is growing, both in size and sophistication such that the role of the hospitalist is constantly evolving.2 A compelling function that has not yet been clearly articulated is the opportunity for hospitalists to serve as public health practitioners in their unique clinical environment. There is precedence for the power of collaboration between medicine and public health as has been seen with emergency medicine's willingness to embrace opportunities to advance public health.35

In public health, the programs, services, and institutions involved emphasize the prevention of disease and the health needs of the population as a whole. Public health activities vary with changing technology and social values, but the goals remain the same: to reduce the amount of disease, premature death, and disease‐associated discomfort and disability in the population.6 The authors of a leading textbook of public health, Scutchfield and Keck, contend that the most important skill for public health practice is the capacity to visualize the potential for health that exists in a community.6

Hospitalists care for a distinct subset of the general populationinpatients, only a small percentage of society in a given year. Yet over time hospitalists affect a substantial subset of the larger population that uses considerable health care resources.79 Furthermore, hospitalization can be a sentinel event with public health implications (eg, newly diagnosed HIV infection or acute myocardial infarction in a patient with an extended family of cigarette smokers). This presents an opportunity to educate and counsel both the patient and the patient's social network. One model of public health practice by hospitalists is to influence the patient, his or her family, and the community by touching and inspiring the hospitalized patient.

Hospitalists are already involved in many of the core functions of public health (assessment, assurance, and policy development; Fig. 1).10 Achieving ongoing success in this arena means developing hospitalists who are consciously in tune with their roles as public health practitioners.

Figure 1
Selected public health roles of hospitalist physicians. The Institute of Medicine (IOM) has delineated the core functions of public health as assessment, assurance, and policy development. Various potential roles are organized around the IOM's defined core public health functions as outlined in the text (*examples of preventive care are HIV testing and initiation of antilipidemic medications in the hospital; †hospitalists could recognize and have an impact on epidemics such as influenza and SARS; ‡roles in the core functions yet to be described).

In this article we define the specific public health contributions that hospitalists have made and describe the possibilities for further innovative advances. To this end, we outline specific public health roles under the broad categories of assessment, assurance, and policy. We point to advances in public health accomplished by hospitalists as well as those being performed by nonhospitalists in the hospital setting. We conclude by describing some of the barriers to and implications of hospitalists taking on public health roles.

ASSESSMENT

Assessment is the systematic collection, analysis, and dissemination of health status information.10 These activities include disease surveillance and investigation of acute outbreaks or changes in the epidemiology of chronic diseases. Assessment also involves understanding the health of a population and the key determinants of a population's health from a variety of perspectives: physical, biological, behavioral, social, cultural, and spiritual.6 Human health has been defined as a state characterized by anatomic integrity; ability to perform personally valued family work and community roles; ability to deal with physical, biologic, and social stress; a feeling of well‐being; and freedom from the risk of disease and untimely death.6 Hospitalists interact with individuals at times of stress and acute illness and thus have a unique opportunity to assess the strength, viability, and resources available to individuals. Key roles that may fall within the auspices of assessment in hospital medicine are infection control, epidemic recognition, disaster response, preventive care, substance abuse treatment, and chronic disease management.

Infection Control

Physicians caring for inpatients have a crucial stake in controlling hospital infection as exemplified by the work of Flanders et al. on preventing nosocomial infections, especially nosocomial pneumonia.11 They describe specific strategies to prevent iatrogenic spread such as washing hands before and after patient contact, establishing guidelines against the use of artificial fingernails, using indwelling devices such as catheters only when absolutely necessary, and using sterile barriers.11 Hospitalists such as Sanjay Saint have led the way in studying methods to reduce bladder catheterization, which has been associated with urinary tract infections12; others have collaborated on work to prevent infections in nursing homes.13 Given the importance of this field, there is room for further hospitalist involvement. Novel methods for infection control in hospitals have been studied by nonhospitalists such as Wisnivesky, who prospectively validated a clinical decision rule to predict the need for respiratory isolation of inpatients with suspected tuberculosis (TB). This prediction rule, which is based on clinical and chest radiographic findings, was able to accurately identify patients at low risk for TB from among inpatients with suspected active pulmonary TB isolated on admission to the hospital.14 Retrospective application of the prediction rule showed respiratory precautions were inappropriately implemented for a third of patients.14 These studies are examples of empiric public health research performed in the inpatient setting. In the infection control domain, candidate issues for further study could include interventions aimed at reducing rates of Clostridium difficile, developing programs for standardized surveillance of hospital infection, validating electronic markers for nosocomial infection, and taking innovative approaches to improving hand‐washing practices in the hospital.15, 16

Recognizing Epidemics

An excellent example of the importance of hospitalists embracing public health and remembering their patients are part of a community was the severe acute respiratory syndrome (SARS) outbreak in Toronto, Ontario, Canada. The outbreak is thought to have begun with a single traveler. With the transfer of patients and the movement of visitors and health care workers among facilities, SARS quickly spread through Toronto, making it the largest SARS‐affected area outside Asia.17 Approximately a month after the outbreak was recognized in Toronto, it was thought to be over, and the World Health Organization (WHO) removed Toronto from its SARS‐affected list.17 Unfortunately, patients with unrecognized SARS remained in health care institutions, including a patient transferred to a rehabilitation center. Infection quickly spread again, resulting in a second phase of the outbreak.17

The SARS outbreak served as a reminder that a global public health system is essential and taught many lessons17 germane to pandemics that recur annually (eg, influenza viruses) as well those that episodically threaten the health of the population (eg, avian flu). Proposed actions to prevent a repeat of the scenario that occurred with SARS in Toronto include assessing the current facilities (eg, isolation rooms and respiratory masks) at each institution, identifying health care workers willing to serve as an outbreak team, and the hiring staff to train hospital personnel in personal protective equipment (PPE) and infection control policies.18 The Centers for Disease Control and Prevention (CDC) contends that planning for the possibility of a virulent pandemic at the local, national, and global levels is critical to limiting the mortality and morbidity should such occur.19, 20 In a previous article, Pile and Gordon declared hospitalists are key players in institutional efforts to prepare for a viral pandemic such as influenza and should be aware of lessons that may be applied from responses to pandemics such as SARS.19 Well placed to recognize clinical trends that may herald epidemics, hospitalists can fulfill some of the necessary public health responsibilities delineated above.

Disaster Response

Natural disasters and terrorism are in the forefront of the popular press and are also high priorities in health care and public health.21 Terrorism and natural disasters cause significant injury, illness, and death.22 Hospital‐based health care providers fulfill a variety of roles when terrorist acts and disasters occur, including reporting, diagnosing, and managing illness, providing preventive measures (eg, vaccines and preparedness kits), preventing the secondary spread of disease, assisting in the investigation of the causes of disease outbreaks, participating in preparedness planning, and evaluating preparedness policies and programs.22 The experience gained in the aftermaths of Hurricanes Katrina and Rita with their unprecedented death, injury, destruction, and displacement should help to guide future response and recovery activities.23 Hospitalists were at the forefront of delivering care, living in their hospitals for days after Hurricane Katrina. Without question, hospitalists will be called on again to serve those affected by disasters.

Preventive Care

For many patients admitted to the hospital, meeting a hospitalist is their first encounter with a physician in years.24, 25 In these instances, hospitalists must ensure that patients' immunizations are up‐to‐date and arrange appropriate follow‐up care with primary care providers. Greenwald described an important role that hospitalists could play in HIV prevention by promoting HIV testing in the hospital.26 The CDC recently confirmed the wisdom of this approach and estimates that the 250,000 to 1.2 million people in the United States with HIV infection who do not know their serostatus play a significant role in HIV transmission.26, 27 In an effort to promote testing, the CDC has initiated a program aimed at incorporating HIV testing into routine medical care, as recommended by others.28 More than a quarter of patients with HIV in the United States are diagnosed in the hospital, and for many other patients, hospitalization is their only real opportunity to be tested.26, 29 Similarly, when hospitalists find elevated cholesterol or triglycerides in routine evaluations of patients who present with chest pain, they have to decide whether to initiate lipid‐lowering medications.30 The hospitalist is sometimes the only physician that patients repeatedly admitted, may see over prolonged periods. It follows that if hospitalists are remiss in delivering preventive care to such patients, they lose the opportunity to positively affect their long‐term health. In practice, hospitalists perform myriad preventive‐care functions, although there is scant literature supporting this role. Hospitalists have an opportunity to collaborate in research projects of hospital‐initiated preventive care that measure outcomes at the community level.

Substance Abuse

In the Unites States, 25%‐40% of hospital admissions are related to substance abuse and its sequelae.31 These patients frequently are admitted to general medicine services for detoxification or treatment of substance‐abuse‐related morbidity, although some American hospitals have specialized treatment and detoxification centers. There is a pressing need for more models of comprehensive care that address the complex issues of addiction, including the biological, social, cultural, spiritual, and developmental needs of patients.32

Hospitalists routinely counsel their patients with substance abuse problems and often consult a chemical dependency counselor, who provides patients with additional information about outpatient or inpatient facilities that may help them after their hospitalization. Unfortunately, because of the natural history of substance abuse, many of these patients are rehospitalized with the same problems even after going through rehabilitation. The adoption of a public health philosophy and approach by hospitalists may assist patients who have addictions through innovative multidisciplinary interventions while these patient are being detoxified. Traditionally, these responsibilities have fallen to primary care providers and psychologists in substance abuse medicine; but, as mentioned previously, many such patients are rehospitalized before they make it to their follow‐up appointments.

In a study examining smoking cessation practices among Norwegian hospital physicians, 98% of the doctors stated they ask their patients about their smoking habits, but fewer than 7% of these physicians regularly offer smoking‐cessation counseling, hand out materials, or give patients other advice about smoking cessation.33 That study illustrates that hospital doctors often ask about problems but can certainly improve in terms of intervention and follow‐up. Other works by nonhospitalist physicians have examined the real potential of inpatient interventions for smoking cessation. Most of this work involves a multidisciplinary approach that relies heavily on nurses. For example, Davies et al. evaluated the effectiveness of a hospital‐based intervention for smoking cessation among low‐income smokers using public health methodologies. The intervention was effective and promising as a way to affect smokers in underserved communities.34

Chronic Disease Management

Public health roles involving chronic disease management include surveillance, intervention design, and implementation of control programs.6 Given their access to data on hospitalized patients, hospitalists can carry out surveillance and empirical population‐based research about hospitalized patients with chronic illnesses. Thoughtfully designed protocols can measure the success of interventions initiated in patients while hospitalized, with further data collection and follow‐up after patients have returned to the community.35 Such endeavors can improve the likelihood that patients with chronic conditions are effectively referred to programs that will maintain their health and functional status.36 If hospitalists consider themselves public health providers, encounters with these hospitalized patients will go beyond noting that their chronic conditions are stable and instead will lay the groundwork to prospectively control these conditions. This approach would have the potential to reduce the number of future hospitalizations and lead to healthier communities.37 To truly carry this out effectively, coordinated collaboration between primary care providers and hospitalists will be necessary.

ASSURANCE

Assurance is the provision of access to necessary health services. It entails efforts to solve problems that threaten the health of populations and empowers individuals to maintain their own health. This is accomplished by either encouraging action, delegating to other entities (private or public sector), mandating specific requirements through regulation, or providing services directly.10 Hospitalist teams aim to ensure that the high‐quality services needed to protect the health of their community (hospitalized patients) are available and that this population receives proper consideration in the allocation of resources. The few studies to date that have directly examined the quality of care that hospitalists provide38 have done so using evidence‐based measures believed to correlate with improved health care outcomes.38 The ambiguities in assessing quality may in part limit such studies.39 Specific hospitalist roles that fall under the assurance umbrella include antibiotic optimization, palliative care, patient safety, and medical error management.

Antibiotic Optimization

Inappropriate use of antimicrobial treatment for infectious diseases has cost and public health implications.40 These inappropriate uses include giving antibiotics when not indicated, overusing broad‐spectrum antibiotics, making mismatches between microbes and medicines when cultures and information on test sensitivity are available, and using intravenous formulations when oral therapy would suffice.41 The public health impact goes way beyond increasing selective pressure for antimicrobial resistance to include safety, adverse events, and increased costs to both patient and hospitals.40 At our institution, the hospital medicine service and infectious disease division have jointly developed and implemented an intervention to reduce inappropriate antibiotic use. At other institutions, hospitalist teams have developed protocols for treating infectious diseases commonly encountered in the hospitalized patient.42 The recommendations of both Amin and Reddy for management of community‐ and hospital‐acquired pneumonia acknowledged that through establishment of clinical care pathways, variation in prescribing patterns among hospitalists can be decreased while optimizing outcomes.42 The work of Williams and colleagues is another example of advances by hospitalists. They reviewed the literature to determine that the use of combination antibiotics as empiric therapy for community‐acquired pneumonia is superior to the use of a single effective antibiotic in treating bacteremic patients with pneumococcal community‐acquired pneumonia.43

Palliative Care

Mortality is a vital outcome measure of public health research and interventions. Not surprisingly, many people are hospitalized in the final months of their life and often die in a hospital. Pantilat showed that hospitalists can respond to these circumstances and have the opportunity to improve care of the dying.4446 Muir et al. evaluated the convergence of the fields of palliative care medicine and hospital medicine and reviewed the opportunities for mutual education and improved patient care.47 They described how the confluence of the changing nature and site of death in the United States coupled with the reorganization of hospital care provides a strategic opportunity to improve end‐of‐life care.47 Hospitalists can ensure that care of the dying is delivered with skill, compassion, and expertise. And so it is imperative they be trained to accomplish this objective.47, 49

Fortunately, hospitalists already appear to enhance patientphysician communication. Auerbach looked at communication, care patterns, and outcomes of dying patients, comparing patients being cared for by hospitalists with those being care for by community‐based physicians. Hospitalists had discussions with patients or their families about care more often than did nonhospitalist physicians (91% versus 73%, respectively, P = .006).49 Because the delivery of high‐quality palliative care is time consuming and complex, alternative models for billing or the use of physician extenders or consultants may be necessary at some institutions.

Patient Safety and Medical Error Management

Hospitalists have been in the forefront of promoting a culture of patient safety.50 Their continuous presence in the hospital and their interactions with members of health care teams from multiple disciplines who share this goal make them important facilitators. Hospitalists have increasing involvement in systems‐based efforts aimed at reducing medical errors.50 Hospitalists are being asked to lead committees that adopt multidisciplinary approaches to reduce adverse events, morbidity, and mortality.50 These committees often have representation from pharmacy, nursing, and other key hospital stakeholders including from the administration.51 Quality assurance activities assess locally collected data and compare results with local and national benchmarks. There are several published examples of hospitalists engaged in patient safety and medical error management. For example, Shojania et al compiled evidence based safety practices in an effort to promote patient safety.52, 53 Schnipper studied the role of pharmacist counseling in preventing adverse drug events (ADEs) after hospitalization and found that pharmacist medication review, patient counseling, and telephone follow‐up were associated with a lower rate of preventable ADEs 30 days after hospital discharge.54 Moreover, Syed paired hospitalists and pharmacists to collaboratively prescribe medications appropriately. In one study there were fewer medication errors and adverse drug reactions in patients treated by a team led by hospitalists than in those treated by the control group, made up of nonhospitalist attendings.55

POLICY

Policy development defines health control goals and objectives and develops implementation plans for those goals.10 By necessity, it operates at the intersection of legislative, political, and regulatory processes.10 At many institutions, hospitalists have been involved in the development of policies ensuring that the core functions of assessment and assurance are addressed and maintained. In fact, hospitalists report that development of quality assurance and practice guidelines accounts for most of their nonclinical time.56 This role of hospitalists is supported by anecdotal reports rather than published empiric evidence.57 For example, at Johns Hopkins Bayview Medical Center, hospitalist‐led teams have developed triage and patient handoff policies designed to improve patient safety. Parameters for admission to the general medicine ward have been elaborated and are periodically refined by the hospitalist team.

Another area that falls within the genre of policy is development of clinical practice guidelines. Guidelines for the treatment of pneumonia, congestive heart failure, deep‐vein thrombosis prophylaxis, alcohol and drug withdrawal, pain management, delirium, and chronic obstructive pulmonary disease have been developed by nonhospitalists.58, 59 These areas are considered core competencies in hospital medicine, and as such, hospitalists have an obligation to review and refine these guidelines to ensure the best provision of care to our patients.59

Hospitalists have been engaged in upholding guidelines that affect community practice. For example, in a study comparing treatment of patients admitted with congestive heart failure by hospitalists compared with that by nonhospitalists, hospitalists were found to be more likely to document left ventricular function, a core measure of quality as defined by JCAHO.39, 60 Knowledge about cardiac function can direct future care for patients when they return to the community and into the care of their primary care providers. In another example, Rifkin found that patients with community‐acquired pneumonia treated by hospitalists were more rapidly converted to oral antibiotics from intravenous antibiotics, facilitating a shorter length of stay,61 which reduced the opportunity for nosocomial infections to propagate. Because hospitalists are skilled at following guidelines,59 it follows that they should seize the opportunity to develop more of them.

As the hospitalist movement continues to grow, hospitalists will likely be engaged in implementing citywide, statewide, and even national policies that ensure optimal care of the hospitalized patient.

BARRIERS TO HOSPITALISTS FOCUSING ON PUBLIC HEALTH

Hospitalists are involved in public health activities even though they may not recognize the extent of this involvement. However, there may be some drawbacks to hospitalists viewing each patient encounter as an opportunity for a public health intervention. First, in viewing a patient as part of a cohort, the individual needs of the patient may be overlooked. There is inherent tension between population‐based and individual‐based care, which is a challenge. Second, hospitalists are busy clinicians who may be most highly valued because of their focus on efficiency and cost savings in the acute care setting. This factor alone may prevent substantive involvement by hospitalists in public health practice. Moving beyond the management of an acute illness may interfere with this efficiency and cost effectiveness from the hospital's perspective. However, interventions that promote health and prevent or reduce rehospitalizations may be cost effective to society in the long run. Third, current billing systems do not adequately reward or reimburse providers for the extra time that may be necessary to engage in public health practice. Fourth, hospitalists may not have the awareness, interest, training, or commitment to engage in public health practice. Finally, there may not be effective collaboration and communication systems between primary care providers and hospitalists. This barrier limits or hinders many possibilities for the effective execution of several public health initiatives.

CONCLUSIONS AND IMPLICATIONS

Hospitalists and the specialty of hospital medicine materialized because of myriad economic forces and the need to provide safe, high‐quality care to hospitalized patients. In this article we have described the ways in which hospitalists can be explicitly involved in public health practice. Traditionally, physicians caring for hospitalized patients have collected information through histories and physical examinations, interpreted laboratory data and tests, and formulated assessments and plans of care. To become public health practitioners, hospitalists have to go beyond these tasks and consider public health thought processes, such as problem‐solving paradigms and theories of behavior change. In adopting this public health perspective, hospitalists may begin to think of a patient in the context of the larger community in order to define the problems facing the community, not just the patient, determine the magnitude of such problems, identify key stakeholders, create intervention/prevention strategies, set priorities and recommend interventions, and implement and evaluate those interventions. This approach forces providers to move beyond the physicianpatient model and draw on public health models to invoke change. Hopefully, future research will further convince hospitalists of the benefits of this approach. Although it may be easier to defer care and management decisions to an outpatient physician, data suggest that intervening when patients are in the hospital may be most effective.62, 63 For example, is it possible that patients are more likely to quit smoking when they are sick in the hospital than when they are in their usual state of health on a routine visit at their primary care provider's office?64 Further, although deferring care to a primary care provider (PCP) may be easier, it is not always possible given these barriers: (1) some patients are routinely rehospitalized, precluding primary care visits, (2) some recommendations may not be received by PCPs, and (3) PCPpatient encounters are brief and the agendas full, and there are limited resources to address recommendations from the hospital.

As hospitalists become more involved in public health practice, their collaboration with physicians and researchers in other fields, nurses, policymakers, and administrators will expand. Succeeding in this arena requires integrity, motivation, capacity, understanding, knowledge, and experience.65 It is hoped that hospitalists will embrace the opportunity and master the requisite skill set necessary to practice in and advance this field. As hospitalist fellowship programs are developed, public health practice skills could be incorporated into the curriculum. Currently 6 of 16 fellowship programs offer either a master of public health degree or public health courses.66 Public health skills can also be taught at Society of Hospital Medicine meetings and other continuing medical education events.

With the evolution of hospital medicine, hospitalists have to be malleable in order to optimally meet the needs of the population they serve. The possibilities are endless.

The field of hospital medicine came into being in response to numerous factors involving physicians, patients, and hospitals themselves1 Now, years later, hospital medicine is a specialty that is growing, both in size and sophistication such that the role of the hospitalist is constantly evolving.2 A compelling function that has not yet been clearly articulated is the opportunity for hospitalists to serve as public health practitioners in their unique clinical environment. There is precedence for the power of collaboration between medicine and public health as has been seen with emergency medicine's willingness to embrace opportunities to advance public health.35

In public health, the programs, services, and institutions involved emphasize the prevention of disease and the health needs of the population as a whole. Public health activities vary with changing technology and social values, but the goals remain the same: to reduce the amount of disease, premature death, and disease‐associated discomfort and disability in the population.6 The authors of a leading textbook of public health, Scutchfield and Keck, contend that the most important skill for public health practice is the capacity to visualize the potential for health that exists in a community.6

Hospitalists care for a distinct subset of the general populationinpatients, only a small percentage of society in a given year. Yet over time hospitalists affect a substantial subset of the larger population that uses considerable health care resources.79 Furthermore, hospitalization can be a sentinel event with public health implications (eg, newly diagnosed HIV infection or acute myocardial infarction in a patient with an extended family of cigarette smokers). This presents an opportunity to educate and counsel both the patient and the patient's social network. One model of public health practice by hospitalists is to influence the patient, his or her family, and the community by touching and inspiring the hospitalized patient.

