New Data on DOAC Initiation After Stroke in AF: Final Word?

Article Type
Changed
Mon, 10/28/2024 - 15:35

— The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.

Results of the OPTIMAS trial, the largest trial to address this question, showed that initiation of a direct oral anticoagulant (DOAC) within 4 days after ischemic stroke associated with AF was noninferior to delayed initiation (7-14 days) for the composite outcome of ischemic stroke, intracranial hemorrhage, unclassifiable stroke, or systemic embolism at 90 days. Importantly, early DOAC initiation was safe with a low rate of symptomatic hemorrhage, regardless of stroke severity.

In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.

The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.

“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.

Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”

Werring pointed out that starting anticoagulation early also had important logistical advantages.

“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
 

Clinical Dilemma

Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.

“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.

So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.

The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.

The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.

There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.

Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).

The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.

Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.

Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
 

 

 

Applicable to Real-World Practice

A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.

Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.

Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.

During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.

Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.

In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”

Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
 

CATALYST Findings

The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.

The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).

The results were consistent across all subgroups, all suggesting an advantage for early DOAC.

Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.

The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).

At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
 

‘Practice Changing’ Results

Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”

“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.

“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.

Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.

During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.

“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”

Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”

The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

— The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.

Results of the OPTIMAS trial, the largest trial to address this question, showed that initiation of a direct oral anticoagulant (DOAC) within 4 days after ischemic stroke associated with AF was noninferior to delayed initiation (7-14 days) for the composite outcome of ischemic stroke, intracranial hemorrhage, unclassifiable stroke, or systemic embolism at 90 days. Importantly, early DOAC initiation was safe with a low rate of symptomatic hemorrhage, regardless of stroke severity.

In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.

The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.

“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.

Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”

Werring pointed out that starting anticoagulation early also had important logistical advantages.

“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
 

Clinical Dilemma

Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.

“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.

So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.

The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.

The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.

There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.

Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).

The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.

Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.

Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
 

 

 

Applicable to Real-World Practice

A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.

Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.

Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.

During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.

Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.

In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”

Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
 

CATALYST Findings

The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.

The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).

The results were consistent across all subgroups, all suggesting an advantage for early DOAC.

Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.

The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).

At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
 

‘Practice Changing’ Results

Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”

“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.

“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.

Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.

During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.

“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”

Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”

The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
 

A version of this article appeared on Medscape.com.

— The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.

Results of the OPTIMAS trial, the largest trial to address this question, showed that initiation of a direct oral anticoagulant (DOAC) within 4 days after ischemic stroke associated with AF was noninferior to delayed initiation (7-14 days) for the composite outcome of ischemic stroke, intracranial hemorrhage, unclassifiable stroke, or systemic embolism at 90 days. Importantly, early DOAC initiation was safe with a low rate of symptomatic hemorrhage, regardless of stroke severity.

In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.

The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.

“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.

Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”

Werring pointed out that starting anticoagulation early also had important logistical advantages.

“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
 

Clinical Dilemma

Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.

“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.

So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.

The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.

The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.

There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.

Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).

The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.

Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.

Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
 

 

 

Applicable to Real-World Practice

A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.

Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.

Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.

During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.

Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.

In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”

Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
 

CATALYST Findings

The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.

The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).

The results were consistent across all subgroups, all suggesting an advantage for early DOAC.

Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.

The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).

At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
 

‘Practice Changing’ Results

Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”

“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.

“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.

Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.

During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.

“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”

Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”

The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM WSC 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Help Your Patients Reap the Benefits of Plant-Based Diets

Article Type
Changed
Thu, 10/24/2024 - 13:21

Plant-based diets have become increasingly popular over the last decade as the evidence supporting their health benefits becomes stronger. 

Research pooled from nearly 100 studies has indicated that people who adhere to a vegan diet (ie, completely devoid of animal products) or a vegetarian diet (ie, devoid of meat, but may include dairy and eggs) are able to ward off some chronic diseases, such as cardiovascular disease, optimize glycemic control, and decrease their risk for cancer compared with those who consume omnivorous diets. 