Hospitalists are already involved in many of the core functions of public health (assessment, assurance, and policy development; Fig. 1).10 Achieving ongoing success in this arena means developing hospitalists who are consciously in tune with their roles as public health practitioners.

Figure 1
Selected public health roles of hospitalist physicians. The Institute of Medicine (IOM) has delineated the core functions of public health as assessment, assurance, and policy development. Various potential roles are organized around the IOM's defined core public health functions as outlined in the text (*examples of preventive care are HIV testing and initiation of antilipidemic medications in the hospital; †hospitalists could recognize and have an impact on epidemics such as influenza and SARS; ‡roles in the core functions yet to be described).

In this article we define the specific public health contributions that hospitalists have made and describe the possibilities for further innovative advances. To this end, we outline specific public health roles under the broad categories of assessment, assurance, and policy. We point to advances in public health accomplished by hospitalists as well as those being performed by nonhospitalists in the hospital setting. We conclude by describing some of the barriers to and implications of hospitalists taking on public health roles.

ASSESSMENT

Assessment is the systematic collection, analysis, and dissemination of health status information.10 These activities include disease surveillance and investigation of acute outbreaks or changes in the epidemiology of chronic diseases. Assessment also involves understanding the health of a population and the key determinants of a population's health from a variety of perspectives: physical, biological, behavioral, social, cultural, and spiritual.6 Human health has been defined as a state characterized by anatomic integrity; ability to perform personally valued family work and community roles; ability to deal with physical, biologic, and social stress; a feeling of well‐being; and freedom from the risk of disease and untimely death.6 Hospitalists interact with individuals at times of stress and acute illness and thus have a unique opportunity to assess the strength, viability, and resources available to individuals. Key roles that may fall within the auspices of assessment in hospital medicine are infection control, epidemic recognition, disaster response, preventive care, substance abuse treatment, and chronic disease management.

Infection Control

Physicians caring for inpatients have a crucial stake in controlling hospital infection as exemplified by the work of Flanders et al. on preventing nosocomial infections, especially nosocomial pneumonia.11 They describe specific strategies to prevent iatrogenic spread such as washing hands before and after patient contact, establishing guidelines against the use of artificial fingernails, using indwelling devices such as catheters only when absolutely necessary, and using sterile barriers.11 Hospitalists such as Sanjay Saint have led the way in studying methods to reduce bladder catheterization, which has been associated with urinary tract infections12; others have collaborated on work to prevent infections in nursing homes.13 Given the importance of this field, there is room for further hospitalist involvement. Novel methods for infection control in hospitals have been studied by nonhospitalists such as Wisnivesky, who prospectively validated a clinical decision rule to predict the need for respiratory isolation of inpatients with suspected tuberculosis (TB). This prediction rule, which is based on clinical and chest radiographic findings, was able to accurately identify patients at low risk for TB from among inpatients with suspected active pulmonary TB isolated on admission to the hospital.14 Retrospective application of the prediction rule showed respiratory precautions were inappropriately implemented for a third of patients.14 These studies are examples of empiric public health research performed in the inpatient setting. In the infection control domain, candidate issues for further study could include interventions aimed at reducing rates of Clostridium difficile, developing programs for standardized surveillance of hospital infection, validating electronic markers for nosocomial infection, and taking innovative approaches to improving hand‐washing practices in the hospital.15, 16

Recognizing Epidemics

An excellent example of the importance of hospitalists embracing public health and remembering their patients are part of a community was the severe acute respiratory syndrome (SARS) outbreak in Toronto, Ontario, Canada. The outbreak is thought to have begun with a single traveler. With the transfer of patients and the movement of visitors and health care workers among facilities, SARS quickly spread through Toronto, making it the largest SARS‐affected area outside Asia.17 Approximately a month after the outbreak was recognized in Toronto, it was thought to be over, and the World Health Organization (WHO) removed Toronto from its SARS‐affected list.17 Unfortunately, patients with unrecognized SARS remained in health care institutions, including a patient transferred to a rehabilitation center. Infection quickly spread again, resulting in a second phase of the outbreak.17

The SARS outbreak served as a reminder that a global public health system is essential and taught many lessons17 germane to pandemics that recur annually (eg, influenza viruses) as well those that episodically threaten the health of the population (eg, avian flu). Proposed actions to prevent a repeat of the scenario that occurred with SARS in Toronto include assessing the current facilities (eg, isolation rooms and respiratory masks) at each institution, identifying health care workers willing to serve as an outbreak team, and the hiring staff to train hospital personnel in personal protective equipment (PPE) and infection control policies.18 The Centers for Disease Control and Prevention (CDC) contends that planning for the possibility of a virulent pandemic at the local, national, and global levels is critical to limiting the mortality and morbidity should such occur.19, 20 In a previous article, Pile and Gordon declared hospitalists are key players in institutional efforts to prepare for a viral pandemic such as influenza and should be aware of lessons that may be applied from responses to pandemics such as SARS.19 Well placed to recognize clinical trends that may herald epidemics, hospitalists can fulfill some of the necessary public health responsibilities delineated above.

Disaster Response

Natural disasters and terrorism are in the forefront of the popular press and are also high priorities in health care and public health.21 Terrorism and natural disasters cause significant injury, illness, and death.22 Hospital‐based health care providers fulfill a variety of roles when terrorist acts and disasters occur, including reporting, diagnosing, and managing illness, providing preventive measures (eg, vaccines and preparedness kits), preventing the secondary spread of disease, assisting in the investigation of the causes of disease outbreaks, participating in preparedness planning, and evaluating preparedness policies and programs.22 The experience gained in the aftermaths of Hurricanes Katrina and Rita with their unprecedented death, injury, destruction, and displacement should help to guide future response and recovery activities.23 Hospitalists were at the forefront of delivering care, living in their hospitals for days after Hurricane Katrina. Without question, hospitalists will be called on again to serve those affected by disasters.

Preventive Care

For many patients admitted to the hospital, meeting a hospitalist is their first encounter with a physician in years.24, 25 In these instances, hospitalists must ensure that patients' immunizations are up‐to‐date and arrange appropriate follow‐up care with primary care providers. Greenwald described an important role that hospitalists could play in HIV prevention by promoting HIV testing in the hospital.26 The CDC recently confirmed the wisdom of this approach and estimates that the 250,000 to 1.2 million people in the United States with HIV infection who do not know their serostatus play a significant role in HIV transmission.26, 27 In an effort to promote testing, the CDC has initiated a program aimed at incorporating HIV testing into routine medical care, as recommended by others.28 More than a quarter of patients with HIV in the United States are diagnosed in the hospital, and for many other patients, hospitalization is their only real opportunity to be tested.26, 29 Similarly, when hospitalists find elevated cholesterol or triglycerides in routine evaluations of patients who present with chest pain, they have to decide whether to initiate lipid‐lowering medications.30 The hospitalist is sometimes the only physician that patients repeatedly admitted, may see over prolonged periods. It follows that if hospitalists are remiss in delivering preventive care to such patients, they lose the opportunity to positively affect their long‐term health. In practice, hospitalists perform myriad preventive‐care functions, although there is scant literature supporting this role. Hospitalists have an opportunity to collaborate in research projects of hospital‐initiated preventive care that measure outcomes at the community level.

Substance Abuse

In the Unites States, 25%‐40% of hospital admissions are related to substance abuse and its sequelae.31 These patients frequently are admitted to general medicine services for detoxification or treatment of substance‐abuse‐related morbidity, although some American hospitals have specialized treatment and detoxification centers. There is a pressing need for more models of comprehensive care that address the complex issues of addiction, including the biological, social, cultural, spiritual, and developmental needs of patients.32

Hospitalists routinely counsel their patients with substance abuse problems and often consult a chemical dependency counselor, who provides patients with additional information about outpatient or inpatient facilities that may help them after their hospitalization. Unfortunately, because of the natural history of substance abuse, many of these patients are rehospitalized with the same problems even after going through rehabilitation. The adoption of a public health philosophy and approach by hospitalists may assist patients who have addictions through innovative multidisciplinary interventions while these patient are being detoxified. Traditionally, these responsibilities have fallen to primary care providers and psychologists in substance abuse medicine; but, as mentioned previously, many such patients are rehospitalized before they make it to their follow‐up appointments.

In a study examining smoking cessation practices among Norwegian hospital physicians, 98% of the doctors stated they ask their patients about their smoking habits, but fewer than 7% of these physicians regularly offer smoking‐cessation counseling, hand out materials, or give patients other advice about smoking cessation.33 That study illustrates that hospital doctors often ask about problems but can certainly improve in terms of intervention and follow‐up. Other works by nonhospitalist physicians have examined the real potential of inpatient interventions for smoking cessation. Most of this work involves a multidisciplinary approach that relies heavily on nurses. For example, Davies et al. evaluated the effectiveness of a hospital‐based intervention for smoking cessation among low‐income smokers using public health methodologies. The intervention was effective and promising as a way to affect smokers in underserved communities.34

Chronic Disease Management

Public health roles involving chronic disease management include surveillance, intervention design, and implementation of control programs.6 Given their access to data on hospitalized patients, hospitalists can carry out surveillance and empirical population‐based research about hospitalized patients with chronic illnesses. Thoughtfully designed protocols can measure the success of interventions initiated in patients while hospitalized, with further data collection and follow‐up after patients have returned to the community.35 Such endeavors can improve the likelihood that patients with chronic conditions are effectively referred to programs that will maintain their health and functional status.36 If hospitalists consider themselves public health providers, encounters with these hospitalized patients will go beyond noting that their chronic conditions are stable and instead will lay the groundwork to prospectively control these conditions. This approach would have the potential to reduce the number of future hospitalizations and lead to healthier communities.37 To truly carry this out effectively, coordinated collaboration between primary care providers and hospitalists will be necessary.

ASSURANCE

Assurance is the provision of access to necessary health services. It entails efforts to solve problems that threaten the health of populations and empowers individuals to maintain their own health. This is accomplished by either encouraging action, delegating to other entities (private or public sector), mandating specific requirements through regulation, or providing services directly.10 Hospitalist teams aim to ensure that the high‐quality services needed to protect the health of their community (hospitalized patients) are available and that this population receives proper consideration in the allocation of resources. The few studies to date that have directly examined the quality of care that hospitalists provide38 have done so using evidence‐based measures believed to correlate with improved health care outcomes.38 The ambiguities in assessing quality may in part limit such studies.39 Specific hospitalist roles that fall under the assurance umbrella include antibiotic optimization, palliative care, patient safety, and medical error management.

Antibiotic Optimization

Inappropriate use of antimicrobial treatment for infectious diseases has cost and public health implications.40 These inappropriate uses include giving antibiotics when not indicated, overusing broad‐spectrum antibiotics, making mismatches between microbes and medicines when cultures and information on test sensitivity are available, and using intravenous formulations when oral therapy would suffice.41 The public health impact goes way beyond increasing selective pressure for antimicrobial resistance to include safety, adverse events, and increased costs to both patient and hospitals.40 At our institution, the hospital medicine service and infectious disease division have jointly developed and implemented an intervention to reduce inappropriate antibiotic use. At other institutions, hospitalist teams have developed protocols for treating infectious diseases commonly encountered in the hospitalized patient.42 The recommendations of both Amin and Reddy for management of community‐ and hospital‐acquired pneumonia acknowledged that through establishment of clinical care pathways, variation in prescribing patterns among hospitalists can be decreased while optimizing outcomes.42 The work of Williams and colleagues is another example of advances by hospitalists. They reviewed the literature to determine that the use of combination antibiotics as empiric therapy for community‐acquired pneumonia is superior to the use of a single effective antibiotic in treating bacteremic patients with pneumococcal community‐acquired pneumonia.43

Palliative Care

Mortality is a vital outcome measure of public health research and interventions. Not surprisingly, many people are hospitalized in the final months of their life and often die in a hospital. Pantilat showed that hospitalists can respond to these circumstances and have the opportunity to improve care of the dying.4446 Muir et al. evaluated the convergence of the fields of palliative care medicine and hospital medicine and reviewed the opportunities for mutual education and improved patient care.47 They described how the confluence of the changing nature and site of death in the United States coupled with the reorganization of hospital care provides a strategic opportunity to improve end‐of‐life care.47 Hospitalists can ensure that care of the dying is delivered with skill, compassion, and expertise. And so it is imperative they be trained to accomplish this objective.47, 49

Fortunately, hospitalists already appear to enhance patientphysician communication. Auerbach looked at communication, care patterns, and outcomes of dying patients, comparing patients being cared for by hospitalists with those being care for by community‐based physicians. Hospitalists had discussions with patients or their families about care more often than did nonhospitalist physicians (91% versus 73%, respectively, P = .006).49 Because the delivery of high‐quality palliative care is time consuming and complex, alternative models for billing or the use of physician extenders or consultants may be necessary at some institutions.

Patient Safety and Medical Error Management

Hospitalists have been in the forefront of promoting a culture of patient safety.50 Their continuous presence in the hospital and their interactions with members of health care teams from multiple disciplines who share this goal make them important facilitators. Hospitalists have increasing involvement in systems‐based efforts aimed at reducing medical errors.50 Hospitalists are being asked to lead committees that adopt multidisciplinary approaches to reduce adverse events, morbidity, and mortality.50 These committees often have representation from pharmacy, nursing, and other key hospital stakeholders including from the administration.51 Quality assurance activities assess locally collected data and compare results with local and national benchmarks. There are several published examples of hospitalists engaged in patient safety and medical error management. For example, Shojania et al compiled evidence based safety practices in an effort to promote patient safety.52, 53 Schnipper studied the role of pharmacist counseling in preventing adverse drug events (ADEs) after hospitalization and found that pharmacist medication review, patient counseling, and telephone follow‐up were associated with a lower rate of preventable ADEs 30 days after hospital discharge.54 Moreover, Syed paired hospitalists and pharmacists to collaboratively prescribe medications appropriately. In one study there were fewer medication errors and adverse drug reactions in patients treated by a team led by hospitalists than in those treated by the control group, made up of nonhospitalist attendings.55

POLICY

Policy development defines health control goals and objectives and develops implementation plans for those goals.10 By necessity, it operates at the intersection of legislative, political, and regulatory processes.10 At many institutions, hospitalists have been involved in the development of policies ensuring that the core functions of assessment and assurance are addressed and maintained. In fact, hospitalists report that development of quality assurance and practice guidelines accounts for most of their nonclinical time.56 This role of hospitalists is supported by anecdotal reports rather than published empiric evidence.57 For example, at Johns Hopkins Bayview Medical Center, hospitalist‐led teams have developed triage and patient handoff policies designed to improve patient safety. Parameters for admission to the general medicine ward have been elaborated and are periodically refined by the hospitalist team.

Another area that falls within the genre of policy is development of clinical practice guidelines. Guidelines for the treatment of pneumonia, congestive heart failure, deep‐vein thrombosis prophylaxis, alcohol and drug withdrawal, pain management, delirium, and chronic obstructive pulmonary disease have been developed by nonhospitalists.58, 59 These areas are considered core competencies in hospital medicine, and as such, hospitalists have an obligation to review and refine these guidelines to ensure the best provision of care to our patients.59

Hospitalists have been engaged in upholding guidelines that affect community practice. For example, in a study comparing treatment of patients admitted with congestive heart failure by hospitalists compared with that by nonhospitalists, hospitalists were found to be more likely to document left ventricular function, a core measure of quality as defined by JCAHO.39, 60 Knowledge about cardiac function can direct future care for patients when they return to the community and into the care of their primary care providers. In another example, Rifkin found that patients with community‐acquired pneumonia treated by hospitalists were more rapidly converted to oral antibiotics from intravenous antibiotics, facilitating a shorter length of stay,61 which reduced the opportunity for nosocomial infections to propagate. Because hospitalists are skilled at following guidelines,59 it follows that they should seize the opportunity to develop more of them.

As the hospitalist movement continues to grow, hospitalists will likely be engaged in implementing citywide, statewide, and even national policies that ensure optimal care of the hospitalized patient.

BARRIERS TO HOSPITALISTS FOCUSING ON PUBLIC HEALTH

Hospitalists are involved in public health activities even though they may not recognize the extent of this involvement. However, there may be some drawbacks to hospitalists viewing each patient encounter as an opportunity for a public health intervention. First, in viewing a patient as part of a cohort, the individual needs of the patient may be overlooked. There is inherent tension between population‐based and individual‐based care, which is a challenge. Second, hospitalists are busy clinicians who may be most highly valued because of their focus on efficiency and cost savings in the acute care setting. This factor alone may prevent substantive involvement by hospitalists in public health practice. Moving beyond the management of an acute illness may interfere with this efficiency and cost effectiveness from the hospital's perspective. However, interventions that promote health and prevent or reduce rehospitalizations may be cost effective to society in the long run. Third, current billing systems do not adequately reward or reimburse providers for the extra time that may be necessary to engage in public health practice. Fourth, hospitalists may not have the awareness, interest, training, or commitment to engage in public health practice. Finally, there may not be effective collaboration and communication systems between primary care providers and hospitalists. This barrier limits or hinders many possibilities for the effective execution of several public health initiatives.

CONCLUSIONS AND IMPLICATIONS

Hospitalists and the specialty of hospital medicine materialized because of myriad economic forces and the need to provide safe, high‐quality care to hospitalized patients. In this article we have described the ways in which hospitalists can be explicitly involved in public health practice. Traditionally, physicians caring for hospitalized patients have collected information through histories and physical examinations, interpreted laboratory data and tests, and formulated assessments and plans of care. To become public health practitioners, hospitalists have to go beyond these tasks and consider public health thought processes, such as problem‐solving paradigms and theories of behavior change. In adopting this public health perspective, hospitalists may begin to think of a patient in the context of the larger community in order to define the problems facing the community, not just the patient, determine the magnitude of such problems, identify key stakeholders, create intervention/prevention strategies, set priorities and recommend interventions, and implement and evaluate those interventions. This approach forces providers to move beyond the physicianpatient model and draw on public health models to invoke change. Hopefully, future research will further convince hospitalists of the benefits of this approach. Although it may be easier to defer care and management decisions to an outpatient physician, data suggest that intervening when patients are in the hospital may be most effective.62, 63 For example, is it possible that patients are more likely to quit smoking when they are sick in the hospital than when they are in their usual state of health on a routine visit at their primary care provider's office?64 Further, although deferring care to a primary care provider (PCP) may be easier, it is not always possible given these barriers: (1) some patients are routinely rehospitalized, precluding primary care visits, (2) some recommendations may not be received by PCPs, and (3) PCPpatient encounters are brief and the agendas full, and there are limited resources to address recommendations from the hospital.

As hospitalists become more involved in public health practice, their collaboration with physicians and researchers in other fields, nurses, policymakers, and administrators will expand. Succeeding in this arena requires integrity, motivation, capacity, understanding, knowledge, and experience.65 It is hoped that hospitalists will embrace the opportunity and master the requisite skill set necessary to practice in and advance this field. As hospitalist fellowship programs are developed, public health practice skills could be incorporated into the curriculum. Currently 6 of 16 fellowship programs offer either a master of public health degree or public health courses.66 Public health skills can also be taught at Society of Hospital Medicine meetings and other continuing medical education events.

With the evolution of hospital medicine, hospitalists have to be malleable in order to optimally meet the needs of the population they serve. The possibilities are endless.