Vegan and vegetarian diets, or flexitarian diets — which are less reliant on animal protein than the standard US diet but do not completely exclude meat, fish, eggs, or dairy — may promote homeostasis and decrease inflammation by providing more fiber, antioxidants, and unsaturated fatty acids than the typical Western diet. 
 

Inflammation and Obesity

Adipose tissue is a major producer of pro-inflammatory cytokines like interleukin (IL)-6, whose presence then triggers a rush of acute-phase reactants such as C-reactive protein (CRP) by the liver. This process develops into chronic low-grade inflammation that can increase a person’s chances of developing diabetes, cardiovascular disease, kidney disease, metabolic syndrome, and related complications.

Adopting a plant-based diet can improve markers of chronic low-grade inflammation that can lead to chronic disease and worsen existent chronic disease. A meta-analysis of 29 studies encompassing nearly 2700 participants found that initiation of a plant-based diet showed significant improvement in CRP, IL-6, and soluble intercellular adhesion molecule 1. 

If we want to prevent these inflammatory disease states and their complications, the obvious response is to counsel patients to avoid excessive weight gain or to lose weight if obesity is their baseline. This can be tough for some patients, but it is nonetheless an important step in chronic disease prevention and management.
 

Plant-Based Diet for Type 2 Diabetes

According to a review of nine studies of patients living with type 2 diabetes who adhered to a plant-based diet, all but one found that this approach led to significantly lower A1c values than those seen in control groups. Six of the included studies reported that participants were able to decrease or discontinue medications for the management of diabetes. Researchers across all included studies also noted a decrease in total cholesterol, low-density lipoprotein cholesterol, and triglycerides, as well as increased weight loss in participants in each intervention group. 

Such improvements are probably the result of the increase in fiber intake that occurs with a plant-based diet. A high-fiber diet is known to promote improved glucose and lipid metabolism as well as weight loss. 

It is also worth noting that participants in the intervention groups also experienced improvements in depression and less chronic pain than did those in the control groups. 
 

Plant-Based Diet for Chronic Kidney Disease (CKD)

Although the use of a plant-based diet in the prevention of CKD is well documented, adopting such diets for the treatment of CKD may intimidate both patients and practitioners owing to the high potassium and phosphorus content of many fruits and vegetables.

However, research indicates that the bioavailability of both potassium and phosphorus is lower in plant-based, whole foods than in preservatives and the highly processed food items that incorporate them. This makes a plant-based diet more viable than previously thought. 

Diets rich in vegetables, whole grains, nuts, and legumes have been shown to decrease dietary acid load, both preventing and treating metabolic acidosis. Such diets have also been shown to decrease blood pressure and the risk for a decline in estimated glomerular filtration rate. This type of diet would also prioritize the unsaturated fatty acids and fiber-rich proteins such as avocados, beans, and nuts shown to improve dyslipidemia, which may occur alongside CKD.
 

 

 

Realistic Options for Patients on Medical Diets

There is one question that I always seem to get from when recommending a plant-based diet: “These patients already have so many restrictions. Why would you add more?” And my answer is also always the same: I don’t. 

I rarely, if ever, recommend completely cutting out any food item or food group. Instead, I ask the patient to increase their intake of plant-based foods and only limit highly processed foods and fatty meats. By shifting a patient’s focus to beans; nuts; and low-carbohydrate, high-fiber fruits and vegetables, I am often opening up a whole new world of possibilities. 

Instead of a sandwich with low-sodium turkey and cheese on white bread with a side of unsalted pretzels, I recommend a caprese salad with blueberries and almonds or a Southwest salad with black beans, corn, and avocado. I don’t encourage my patients to skip the foods that they love, but instead to only think about all the delicious plant-based options that will provide them with more than just calories.

Meat, dairy, seafood, and eggs can certainly be a part of a healthy diet, but what if our chronically ill patients, especially those with diabetes, had more options than just grilled chicken and green beans for every meal? What if we focus on decreasing dietary restrictions, incorporating a variety of nourishing foods, and educating our patients, instead of on portion control and moderation? 

This is how I choose to incorporate plant-based diets into my practice to treat and prevent these chronic inflammatory conditions and promote sustainable, realistic change in my clients’ health.

Brandy Winfree Root, a renal dietitian in private practice in Mary Esther, Florida, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Plant-based diets have become increasingly popular over the last decade as the evidence supporting their health benefits becomes stronger. 

Research pooled from nearly 100 studies has indicated that people who adhere to a vegan diet (ie, completely devoid of animal products) or a vegetarian diet (ie, devoid of meat, but may include dairy and eggs) are able to ward off some chronic diseases, such as cardiovascular disease, optimize glycemic control, and decrease their risk for cancer compared with those who consume omnivorous diets. 

Vegan and vegetarian diets, or flexitarian diets — which are less reliant on animal protein than the standard US diet but do not completely exclude meat, fish, eggs, or dairy — may promote homeostasis and decrease inflammation by providing more fiber, antioxidants, and unsaturated fatty acids than the typical Western diet. 
 

Inflammation and Obesity

Adipose tissue is a major producer of pro-inflammatory cytokines like interleukin (IL)-6, whose presence then triggers a rush of acute-phase reactants such as C-reactive protein (CRP) by the liver. This process develops into chronic low-grade inflammation that can increase a person’s chances of developing diabetes, cardiovascular disease, kidney disease, metabolic syndrome, and related complications.

Adopting a plant-based diet can improve markers of chronic low-grade inflammation that can lead to chronic disease and worsen existent chronic disease. A meta-analysis of 29 studies encompassing nearly 2700 participants found that initiation of a plant-based diet showed significant improvement in CRP, IL-6, and soluble intercellular adhesion molecule 1. 

If we want to prevent these inflammatory disease states and their complications, the obvious response is to counsel patients to avoid excessive weight gain or to lose weight if obesity is their baseline. This can be tough for some patients, but it is nonetheless an important step in chronic disease prevention and management.
 

Plant-Based Diet for Type 2 Diabetes

According to a review of nine studies of patients living with type 2 diabetes who adhered to a plant-based diet, all but one found that this approach led to significantly lower A1c values than those seen in control groups. Six of the included studies reported that participants were able to decrease or discontinue medications for the management of diabetes. Researchers across all included studies also noted a decrease in total cholesterol, low-density lipoprotein cholesterol, and triglycerides, as well as increased weight loss in participants in each intervention group. 

Such improvements are probably the result of the increase in fiber intake that occurs with a plant-based diet. A high-fiber diet is known to promote improved glucose and lipid metabolism as well as weight loss. 

It is also worth noting that participants in the intervention groups also experienced improvements in depression and less chronic pain than did those in the control groups. 
 

Plant-Based Diet for Chronic Kidney Disease (CKD)

Although the use of a plant-based diet in the prevention of CKD is well documented, adopting such diets for the treatment of CKD may intimidate both patients and practitioners owing to the high potassium and phosphorus content of many fruits and vegetables.

However, research indicates that the bioavailability of both potassium and phosphorus is lower in plant-based, whole foods than in preservatives and the highly processed food items that incorporate them. This makes a plant-based diet more viable than previously thought. 

Diets rich in vegetables, whole grains, nuts, and legumes have been shown to decrease dietary acid load, both preventing and treating metabolic acidosis. Such diets have also been shown to decrease blood pressure and the risk for a decline in estimated glomerular filtration rate. This type of diet would also prioritize the unsaturated fatty acids and fiber-rich proteins such as avocados, beans, and nuts shown to improve dyslipidemia, which may occur alongside CKD.
 