References
  1. Wachter R,Goldman L.The Hospitalist movement 5 years later.JAMA.2002;287:487494.
  2. Hospitals and Health Networks. Hospitalists: a specialty coming into its own. Available at: http://www.hhmag.com. Accessed February 27,2006.
  3. Pollock D,Lowery D,O'Brien P.Emergency medicine and public health: new steps in old directions.Ann Emerg Med.2001;38:675683.
  4. Bernstein E,Godfrank LRKellermann AL, et al.A public health approach to emergency medicine: preparing for the twenty‐first century.Acad Emerg Med.1994;1:277286.
  5. Clancy CM,Eisenberg JM.Emergency medicine in population‐based systems of care.Ann Emerg Med.1997;30:800803.
  6. Scutchfield D,Keck W.Principles of Public Health Practice.Albany, NY:Delmar Publishing;1997.
  7. Centers for Medicare and Medicaid. Health care spending and growth rate continue to decline in 2004. Available at: http://www.cms.hhs.gov. Accessed October 31,2006.
  8. Cowan C,Catlin A,Smith C, et al.National health expenditures, 2002.Health Care Financ Rev. Summer2004;25:4.
  9. Borger C,Smith S,Truffer C, et al.Health spending Projections Through 2015: Changes on the Horizon.Health Affairs2006;25:w61w73.
  10. Institute of Medicine.Recommendations from the Future of Public Health. InThe Future of the Public's Health.Washington, DC:National Academic Press;2003:411420.
  11. Flanders S,Collard H,Saint S.Nosocomial pneumonia: state of the science.Am J Infect Control.2006;34:8493.
  12. Saint S,Kaufman S,Thompson M,Rogers M,Chenoweth C.A reminder reduces urinary catheterization in hospitalized patients.Jt Comm J Qual Patient Saf.2005;31:455462.
  13. Mody L,Langa K,Saint S,Bradley S.Preventing infections in nursing homes: A survey of infection control practices in southeast Michigan.Am J Infect Control.2005;33:489492.
  14. Wisnivesky J,Henschke C,Balentine J,Willner C.Prospective validation of a prediction model for isolating inpatients with suspected pulmonary tuberculosis.Arch Intern Med.2005;165:453457.
  15. McLaws M,Taylor P.The Hospital Infection Standardised Surveillance (HISS) programme: analysis of a two‐year pilot.J Hosp Infect.2003;53:259267.
  16. Brosette S,Hacek D,Gavin P,Kamdar M.A Laboratory‐Based, Hospital‐Wide, Electronic Marker for Nosocomial Infection.Am J Clin Pathol.2006;125:3439.
  17. Mazzulli T,Kain K,Butany J.Severe acute respiratory syndrome.Arch Pathol Lab Med.2004;128:13461350.
  18. Marshall A,Rachlis A,Chen J.Severe acute respiratory syndrome: responses of the healthcare system to a global epidemic.Curr Opin Otolaryngol Head Neck Surg.2005;13:161164.
  19. Pile C,Gordon S.Pandemic influenza and the hospitalist: apocalypse when?J Hosp Med.2006;1:118123.
  20. Center for Disease Control and Prevention. Pandemic Influenza information for Health Professionals. Available at: http://www.cdc.gov/flu/pandemic/. Accessed October 31,2006.
  21. Rosenbaum S.US health policy in the aftermath of Hurricane Katrina.JAMA.2006;295:43740
  22. Levy B,Sidel V, eds.Terrorism and Public Health.New York:Oxford University Press;2003.
  23. Centers for Disease Control and Prevention (CDC).Public health response to Hurricanes Katrina and Rita—United States 2005.MMWR Morb Mortal Wkly Rep.2006;55:229231.
  24. Kaplan S,Calman N,Golub M,Davis J,Ruddock C,Billings J.Racial and ethnic disparities in health: a view from the South Bronx.J Health Care Poor Underserved.2006;17:116127.
  25. Hewins‐Maroney B,Schumaker A.Williams E. Health Seeking behaviors of African Americans: implications for health administration.J Health Hum Serv Adm.2005;28(1):6895.
  26. Greenwald J.Routine rapid HIV testing in hospitals: another opportunity for hospitalists to improve care.J Hosp Med.2006;1:106112.
  27. Centers for Disease Control and Prevention.Advancing HIV prevention: new strategies for a changing epidemic—United States, 2003.MMWR Morb Mortal Wkly Rep.2003;52:329332.
  28. Paltiel AD,Weinstein MC,Kimmel AD, et al.Expanded screening for HIV in the United States—an analysis of cost‐effectiveness.N Engl J Med.2005;352:586595.
  29. Walensky RP,Losina E,Steger‐Craven KA,Freedberg KA.Identifying undiagnosed human immunodeficiency virus: the yield for routine, voluntary, inpatient testing.Arch Intern Med.2002;162:887892.
  30. Howell E,Scott W,Bush D,Chandra‐Strobos N,Henrikson C.Insufficient treatment of hypercholestrolemia among patients hospitalized with chest pain.Clin Cardiol.2006;29:259262.
  31. Kissen B.Medical management of alcoholic patients. In:Kissen B,Besleiter H, eds.Treatment and Rehabilitation of the Chronic Alcoholic.New York:Plenum Publishing Co.;1997.
  32. Amodia DS,Cano C,Eliason MJ.An integral approach to substance abuse.J Psychoactive Drugs.2005;37:363371.
  33. Bakke PS,Boker T,Diep TT, et al.Smoking cessation practice among Norwegian hospital physicians.Tiddskr Nor laegeforen.2000;120:16291632.
  34. Davies S,Kohler C,Fish L et al.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  35. Coleman EA.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs [review].J Am Geriatr Soc.2003;51:549555.
  36. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  37. Phillips C,Wright S,Kern D,Singa R,Shepperd S,Rubin H.Comprehensive discharge planning with post discharge support for older patients with congestive heart failure.JAMA.2004;291:13581367.
  38. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62:379406.
  39. Lindenauer PK,Chehabeddine R,Pekow P,Fitzgerald J,Benjamin EM,Quality of care for patients hospitalized with heart failure: assessing the impact of hospitalists.Arch Intern Med.2002;162:12511256.
  40. Finch R,Metlay J,Davey P,Baker L.Educational interventions to improve antibiotic use in the community: report from the International Forum on Antibiotic Resistance (IFAR) colloquim, 2002.Lancet Infect Dis.2004;4:4453.
  41. Davey P,Brown E,Fenelon L, et al.Systematic review of antimicrobial drug prescribing in hospitals.Emerg Infect Dis.2006;12:211216.
  42. Amin A,Feinbloom D,Krekun S,Li J,Pak M,Rauch D,Borik A.Recommendations for management of community and hospital acquired pneumonia‐the hospitalist perspective.Curr Opin Pulm Med.2004;10(suppl 1):S23S27.
  43. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  44. Pantilat S.End‐of‐life care for the hospitalized patient.Med Clin N Am.2002;86:749770.
  45. Pantilat SZ,Steimle AE.Palliative care for patients with heart failure.JAMA.2004;291:24762482.
  46. Pantilat SZ,Billings JA.Prevalence and structure of palliative care services in California hospitals.Arch Intern Med.2003;163:10841088.
  47. Muir J,Arnold R.Palliative care and the hospitalist: an opportunity for cross‐fertilization.J Med.2001;111:10S14S.
  48. Meier D.Palliative care in hospitals.J Hosp Med.2006;1:2128.
  49. Auerbach A,Pantilat S.End‐of‐life care in a voluntary hospitalist model: effects on communication, process of care, and patient symptoms.Am J Med.2004;116:669675.
  50. Shojania KG,Wald H,Gross R,Understanding medical error and improving patient safety in the inpatient setting,Med Clin N Am2002;86:847867.
  51. Wachter RM, The hospitalist movement: ten issues to consider, hospital practice. Available at: http://www.hosppract.com/issues/1999/02/wachter.htm. Accessed March 14,2006.
  52. Shojania KG,Duncan BW,McDonald KM,Wachter RM, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 from the Agency for Healthcare Research and Quality: AHRQ Publication No. 01‐E058;2001. Available at: http://www.ahrq.gov/clinic/ptsafety/.
  53. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  54. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  55. Hospitalists, pharmacists partner to cut errors: shorter lengths of stay, lower med costs result. HealthCare Benchmarks and Quality Improvement.American Health Consultants, Inc.,2005.
  56. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130:343349.
  57. Dressler D,Pistoria M,Budnitz T,McKean S,Amin A.Core competencies in hospital medicine: Development and methodology.J Hosp Med.2006;1:4856.
  58. National guideline clearing house. Available at: http://www.guideline.gov. Accessed June 26,2006.
  59. Pistoria M,Amin A,Dressler D,McKean S,Budnitz T, eds.The core competencies in hospital medicine.J Hosp Med.2006;1(suppl 1).
  60. Joint Commission on Accreditation of Healthcare Organizations. Core Measures overview. Available at: http://www.jcaho.org/perfeas/coremeas/cm.ovrvw.html. Accessed February 1,2006.
  61. Rifkin WD,Conner D,Silver A,Eichorn A.,Comparison of processes and outcomes of pneumonia care between hospitalists and community‐based primary care physicians.Mayo Clin Proc.2002;77:10531058.
  62. Chouinard M,Robichaud‐Ekstrand S.The effectiveness of a nursing inpatient smoking cessation program in individuals with cardiovascular disease.Nurs Res.2005;54:243254.
  63. Davis S,Kohler C,Fish L,Taylor B,Foster G,Annang, L.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  64. Wallace‐Bell M.Smoking cessation: the case for hospital‐based interventions.Prof Nurse.2003;19(3):145148..
  65. Waldrop MM. Dee Hock's management principles, in his own words. Fast Company.1996;5:79. Available at: http://www.fastcompany.com/magazine/05/dee2.html.
  66. Ranji S,Rosenman D,Amin A,Kripalani S.Hospital Medicine Fellowships: Works in progress.Am J Med.2006;119(1):72.e1e7.
References
  1. Wachter R,Goldman L.The Hospitalist movement 5 years later.JAMA.2002;287:487494.
  2. Hospitals and Health Networks. Hospitalists: a specialty coming into its own. Available at: http://www.hhmag.com. Accessed February 27,2006.
  3. Pollock D,Lowery D,O'Brien P.Emergency medicine and public health: new steps in old directions.Ann Emerg Med.2001;38:675683.
  4. Bernstein E,Godfrank LRKellermann AL, et al.A public health approach to emergency medicine: preparing for the twenty‐first century.Acad Emerg Med.1994;1:277286.
  5. Clancy CM,Eisenberg JM.Emergency medicine in population‐based systems of care.Ann Emerg Med.1997;30:800803.
  6. Scutchfield D,Keck W.Principles of Public Health Practice.Albany, NY:Delmar Publishing;1997.
  7. Centers for Medicare and Medicaid. Health care spending and growth rate continue to decline in 2004. Available at: http://www.cms.hhs.gov. Accessed October 31,2006.
  8. Cowan C,Catlin A,Smith C, et al.National health expenditures, 2002.Health Care Financ Rev. Summer2004;25:4.
  9. Borger C,Smith S,Truffer C, et al.Health spending Projections Through 2015: Changes on the Horizon.Health Affairs2006;25:w61w73.
  10. Institute of Medicine.Recommendations from the Future of Public Health. InThe Future of the Public's Health.Washington, DC:National Academic Press;2003:411420.
  11. Flanders S,Collard H,Saint S.Nosocomial pneumonia: state of the science.Am J Infect Control.2006;34:8493.
  12. Saint S,Kaufman S,Thompson M,Rogers M,Chenoweth C.A reminder reduces urinary catheterization in hospitalized patients.Jt Comm J Qual Patient Saf.2005;31:455462.
  13. Mody L,Langa K,Saint S,Bradley S.Preventing infections in nursing homes: A survey of infection control practices in southeast Michigan.Am J Infect Control.2005;33:489492.
  14. Wisnivesky J,Henschke C,Balentine J,Willner C.Prospective validation of a prediction model for isolating inpatients with suspected pulmonary tuberculosis.Arch Intern Med.2005;165:453457.
  15. McLaws M,Taylor P.The Hospital Infection Standardised Surveillance (HISS) programme: analysis of a two‐year pilot.J Hosp Infect.2003;53:259267.
  16. Brosette S,Hacek D,Gavin P,Kamdar M.A Laboratory‐Based, Hospital‐Wide, Electronic Marker for Nosocomial Infection.Am J Clin Pathol.2006;125:3439.
  17. Mazzulli T,Kain K,Butany J.Severe acute respiratory syndrome.Arch Pathol Lab Med.2004;128:13461350.
  18. Marshall A,Rachlis A,Chen J.Severe acute respiratory syndrome: responses of the healthcare system to a global epidemic.Curr Opin Otolaryngol Head Neck Surg.2005;13:161164.
  19. Pile C,Gordon S.Pandemic influenza and the hospitalist: apocalypse when?J Hosp Med.2006;1:118123.
  20. Center for Disease Control and Prevention. Pandemic Influenza information for Health Professionals. Available at: http://www.cdc.gov/flu/pandemic/. Accessed October 31,2006.
  21. Rosenbaum S.US health policy in the aftermath of Hurricane Katrina.JAMA.2006;295:43740
  22. Levy B,Sidel V, eds.Terrorism and Public Health.New York:Oxford University Press;2003.
  23. Centers for Disease Control and Prevention (CDC).Public health response to Hurricanes Katrina and Rita—United States 2005.MMWR Morb Mortal Wkly Rep.2006;55:229231.
  24. Kaplan S,Calman N,Golub M,Davis J,Ruddock C,Billings J.Racial and ethnic disparities in health: a view from the South Bronx.J Health Care Poor Underserved.2006;17:116127.
  25. Hewins‐Maroney B,Schumaker A.Williams E. Health Seeking behaviors of African Americans: implications for health administration.J Health Hum Serv Adm.2005;28(1):6895.
  26. Greenwald J.Routine rapid HIV testing in hospitals: another opportunity for hospitalists to improve care.J Hosp Med.2006;1:106112.
  27. Centers for Disease Control and Prevention.Advancing HIV prevention: new strategies for a changing epidemic—United States, 2003.MMWR Morb Mortal Wkly Rep.2003;52:329332.
  28. Paltiel AD,Weinstein MC,Kimmel AD, et al.Expanded screening for HIV in the United States—an analysis of cost‐effectiveness.N Engl J Med.2005;352:586595.
  29. Walensky RP,Losina E,Steger‐Craven KA,Freedberg KA.Identifying undiagnosed human immunodeficiency virus: the yield for routine, voluntary, inpatient testing.Arch Intern Med.2002;162:887892.
  30. Howell E,Scott W,Bush D,Chandra‐Strobos N,Henrikson C.Insufficient treatment of hypercholestrolemia among patients hospitalized with chest pain.Clin Cardiol.2006;29:259262.
  31. Kissen B.Medical management of alcoholic patients. In:Kissen B,Besleiter H, eds.Treatment and Rehabilitation of the Chronic Alcoholic.New York:Plenum Publishing Co.;1997.
  32. Amodia DS,Cano C,Eliason MJ.An integral approach to substance abuse.J Psychoactive Drugs.2005;37:363371.
  33. Bakke PS,Boker T,Diep TT, et al.Smoking cessation practice among Norwegian hospital physicians.Tiddskr Nor laegeforen.2000;120:16291632.
  34. Davies S,Kohler C,Fish L et al.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  35. Coleman EA.Falling through the cracks: challenges and opportunities for improving transitional care for persons with continuous complex care needs [review].J Am Geriatr Soc.2003;51:549555.
  36. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  37. Phillips C,Wright S,Kern D,Singa R,Shepperd S,Rubin H.Comprehensive discharge planning with post discharge support for older patients with congestive heart failure.JAMA.2004;291:13581367.
  38. Coffman J,Rundall TG.The impact of hospitalists on the cost and quality of inpatient care in the United States: a research synthesis.Med Care Res Rev.2005;62:379406.
  39. Lindenauer PK,Chehabeddine R,Pekow P,Fitzgerald J,Benjamin EM,Quality of care for patients hospitalized with heart failure: assessing the impact of hospitalists.Arch Intern Med.2002;162:12511256.
  40. Finch R,Metlay J,Davey P,Baker L.Educational interventions to improve antibiotic use in the community: report from the International Forum on Antibiotic Resistance (IFAR) colloquim, 2002.Lancet Infect Dis.2004;4:4453.
  41. Davey P,Brown E,Fenelon L, et al.Systematic review of antimicrobial drug prescribing in hospitals.Emerg Infect Dis.2006;12:211216.
  42. Amin A,Feinbloom D,Krekun S,Li J,Pak M,Rauch D,Borik A.Recommendations for management of community and hospital acquired pneumonia‐the hospitalist perspective.Curr Opin Pulm Med.2004;10(suppl 1):S23S27.
  43. Williams M,Huddleston J,Whitford K,DiFrancesco L,Wilson M.Advances in hospital medicine: a review of key articles from the literature.Med Clin N Am.2002;86:797823.
  44. Pantilat S.End‐of‐life care for the hospitalized patient.Med Clin N Am.2002;86:749770.
  45. Pantilat SZ,Steimle AE.Palliative care for patients with heart failure.JAMA.2004;291:24762482.
  46. Pantilat SZ,Billings JA.Prevalence and structure of palliative care services in California hospitals.Arch Intern Med.2003;163:10841088.
  47. Muir J,Arnold R.Palliative care and the hospitalist: an opportunity for cross‐fertilization.J Med.2001;111:10S14S.
  48. Meier D.Palliative care in hospitals.J Hosp Med.2006;1:2128.
  49. Auerbach A,Pantilat S.End‐of‐life care in a voluntary hospitalist model: effects on communication, process of care, and patient symptoms.Am J Med.2004;116:669675.
  50. Shojania KG,Wald H,Gross R,Understanding medical error and improving patient safety in the inpatient setting,Med Clin N Am2002;86:847867.
  51. Wachter RM, The hospitalist movement: ten issues to consider, hospital practice. Available at: http://www.hosppract.com/issues/1999/02/wachter.htm. Accessed March 14,2006.
  52. Shojania KG,Duncan BW,McDonald KM,Wachter RM, eds.Making health care safer: a critical analysis of patient safety practices. Evidence Report/Technology Assessment No. 43 from the Agency for Healthcare Research and Quality: AHRQ Publication No. 01‐E058;2001. Available at: http://www.ahrq.gov/clinic/ptsafety/.
  53. Shojania KG,Duncan BW,McDonald KM,Wachter RM.Safe but sound: patient safety meets evidence‐based medicine.JAMA.2002;288:508513.
  54. Schnipper JL,Kirwin JL,Cotugno MC, et al.Role of pharmacist counseling in preventing adverse drug events after hospitalization.Arch Intern Med.2006;166:565571.
  55. Hospitalists, pharmacists partner to cut errors: shorter lengths of stay, lower med costs result. HealthCare Benchmarks and Quality Improvement.American Health Consultants, Inc.,2005.
  56. Lindenauer PK,Pantilat SZ,Katz PP,Wachter RM.Hospitalists and the practice of inpatient medicine: results of a survey of the National Association of Inpatient Physicians.Ann Intern Med.1999;130:343349.
  57. Dressler D,Pistoria M,Budnitz T,McKean S,Amin A.Core competencies in hospital medicine: Development and methodology.J Hosp Med.2006;1:4856.
  58. National guideline clearing house. Available at: http://www.guideline.gov. Accessed June 26,2006.
  59. Pistoria M,Amin A,Dressler D,McKean S,Budnitz T, eds.The core competencies in hospital medicine.J Hosp Med.2006;1(suppl 1).
  60. Joint Commission on Accreditation of Healthcare Organizations. Core Measures overview. Available at: http://www.jcaho.org/perfeas/coremeas/cm.ovrvw.html. Accessed February 1,2006.
  61. Rifkin WD,Conner D,Silver A,Eichorn A.,Comparison of processes and outcomes of pneumonia care between hospitalists and community‐based primary care physicians.Mayo Clin Proc.2002;77:10531058.
  62. Chouinard M,Robichaud‐Ekstrand S.The effectiveness of a nursing inpatient smoking cessation program in individuals with cardiovascular disease.Nurs Res.2005;54:243254.
  63. Davis S,Kohler C,Fish L,Taylor B,Foster G,Annang, L.Evaluation of an intervention for hospitalized African American smokers.Am J Health Behav.2005;29:228239.
  64. Wallace‐Bell M.Smoking cessation: the case for hospital‐based interventions.Prof Nurse.2003;19(3):145148..
  65. Waldrop MM. Dee Hock's management principles, in his own words. Fast Company.1996;5:79. Available at: http://www.fastcompany.com/magazine/05/dee2.html.
  66. Ranji S,Rosenman D,Amin A,Kripalani S.Hospital Medicine Fellowships: Works in progress.Am J Med.2006;119(1):72.e1e7.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
93-101
Page Number
93-101
Article Type
Display Headline
Expanding the roles of hospitalist physicians to include public health
Display Headline
Expanding the roles of hospitalist physicians to include public health
Legacy Keywords
public health, hospital medicine
Legacy Keywords
public health, hospital medicine
Sections
Article Source

Copyright © 2007 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Johns Hopkins Bayview Medical Center, CIMS—Collaborative Inpatient Medicine Service, 4940 Eastern Avenue, Baltimore, MD 21224
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Hospital Reporting of Glomerular Filtration Rate

Article Type
Changed
Sun, 05/28/2017 - 22:40
Display Headline
Reporting of estimated glomerular filtration rate: Effect on physician recognition of chronic kidney disease and prescribing practices for elderly hospitalized patients

Chronic kidney disease is increasingly recognized as a significant public health issue, especially as our population ages. In the United States, it is estimated that 19.2 million individuals have chronic kidney disease (CKD), with an increasing prevalence in the elderly.1 CKD is associated with a higher mortality rate, as well as an increased risk of having several comorbidities, including anemia, coronary artery disease, and congestive heart failure.24 Early recognition, intervention, and management of patients with CKD by physicians has been shown to slow progression of disease and decrease complications.57 In the hospital setting, patients with CKD are at increased risk of medication dosing errors and acute renal failure (ARF).810

Serum creatinine is the most commonly used laboratory marker for assessing renal function. However, creatinine level is an imprecise measure of overall renal function, especially in older patients. The most recent National Kidney Foundation/ Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines recommend laboratory reporting of a calculated estimate of GFR.11 Equations used to calculate estimated GFR in adults, including the Cockcroft‐Gault (C‐G) equation, have been shown to provide an estimate of renal function, which can be used to clinically stratify varying levels of impaired renal function.11 Several studies have demonstrated that recognition of CKD by physicians is low in various clinical settings, especially in elderly patients.1215 Compliance with renal‐dose medication guidelines has also frequently been noted to be poor.16, 17

The investigators conducted a chart review study before and after reporting of estimated GFR to physicians in a hospital setting to assess the effect on physician recognition of CKD, the primary outcome. Secondary outcomes included the effect of reporting GFR on physician prescribing behaviors at the time of hospital discharge, including dosing of renal‐dosed antibiotics and use of nonsteroidal anti‐inflammatory (NSAID) and cyclooxygenase type 2 inhibitor (COX‐2) medications.

METHODS

This study was a retrospective chart review, with a prospective chart review as a comparison. Patients selected were admitted to a general medical floor in a 900‐bed academic medical center over the 2 years from 2002 to 2004. Computerized databases of laboratory values and weights obtained during hospitalization were used to select patients who fulfilled the following criteria: age > 65 years, all creatinine values during hospitalization < 1.6 mg/dL, and calculated estimated creatinine clearance (CrCl) < 60 mL/min using the Cockcroft‐Gault (C‐G) formula. The C‐G equation was developed for estimating CrCl and has also been extensively tested as a predictor of GFR. K/DOQI guidelines identify the C‐G equation as the most frequently used equation to estimate GFR in adults.11 To ensure steady‐state renal function, patients were excluded if creatinine varied by more than 0.4 mg/dL during their hospitalization. Based on an anticipated CKD recognition rate of 24%,13 our study sample size was selected to detect a 13% difference in the primary end point between the pre‐ and postintervention groups with 80% power. The study was approved by the institutional review board of the medical school.