 

 

Realistic Options for Patients on Medical Diets

There is one question that I always seem to get from when recommending a plant-based diet: “These patients already have so many restrictions. Why would you add more?” And my answer is also always the same: I don’t. 

I rarely, if ever, recommend completely cutting out any food item or food group. Instead, I ask the patient to increase their intake of plant-based foods and only limit highly processed foods and fatty meats. By shifting a patient’s focus to beans; nuts; and low-carbohydrate, high-fiber fruits and vegetables, I am often opening up a whole new world of possibilities. 

Instead of a sandwich with low-sodium turkey and cheese on white bread with a side of unsalted pretzels, I recommend a caprese salad with blueberries and almonds or a Southwest salad with black beans, corn, and avocado. I don’t encourage my patients to skip the foods that they love, but instead to only think about all the delicious plant-based options that will provide them with more than just calories.

Meat, dairy, seafood, and eggs can certainly be a part of a healthy diet, but what if our chronically ill patients, especially those with diabetes, had more options than just grilled chicken and green beans for every meal? What if we focus on decreasing dietary restrictions, incorporating a variety of nourishing foods, and educating our patients, instead of on portion control and moderation? 

This is how I choose to incorporate plant-based diets into my practice to treat and prevent these chronic inflammatory conditions and promote sustainable, realistic change in my clients’ health.

Brandy Winfree Root, a renal dietitian in private practice in Mary Esther, Florida, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Plant-based diets have become increasingly popular over the last decade as the evidence supporting their health benefits becomes stronger. 

Research pooled from nearly 100 studies has indicated that people who adhere to a vegan diet (ie, completely devoid of animal products) or a vegetarian diet (ie, devoid of meat, but may include dairy and eggs) are able to ward off some chronic diseases, such as cardiovascular disease, optimize glycemic control, and decrease their risk for cancer compared with those who consume omnivorous diets. 

Vegan and vegetarian diets, or flexitarian diets — which are less reliant on animal protein than the standard US diet but do not completely exclude meat, fish, eggs, or dairy — may promote homeostasis and decrease inflammation by providing more fiber, antioxidants, and unsaturated fatty acids than the typical Western diet. 
 

Inflammation and Obesity

Adipose tissue is a major producer of pro-inflammatory cytokines like interleukin (IL)-6, whose presence then triggers a rush of acute-phase reactants such as C-reactive protein (CRP) by the liver. This process develops into chronic low-grade inflammation that can increase a person’s chances of developing diabetes, cardiovascular disease, kidney disease, metabolic syndrome, and related complications.

Adopting a plant-based diet can improve markers of chronic low-grade inflammation that can lead to chronic disease and worsen existent chronic disease. A meta-analysis of 29 studies encompassing nearly 2700 participants found that initiation of a plant-based diet showed significant improvement in CRP, IL-6, and soluble intercellular adhesion molecule 1. 

If we want to prevent these inflammatory disease states and their complications, the obvious response is to counsel patients to avoid excessive weight gain or to lose weight if obesity is their baseline. This can be tough for some patients, but it is nonetheless an important step in chronic disease prevention and management.
 

Plant-Based Diet for Type 2 Diabetes

According to a review of nine studies of patients living with type 2 diabetes who adhered to a plant-based diet, all but one found that this approach led to significantly lower A1c values than those seen in control groups. Six of the included studies reported that participants were able to decrease or discontinue medications for the management of diabetes. Researchers across all included studies also noted a decrease in total cholesterol, low-density lipoprotein cholesterol, and triglycerides, as well as increased weight loss in participants in each intervention group. 

Such improvements are probably the result of the increase in fiber intake that occurs with a plant-based diet. A high-fiber diet is known to promote improved glucose and lipid metabolism as well as weight loss. 

It is also worth noting that participants in the intervention groups also experienced improvements in depression and less chronic pain than did those in the control groups. 
 

Plant-Based Diet for Chronic Kidney Disease (CKD)

Although the use of a plant-based diet in the prevention of CKD is well documented, adopting such diets for the treatment of CKD may intimidate both patients and practitioners owing to the high potassium and phosphorus content of many fruits and vegetables.

However, research indicates that the bioavailability of both potassium and phosphorus is lower in plant-based, whole foods than in preservatives and the highly processed food items that incorporate them. This makes a plant-based diet more viable than previously thought. 

Diets rich in vegetables, whole grains, nuts, and legumes have been shown to decrease dietary acid load, both preventing and treating metabolic acidosis. Such diets have also been shown to decrease blood pressure and the risk for a decline in estimated glomerular filtration rate. This type of diet would also prioritize the unsaturated fatty acids and fiber-rich proteins such as avocados, beans, and nuts shown to improve dyslipidemia, which may occur alongside CKD.
 

 

 

Realistic Options for Patients on Medical Diets

There is one question that I always seem to get from when recommending a plant-based diet: “These patients already have so many restrictions. Why would you add more?” And my answer is also always the same: I don’t. 

I rarely, if ever, recommend completely cutting out any food item or food group. Instead, I ask the patient to increase their intake of plant-based foods and only limit highly processed foods and fatty meats. By shifting a patient’s focus to beans; nuts; and low-carbohydrate, high-fiber fruits and vegetables, I am often opening up a whole new world of possibilities. 

Instead of a sandwich with low-sodium turkey and cheese on white bread with a side of unsalted pretzels, I recommend a caprese salad with blueberries and almonds or a Southwest salad with black beans, corn, and avocado. I don’t encourage my patients to skip the foods that they love, but instead to only think about all the delicious plant-based options that will provide them with more than just calories.

Meat, dairy, seafood, and eggs can certainly be a part of a healthy diet, but what if our chronically ill patients, especially those with diabetes, had more options than just grilled chicken and green beans for every meal? What if we focus on decreasing dietary restrictions, incorporating a variety of nourishing foods, and educating our patients, instead of on portion control and moderation? 

This is how I choose to incorporate plant-based diets into my practice to treat and prevent these chronic inflammatory conditions and promote sustainable, realistic change in my clients’ health.

Brandy Winfree Root, a renal dietitian in private practice in Mary Esther, Florida, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Why Scientists Are Linking More Diseases to Light at Night

Article Type
Changed
Thu, 10/24/2024 - 13:06

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

Publications
Topics
Sections

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Rising Tide of Atrial Fibrillation: Is Primary Care Ready?

Article Type
Changed
Wed, 10/23/2024 - 13:45

 

The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.

One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.

Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.

“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.

Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
 

The Primary Care Physicians ABCs: Risk Factors and Comorbidities

The three pillars of the new ACC/AHA guidelines include: Stroke risk assessment and management; optimize the patient’s risks; and symptom management.

“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.

Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.

“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.

Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.

Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.

“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.

Joglar also said many physicians need to become educated on a common misconception.

“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.

However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
 

Preventing AF

A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.

Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.

“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea. 

“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
 

 

 

Decisions, Decisions: Stroke Risk Scoring Systems

The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.

The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.

“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.

None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.

“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.

Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.

“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
 

Which Anticoagulant?

Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.

In terms of which DOACs to use, the differences are subtle, according to Patel.

“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”

Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.

Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.

“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.

Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.

“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
 

Does My Patient Have to Be in Normal Sinus Rhythm?

The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.

“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.

Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.

“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
 

 

 

When to Refer for Catheter Ablation?

The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.

Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.

“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.

Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.

But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.

Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.

“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
 

What About Data From Implantables and Wearables?

The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.

But whether anticoagulation improves outcomes is unclear.

“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”

He also hears from patients who report their Apple Watch has detected an episode of AF.

Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.

Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.

He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.

For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.

“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.

Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics. 

Joglar and Mandrola had no disclosures. 


A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.

One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.

Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.

“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.

Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
 

The Primary Care Physicians ABCs: Risk Factors and Comorbidities

The three pillars of the new ACC/AHA guidelines include: Stroke risk assessment and management; optimize the patient’s risks; and symptom management.