Patient charts were reviewed with data obtained from the medical record, including physician notes, discharge summaries, orders, medication lists, and discharge prescriptions. Physician recognition was defined by documentation of CKD, calculated CrCl, or GFR in the physician notes or discharge summary. Charts were reviewed for diagnosis of hypertension (HTN) or diabetes (DM), and discharge medications including NSAID and COX‐2 medications and use and correct dosing of antibiotics requiring dose adjustment in patients with decreased GFR. Aspirin was not included as an NSAID.

For the prospective chart review portion, patients were selected at the time of admission on the basis of the same criteria. A notification was placed in the chart prominently listing the patient's estimated GFR calculated using the C‐G equation. Also included was a list of the stages of chronic renal disease based on the most recent K/DOQI guidelines11 and recommendations on dosing of select renal‐dosed antibiotics. Patients were again excluded if creatinine varied more than 0.4 mg/dL during their hospitalization.

Data Analysis

For statistical analysis, the association between recognition of CKD and the chart intervention, unadjusted for covariates, was evaluated using a contingency table. Additionally, the associations between recognition of CKD and other patient covariatessex, diabetes, hypertension, estimated GFRwere analyzed both individually and jointly. For individual covariate analysis, Fisher's exact test was used in all tests for association. For joint analysis, a set of relevant covariates was determined by stepwise logistic regression. The association of CKD recognition and the intervention was again analyzed using logistic regression while adjusting for this set of relevant covariates.

Finally, an analysis of appropriate medication prescribing at the time of hospital discharge was carried out to assess the effect of reporting estimated GFR. Prescription of NSAID or COX‐2 medications and correct dosing of renal‐dosed antibiotics at discharge were analyzed separately. As in the exploratory covariate analysis, Fisher's exact test for association was used.

RESULTS

Study Population

Characteristics of the study cohort are summarized in Table 1. The pre‐ and postintervention groups had 260 and 198 patients, respectively. Most were female. Average age, serum creatinine, and estimated GFR were similar in both groups.

Patient Characteristics and Results in Pre‐ and Postintervention Groups
CharacteristicsPreinterventionPostintervention
  • Abbreviations: C‐G, Cockcroft‐Gault equation; CrCl, creatinine clearance; DM, diabetes; HTN, hypertension; NSAID, nonsteroidal anti‐inflammatory medication; COX‐2, cyclooxygenase‐2 inhibitor; CKD, chronic kidney disease.

  • All data presented as number (%) or mean standard deviation.

  • CrCl used as a predictor of estimated glomerular filtration rate (GFR).

  • Numbers in parentheses indicate percentage of the subset of patients discharged on renal‐dosed antibiotic.

Total number260198
Age (years)81.1 6.682 6.8
Sex (female)199 (76.5)168 (84.8)
Serum creatinine (mg/dL)0.98 0.20.9 0.2
C‐G CrCl (mL/min)41.5 10.241.4 9.3
DM58 (22.3)63 (31.8)
HTN190 (73.1)152 (76.7)
Physician recognition of CKD10 (3.9)25 (12.6)
NSAID or COX‐2 prescribed at discharge35 (13.5)21 (10.6)
Antibiotic requiring renal‐dose adjustment prescribed at discharge50 (19.2)29 (14.2)
Correct dosing of renal‐dosed antibiotic at discharge*28 (56.0)18 (62.1)

Effect of Intervention on Recognition of CKD

Table 1 shows the number of patients recognized by physicians as having CKD in both groups. Prior to the study intervention, CKD was recognized in only 10 of 260 patients (3.9%), and following the intervention, rates increased to 25 of 198 patients (12.6%; P .001).

The results of the stepwise logistic regression of the covariates on CKD recognition showed that CKD recognition was modeled best with diabetes and lower estimated GFR. This corresponded well with the results of the individual covariate analyses. Thus, the primary outcome was again modeled by the intervention and the covariates diabetes and lower estimated GFR. With the addition of the covariates, the intervention was still a significant predictor of CKD recognition (P = .001), with an odds ratio of 4.07 (95% CI = (1.83,9.01)).

Effect of Intervention on Medication Prescribed at Hospital Discharge

Table 1 shows the number of patients discharged on NSAID/COX‐2 medications and renal‐dosed antibiotics in both the pre‐ and postintervention groups. Physicians prescribed NSAID/COX‐2 medications in 13.5% of patients preintervention and in 10.6% postintervention (P = .10). Overall, 12% of patients were discharged on a NSAID/COX‐2 medication. Reporting of estimated GFR did not have a significant effect on correct dosing of antibiotics at discharge (P = .81). Overall, 40% of renal‐dosed antibiotics were dosed incorrectly at the time of discharge.

DISCUSSION

This study has confirmed the findings of other investigators that significant CKD is underdiagnosed by physicians, especially in elderly patients with creatinine values within the normal laboratory range.13, 14 Investigators have demonstrated improved documentation of CKD with reporting of creatinine clearance and other simple educational interventions in an outpatient setting.13 In this study, reporting of estimated GFR did result in a significantly higher rate of recognition, but the overall rate was still very low in both groups (3.9%‐12.6%).

Although physician recognition of CKD did increase with the reporting of estimated GFR, this study found no significant impact on prescribing behaviors. Previous studies have shown an association between documentation of specific diagnoses and appropriate physician management.15, 18 However, the current data suggest that simply reporting GFR and increasing physician recognition of CKD may not lead to a significant decrease in medication dosing errors and that more extensive educational measures may be required.

Hospitalist physicians are increasingly serving as the primary caregivers for an aging population of hospitalized patients, and it is imperative that physicians recognize decreased GFR in elderly patients. Clearly, medication dosing errors are occurring in these patients, increasing the risk of adverse drug reactions.19 Elderly patients with renal impairment are also at increased risk of ARF while hospitalized.9, 10 Recognition of CKD by inpatient physicians identifies those patients who require preventive measures including maintenance of adequate hydration and avoidance of hypotension and nephrotoxic agents. Prevention of ARF in these patients has important clinical implications, as the mortality of patients is higher for elderly patients who develop hospital‐acquired ARF than for those presenting with community‐acquired ARF.20 Development of ARF has also been shown to increase length of hospitalization.21 Hospitalist physicians can also use the period of hospitalization as an opportunity to identify patients at risk of progressive CKD and in need of close follow‐up and possible referral to a nephrologist.

This study had several limitations. It was performed at a single institution, and therefore results may not be generalizable to all medical centers. The primary outcome of CKD documentation is an imperfect measure of recognition. The fact that chart documentation of CKD increased following the intervention suggests that documentation is associated with recognition, although it may be an underestimate. The effects of reporting estimated GFR on other secondary outcomes, including dosing of other medications, prevention of ARF, and length of hospital stay were not examined and deserve further investigation. The C‐G equation was chosen to calculate estimated GFR. There may be some advantage to using the Modification of Diet in Renal Disease equation as an alternative, but it is unclear if this is true in elderly female patients, who made up most of our study population.2225 Although using a prediction equation is clearly superior to using creatinine measurement solely to assess renal function in patients, further study is needed to identify the most accurate and effective formula for calculating estimated GFR in elderly patients.

The low rate of recognition of CKD by physicians found in this and other studies demonstrates the strong need for improvement in this area. Low recognition of CKD and a high rate of medication dosing errors despite reporting of the estimated GFR suggest that simply reporting GFR in addition to creatinine level is not sufficient. Further research is indicated to identify pragmatic educational tools and feedback mechanisms that effectively improve inpatient physician recognition of CKD and decrease medication dosing errors in elderly hospitalized patients.

Acknowledgements

The authors thank Christina Bennett for her assistance with data collection and Brian Waterman, MPH, of Waterman Research LLC, St. Louis, Missouri, for his assistance with statistical analyses.

References
  1. Coresh J,Astor BC,Greene T,Eknoyan G,Levey AS.Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey.Am J Kidney Dis.2003;41:112.
  2. Kazmi WH,Kausz AT,Khan S, et al.Anemia: an early complication of chronic renal insufficiencyAm J Kidney Dis.2001;38:803812.
  3. Henry RM,Kostense PJ,Bos G, et al.Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn StudyKidney Int.2002;62:14021407.
  4. Go AS,Chertow GM,Fan D,McCulloch CE,Hsu CY.Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N Engl J Med.2004;351:12961305.
  5. Kinchen KS,Sadler J,Fink N, et al.The timing of specialist evaluation in chronic kidney disease and mortalityAnn Intern Med.2002;137:479486.
  6. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus.The Diabetes Control and Complications Trial Research Group.N Engl J Med.1993;329:977986.
  7. Levey AS,Bosch JP,Lewis JB,Greene T,Rogers N,Roth D.A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.Ann Intern Med.1999;130:461470.
  8. Hu KT,Matayoshi A,Stevenson FT.Calculation of the estimated creatinine clearance in avoiding drug dosing errors in the older patientAm J Med Sci.2001;322:133136.
  9. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part I.Ann Pharmacother.2002;36:12611267.
  10. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part II.Ann Pharmacother.2002;36:14301442.
  11. National Kidney F.K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.Am J Kid Dis.2002;39:S1266.
  12. Wong NA,Jones HW.An analysis of discharge drug prescribing amongst elderly patients with renal impairmentPostgrad Med J.1998;74:420422.
  13. Akbari A,Swedko PJ,Clark HD, et al.Detection of chronic kidney disease with laboratory reporting of estimated glomerular filtration rate and an educational programArch Intern Med.2004;164:17881792.
  14. Duncan L,Heathcote J,Djurdjev O,Levin A.Screening for renal disease using serum creatinine: who are we missing?Nephrol Dial Transplant.2001;16:10421046.
  15. McClellan WM,Knight DF,Karp H,Brown WW.Early detection and treatment of renal disease in hospitalized diabetic and hypertensive patients: important differences between practice and published guidelines.Am J Kidney Dis.1997;29:368375.
  16. Long CL,Raebel MA,Price DW,Magid DJ.Compliance with dosing guidelines in patients with chronic kidney diseaseAnn Pharmacother.2004;38:853858.
  17. Pillans PI,Landsberg PG,Fleming AM,Fanning M,Sturtevant JM.Evaluation of dosage adjustment in patients with renal impairmentIntern Med J.2003;33:1013.
  18. Rogers LQ,Johnson KC,Arheart KL.Current physician screening and treatment of hypercholesterolemic patients.Am J Med Sci.1993;306:124128.
  19. Corsonello A,Pedone C,Corica F,Mussi C,Carbonin P,Antonelli Incalzi R.Concealed renal insufficiency and adverse drug reactions in elderly hospitalized patients.Arch Intern Med.2005;165:790795.
  20. Sesso R,Roque A,Vicioso B,Stella S.Prognosis of ARF in hospitalized elderly patients.Am J Kidney Dis2004;44:410409.
  21. Liano F,Pascual J.Epidemiology of acute renal failure: a prospective, multicenter, community‐based study. Madrid Acute Renal Failure Study Group.Kidney Int.1996;50:811818.
  22. Poggio ED,Wang X,Greene T,Van Lente F,Hall PM.Performance of the modification of diet in renal disease and Cockcroft‐Gault equations in the estimation of GFR in health and in chronic kidney disease.J Am Soc Nephrol.2005;16:459466.
  23. Froissart M,Rossert J,Jacquot C,Paillard M,Houillier P.Predictive performance of the modification of diet in renal disease and Cockcroft‐Gault equations for estimating renal function.J Am Soc Nephrol.2005;16:763773.
  24. Rimon E,Kagansky N,Cojocaru L,Gindin J,Schattner A,Levy S.Can creatinine clearance be accurately predicted by formulae in octogenarian in‐patients?QJM.2004;97:281287.
  25. Lamb EJ,Webb MC,Simpson DE,Coakley AJ,Newman DJ,O'Riordan SE.Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement?J Am Geriatr Soc.2003;51:10121017.
Article PDF
Issue
Journal of Hospital Medicine - 2(2)
Page Number
74-78
Legacy Keywords
medical errors, geriatric patient, drug safety, chronic renal failure
Sections
Article PDF
Article PDF

Chronic kidney disease is increasingly recognized as a significant public health issue, especially as our population ages. In the United States, it is estimated that 19.2 million individuals have chronic kidney disease (CKD), with an increasing prevalence in the elderly.1 CKD is associated with a higher mortality rate, as well as an increased risk of having several comorbidities, including anemia, coronary artery disease, and congestive heart failure.24 Early recognition, intervention, and management of patients with CKD by physicians has been shown to slow progression of disease and decrease complications.57 In the hospital setting, patients with CKD are at increased risk of medication dosing errors and acute renal failure (ARF).810

Serum creatinine is the most commonly used laboratory marker for assessing renal function. However, creatinine level is an imprecise measure of overall renal function, especially in older patients. The most recent National Kidney Foundation/ Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines recommend laboratory reporting of a calculated estimate of GFR.11 Equations used to calculate estimated GFR in adults, including the Cockcroft‐Gault (C‐G) equation, have been shown to provide an estimate of renal function, which can be used to clinically stratify varying levels of impaired renal function.11 Several studies have demonstrated that recognition of CKD by physicians is low in various clinical settings, especially in elderly patients.1215 Compliance with renal‐dose medication guidelines has also frequently been noted to be poor.16, 17

The investigators conducted a chart review study before and after reporting of estimated GFR to physicians in a hospital setting to assess the effect on physician recognition of CKD, the primary outcome. Secondary outcomes included the effect of reporting GFR on physician prescribing behaviors at the time of hospital discharge, including dosing of renal‐dosed antibiotics and use of nonsteroidal anti‐inflammatory (NSAID) and cyclooxygenase type 2 inhibitor (COX‐2) medications.

METHODS

This study was a retrospective chart review, with a prospective chart review as a comparison. Patients selected were admitted to a general medical floor in a 900‐bed academic medical center over the 2 years from 2002 to 2004. Computerized databases of laboratory values and weights obtained during hospitalization were used to select patients who fulfilled the following criteria: age > 65 years, all creatinine values during hospitalization < 1.6 mg/dL, and calculated estimated creatinine clearance (CrCl) < 60 mL/min using the Cockcroft‐Gault (C‐G) formula. The C‐G equation was developed for estimating CrCl and has also been extensively tested as a predictor of GFR. K/DOQI guidelines identify the C‐G equation as the most frequently used equation to estimate GFR in adults.11 To ensure steady‐state renal function, patients were excluded if creatinine varied by more than 0.4 mg/dL during their hospitalization. Based on an anticipated CKD recognition rate of 24%,13 our study sample size was selected to detect a 13% difference in the primary end point between the pre‐ and postintervention groups with 80% power. The study was approved by the institutional review board of the medical school.

Patient charts were reviewed with data obtained from the medical record, including physician notes, discharge summaries, orders, medication lists, and discharge prescriptions. Physician recognition was defined by documentation of CKD, calculated CrCl, or GFR in the physician notes or discharge summary. Charts were reviewed for diagnosis of hypertension (HTN) or diabetes (DM), and discharge medications including NSAID and COX‐2 medications and use and correct dosing of antibiotics requiring dose adjustment in patients with decreased GFR. Aspirin was not included as an NSAID.

For the prospective chart review portion, patients were selected at the time of admission on the basis of the same criteria. A notification was placed in the chart prominently listing the patient's estimated GFR calculated using the C‐G equation. Also included was a list of the stages of chronic renal disease based on the most recent K/DOQI guidelines11 and recommendations on dosing of select renal‐dosed antibiotics. Patients were again excluded if creatinine varied more than 0.4 mg/dL during their hospitalization.

Data Analysis

For statistical analysis, the association between recognition of CKD and the chart intervention, unadjusted for covariates, was evaluated using a contingency table. Additionally, the associations between recognition of CKD and other patient covariatessex, diabetes, hypertension, estimated GFRwere analyzed both individually and jointly. For individual covariate analysis, Fisher's exact test was used in all tests for association. For joint analysis, a set of relevant covariates was determined by stepwise logistic regression. The association of CKD recognition and the intervention was again analyzed using logistic regression while adjusting for this set of relevant covariates.

Finally, an analysis of appropriate medication prescribing at the time of hospital discharge was carried out to assess the effect of reporting estimated GFR. Prescription of NSAID or COX‐2 medications and correct dosing of renal‐dosed antibiotics at discharge were analyzed separately. As in the exploratory covariate analysis, Fisher's exact test for association was used.

RESULTS

Study Population

Characteristics of the study cohort are summarized in Table 1. The pre‐ and postintervention groups had 260 and 198 patients, respectively. Most were female. Average age, serum creatinine, and estimated GFR were similar in both groups.

Patient Characteristics and Results in Pre‐ and Postintervention Groups
CharacteristicsPreinterventionPostintervention
  • Abbreviations: C‐G, Cockcroft‐Gault equation; CrCl, creatinine clearance; DM, diabetes; HTN, hypertension; NSAID, nonsteroidal anti‐inflammatory medication; COX‐2, cyclooxygenase‐2 inhibitor; CKD, chronic kidney disease.

  • All data presented as number (%) or mean standard deviation.

  • CrCl used as a predictor of estimated glomerular filtration rate (GFR).

  • Numbers in parentheses indicate percentage of the subset of patients discharged on renal‐dosed antibiotic.

Total number260198
Age (years)81.1 6.682 6.8
Sex (female)199 (76.5)168 (84.8)
Serum creatinine (mg/dL)0.98 0.20.9 0.2
C‐G CrCl (mL/min)41.5 10.241.4 9.3
DM58 (22.3)63 (31.8)
HTN190 (73.1)152 (76.7)
Physician recognition of CKD10 (3.9)25 (12.6)
NSAID or COX‐2 prescribed at discharge35 (13.5)21 (10.6)
Antibiotic requiring renal‐dose adjustment prescribed at discharge50 (19.2)29 (14.2)
Correct dosing of renal‐dosed antibiotic at discharge*28 (56.0)18 (62.1)

Effect of Intervention on Recognition of CKD

Table 1 shows the number of patients recognized by physicians as having CKD in both groups. Prior to the study intervention, CKD was recognized in only 10 of 260 patients (3.9%), and following the intervention, rates increased to 25 of 198 patients (12.6%; P .001).

The results of the stepwise logistic regression of the covariates on CKD recognition showed that CKD recognition was modeled best with diabetes and lower estimated GFR. This corresponded well with the results of the individual covariate analyses. Thus, the primary outcome was again modeled by the intervention and the covariates diabetes and lower estimated GFR. With the addition of the covariates, the intervention was still a significant predictor of CKD recognition (P = .001), with an odds ratio of 4.07 (95% CI = (1.83,9.01)).

Effect of Intervention on Medication Prescribed at Hospital Discharge

Table 1 shows the number of patients discharged on NSAID/COX‐2 medications and renal‐dosed antibiotics in both the pre‐ and postintervention groups. Physicians prescribed NSAID/COX‐2 medications in 13.5% of patients preintervention and in 10.6% postintervention (P = .10). Overall, 12% of patients were discharged on a NSAID/COX‐2 medication. Reporting of estimated GFR did not have a significant effect on correct dosing of antibiotics at discharge (P = .81). Overall, 40% of renal‐dosed antibiotics were dosed incorrectly at the time of discharge.

DISCUSSION

This study has confirmed the findings of other investigators that significant CKD is underdiagnosed by physicians, especially in elderly patients with creatinine values within the normal laboratory range.13, 14 Investigators have demonstrated improved documentation of CKD with reporting of creatinine clearance and other simple educational interventions in an outpatient setting.13 In this study, reporting of estimated GFR did result in a significantly higher rate of recognition, but the overall rate was still very low in both groups (3.9%‐12.6%).

Although physician recognition of CKD did increase with the reporting of estimated GFR, this study found no significant impact on prescribing behaviors. Previous studies have shown an association between documentation of specific diagnoses and appropriate physician management.15, 18 However, the current data suggest that simply reporting GFR and increasing physician recognition of CKD may not lead to a significant decrease in medication dosing errors and that more extensive educational measures may be required.

Hospitalist physicians are increasingly serving as the primary caregivers for an aging population of hospitalized patients, and it is imperative that physicians recognize decreased GFR in elderly patients. Clearly, medication dosing errors are occurring in these patients, increasing the risk of adverse drug reactions.19 Elderly patients with renal impairment are also at increased risk of ARF while hospitalized.9, 10 Recognition of CKD by inpatient physicians identifies those patients who require preventive measures including maintenance of adequate hydration and avoidance of hypotension and nephrotoxic agents. Prevention of ARF in these patients has important clinical implications, as the mortality of patients is higher for elderly patients who develop hospital‐acquired ARF than for those presenting with community‐acquired ARF.20 Development of ARF has also been shown to increase length of hospitalization.21 Hospitalist physicians can also use the period of hospitalization as an opportunity to identify patients at risk of progressive CKD and in need of close follow‐up and possible referral to a nephrologist.

This study had several limitations. It was performed at a single institution, and therefore results may not be generalizable to all medical centers. The primary outcome of CKD documentation is an imperfect measure of recognition. The fact that chart documentation of CKD increased following the intervention suggests that documentation is associated with recognition, although it may be an underestimate. The effects of reporting estimated GFR on other secondary outcomes, including dosing of other medications, prevention of ARF, and length of hospital stay were not examined and deserve further investigation. The C‐G equation was chosen to calculate estimated GFR. There may be some advantage to using the Modification of Diet in Renal Disease equation as an alternative, but it is unclear if this is true in elderly female patients, who made up most of our study population.2225 Although using a prediction equation is clearly superior to using creatinine measurement solely to assess renal function in patients, further study is needed to identify the most accurate and effective formula for calculating estimated GFR in elderly patients.

The low rate of recognition of CKD by physicians found in this and other studies demonstrates the strong need for improvement in this area. Low recognition of CKD and a high rate of medication dosing errors despite reporting of the estimated GFR suggest that simply reporting GFR in addition to creatinine level is not sufficient. Further research is indicated to identify pragmatic educational tools and feedback mechanisms that effectively improve inpatient physician recognition of CKD and decrease medication dosing errors in elderly hospitalized patients.

Acknowledgements

The authors thank Christina Bennett for her assistance with data collection and Brian Waterman, MPH, of Waterman Research LLC, St. Louis, Missouri, for his assistance with statistical analyses.

Chronic kidney disease is increasingly recognized as a significant public health issue, especially as our population ages. In the United States, it is estimated that 19.2 million individuals have chronic kidney disease (CKD), with an increasing prevalence in the elderly.1 CKD is associated with a higher mortality rate, as well as an increased risk of having several comorbidities, including anemia, coronary artery disease, and congestive heart failure.24 Early recognition, intervention, and management of patients with CKD by physicians has been shown to slow progression of disease and decrease complications.57 In the hospital setting, patients with CKD are at increased risk of medication dosing errors and acute renal failure (ARF).810

Serum creatinine is the most commonly used laboratory marker for assessing renal function. However, creatinine level is an imprecise measure of overall renal function, especially in older patients. The most recent National Kidney Foundation/ Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines recommend laboratory reporting of a calculated estimate of GFR.11 Equations used to calculate estimated GFR in adults, including the Cockcroft‐Gault (C‐G) equation, have been shown to provide an estimate of renal function, which can be used to clinically stratify varying levels of impaired renal function.11 Several studies have demonstrated that recognition of CKD by physicians is low in various clinical settings, especially in elderly patients.1215 Compliance with renal‐dose medication guidelines has also frequently been noted to be poor.16, 17

The investigators conducted a chart review study before and after reporting of estimated GFR to physicians in a hospital setting to assess the effect on physician recognition of CKD, the primary outcome. Secondary outcomes included the effect of reporting GFR on physician prescribing behaviors at the time of hospital discharge, including dosing of renal‐dosed antibiotics and use of nonsteroidal anti‐inflammatory (NSAID) and cyclooxygenase type 2 inhibitor (COX‐2) medications.

METHODS

This study was a retrospective chart review, with a prospective chart review as a comparison. Patients selected were admitted to a general medical floor in a 900‐bed academic medical center over the 2 years from 2002 to 2004. Computerized databases of laboratory values and weights obtained during hospitalization were used to select patients who fulfilled the following criteria: age > 65 years, all creatinine values during hospitalization < 1.6 mg/dL, and calculated estimated creatinine clearance (CrCl) < 60 mL/min using the Cockcroft‐Gault (C‐G) formula. The C‐G equation was developed for estimating CrCl and has also been extensively tested as a predictor of GFR. K/DOQI guidelines identify the C‐G equation as the most frequently used equation to estimate GFR in adults.11 To ensure steady‐state renal function, patients were excluded if creatinine varied by more than 0.4 mg/dL during their hospitalization. Based on an anticipated CKD recognition rate of 24%,13 our study sample size was selected to detect a 13% difference in the primary end point between the pre‐ and postintervention groups with 80% power. The study was approved by the institutional review board of the medical school.

Patient charts were reviewed with data obtained from the medical record, including physician notes, discharge summaries, orders, medication lists, and discharge prescriptions. Physician recognition was defined by documentation of CKD, calculated CrCl, or GFR in the physician notes or discharge summary. Charts were reviewed for diagnosis of hypertension (HTN) or diabetes (DM), and discharge medications including NSAID and COX‐2 medications and use and correct dosing of antibiotics requiring dose adjustment in patients with decreased GFR. Aspirin was not included as an NSAID.

For the prospective chart review portion, patients were selected at the time of admission on the basis of the same criteria. A notification was placed in the chart prominently listing the patient's estimated GFR calculated using the C‐G equation. Also included was a list of the stages of chronic renal disease based on the most recent K/DOQI guidelines11 and recommendations on dosing of select renal‐dosed antibiotics. Patients were again excluded if creatinine varied more than 0.4 mg/dL during their hospitalization.

Data Analysis

For statistical analysis, the association between recognition of CKD and the chart intervention, unadjusted for covariates, was evaluated using a contingency table. Additionally, the associations between recognition of CKD and other patient covariatessex, diabetes, hypertension, estimated GFRwere analyzed both individually and jointly. For individual covariate analysis, Fisher's exact test was used in all tests for association. For joint analysis, a set of relevant covariates was determined by stepwise logistic regression. The association of CKD recognition and the intervention was again analyzed using logistic regression while adjusting for this set of relevant covariates.

Finally, an analysis of appropriate medication prescribing at the time of hospital discharge was carried out to assess the effect of reporting estimated GFR. Prescription of NSAID or COX‐2 medications and correct dosing of renal‐dosed antibiotics at discharge were analyzed separately. As in the exploratory covariate analysis, Fisher's exact test for association was used.

RESULTS

Study Population

Characteristics of the study cohort are summarized in Table 1. The pre‐ and postintervention groups had 260 and 198 patients, respectively. Most were female. Average age, serum creatinine, and estimated GFR were similar in both groups.

Patient Characteristics and Results in Pre‐ and Postintervention Groups
CharacteristicsPreinterventionPostintervention
  • Abbreviations: C‐G, Cockcroft‐Gault equation; CrCl, creatinine clearance; DM, diabetes; HTN, hypertension; NSAID, nonsteroidal anti‐inflammatory medication; COX‐2, cyclooxygenase‐2 inhibitor; CKD, chronic kidney disease.

  • All data presented as number (%) or mean standard deviation.

  • CrCl used as a predictor of estimated glomerular filtration rate (GFR).

  • Numbers in parentheses indicate percentage of the subset of patients discharged on renal‐dosed antibiotic.

Total number260198
Age (years)81.1 6.682 6.8
Sex (female)199 (76.5)168 (84.8)
Serum creatinine (mg/dL)0.98 0.20.9 0.2
C‐G CrCl (mL/min)41.5 10.241.4 9.3
DM58 (22.3)63 (31.8)
HTN190 (73.1)152 (76.7)
Physician recognition of CKD10 (3.9)25 (12.6)
NSAID or COX‐2 prescribed at discharge35 (13.5)21 (10.6)
Antibiotic requiring renal‐dose adjustment prescribed at discharge50 (19.2)29 (14.2)
Correct dosing of renal‐dosed antibiotic at discharge*28 (56.0)18 (62.1)

Effect of Intervention on Recognition of CKD

Table 1 shows the number of patients recognized by physicians as having CKD in both groups. Prior to the study intervention, CKD was recognized in only 10 of 260 patients (3.9%), and following the intervention, rates increased to 25 of 198 patients (12.6%; P .001).

The results of the stepwise logistic regression of the covariates on CKD recognition showed that CKD recognition was modeled best with diabetes and lower estimated GFR. This corresponded well with the results of the individual covariate analyses. Thus, the primary outcome was again modeled by the intervention and the covariates diabetes and lower estimated GFR. With the addition of the covariates, the intervention was still a significant predictor of CKD recognition (P = .001), with an odds ratio of 4.07 (95% CI = (1.83,9.01)).

Effect of Intervention on Medication Prescribed at Hospital Discharge

Table 1 shows the number of patients discharged on NSAID/COX‐2 medications and renal‐dosed antibiotics in both the pre‐ and postintervention groups. Physicians prescribed NSAID/COX‐2 medications in 13.5% of patients preintervention and in 10.6% postintervention (P = .10). Overall, 12% of patients were discharged on a NSAID/COX‐2 medication. Reporting of estimated GFR did not have a significant effect on correct dosing of antibiotics at discharge (P = .81). Overall, 40% of renal‐dosed antibiotics were dosed incorrectly at the time of discharge.

DISCUSSION

This study has confirmed the findings of other investigators that significant CKD is underdiagnosed by physicians, especially in elderly patients with creatinine values within the normal laboratory range.13, 14 Investigators have demonstrated improved documentation of CKD with reporting of creatinine clearance and other simple educational interventions in an outpatient setting.13 In this study, reporting of estimated GFR did result in a significantly higher rate of recognition, but the overall rate was still very low in both groups (3.9%‐12.6%).

Although physician recognition of CKD did increase with the reporting of estimated GFR, this study found no significant impact on prescribing behaviors. Previous studies have shown an association between documentation of specific diagnoses and appropriate physician management.15, 18 However, the current data suggest that simply reporting GFR and increasing physician recognition of CKD may not lead to a significant decrease in medication dosing errors and that more extensive educational measures may be required.

Hospitalist physicians are increasingly serving as the primary caregivers for an aging population of hospitalized patients, and it is imperative that physicians recognize decreased GFR in elderly patients. Clearly, medication dosing errors are occurring in these patients, increasing the risk of adverse drug reactions.19 Elderly patients with renal impairment are also at increased risk of ARF while hospitalized.9, 10 Recognition of CKD by inpatient physicians identifies those patients who require preventive measures including maintenance of adequate hydration and avoidance of hypotension and nephrotoxic agents. Prevention of ARF in these patients has important clinical implications, as the mortality of patients is higher for elderly patients who develop hospital‐acquired ARF than for those presenting with community‐acquired ARF.20 Development of ARF has also been shown to increase length of hospitalization.21 Hospitalist physicians can also use the period of hospitalization as an opportunity to identify patients at risk of progressive CKD and in need of close follow‐up and possible referral to a nephrologist.

This study had several limitations. It was performed at a single institution, and therefore results may not be generalizable to all medical centers. The primary outcome of CKD documentation is an imperfect measure of recognition. The fact that chart documentation of CKD increased following the intervention suggests that documentation is associated with recognition, although it may be an underestimate. The effects of reporting estimated GFR on other secondary outcomes, including dosing of other medications, prevention of ARF, and length of hospital stay were not examined and deserve further investigation. The C‐G equation was chosen to calculate estimated GFR. There may be some advantage to using the Modification of Diet in Renal Disease equation as an alternative, but it is unclear if this is true in elderly female patients, who made up most of our study population.2225 Although using a prediction equation is clearly superior to using creatinine measurement solely to assess renal function in patients, further study is needed to identify the most accurate and effective formula for calculating estimated GFR in elderly patients.

The low rate of recognition of CKD by physicians found in this and other studies demonstrates the strong need for improvement in this area. Low recognition of CKD and a high rate of medication dosing errors despite reporting of the estimated GFR suggest that simply reporting GFR in addition to creatinine level is not sufficient. Further research is indicated to identify pragmatic educational tools and feedback mechanisms that effectively improve inpatient physician recognition of CKD and decrease medication dosing errors in elderly hospitalized patients.

Acknowledgements

The authors thank Christina Bennett for her assistance with data collection and Brian Waterman, MPH, of Waterman Research LLC, St. Louis, Missouri, for his assistance with statistical analyses.

References
  1. Coresh J,Astor BC,Greene T,Eknoyan G,Levey AS.Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey.Am J Kidney Dis.2003;41:112.
  2. Kazmi WH,Kausz AT,Khan S, et al.Anemia: an early complication of chronic renal insufficiencyAm J Kidney Dis.2001;38:803812.
  3. Henry RM,Kostense PJ,Bos G, et al.Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn StudyKidney Int.2002;62:14021407.
  4. Go AS,Chertow GM,Fan D,McCulloch CE,Hsu CY.Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N Engl J Med.2004;351:12961305.
  5. Kinchen KS,Sadler J,Fink N, et al.The timing of specialist evaluation in chronic kidney disease and mortalityAnn Intern Med.2002;137:479486.
  6. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus.The Diabetes Control and Complications Trial Research Group.N Engl J Med.1993;329:977986.
  7. Levey AS,Bosch JP,Lewis JB,Greene T,Rogers N,Roth D.A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.Ann Intern Med.1999;130:461470.
  8. Hu KT,Matayoshi A,Stevenson FT.Calculation of the estimated creatinine clearance in avoiding drug dosing errors in the older patientAm J Med Sci.2001;322:133136.
  9. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part I.Ann Pharmacother.2002;36:12611267.
  10. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part II.Ann Pharmacother.2002;36:14301442.
  11. National Kidney F.K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.Am J Kid Dis.2002;39:S1266.
  12. Wong NA,Jones HW.An analysis of discharge drug prescribing amongst elderly patients with renal impairmentPostgrad Med J.1998;74:420422.
  13. Akbari A,Swedko PJ,Clark HD, et al.Detection of chronic kidney disease with laboratory reporting of estimated glomerular filtration rate and an educational programArch Intern Med.2004;164:17881792.
  14. Duncan L,Heathcote J,Djurdjev O,Levin A.Screening for renal disease using serum creatinine: who are we missing?Nephrol Dial Transplant.2001;16:10421046.
  15. McClellan WM,Knight DF,Karp H,Brown WW.Early detection and treatment of renal disease in hospitalized diabetic and hypertensive patients: important differences between practice and published guidelines.Am J Kidney Dis.1997;29:368375.
  16. Long CL,Raebel MA,Price DW,Magid DJ.Compliance with dosing guidelines in patients with chronic kidney diseaseAnn Pharmacother.2004;38:853858.
  17. Pillans PI,Landsberg PG,Fleming AM,Fanning M,Sturtevant JM.Evaluation of dosage adjustment in patients with renal impairmentIntern Med J.2003;33:1013.
  18. Rogers LQ,Johnson KC,Arheart KL.Current physician screening and treatment of hypercholesterolemic patients.Am J Med Sci.1993;306:124128.
  19. Corsonello A,Pedone C,Corica F,Mussi C,Carbonin P,Antonelli Incalzi R.Concealed renal insufficiency and adverse drug reactions in elderly hospitalized patients.Arch Intern Med.2005;165:790795.
  20. Sesso R,Roque A,Vicioso B,Stella S.Prognosis of ARF in hospitalized elderly patients.Am J Kidney Dis2004;44:410409.
  21. Liano F,Pascual J.Epidemiology of acute renal failure: a prospective, multicenter, community‐based study. Madrid Acute Renal Failure Study Group.Kidney Int.1996;50:811818.
  22. Poggio ED,Wang X,Greene T,Van Lente F,Hall PM.Performance of the modification of diet in renal disease and Cockcroft‐Gault equations in the estimation of GFR in health and in chronic kidney disease.J Am Soc Nephrol.2005;16:459466.
  23. Froissart M,Rossert J,Jacquot C,Paillard M,Houillier P.Predictive performance of the modification of diet in renal disease and Cockcroft‐Gault equations for estimating renal function.J Am Soc Nephrol.2005;16:763773.
  24. Rimon E,Kagansky N,Cojocaru L,Gindin J,Schattner A,Levy S.Can creatinine clearance be accurately predicted by formulae in octogenarian in‐patients?QJM.2004;97:281287.
  25. Lamb EJ,Webb MC,Simpson DE,Coakley AJ,Newman DJ,O'Riordan SE.Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement?J Am Geriatr Soc.2003;51:10121017.
References
  1. Coresh J,Astor BC,Greene T,Eknoyan G,Levey AS.Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey.Am J Kidney Dis.2003;41:112.
  2. Kazmi WH,Kausz AT,Khan S, et al.Anemia: an early complication of chronic renal insufficiencyAm J Kidney Dis.2001;38:803812.
  3. Henry RM,Kostense PJ,Bos G, et al.Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn StudyKidney Int.2002;62:14021407.
  4. Go AS,Chertow GM,Fan D,McCulloch CE,Hsu CY.Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.N Engl J Med.2004;351:12961305.
  5. Kinchen KS,Sadler J,Fink N, et al.The timing of specialist evaluation in chronic kidney disease and mortalityAnn Intern Med.2002;137:479486.
  6. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus.The Diabetes Control and Complications Trial Research Group.N Engl J Med.1993;329:977986.
  7. Levey AS,Bosch JP,Lewis JB,Greene T,Rogers N,Roth D.A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.Ann Intern Med.1999;130:461470.
  8. Hu KT,Matayoshi A,Stevenson FT.Calculation of the estimated creatinine clearance in avoiding drug dosing errors in the older patientAm J Med Sci.2001;322:133136.
  9. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part I.Ann Pharmacother.2002;36:12611267.
  10. Pruchnicki MC,Dasta JF.Acute renal failure in hospitalized patients: part II.Ann Pharmacother.2002;36:14301442.
  11. National Kidney F.K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.Am J Kid Dis.2002;39:S1266.
  12. Wong NA,Jones HW.An analysis of discharge drug prescribing amongst elderly patients with renal impairmentPostgrad Med J.1998;74:420422.
  13. Akbari A,Swedko PJ,Clark HD, et al.Detection of chronic kidney disease with laboratory reporting of estimated glomerular filtration rate and an educational programArch Intern Med.2004;164:17881792.
  14. Duncan L,Heathcote J,Djurdjev O,Levin A.Screening for renal disease using serum creatinine: who are we missing?Nephrol Dial Transplant.2001;16:10421046.
  15. McClellan WM,Knight DF,Karp H,Brown WW.Early detection and treatment of renal disease in hospitalized diabetic and hypertensive patients: important differences between practice and published guidelines.Am J Kidney Dis.1997;29:368375.
  16. Long CL,Raebel MA,Price DW,Magid DJ.Compliance with dosing guidelines in patients with chronic kidney diseaseAnn Pharmacother.2004;38:853858.
  17. Pillans PI,Landsberg PG,Fleming AM,Fanning M,Sturtevant JM.Evaluation of dosage adjustment in patients with renal impairmentIntern Med J.2003;33:1013.
  18. Rogers LQ,Johnson KC,Arheart KL.Current physician screening and treatment of hypercholesterolemic patients.Am J Med Sci.1993;306:124128.
  19. Corsonello A,Pedone C,Corica F,Mussi C,Carbonin P,Antonelli Incalzi R.Concealed renal insufficiency and adverse drug reactions in elderly hospitalized patients.Arch Intern Med.2005;165:790795.
  20. Sesso R,Roque A,Vicioso B,Stella S.Prognosis of ARF in hospitalized elderly patients.Am J Kidney Dis2004;44:410409.
  21. Liano F,Pascual J.Epidemiology of acute renal failure: a prospective, multicenter, community‐based study. Madrid Acute Renal Failure Study Group.Kidney Int.1996;50:811818.
  22. Poggio ED,Wang X,Greene T,Van Lente F,Hall PM.Performance of the modification of diet in renal disease and Cockcroft‐Gault equations in the estimation of GFR in health and in chronic kidney disease.J Am Soc Nephrol.2005;16:459466.
  23. Froissart M,Rossert J,Jacquot C,Paillard M,Houillier P.Predictive performance of the modification of diet in renal disease and Cockcroft‐Gault equations for estimating renal function.J Am Soc Nephrol.2005;16:763773.
  24. Rimon E,Kagansky N,Cojocaru L,Gindin J,Schattner A,Levy S.Can creatinine clearance be accurately predicted by formulae in octogenarian in‐patients?QJM.2004;97:281287.
  25. Lamb EJ,Webb MC,Simpson DE,Coakley AJ,Newman DJ,O'Riordan SE.Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement?J Am Geriatr Soc.2003;51:10121017.
Issue
Journal of Hospital Medicine - 2(2)
Issue
Journal of Hospital Medicine - 2(2)
Page Number
74-78
Page Number
74-78
Article Type
Display Headline
Reporting of estimated glomerular filtration rate: Effect on physician recognition of chronic kidney disease and prescribing practices for elderly hospitalized patients
Display Headline
Reporting of estimated glomerular filtration rate: Effect on physician recognition of chronic kidney disease and prescribing practices for elderly hospitalized patients
Legacy Keywords
medical errors, geriatric patient, drug safety, chronic renal failure
Legacy Keywords
medical errors, geriatric patient, drug safety, chronic renal failure
Sections
Article Source

Copyright © 2007 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
University of California, San Diego, 200 W. Arbor Drive, #8485, San Diego, CA 92103‐8485; Fax (619) 543‐8255
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media

Dr. Smith Goes to Washington

Article Type
Changed
Fri, 09/14/2018 - 12:38
Display Headline
Dr. Smith Goes to Washington

Representing hospital medicine on Capitol Hill is an opportunity for physicians to educate policy makers and have a hand in the legislative process. Hospitalists who have had such experiences say that it can also be nerve wracking, eye opening, surprising, and very satisfying.

Rifkin Answers a Call to Arms

William Rifkin, MD, assistant professor of medicine and associate director of the Yale Primary Care Residency Program at the Yale University School of Medicine, New Haven, Conn., started his road to Capitol Hill by answering an SHM call to arms. “SHM was looking for someone in Connecticut to appear before the state Health Committee regarding proposed legislation that sought to regulate communications between hospitalists and primary care physicians,” says Dr. Rifkin, who was also asked to address the issue of whether the use of hospitalists should be mandatory or voluntary.

The call originally came from the Connecticut Medical Society, which—along with SHM—helped prepare Dr. Rifkin for his testimony. These groups’ public policy staffs coached him about his audience, the hearing process, and the key issues. They agreed his approach would be educational and informative in nature. He would explain what “hospital medicine is, the advantages and disadvantages, what is happening now in the field, and the issues being addressed by SHM,” he recalls. “I gave the committee members lots of literature and background information.”

Dr. Rifkin had some challenges to overcome in getting his message across to the legislators. “There is no data showing that lack of communication between hospitalists and community physicians has caused serious problems,” he explains. “I had to explain the difference between factual data and anecdotal information.”