“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.

Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.

“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.

Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.

Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.

“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.

Joglar also said many physicians need to become educated on a common misconception.

“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.

However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
 

Preventing AF

A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.

Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.

“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea. 

“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
 

 

 

Decisions, Decisions: Stroke Risk Scoring Systems

The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.

The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.

“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.

None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.

“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.

Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.

“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
 

Which Anticoagulant?

Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.

In terms of which DOACs to use, the differences are subtle, according to Patel.

“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”

Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.

Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.

“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.

Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.

“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
 

Does My Patient Have to Be in Normal Sinus Rhythm?

The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.

“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.

Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.

“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
 

 

 

When to Refer for Catheter Ablation?

The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.

Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.

“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.

Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.

But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.

Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.

“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
 

What About Data From Implantables and Wearables?

The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.

But whether anticoagulation improves outcomes is unclear.

“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”

He also hears from patients who report their Apple Watch has detected an episode of AF.

Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.

Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.

He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.

For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.

“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.

Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics. 

Joglar and Mandrola had no disclosures. 


A version of this article appeared on Medscape.com.

 

The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.

One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.

Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.

“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.

Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
 

The Primary Care Physicians ABCs: Risk Factors and Comorbidities

The three pillars of the new ACC/AHA guidelines include: Stroke risk assessment and management; optimize the patient’s risks; and symptom management.

“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.

Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.

“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.

Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.

Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.

“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.

Joglar also said many physicians need to become educated on a common misconception.

“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.

However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
 

Preventing AF

A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.

Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.

“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea. 

“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
 

 

 

Decisions, Decisions: Stroke Risk Scoring Systems

The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.

The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.

“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.

None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.

“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.

Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.

“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
 

Which Anticoagulant?

Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.

In terms of which DOACs to use, the differences are subtle, according to Patel.

“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”

Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.

Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.

“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.

Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.

“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
 

Does My Patient Have to Be in Normal Sinus Rhythm?

The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.

“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.

Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.

“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
 

 

 

When to Refer for Catheter Ablation?

The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.

Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.

“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.

Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.

But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.

Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.

“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
 

What About Data From Implantables and Wearables?

The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.

But whether anticoagulation improves outcomes is unclear.

“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”

He also hears from patients who report their Apple Watch has detected an episode of AF.

Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.

Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.

He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.

For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.

“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.

Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics. 

Joglar and Mandrola had no disclosures. 


A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Genitals Are a Window Into Health: Sex as a Vital Sign

Article Type
Changed
Tue, 10/22/2024 - 15:46

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

Rachel S. Rubin, MD: I’m Dr. Rachel Rubin, a urologist and sexual medicine specialist in the Washington, DC, area. And I am so thrilled because my co-fellow, the brilliant and famous Dr. Ashley Winter, a board-certified urologist and a certified menopause practitioner, who sees patients in our practice from Los Angeles, is joining us today to talk about sex as a vital sign.

Ashley Winter, MD: To have the best sexual function, you need many different systems to work. You need your hormones to be in the right place. You need your blood vessels to dilate when you want them to. You need your nerves to connect to your genitalia to make them responsive. The way people say, “The eyes are the window into the soul” — well, the genitals are the window into the cardiovascular system, the peripheral nervous system, and the hormonal system. It’s so dynamic. Patients can understand how this reflects their health. We just need healthcare providers to hammer home how those things connect.

Rubin: If you’re a primary care doctor seeing a patient and you want to educate them on diabetes or high blood pressure, how can you “ ‘sell it with ‘sex”? How can you use sex to educate them about these important medical conditions?

Winter: I hate using it as a fear tactic, but sometimes you have to. Time and again, I’ve seen men with severe profound erectile dysfunction at a young age, with chronically uncontrolled diabetes.

Diabetes can impair the peripheral nerves, resulting in peripheral neuropathy. The same way that it can affect the fingers and toes, diabetes can affect the penis, even before those other areas. Diabetes can also lead to other conditions such as low testosterone, which also affects the function of the penis.