Additionally, he recalls, one legislator seemed skeptical about the hospitalist’s role and kept referring to a health system that mandates the use of hospitalists. “I had to sit back and explain how SHM supports a voluntary model,” he says. “She kept talking about a reported example of a hospital that forced patients to use hospitalists. It was awkward because I suspected that the story was untrue or at least was missing some facts.”

By calmly relating SHM’s position and its reasons for preferring a voluntary model, Dr. Rifkin believes he was able to diffuse some of the tension. After the hearing, he approached the legislator and handed her the literature and statements from SHM. “I offered to stay in touch and suggested we find out about this hospital supposedly mandating hospitalists,” he says “Ultimately, I discovered that this story wasn’t true.”

Making a good impression can help legislators see physicians as colleagues rather than adversaries. “After the hearing, the committee sent the communications bill to the Connecticut Department of Public Health Best Practices Committee. This body was charged with making recommendations on communications best practices,” says Dr. Rifkin, who was asked to talk before this group. In fact, he adds, “They’ve asked me back repeatedly. I’m sort of a regular on the committee now.”

He is honored to have input and to present the hospitalist’s point of view. “Their recommendations likely will be similar to what SHM says regarding inpatient/outpatient communication,” he explains.

In retrospect, Dr. Rifkin believes he made a difference. “I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before,” he says. “I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.”

When it comes to presenting testimony, Dr. Rifkin suggests, “it is best to acknowledge where legislators are right and use this as an opportunity for education. You don’t want to come across as dogmatic.”

 

 

While Dr. Rifkin enjoyed his experience, it was not without some surprises. He explains, “I left shaking my head and marveling, ‘Is this really how laws are made?’ ” He was surprised “about the lack of knowledge about the issues and the willingness to act on anecdotal information.”

Reporting back to SHM, Dr. Rifkin says, “It was good that I was there because—absent that—we could have ended up with some onerous rule that we then would have to undo.”

Another surprise for Dr. Rifkin was how long and tedious the process could be. “I was one of the last speakers on the agenda, and I did lots of waiting,” he states, adding, “If I had been nervous, it would have been a torturous eight hours.” Once he was in front of the microphone, Dr. Rifkin had just a few minutes to get his points across. He then answered questions for several additional minutes. “I had to watch the clock, and it was a little nerve-wracking to try to say everything I wanted to in a short time. But for the most part, it was actually enjoyable,” he offers.

Being active in advocacy efforts is a valuable, satisfying experience, and Dr. Rifkin urges his colleagues to carry the gauntlet. “We need to watch for opportunities to have input on legislation nationally and statewide. Hopefully, we’ll be able to have the same impact we had in Connecticut in other states as well,” he says. “Physicians need to be willing to get involved.”

I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before. I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.

—William Rifkin, MD, assistant professor of medicine and associate director, Yale Primary Care Residency Program, Yale University School of Medicine, New Haven, Conn.

Feinbloom: Testimony on the Fly

David Feinbloom, MD, a hospitalist at Beth Israel Deaconess Medical Center in Boston, had only two hours to prepare for his testimony about computerized physician order entry before the Massachusetts State Joint Committees on Health Care Financing and Economic Development and Emerging Technologies. “They wanted a clinician to explain how this system would improve quality and result in cost-saving,” he says.

Despite his lack of preparation time, he was familiar enough with the subject to speak in detail and answer questions. “I was a little nervous,” he admits, adding, “I would have preferred to have time to prepare a formal presentation, especially since I ended up having to write something up afterward for the official records.”

Dr. Feinbloom was one of the last speakers, and this had some disadvantages. First of all, he had to wait for hours. Additionally, “Many of the points I wanted to make already had been addressed. I didn’t get a lot of questions because there wasn’t much left to ask,” he explains.

The biggest surprise for Dr. Feinbloom was that the legislative process “is a little more mundane than I expected. It’s not like when you watch the news, and they have rousing, heated discussions.”

Also surprising was how receptive the committee members were about the issue. “Because part of the funding was coming from Blue Cross/Blue Shield, there wasn’t even any real controversy or debate from a budgetary standpoint,” he says. “There also was a big study showing that the system will pay for itself.”

Like Dr. Rifkin, Dr. Feinbloom believes his testimony had a positive effect. “I think that I brought to bear a realistic, ground-level view. I also brought some clinical examples of where this system is powerful, and I don’t think people realized this,” he says. “One of the senators had diabetes and told me he was surprised about how messy drug delivery in the hospital can be and how computerized systems can help. My examples stuck in his head as something he could relate to.”

 

 

Testimony Tips from a Veteran Speaker

Dr. Rifkin suggests several keys to presenting testimony that is effective in a way that is stress-free and results in a positive outcome and an enjoyable experience:

  • Look at yourself as a source of information. Be prepared to be an educator and answer questions about who you are and what you do;
  • Remember that the hearing is not a debate. Be friendly and reasonable; don’t portray the issues as all black and white. Don’t get drawn into arguments;
  • Give legislators take-home materials—a packet or a fact sheet. Include a strong summary up front, and follow up after the hearing with something that reminds legislators and their staff members about what you said;
  • Try to make a connection for follow-up and work on future issues. Position yourself as a source of ongoing information; and
  • Present yourself as an informed, concerned physician with no hidden agenda or ulterior motive.—JK

Seymann: Another Kind of Testimony

Hospitalists don’t have to present testimony before a governmental body to have a positive effect on legislation and make a strong impression on lawmakers. Ask Gregory Seymann, MD, associate clinical professor, Division of Hospital Medicine, Department of Medicine, University of California San Diego School of Medicine. While in Washington, D.C., for the 2006 SHM Annual Meeting, he visited his House and Senate representatives.

“Our goal was to educate lawmakers about hospitalists—who we are and what we do—not to ask for favors or handouts,” explains Dr. Seymann. “Several of us went as a group to our senator’s office, and it was a rather short visit. We met with a staff person, who listened briefly and took our materials but asked few questions.”

When he went alone to his House representative, Susan Davis’ (D-CA) office, Dr. Seymann had a much different experience. The representative’s staff was extremely welcoming. “They told me that she was still in session marking up a bill, but that she really wanted to meet me,” he recalls. “They asked me if I could wait; and eventually they took me over to another building to meet her.”

Dr. Seymann’s House representative met with him for half an hour. “She was very pleasant, and I felt comfortable talking with her. I just gave her the basics of who we [hospitalists] are and what we do. She admitted that she didn’t know much about hospitalists and seemed interested in what I had to say,” he says. Davis asked several questions, Dr. Seymann notes. “She mostly wanted to know about how our practice differs from general internists and the difference between hospital and outpatient-based medicine,” he recalls, adding, “I felt like she heard me. The meeting exceeded my expectations.”

The difference between the two visits was striking. Dr. Seymann explains that it is important to realize that “you never know when something you say will make a difference or have an impact. You have to try and, sometimes, keep trying.”

Follow-up is important for these visits. “I sent e-mails on returning home to thank them for their time and remind them that I would be happy to help on hospital medicine issues in the future,” he says.

While Dr. Seymann believes he helped educate legislators about hospital medicine and the hospitalist’s role, he also learned something himself. “I realized that one person can effectively engage in the legislative process and that Congress is interested in what we have to say,” he says. Additionally, he observes, “They take the input of their constituents pretty seriously, and we have a role to play in ensuring that our voices are heard on issues that affect our patients and our profession.” TH

 

 

Joanne Kaldy is based in Maryland.

Issue
The Hospitalist - 2007(04)
Publications
Sections

Representing hospital medicine on Capitol Hill is an opportunity for physicians to educate policy makers and have a hand in the legislative process. Hospitalists who have had such experiences say that it can also be nerve wracking, eye opening, surprising, and very satisfying.

Rifkin Answers a Call to Arms

William Rifkin, MD, assistant professor of medicine and associate director of the Yale Primary Care Residency Program at the Yale University School of Medicine, New Haven, Conn., started his road to Capitol Hill by answering an SHM call to arms. “SHM was looking for someone in Connecticut to appear before the state Health Committee regarding proposed legislation that sought to regulate communications between hospitalists and primary care physicians,” says Dr. Rifkin, who was also asked to address the issue of whether the use of hospitalists should be mandatory or voluntary.

The call originally came from the Connecticut Medical Society, which—along with SHM—helped prepare Dr. Rifkin for his testimony. These groups’ public policy staffs coached him about his audience, the hearing process, and the key issues. They agreed his approach would be educational and informative in nature. He would explain what “hospital medicine is, the advantages and disadvantages, what is happening now in the field, and the issues being addressed by SHM,” he recalls. “I gave the committee members lots of literature and background information.”

Dr. Rifkin had some challenges to overcome in getting his message across to the legislators. “There is no data showing that lack of communication between hospitalists and community physicians has caused serious problems,” he explains. “I had to explain the difference between factual data and anecdotal information.”

Additionally, he recalls, one legislator seemed skeptical about the hospitalist’s role and kept referring to a health system that mandates the use of hospitalists. “I had to sit back and explain how SHM supports a voluntary model,” he says. “She kept talking about a reported example of a hospital that forced patients to use hospitalists. It was awkward because I suspected that the story was untrue or at least was missing some facts.”

By calmly relating SHM’s position and its reasons for preferring a voluntary model, Dr. Rifkin believes he was able to diffuse some of the tension. After the hearing, he approached the legislator and handed her the literature and statements from SHM. “I offered to stay in touch and suggested we find out about this hospital supposedly mandating hospitalists,” he says “Ultimately, I discovered that this story wasn’t true.”

Making a good impression can help legislators see physicians as colleagues rather than adversaries. “After the hearing, the committee sent the communications bill to the Connecticut Department of Public Health Best Practices Committee. This body was charged with making recommendations on communications best practices,” says Dr. Rifkin, who was asked to talk before this group. In fact, he adds, “They’ve asked me back repeatedly. I’m sort of a regular on the committee now.”

He is honored to have input and to present the hospitalist’s point of view. “Their recommendations likely will be similar to what SHM says regarding inpatient/outpatient communication,” he explains.

In retrospect, Dr. Rifkin believes he made a difference. “I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before,” he says. “I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.”

When it comes to presenting testimony, Dr. Rifkin suggests, “it is best to acknowledge where legislators are right and use this as an opportunity for education. You don’t want to come across as dogmatic.”

 

 

While Dr. Rifkin enjoyed his experience, it was not without some surprises. He explains, “I left shaking my head and marveling, ‘Is this really how laws are made?’ ” He was surprised “about the lack of knowledge about the issues and the willingness to act on anecdotal information.”

Reporting back to SHM, Dr. Rifkin says, “It was good that I was there because—absent that—we could have ended up with some onerous rule that we then would have to undo.”

Another surprise for Dr. Rifkin was how long and tedious the process could be. “I was one of the last speakers on the agenda, and I did lots of waiting,” he states, adding, “If I had been nervous, it would have been a torturous eight hours.” Once he was in front of the microphone, Dr. Rifkin had just a few minutes to get his points across. He then answered questions for several additional minutes. “I had to watch the clock, and it was a little nerve-wracking to try to say everything I wanted to in a short time. But for the most part, it was actually enjoyable,” he offers.

Being active in advocacy efforts is a valuable, satisfying experience, and Dr. Rifkin urges his colleagues to carry the gauntlet. “We need to watch for opportunities to have input on legislation nationally and statewide. Hopefully, we’ll be able to have the same impact we had in Connecticut in other states as well,” he says. “Physicians need to be willing to get involved.”

I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before. I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.

—William Rifkin, MD, assistant professor of medicine and associate director, Yale Primary Care Residency Program, Yale University School of Medicine, New Haven, Conn.

Feinbloom: Testimony on the Fly

David Feinbloom, MD, a hospitalist at Beth Israel Deaconess Medical Center in Boston, had only two hours to prepare for his testimony about computerized physician order entry before the Massachusetts State Joint Committees on Health Care Financing and Economic Development and Emerging Technologies. “They wanted a clinician to explain how this system would improve quality and result in cost-saving,” he says.

Despite his lack of preparation time, he was familiar enough with the subject to speak in detail and answer questions. “I was a little nervous,” he admits, adding, “I would have preferred to have time to prepare a formal presentation, especially since I ended up having to write something up afterward for the official records.”

Dr. Feinbloom was one of the last speakers, and this had some disadvantages. First of all, he had to wait for hours. Additionally, “Many of the points I wanted to make already had been addressed. I didn’t get a lot of questions because there wasn’t much left to ask,” he explains.

The biggest surprise for Dr. Feinbloom was that the legislative process “is a little more mundane than I expected. It’s not like when you watch the news, and they have rousing, heated discussions.”

Also surprising was how receptive the committee members were about the issue. “Because part of the funding was coming from Blue Cross/Blue Shield, there wasn’t even any real controversy or debate from a budgetary standpoint,” he says. “There also was a big study showing that the system will pay for itself.”

Like Dr. Rifkin, Dr. Feinbloom believes his testimony had a positive effect. “I think that I brought to bear a realistic, ground-level view. I also brought some clinical examples of where this system is powerful, and I don’t think people realized this,” he says. “One of the senators had diabetes and told me he was surprised about how messy drug delivery in the hospital can be and how computerized systems can help. My examples stuck in his head as something he could relate to.”

 

 

Testimony Tips from a Veteran Speaker

Dr. Rifkin suggests several keys to presenting testimony that is effective in a way that is stress-free and results in a positive outcome and an enjoyable experience:

  • Look at yourself as a source of information. Be prepared to be an educator and answer questions about who you are and what you do;
  • Remember that the hearing is not a debate. Be friendly and reasonable; don’t portray the issues as all black and white. Don’t get drawn into arguments;
  • Give legislators take-home materials—a packet or a fact sheet. Include a strong summary up front, and follow up after the hearing with something that reminds legislators and their staff members about what you said;
  • Try to make a connection for follow-up and work on future issues. Position yourself as a source of ongoing information; and
  • Present yourself as an informed, concerned physician with no hidden agenda or ulterior motive.—JK

Seymann: Another Kind of Testimony

Hospitalists don’t have to present testimony before a governmental body to have a positive effect on legislation and make a strong impression on lawmakers. Ask Gregory Seymann, MD, associate clinical professor, Division of Hospital Medicine, Department of Medicine, University of California San Diego School of Medicine. While in Washington, D.C., for the 2006 SHM Annual Meeting, he visited his House and Senate representatives.

“Our goal was to educate lawmakers about hospitalists—who we are and what we do—not to ask for favors or handouts,” explains Dr. Seymann. “Several of us went as a group to our senator’s office, and it was a rather short visit. We met with a staff person, who listened briefly and took our materials but asked few questions.”

When he went alone to his House representative, Susan Davis’ (D-CA) office, Dr. Seymann had a much different experience. The representative’s staff was extremely welcoming. “They told me that she was still in session marking up a bill, but that she really wanted to meet me,” he recalls. “They asked me if I could wait; and eventually they took me over to another building to meet her.”

Dr. Seymann’s House representative met with him for half an hour. “She was very pleasant, and I felt comfortable talking with her. I just gave her the basics of who we [hospitalists] are and what we do. She admitted that she didn’t know much about hospitalists and seemed interested in what I had to say,” he says. Davis asked several questions, Dr. Seymann notes. “She mostly wanted to know about how our practice differs from general internists and the difference between hospital and outpatient-based medicine,” he recalls, adding, “I felt like she heard me. The meeting exceeded my expectations.”

The difference between the two visits was striking. Dr. Seymann explains that it is important to realize that “you never know when something you say will make a difference or have an impact. You have to try and, sometimes, keep trying.”

Follow-up is important for these visits. “I sent e-mails on returning home to thank them for their time and remind them that I would be happy to help on hospital medicine issues in the future,” he says.

While Dr. Seymann believes he helped educate legislators about hospital medicine and the hospitalist’s role, he also learned something himself. “I realized that one person can effectively engage in the legislative process and that Congress is interested in what we have to say,” he says. Additionally, he observes, “They take the input of their constituents pretty seriously, and we have a role to play in ensuring that our voices are heard on issues that affect our patients and our profession.” TH

 

 

Joanne Kaldy is based in Maryland.

Representing hospital medicine on Capitol Hill is an opportunity for physicians to educate policy makers and have a hand in the legislative process. Hospitalists who have had such experiences say that it can also be nerve wracking, eye opening, surprising, and very satisfying.

Rifkin Answers a Call to Arms

William Rifkin, MD, assistant professor of medicine and associate director of the Yale Primary Care Residency Program at the Yale University School of Medicine, New Haven, Conn., started his road to Capitol Hill by answering an SHM call to arms. “SHM was looking for someone in Connecticut to appear before the state Health Committee regarding proposed legislation that sought to regulate communications between hospitalists and primary care physicians,” says Dr. Rifkin, who was also asked to address the issue of whether the use of hospitalists should be mandatory or voluntary.

The call originally came from the Connecticut Medical Society, which—along with SHM—helped prepare Dr. Rifkin for his testimony. These groups’ public policy staffs coached him about his audience, the hearing process, and the key issues. They agreed his approach would be educational and informative in nature. He would explain what “hospital medicine is, the advantages and disadvantages, what is happening now in the field, and the issues being addressed by SHM,” he recalls. “I gave the committee members lots of literature and background information.”

Dr. Rifkin had some challenges to overcome in getting his message across to the legislators. “There is no data showing that lack of communication between hospitalists and community physicians has caused serious problems,” he explains. “I had to explain the difference between factual data and anecdotal information.”

Additionally, he recalls, one legislator seemed skeptical about the hospitalist’s role and kept referring to a health system that mandates the use of hospitalists. “I had to sit back and explain how SHM supports a voluntary model,” he says. “She kept talking about a reported example of a hospital that forced patients to use hospitalists. It was awkward because I suspected that the story was untrue or at least was missing some facts.”

By calmly relating SHM’s position and its reasons for preferring a voluntary model, Dr. Rifkin believes he was able to diffuse some of the tension. After the hearing, he approached the legislator and handed her the literature and statements from SHM. “I offered to stay in touch and suggested we find out about this hospital supposedly mandating hospitalists,” he says “Ultimately, I discovered that this story wasn’t true.”

Making a good impression can help legislators see physicians as colleagues rather than adversaries. “After the hearing, the committee sent the communications bill to the Connecticut Department of Public Health Best Practices Committee. This body was charged with making recommendations on communications best practices,” says Dr. Rifkin, who was asked to talk before this group. In fact, he adds, “They’ve asked me back repeatedly. I’m sort of a regular on the committee now.”

He is honored to have input and to present the hospitalist’s point of view. “Their recommendations likely will be similar to what SHM says regarding inpatient/outpatient communication,” he explains.

In retrospect, Dr. Rifkin believes he made a difference. “I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before,” he says. “I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.”

When it comes to presenting testimony, Dr. Rifkin suggests, “it is best to acknowledge where legislators are right and use this as an opportunity for education. You don’t want to come across as dogmatic.”

 

 

While Dr. Rifkin enjoyed his experience, it was not without some surprises. He explains, “I left shaking my head and marveling, ‘Is this really how laws are made?’ ” He was surprised “about the lack of knowledge about the issues and the willingness to act on anecdotal information.”

Reporting back to SHM, Dr. Rifkin says, “It was good that I was there because—absent that—we could have ended up with some onerous rule that we then would have to undo.”

Another surprise for Dr. Rifkin was how long and tedious the process could be. “I was one of the last speakers on the agenda, and I did lots of waiting,” he states, adding, “If I had been nervous, it would have been a torturous eight hours.” Once he was in front of the microphone, Dr. Rifkin had just a few minutes to get his points across. He then answered questions for several additional minutes. “I had to watch the clock, and it was a little nerve-wracking to try to say everything I wanted to in a short time. But for the most part, it was actually enjoyable,” he offers.

Being active in advocacy efforts is a valuable, satisfying experience, and Dr. Rifkin urges his colleagues to carry the gauntlet. “We need to watch for opportunities to have input on legislation nationally and statewide. Hopefully, we’ll be able to have the same impact we had in Connecticut in other states as well,” he says. “Physicians need to be willing to get involved.”

I felt as if I brought them some new information and taught legislators some things about hospital medicine they didn’t know before. I think I helped them see that it would be counterproductive to dictate the specifics of inpatient/outpatient physician communication.

—William Rifkin, MD, assistant professor of medicine and associate director, Yale Primary Care Residency Program, Yale University School of Medicine, New Haven, Conn.

Feinbloom: Testimony on the Fly

David Feinbloom, MD, a hospitalist at Beth Israel Deaconess Medical Center in Boston, had only two hours to prepare for his testimony about computerized physician order entry before the Massachusetts State Joint Committees on Health Care Financing and Economic Development and Emerging Technologies. “They wanted a clinician to explain how this system would improve quality and result in cost-saving,” he says.

Despite his lack of preparation time, he was familiar enough with the subject to speak in detail and answer questions. “I was a little nervous,” he admits, adding, “I would have preferred to have time to prepare a formal presentation, especially since I ended up having to write something up afterward for the official records.”

Dr. Feinbloom was one of the last speakers, and this had some disadvantages. First of all, he had to wait for hours. Additionally, “Many of the points I wanted to make already had been addressed. I didn’t get a lot of questions because there wasn’t much left to ask,” he explains.

The biggest surprise for Dr. Feinbloom was that the legislative process “is a little more mundane than I expected. It’s not like when you watch the news, and they have rousing, heated discussions.”

Also surprising was how receptive the committee members were about the issue. “Because part of the funding was coming from Blue Cross/Blue Shield, there wasn’t even any real controversy or debate from a budgetary standpoint,” he says. “There also was a big study showing that the system will pay for itself.”

Like Dr. Rifkin, Dr. Feinbloom believes his testimony had a positive effect. “I think that I brought to bear a realistic, ground-level view. I also brought some clinical examples of where this system is powerful, and I don’t think people realized this,” he says. “One of the senators had diabetes and told me he was surprised about how messy drug delivery in the hospital can be and how computerized systems can help. My examples stuck in his head as something he could relate to.”

 

 

Testimony Tips from a Veteran Speaker

Dr. Rifkin suggests several keys to presenting testimony that is effective in a way that is stress-free and results in a positive outcome and an enjoyable experience:

  • Look at yourself as a source of information. Be prepared to be an educator and answer questions about who you are and what you do;
  • Remember that the hearing is not a debate. Be friendly and reasonable; don’t portray the issues as all black and white. Don’t get drawn into arguments;
  • Give legislators take-home materials—a packet or a fact sheet. Include a strong summary up front, and follow up after the hearing with something that reminds legislators and their staff members about what you said;
  • Try to make a connection for follow-up and work on future issues. Position yourself as a source of ongoing information; and
  • Present yourself as an informed, concerned physician with no hidden agenda or ulterior motive.—JK

Seymann: Another Kind of Testimony

Hospitalists don’t have to present testimony before a governmental body to have a positive effect on legislation and make a strong impression on lawmakers. Ask Gregory Seymann, MD, associate clinical professor, Division of Hospital Medicine, Department of Medicine, University of California San Diego School of Medicine. While in Washington, D.C., for the 2006 SHM Annual Meeting, he visited his House and Senate representatives.

“Our goal was to educate lawmakers about hospitalists—who we are and what we do—not to ask for favors or handouts,” explains Dr. Seymann. “Several of us went as a group to our senator’s office, and it was a rather short visit. We met with a staff person, who listened briefly and took our materials but asked few questions.”

When he went alone to his House representative, Susan Davis’ (D-CA) office, Dr. Seymann had a much different experience. The representative’s staff was extremely welcoming. “They told me that she was still in session marking up a bill, but that she really wanted to meet me,” he recalls. “They asked me if I could wait; and eventually they took me over to another building to meet her.”

Dr. Seymann’s House representative met with him for half an hour. “She was very pleasant, and I felt comfortable talking with her. I just gave her the basics of who we [hospitalists] are and what we do. She admitted that she didn’t know much about hospitalists and seemed interested in what I had to say,” he says. Davis asked several questions, Dr. Seymann notes. “She mostly wanted to know about how our practice differs from general internists and the difference between hospital and outpatient-based medicine,” he recalls, adding, “I felt like she heard me. The meeting exceeded my expectations.”

The difference between the two visits was striking. Dr. Seymann explains that it is important to realize that “you never know when something you say will make a difference or have an impact. You have to try and, sometimes, keep trying.”

Follow-up is important for these visits. “I sent e-mails on returning home to thank them for their time and remind them that I would be happy to help on hospital medicine issues in the future,” he says.

While Dr. Seymann believes he helped educate legislators about hospital medicine and the hospitalist’s role, he also learned something himself. “I realized that one person can effectively engage in the legislative process and that Congress is interested in what we have to say,” he says. Additionally, he observes, “They take the input of their constituents pretty seriously, and we have a role to play in ensuring that our voices are heard on issues that affect our patients and our profession.” TH

 

 

Joanne Kaldy is based in Maryland.

Issue
The Hospitalist - 2007(04)
Issue
The Hospitalist - 2007(04)
Publications
Publications
Article Type
Display Headline
Dr. Smith Goes to Washington
Display Headline
Dr. Smith Goes to Washington
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)

Medicine and Movies

Article Type
Changed
Fri, 09/14/2018 - 12:38
Display Headline
Medicine and Movies

It’s snowing outside, and the logs are burning in the fireplace. It’s a February blizzard. By the time you read this I’ll be thawed. I guess you know I’m not in San Diego. Despite Rochester’s well-earned reputation as the sizzling hot spot of the Minnesota-Iowa border, it seems like a cool night to think about renting some movies. But what are the best movies for a hospitalist? What are the absolute clunkers? Here are some suggestions.

“The Hospital” (1971)

This is my number one choice, no doubt about it. If you trained in New York City, it’s a bonus. This is a strange, dark comedy starring George C. Scott. His most famous, Oscar-winning role was in “Patton,” but I loved him in this medically titled-but-distinctly-different-from-“Dr. Strangelove” movie. In this flick, he plays the suicidal, alcoholic chief of internal medicine in a dysfunctional, deteriorating New York teaching hospital. On the edge of self-destruction, he meets the alluring yet bizarre Diana Rigg.

If you are at least as old as me—over 25, that is—you might remember her as Mrs. Emma Peel of the Avengers, the proto-feminist kickboxing genius in a leather body suit. Together, they try to solve a mystery involving unexpected deaths, in an atmosphere of abuse, lack of professionalism, and general mayhem. The Joint Commission would have a field day in this facility. See this movie with your hospital’s safety officer!

Who says competition in the medical world isn’t good? “Mother, Jugs & Speed” is just a modified version of pay for performance; too bad that, in this case, the performances are terrible!

“No Way Out” (1950)

Next on my list is a movie that glorifies the doctor and his oath but still explores the politics of hospitals and race relations. This is another of my absolute favorite medical movies. It is Sidney Poitier’s first film. He plays the intern taking care of Richard Widmark and his brother—both of whom are rabid racists. When the brother dies following a lumbar puncture, a chain of events is set off that plunges the city into a race riot. Can Dr. Brooks clear his name by getting an autopsy before Ray Biddle hunts him down? This is a great movie to watch with a group of students—a conversation starter.

“Panic in the Streets” (1950)

Yup, it’s 1950 and Richard Widmark again. This time, he’s a public health officer who uncovers a case of plague in a very noir film-noir New Orleans. He must catch a killer who has been exposed to plague. The villain turns out to be Walter “Jack” Palance in his first movie. Watch Dr. Clint Reed chase Blackie through some scenes of New Orleans you won’t forget. Then play poker.

“Mother, Jugs & Speed” (1976)

Oh my, what is this doing on my list? I must be slipping. Bill Cosby and Raquel Welch star (guess which one is Jugs). Any movie with Dick Butkus and Larry Hagman in it can’t be all bad, can it? Yes, it can. Crazed ambulance drivers tear up the streets of L.A. when a new law decrees that whoever gets to the accident first gets the transport. Who says competition in the medical world isn’t good? This is just a modified version of pay for performance; too bad that, in this case (again), the performances are terrible!

“Fantastic Voyage” (1966)

I can’t stop thinking about Raquel Welch. In this movie she is a decade younger, an earnest young medical researcher who gets attacked by leukocytes. Watching her ultra-tight dive suit get covered in giant plastic antibodies almost made me want to go into immunology. The crew gets shrunk and injected into a diplomat’s body to dissolve a clot in his brain. Too bad they didn’t have tissue plasminogen activator (TPA). “The Simpsons” did a cover on this one that’s worth checking out.

 

 

“The Island of Lost Souls” (1933)

“The Island of Lost Souls” (1933)

Watch this one with your favorite geneticist. In remakes, it’s called “The Island of Dr. Moreau,” the name of the book this movie was adapted from. Charles Laughton—the quintessential Quasimodo—creates beings that are half man/half beast, with the help of Bela Lugosi (sans pointy teeth and bats) and “the panther woman.” Her name is Lola. I think Dr. Moreau may have met her in a club down in old Soho. I guess you’ll have to drink champagne that tastes just like Coca-Cola with this one. Sorry, I couldn’t help myself.

“Le Roi de Coeur” (King of Hearts) (1966)

Many people consider this their favorite movie. Most of them went to college on the East Coast in the early 1980s and didn’t go home alone the night they saw this one. It involves some kind of operant conditioning. I just saw this movie again last week for the first time in 25 years, and I wasn’t disappointed. A Scottish ornithologist is taken for a bomb expert, and the denizens of a psychiatric hospital take over a small French town. It’s a love story and an anti-war movie. Watch this one with someone you love—or want to.

“The Cabinet of Dr. Caligari” (1920)

My sister Roberta told me about this one, so I knew it would be freaky. The first horror movie ever made, it’s a silent film. One of my favorite things about this film is its expressionist sets. It’s a must see for film buffs, but not one to watch with the kids. If you want to see another of my sister’s horror picks, try “Dead Ringers” (1988)—it’s about twin homicidal gynecologists. Not for the faint of heart.

“Flatliners” (1990)

Kiefer Sutherland, Kevin Bacon, Julia Roberts—yeah, that sounds like my medical school class. Actually, my class was more John Cleese, Marty Feldman, and Ruth Buzzi. In this film, medical students put themselves into cardiac arrest and then resuscitate one another at the last minute.

“M*A*S*H” (1970)

Still one of my favorites, and I loved the book even more. Anti-war, anti-bureaucracy, hilarious. Donald Sutherland and Elliott Gould are excellent as Hawkeye and Trapper John, and Sally Kellerman is the best Hot Lips. This is somewhat different from the series and is worth watching.

There are so many other movies I have enjoyed. There are Gregory Peck in “Captain Newman, MD” and Robin Williams in “Awakenings.” I even like Patrick Swayze in “City of Joy.” Also worth mentioning: “And the Band Played On,” “Coma,” “The Cider House Rules,” “The Unbearable Lightness of Being,” and “The Elephant Man.”

There are dozens more; some are great depictions of medicine, and some are total trash. Got a favorite I didn’t list? Send the name and a paragraph about why you like it to me at [email protected].

OK, I need to get out more. TH

Dr. Newman is the physician editor of The Hospitalist. He’s also consultant, Hospital Internal Medicine, and assistant professor of internal medicine and medical history, Mayo Clinic College of Medicine, Rochester, Minn.

Issue
The Hospitalist - 2007(04)
Publications
Sections

It’s snowing outside, and the logs are burning in the fireplace. It’s a February blizzard. By the time you read this I’ll be thawed. I guess you know I’m not in San Diego. Despite Rochester’s well-earned reputation as the sizzling hot spot of the Minnesota-Iowa border, it seems like a cool night to think about renting some movies. But what are the best movies for a hospitalist? What are the absolute clunkers? Here are some suggestions.

“The Hospital” (1971)

This is my number one choice, no doubt about it. If you trained in New York City, it’s a bonus. This is a strange, dark comedy starring George C. Scott. His most famous, Oscar-winning role was in “Patton,” but I loved him in this medically titled-but-distinctly-different-from-“Dr. Strangelove” movie. In this flick, he plays the suicidal, alcoholic chief of internal medicine in a dysfunctional, deteriorating New York teaching hospital. On the edge of self-destruction, he meets the alluring yet bizarre Diana Rigg.

If you are at least as old as me—over 25, that is—you might remember her as Mrs. Emma Peel of the Avengers, the proto-feminist kickboxing genius in a leather body suit. Together, they try to solve a mystery involving unexpected deaths, in an atmosphere of abuse, lack of professionalism, and general mayhem. The Joint Commission would have a field day in this facility. See this movie with your hospital’s safety officer!

Who says competition in the medical world isn’t good? “Mother, Jugs & Speed” is just a modified version of pay for performance; too bad that, in this case, the performances are terrible!

“No Way Out” (1950)

Next on my list is a movie that glorifies the doctor and his oath but still explores the politics of hospitals and race relations. This is another of my absolute favorite medical movies. It is Sidney Poitier’s first film. He plays the intern taking care of Richard Widmark and his brother—both of whom are rabid racists. When the brother dies following a lumbar puncture, a chain of events is set off that plunges the city into a race riot. Can Dr. Brooks clear his name by getting an autopsy before Ray Biddle hunts him down? This is a great movie to watch with a group of students—a conversation starter.

“Panic in the Streets” (1950)

Yup, it’s 1950 and Richard Widmark again. This time, he’s a public health officer who uncovers a case of plague in a very noir film-noir New Orleans. He must catch a killer who has been exposed to plague. The villain turns out to be Walter “Jack” Palance in his first movie. Watch Dr. Clint Reed chase Blackie through some scenes of New Orleans you won’t forget. Then play poker.

“Mother, Jugs & Speed” (1976)

Oh my, what is this doing on my list? I must be slipping. Bill Cosby and Raquel Welch star (guess which one is Jugs). Any movie with Dick Butkus and Larry Hagman in it can’t be all bad, can it? Yes, it can. Crazed ambulance drivers tear up the streets of L.A. when a new law decrees that whoever gets to the accident first gets the transport. Who says competition in the medical world isn’t good? This is just a modified version of pay for performance; too bad that, in this case (again), the performances are terrible!

“Fantastic Voyage” (1966)

I can’t stop thinking about Raquel Welch. In this movie she is a decade younger, an earnest young medical researcher who gets attacked by leukocytes. Watching her ultra-tight dive suit get covered in giant plastic antibodies almost made me want to go into immunology. The crew gets shrunk and injected into a diplomat’s body to dissolve a clot in his brain. Too bad they didn’t have tissue plasminogen activator (TPA). “The Simpsons” did a cover on this one that’s worth checking out.

 

 

“The Island of Lost Souls” (1933)

“The Island of Lost Souls” (1933)

Watch this one with your favorite geneticist. In remakes, it’s called “The Island of Dr. Moreau,” the name of the book this movie was adapted from. Charles Laughton—the quintessential Quasimodo—creates beings that are half man/half beast, with the help of Bela Lugosi (sans pointy teeth and bats) and “the panther woman.” Her name is Lola. I think Dr. Moreau may have met her in a club down in old Soho. I guess you’ll have to drink champagne that tastes just like Coca-Cola with this one. Sorry, I couldn’t help myself.

“Le Roi de Coeur” (King of Hearts) (1966)

Many people consider this their favorite movie. Most of them went to college on the East Coast in the early 1980s and didn’t go home alone the night they saw this one. It involves some kind of operant conditioning. I just saw this movie again last week for the first time in 25 years, and I wasn’t disappointed. A Scottish ornithologist is taken for a bomb expert, and the denizens of a psychiatric hospital take over a small French town. It’s a love story and an anti-war movie. Watch this one with someone you love—or want to.

“The Cabinet of Dr. Caligari” (1920)

My sister Roberta told me about this one, so I knew it would be freaky. The first horror movie ever made, it’s a silent film. One of my favorite things about this film is its expressionist sets. It’s a must see for film buffs, but not one to watch with the kids. If you want to see another of my sister’s horror picks, try “Dead Ringers” (1988)—it’s about twin homicidal gynecologists. Not for the faint of heart.

“Flatliners” (1990)

Kiefer Sutherland, Kevin Bacon, Julia Roberts—yeah, that sounds like my medical school class. Actually, my class was more John Cleese, Marty Feldman, and Ruth Buzzi. In this film, medical students put themselves into cardiac arrest and then resuscitate one another at the last minute.

“M*A*S*H” (1970)

Still one of my favorites, and I loved the book even more. Anti-war, anti-bureaucracy, hilarious. Donald Sutherland and Elliott Gould are excellent as Hawkeye and Trapper John, and Sally Kellerman is the best Hot Lips. This is somewhat different from the series and is worth watching.

There are so many other movies I have enjoyed. There are Gregory Peck in “Captain Newman, MD” and Robin Williams in “Awakenings.” I even like Patrick Swayze in “City of Joy.” Also worth mentioning: “And the Band Played On,” “Coma,” “The Cider House Rules,” “The Unbearable Lightness of Being,” and “The Elephant Man.”

There are dozens more; some are great depictions of medicine, and some are total trash. Got a favorite I didn’t list? Send the name and a paragraph about why you like it to me at [email protected].

OK, I need to get out more. TH

Dr. Newman is the physician editor of The Hospitalist. He’s also consultant, Hospital Internal Medicine, and assistant professor of internal medicine and medical history, Mayo Clinic College of Medicine, Rochester, Minn.

It’s snowing outside, and the logs are burning in the fireplace. It’s a February blizzard. By the time you read this I’ll be thawed. I guess you know I’m not in San Diego. Despite Rochester’s well-earned reputation as the sizzling hot spot of the Minnesota-Iowa border, it seems like a cool night to think about renting some movies. But what are the best movies for a hospitalist? What are the absolute clunkers? Here are some suggestions.

“The Hospital” (1971)

This is my number one choice, no doubt about it. If you trained in New York City, it’s a bonus. This is a strange, dark comedy starring George C. Scott. His most famous, Oscar-winning role was in “Patton,” but I loved him in this medically titled-but-distinctly-different-from-“Dr. Strangelove” movie. In this flick, he plays the suicidal, alcoholic chief of internal medicine in a dysfunctional, deteriorating New York teaching hospital. On the edge of self-destruction, he meets the alluring yet bizarre Diana Rigg.

If you are at least as old as me—over 25, that is—you might remember her as Mrs. Emma Peel of the Avengers, the proto-feminist kickboxing genius in a leather body suit. Together, they try to solve a mystery involving unexpected deaths, in an atmosphere of abuse, lack of professionalism, and general mayhem. The Joint Commission would have a field day in this facility. See this movie with your hospital’s safety officer!

Who says competition in the medical world isn’t good? “Mother, Jugs & Speed” is just a modified version of pay for performance; too bad that, in this case, the performances are terrible!

“No Way Out” (1950)

Next on my list is a movie that glorifies the doctor and his oath but still explores the politics of hospitals and race relations. This is another of my absolute favorite medical movies. It is Sidney Poitier’s first film. He plays the intern taking care of Richard Widmark and his brother—both of whom are rabid racists. When the brother dies following a lumbar puncture, a chain of events is set off that plunges the city into a race riot. Can Dr. Brooks clear his name by getting an autopsy before Ray Biddle hunts him down? This is a great movie to watch with a group of students—a conversation starter.

“Panic in the Streets” (1950)

Yup, it’s 1950 and Richard Widmark again. This time, he’s a public health officer who uncovers a case of plague in a very noir film-noir New Orleans. He must catch a killer who has been exposed to plague. The villain turns out to be Walter “Jack” Palance in his first movie. Watch Dr. Clint Reed chase Blackie through some scenes of New Orleans you won’t forget. Then play poker.

“Mother, Jugs & Speed” (1976)

Oh my, what is this doing on my list? I must be slipping. Bill Cosby and Raquel Welch star (guess which one is Jugs). Any movie with Dick Butkus and Larry Hagman in it can’t be all bad, can it? Yes, it can. Crazed ambulance drivers tear up the streets of L.A. when a new law decrees that whoever gets to the accident first gets the transport. Who says competition in the medical world isn’t good? This is just a modified version of pay for performance; too bad that, in this case (again), the performances are terrible!

“Fantastic Voyage” (1966)

I can’t stop thinking about Raquel Welch. In this movie she is a decade younger, an earnest young medical researcher who gets attacked by leukocytes. Watching her ultra-tight dive suit get covered in giant plastic antibodies almost made me want to go into immunology. The crew gets shrunk and injected into a diplomat’s body to dissolve a clot in his brain. Too bad they didn’t have tissue plasminogen activator (TPA). “The Simpsons” did a cover on this one that’s worth checking out.

 

 

“The Island of Lost Souls” (1933)

“The Island of Lost Souls” (1933)

Watch this one with your favorite geneticist. In remakes, it’s called “The Island of Dr. Moreau,” the name of the book this movie was adapted from. Charles Laughton—the quintessential Quasimodo—creates beings that are half man/half beast, with the help of Bela Lugosi (sans pointy teeth and bats) and “the panther woman.” Her name is Lola. I think Dr. Moreau may have met her in a club down in old Soho. I guess you’ll have to drink champagne that tastes just like Coca-Cola with this one. Sorry, I couldn’t help myself.

“Le Roi de Coeur” (King of Hearts) (1966)

Many people consider this their favorite movie. Most of them went to college on the East Coast in the early 1980s and didn’t go home alone the night they saw this one. It involves some kind of operant conditioning. I just saw this movie again last week for the first time in 25 years, and I wasn’t disappointed. A Scottish ornithologist is taken for a bomb expert, and the denizens of a psychiatric hospital take over a small French town. It’s a love story and an anti-war movie. Watch this one with someone you love—or want to.

“The Cabinet of Dr. Caligari” (1920)

My sister Roberta told me about this one, so I knew it would be freaky. The first horror movie ever made, it’s a silent film. One of my favorite things about this film is its expressionist sets. It’s a must see for film buffs, but not one to watch with the kids. If you want to see another of my sister’s horror picks, try “Dead Ringers” (1988)—it’s about twin homicidal gynecologists. Not for the faint of heart.

“Flatliners” (1990)

Kiefer Sutherland, Kevin Bacon, Julia Roberts—yeah, that sounds like my medical school class. Actually, my class was more John Cleese, Marty Feldman, and Ruth Buzzi. In this film, medical students put themselves into cardiac arrest and then resuscitate one another at the last minute.

“M*A*S*H” (1970)

Still one of my favorites, and I loved the book even more. Anti-war, anti-bureaucracy, hilarious. Donald Sutherland and Elliott Gould are excellent as Hawkeye and Trapper John, and Sally Kellerman is the best Hot Lips. This is somewhat different from the series and is worth watching.

There are so many other movies I have enjoyed. There are Gregory Peck in “Captain Newman, MD” and Robin Williams in “Awakenings.” I even like Patrick Swayze in “City of Joy.” Also worth mentioning: “And the Band Played On,” “Coma,” “The Cider House Rules,” “The Unbearable Lightness of Being,” and “The Elephant Man.”

There are dozens more; some are great depictions of medicine, and some are total trash. Got a favorite I didn’t list? Send the name and a paragraph about why you like it to me at [email protected].

OK, I need to get out more. TH

Dr. Newman is the physician editor of The Hospitalist. He’s also consultant, Hospital Internal Medicine, and assistant professor of internal medicine and medical history, Mayo Clinic College of Medicine, Rochester, Minn.

Issue
The Hospitalist - 2007(04)
Issue
The Hospitalist - 2007(04)
Publications
Publications
Article Type
Display Headline
Medicine and Movies
Display Headline
Medicine and Movies
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)

Contractual Caution

Article Type
Changed
Fri, 09/14/2018 - 12:38
Display Headline
Contractual Caution

Several times a week, I hear from doctors or administrators who want to discuss solutions to the latest crises occurring in their practices. There are three contractual issues that come up regularly in these conversations. One is how to handle the contractual provision for vacation time, and I addressed that in last month’s column.

This month, I’ll discuss the other two issues: payment for malpractice “tail coverage” and the inclusion of a non-compete clause in hospitalist employment contracts.

Malpractice Tail Coverage

Not long ago, I got a call from the worried administrator of a growing and successful hospitalist practice. She described a crisis that had started when a doctor decided to leave the practice to pursue fellowship training. The doctor was happy with the practice and enjoyed the time he had spent as part of it. Yet his departure had set off a wave of threatened resignations that risked the collapse of the practice.

It turns out that the doctors’ employment contract specified that the employer would pay malpractice tail coverage for any doctor who left the practice before completing two years of employment. After the two-year anniversary, the doctor would have to pay for tail coverage. Most doctors in this young practice were nearing their two-year anniversary, and they began to worry about having to assume this responsibility.

I spoke with one such doctor. The physician was happy with the practice and had not spent time thinking about leaving until faced with the issue of tail coverage. Like many hospitalists, she tended to think of her commitment to the practice more in terms of dating than as a marriage. She wanted to keep her options open to pursue other work in the future and thought there might be some chance she would move if she experienced a major life change like marriage. So—like several of her colleagues—she thought about leaving the practice ahead of the two-year anniversary, thus avoiding committing to paying tail coverage that could be as much as $25,000 per year, depending on how long she stayed with the practice. To her, assuming the risk of paying the tail coverage felt like punishment for staying in the practice for longer than two years rather than a reward for her loyalty.

Ultimately, the hospitalists and the multispecialty group that they were part of negotiated for the practice to pay the tail coverage regardless of the duration of a departing doctor’s employment with the group. The group paid for this in part by paying beginning hospitalists a lower salary; in a sense, the doctors were still paying a portion out of their own pockets, but it seemed less painful this way.

It is reasonably common in any specialty for a group to assume the risk of paying tail coverage if one of its doctors leaves the practice within the first two or three years because a doctor who decides to leave that quickly often does so after concluding that the practice is not as it was described during the recruiting process. But a doctor who departs later than that is more likely to do so because she has simply decided to pursue other options, and it seems reasonable that she should pay the expenses related to her departure. This is a reasonable approach, but there are several issues that might cause a practice to approach the issue differently for hospitalists than for other doctors.

  1. Hospitalist practice is likely to have a somewhat higher turnover in staffing than other physician groups for several reasons that I won’t enumerate here. So, like the woman in the anecdote above, everyone should acknowledge that the fact that a hospitalist is willing to stay longer than two or three years does not mean he or she will stay for a career. With this in mind, payment of tail coverage may be a bigger issue for hospitalists and may require a different approach than for other specialties, though whether the practice or the hospitalist should pay for it is still up for debate.
  2. Nationally, about half of hospitalists are employed by the hospital in which they work, and—in this case—malpractice insurance is usually provided by the employing hospital. Many or most hospitals have decided it is in their interest to pay for tail coverage for a departing doctor regardless of his duration of service. If a doctor were to decide not to buy tail coverage himself, then the hospital might become the deep-pocket target of a malpractice suit, instead of the doctor. For this reason, many hospitals have decided to go ahead and pay for the coverage instead of facing the risk that the doctor won’t buy it.
  3. Some hospitalists (most commonly those employed by hospitals) have an occurrence malpractice policy that doesn’t require tail coverage. Claims-made policies, which do require tail coverage, are much more common overall, but it is worth thinking about whether an occurrence policy might be better in your situation. If you’re unfamiliar with the differences between these policies, a good discussion can be found at www.physiciansnews.com/business/405.html, or just put “claims made + occurrence” in a search engine and you will find some good explanations.
 

 

The right approach to this issue will vary from one place to the next. In the current environment, with more hospitalist positions than there are doctors to fill them, many practices may need to agree to pay tail coverage for departing doctors.

Non-Compete Clauses

Non-compete clauses are common in physician contracts. They generally specify that a doctor who leaves a practice may not practice the same specialty of medicine within a defined geographic region for a specified period of time. The rationale for their inclusion in any specialty of medicine is complex but can be illustrated by an example that I watched play out while I was a resident.

With much fanfare, the hospital where I did my residency training in the 1980s recruited its first cardiac transplant surgeon, then bought new equipment and hired new staff to support the program. After about two years, the surgeon decided to move his practice to a hospital about 30 miles away, and the teaching hospital had made a big investment in a transplant program that it could no longer operate. Even if the hospital could have found a new transplant surgeon quickly, the original surgeon had developed relationships and referral sources from around the state, and most of these referrals would follow him to his new hospital.

I was only a resident and don’t know anything about why the doctor left or whether his contract had a non-compete provision. But it was clear to me that the hospital had made a big investment building the program around him and would now need to start over, working to recapture the referral relationships the departing doctor had taken with him. The hospital would have been smart to have a non-compete clause in place that would prohibit the surgeon from practicing in its market. It wouldn’t be fair to prevent the surgeon from leaving or practicing transplant surgery elsewhere, but it seems reasonable for the hospital to require that he not practice in a place that would be geographically close enough to interfere with its referrals.

There are better sources for the overall rationale of non-competes than this column, but some of the principal reasons they’re written into contracts include:

  • To prevent a doctor from developing referral relationships—with the help of the employer practice—and then taking them across town to a competing group;
  • To prevent a departing doctor from taking trade secrets about the way business is conducted—or future business plans—and using that information to benefit a competing practice; and
  • To provide a means to reduce the chance that a practice incurs the expense of recruiting and getting the doctor established in practice, only to have the doctor quickly “jump ship” to a competing practice.

In most, but not all, cases, it is hard to argue that hospitalists can redirect referral sources or steal trade secrets when they leave a practice. Accordingly, these issues are rarely a good reason to include a non-compete.

Including a non-compete simply to prevent a doctor from jumping ship to a new practice has always struck me as the least legitimate reason; your practice should keep doctors from leaving because they like it there rather than because of a contractual provision that makes it difficult to switch to a different practice in the area. And including a non-compete clause comes at a cost of potentially scaring off the people you are trying to recruit, which could mean that it is hurting the practice more than helping it.

I’m not suggesting that non-competes have no place in hospitalist practice; they may be important and appropriate in some situations. But each hospitalist practice should take the time to think critically about whether to include one or not. Simply including it because it is common practice in other physician contracts may do more harm than good.

 

 

If you are a hospitalist and are considering signing a contract that includes a non-compete, don’t let this column lead you to believe that the practice is trying to treat you unfairly. But it is reasonable for you to ask the group representative why they see it as necessary. You might get lucky and find that they’re willing to delete or shorten it.

Conclusion

When it comes to hospitalist contracts, no one formula can apply to all practices or to all physicians. Careful analysis of the contract by both parties, however, along with a few well-thought-out questions, might prevent future problems. TH

Dr. Nelson has been a practicing hospitalist since 1988 and is a co-founder and past-president of SHM. He is a principal in Nelson/Flores Associates, a national hospitalist practice management consulting firm. This column represents his views and is not intended to reflect an official position of SHM.

Issue
The Hospitalist - 2007(04)
Publications
Sections

Several times a week, I hear from doctors or administrators who want to discuss solutions to the latest crises occurring in their practices. There are three contractual issues that come up regularly in these conversations. One is how to handle the contractual provision for vacation time, and I addressed that in last month’s column.

This month, I’ll discuss the other two issues: payment for malpractice “tail coverage” and the inclusion of a non-compete clause in hospitalist employment contracts.

Malpractice Tail Coverage

Not long ago, I got a call from the worried administrator of a growing and successful hospitalist practice. She described a crisis that had started when a doctor decided to leave the practice to pursue fellowship training. The doctor was happy with the practice and enjoyed the time he had spent as part of it. Yet his departure had set off a wave of threatened resignations that risked the collapse of the practice.

It turns out that the doctors’ employment contract specified that the employer would pay malpractice tail coverage for any doctor who left the practice before completing two years of employment. After the two-year anniversary, the doctor would have to pay for tail coverage. Most doctors in this young practice were nearing their two-year anniversary, and they began to worry about having to assume this responsibility.

I spoke with one such doctor. The physician was happy with the practice and had not spent time thinking about leaving until faced with the issue of tail coverage. Like many hospitalists, she tended to think of her commitment to the practice more in terms of dating than as a marriage. She wanted to keep her options open to pursue other work in the future and thought there might be some chance she would move if she experienced a major life change like marriage. So—like several of her colleagues—she thought about leaving the practice ahead of the two-year anniversary, thus avoiding committing to paying tail coverage that could be as much as $25,000 per year, depending on how long she stayed with the practice. To her, assuming the risk of paying the tail coverage felt like punishment for staying in the practice for longer than two years rather than a reward for her loyalty.

Ultimately, the hospitalists and the multispecialty group that they were part of negotiated for the practice to pay the tail coverage regardless of the duration of a departing doctor’s employment with the group. The group paid for this in part by paying beginning hospitalists a lower salary; in a sense, the doctors were still paying a portion out of their own pockets, but it seemed less painful this way.

It is reasonably common in any specialty for a group to assume the risk of paying tail coverage if one of its doctors leaves the practice within the first two or three years because a doctor who decides to leave that quickly often does so after concluding that the practice is not as it was described during the recruiting process. But a doctor who departs later than that is more likely to do so because she has simply decided to pursue other options, and it seems reasonable that she should pay the expenses related to her departure. This is a reasonable approach, but there are several issues that might cause a practice to approach the issue differently for hospitalists than for other doctors.

  1. Hospitalist practice is likely to have a somewhat higher turnover in staffing than other physician groups for several reasons that I won’t enumerate here. So, like the woman in the anecdote above, everyone should acknowledge that the fact that a hospitalist is willing to stay longer than two or three years does not mean he or she will stay for a career. With this in mind, payment of tail coverage may be a bigger issue for hospitalists and may require a different approach than for other specialties, though whether the practice or the hospitalist should pay for it is still up for debate.
  2. Nationally, about half of hospitalists are employed by the hospital in which they work, and—in this case—malpractice insurance is usually provided by the employing hospital. Many or most hospitals have decided it is in their interest to pay for tail coverage for a departing doctor regardless of his duration of service. If a doctor were to decide not to buy tail coverage himself, then the hospital might become the deep-pocket target of a malpractice suit, instead of the doctor. For this reason, many hospitals have decided to go ahead and pay for the coverage instead of facing the risk that the doctor won’t buy it.
  3. Some hospitalists (most commonly those employed by hospitals) have an occurrence malpractice policy that doesn’t require tail coverage. Claims-made policies, which do require tail coverage, are much more common overall, but it is worth thinking about whether an occurrence policy might be better in your situation. If you’re unfamiliar with the differences between these policies, a good discussion can be found at www.physiciansnews.com/business/405.html, or just put “claims made + occurrence” in a search engine and you will find some good explanations.
 

 

The right approach to this issue will vary from one place to the next. In the current environment, with more hospitalist positions than there are doctors to fill them, many practices may need to agree to pay tail coverage for departing doctors.

Non-Compete Clauses

Non-compete clauses are common in physician contracts. They generally specify that a doctor who leaves a practice may not practice the same specialty of medicine within a defined geographic region for a specified period of time. The rationale for their inclusion in any specialty of medicine is complex but can be illustrated by an example that I watched play out while I was a resident.

With much fanfare, the hospital where I did my residency training in the 1980s recruited its first cardiac transplant surgeon, then bought new equipment and hired new staff to support the program. After about two years, the surgeon decided to move his practice to a hospital about 30 miles away, and the teaching hospital had made a big investment in a transplant program that it could no longer operate. Even if the hospital could have found a new transplant surgeon quickly, the original surgeon had developed relationships and referral sources from around the state, and most of these referrals would follow him to his new hospital.

I was only a resident and don’t know anything about why the doctor left or whether his contract had a non-compete provision. But it was clear to me that the hospital had made a big investment building the program around him and would now need to start over, working to recapture the referral relationships the departing doctor had taken with him. The hospital would have been smart to have a non-compete clause in place that would prohibit the surgeon from practicing in its market. It wouldn’t be fair to prevent the surgeon from leaving or practicing transplant surgery elsewhere, but it seems reasonable for the hospital to require that he not practice in a place that would be geographically close enough to interfere with its referrals.

There are better sources for the overall rationale of non-competes than this column, but some of the principal reasons they’re written into contracts include:

  • To prevent a doctor from developing referral relationships—with the help of the employer practice—and then taking them across town to a competing group;
  • To prevent a departing doctor from taking trade secrets about the way business is conducted—or future business plans—and using that information to benefit a competing practice; and
  • To provide a means to reduce the chance that a practice incurs the expense of recruiting and getting the doctor established in practice, only to have the doctor quickly “jump ship” to a competing practice.

In most, but not all, cases, it is hard to argue that hospitalists can redirect referral sources or steal trade secrets when they leave a practice. Accordingly, these issues are rarely a good reason to include a non-compete.

Including a non-compete simply to prevent a doctor from jumping ship to a new practice has always struck me as the least legitimate reason; your practice should keep doctors from leaving because they like it there rather than because of a contractual provision that makes it difficult to switch to a different practice in the area. And including a non-compete clause comes at a cost of potentially scaring off the people you are trying to recruit, which could mean that it is hurting the practice more than helping it.

I’m not suggesting that non-competes have no place in hospitalist practice; they may be important and appropriate in some situations. But each hospitalist practice should take the time to think critically about whether to include one or not. Simply including it because it is common practice in other physician contracts may do more harm than good.

 

 

If you are a hospitalist and are considering signing a contract that includes a non-compete, don’t let this column lead you to believe that the practice is trying to treat you unfairly. But it is reasonable for you to ask the group representative why they see it as necessary. You might get lucky and find that they’re willing to delete or shorten it.

Conclusion

When it comes to hospitalist contracts, no one formula can apply to all practices or to all physicians. Careful analysis of the contract by both parties, however, along with a few well-thought-out questions, might prevent future problems. TH

Dr. Nelson has been a practicing hospitalist since 1988 and is a co-founder and past-president of SHM. He is a principal in Nelson/Flores Associates, a national hospitalist practice management consulting firm. This column represents his views and is not intended to reflect an official position of SHM.

Several times a week, I hear from doctors or administrators who want to discuss solutions to the latest crises occurring in their practices. There are three contractual issues that come up regularly in these conversations. One is how to handle the contractual provision for vacation time, and I addressed that in last month’s column.

This month, I’ll discuss the other two issues: payment for malpractice “tail coverage” and the inclusion of a non-compete clause in hospitalist employment contracts.

Malpractice Tail Coverage

Not long ago, I got a call from the worried administrator of a growing and successful hospitalist practice. She described a crisis that had started when a doctor decided to leave the practice to pursue fellowship training. The doctor was happy with the practice and enjoyed the time he had spent as part of it. Yet his departure had set off a wave of threatened resignations that risked the collapse of the practice.

It turns out that the doctors’ employment contract specified that the employer would pay malpractice tail coverage for any doctor who left the practice before completing two years of employment. After the two-year anniversary, the doctor would have to pay for tail coverage. Most doctors in this young practice were nearing their two-year anniversary, and they began to worry about having to assume this responsibility.

I spoke with one such doctor. The physician was happy with the practice and had not spent time thinking about leaving until faced with the issue of tail coverage. Like many hospitalists, she tended to think of her commitment to the practice more in terms of dating than as a marriage. She wanted to keep her options open to pursue other work in the future and thought there might be some chance she would move if she experienced a major life change like marriage. So—like several of her colleagues—she thought about leaving the practice ahead of the two-year anniversary, thus avoiding committing to paying tail coverage that could be as much as $25,000 per year, depending on how long she stayed with the practice. To her, assuming the risk of paying the tail coverage felt like punishment for staying in the practice for longer than two years rather than a reward for her loyalty.

Ultimately, the hospitalists and the multispecialty group that they were part of negotiated for the practice to pay the tail coverage regardless of the duration of a departing doctor’s employment with the group. The group paid for this in part by paying beginning hospitalists a lower salary; in a sense, the doctors were still paying a portion out of their own pockets, but it seemed less painful this way.

It is reasonably common in any specialty for a group to assume the risk of paying tail coverage if one of its doctors leaves the practice within the first two or three years because a doctor who decides to leave that quickly often does so after concluding that the practice is not as it was described during the recruiting process. But a doctor who departs later than that is more likely to do so because she has simply decided to pursue other options, and it seems reasonable that she should pay the expenses related to her departure. This is a reasonable approach, but there are several issues that might cause a practice to approach the issue differently for hospitalists than for other doctors.

  1. Hospitalist practice is likely to have a somewhat higher turnover in staffing than other physician groups for several reasons that I won’t enumerate here. So, like the woman in the anecdote above, everyone should acknowledge that the fact that a hospitalist is willing to stay longer than two or three years does not mean he or she will stay for a career. With this in mind, payment of tail coverage may be a bigger issue for hospitalists and may require a different approach than for other specialties, though whether the practice or the hospitalist should pay for it is still up for debate.
  2. Nationally, about half of hospitalists are employed by the hospital in which they work, and—in this case—malpractice insurance is usually provided by the employing hospital. Many or most hospitals have decided it is in their interest to pay for tail coverage for a departing doctor regardless of his duration of service. If a doctor were to decide not to buy tail coverage himself, then the hospital might become the deep-pocket target of a malpractice suit, instead of the doctor. For this reason, many hospitals have decided to go ahead and pay for the coverage instead of facing the risk that the doctor won’t buy it.
  3. Some hospitalists (most commonly those employed by hospitals) have an occurrence malpractice policy that doesn’t require tail coverage. Claims-made policies, which do require tail coverage, are much more common overall, but it is worth thinking about whether an occurrence policy might be better in your situation. If you’re unfamiliar with the differences between these policies, a good discussion can be found at www.physiciansnews.com/business/405.html, or just put “claims made + occurrence” in a search engine and you will find some good explanations.
 

 

The right approach to this issue will vary from one place to the next. In the current environment, with more hospitalist positions than there are doctors to fill them, many practices may need to agree to pay tail coverage for departing doctors.

Non-Compete Clauses

Non-compete clauses are common in physician contracts. They generally specify that a doctor who leaves a practice may not practice the same specialty of medicine within a defined geographic region for a specified period of time. The rationale for their inclusion in any specialty of medicine is complex but can be illustrated by an example that I watched play out while I was a resident.

With much fanfare, the hospital where I did my residency training in the 1980s recruited its first cardiac transplant surgeon, then bought new equipment and hired new staff to support the program. After about two years, the surgeon decided to move his practice to a hospital about 30 miles away, and the teaching hospital had made a big investment in a transplant program that it could no longer operate. Even if the hospital could have found a new transplant surgeon quickly, the original surgeon had developed relationships and referral sources from around the state, and most of these referrals would follow him to his new hospital.

I was only a resident and don’t know anything about why the doctor left or whether his contract had a non-compete provision. But it was clear to me that the hospital had made a big investment building the program around him and would now need to start over, working to recapture the referral relationships the departing doctor had taken with him. The hospital would have been smart to have a non-compete clause in place that would prohibit the surgeon from practicing in its market. It wouldn’t be fair to prevent the surgeon from leaving or practicing transplant surgery elsewhere, but it seems reasonable for the hospital to require that he not practice in a place that would be geographically close enough to interfere with its referrals.

There are better sources for the overall rationale of non-competes than this column, but some of the principal reasons they’re written into contracts include:

  • To prevent a doctor from developing referral relationships—with the help of the employer practice—and then taking them across town to a competing group;
  • To prevent a departing doctor from taking trade secrets about the way business is conducted—or future business plans—and using that information to benefit a competing practice; and
  • To provide a means to reduce the chance that a practice incurs the expense of recruiting and getting the doctor established in practice, only to have the doctor quickly “jump ship” to a competing practice.

In most, but not all, cases, it is hard to argue that hospitalists can redirect referral sources or steal trade secrets when they leave a practice. Accordingly, these issues are rarely a good reason to include a non-compete.

Including a non-compete simply to prevent a doctor from jumping ship to a new practice has always struck me as the least legitimate reason; your practice should keep doctors from leaving because they like it there rather than because of a contractual provision that makes it difficult to switch to a different practice in the area. And including a non-compete clause comes at a cost of potentially scaring off the people you are trying to recruit, which could mean that it is hurting the practice more than helping it.

I’m not suggesting that non-competes have no place in hospitalist practice; they may be important and appropriate in some situations. But each hospitalist practice should take the time to think critically about whether to include one or not. Simply including it because it is common practice in other physician contracts may do more harm than good.

 

 

If you are a hospitalist and are considering signing a contract that includes a non-compete, don’t let this column lead you to believe that the practice is trying to treat you unfairly. But it is reasonable for you to ask the group representative why they see it as necessary. You might get lucky and find that they’re willing to delete or shorten it.

Conclusion

When it comes to hospitalist contracts, no one formula can apply to all practices or to all physicians. Careful analysis of the contract by both parties, however, along with a few well-thought-out questions, might prevent future problems. TH

Dr. Nelson has been a practicing hospitalist since 1988 and is a co-founder and past-president of SHM. He is a principal in Nelson/Flores Associates, a national hospitalist practice management consulting firm. This column represents his views and is not intended to reflect an official position of SHM.

Issue
The Hospitalist - 2007(04)
Issue
The Hospitalist - 2007(04)
Publications
Publications
Article Type
Display Headline
Contractual Caution
Display Headline
Contractual Caution
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)