I’m being brutally honest when I tell patients that diabetes control is critical to having a wonderful sexspan — the duration of your life where you’re able to be sexually active and have great sex and do it in the way that you want.

Chronic conditions such as high cholesterol or hypertension can affect your ability to become erect or aroused whether you have a penis or a vulva, and even your ability to have an orgasm.

Rubin: None of my doctors has ever asked me about these issues. But we have to bring them up with patients because they›re not going to bring them up to us. I always say in the review of systems, we shouldn›t just ask, “Do you have any sexual problems?” (which nobody ever does) and move past the question about men, women or both. We should be asking, “Do you have any issues with libido? Do you want to talk about it? Any issues with erection, arousal, orgasm, or sexual pain?”

When you can talk about those things, you can treat the patient from a whole physiologic perspective. For example, how does their sciatica affect their sexual pain? How does their antidepressant cause a delayed orgasm? How does their low testosterone level affect their energy level, their libido, and their desire? 

We see so much shame and guilt in sexual health, to the extent that patients feel broken. We can help them understand the anatomy and physiology and explain that they aren’t broken. Instead, it’s “You need this medicine for your crippling anxiety, and that’s why your orgasm is delayed, and so can we augment it or add or subtract something to help you with it.”

Winter: In a primary care setting, where we are considering the patient›s overall health, we strive for medication compliance, but a huge part of medication noncompliance is sexual side effects, whether it›s antidepressants, beta-blockers, birth control, or this new world of GLP-1 agonists.

Rubin: I would add breast cancer treatments. Many patients go off their anastrozole or their tamoxifen because of the sexual side effects. 

Winter: This is where we get to the crux of this discussion about sex being a vital sign — something you need to check routinely. We need to become comfortable with it, because then we are unlocking the ability to treat every patient like a whole person, give them better outcomes, improve their compliance, and have a really powerful tool for education.

Rubin: We have a growing toolbox for all genders when it comes to sexual health. We have FDA- approved medications for low libido in women. We use testosterone in men in an evidence-based way to safely improve libido. We use medications to help with the genitourinary syndrome of menopause. Orgasm is a challenging one, but we have devices that can help with those reflexes. And working with people who specialize in sexual pain can be extremely helpful for patients.

Dr. Winter, having practiced in different settings, what would you tell the primary care doctors who don’t want to talk about libido or who minimize sexual complaints because they don’t know how to navigate them?

Winter: I do not envy the challenge of being a primary care provider in the healthcare world we are living in. I think it is the hardest job. The ultimate takeaway is to just normalize the conversation and be able to validate what is happening. Have a few basic tools, and then have referrals. It›s not that you have to have all the time in the world or you have to treat every condition, but you have to start the conversation, be comfortable with it, and then get patients hooked up with the right resources.

Rubin: Every doctor of every kind can connect with patients and try to understand what they care about. What are their goals? What do they want for their families, for their relationships, for their quality of life? And how can we work collaboratively as a team to help them with those things? 

Sex is a huge part of people’s lives. If we don’t ask about it; if we don’t look into it; and if we don’t admit that our physiology, our medications, and our surgeries can affect sexual health and functioning, how can we improve people’s lives? We can do so much as a team when we consider sex as a true vital sign.
 

Dr. Rubin, Assistant Clinical Professor, Department of Urology, Georgetown University, Washington, DC, has disclosed ties with Maternal Medical, Absorption Pharmaceuticals, GlaxoSmithKline, and Endo.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

PCOS Linked to Hypertensive Blood Pressure in Teens

Article Type
Changed
Tue, 10/22/2024 - 11:35

 

TOPLINE:

Adolescent girls with polycystic ovary syndrome (PCOS) have an increased risk for hypertension, according to a new study which underscores the importance of blood pressure surveillance in this population.

METHODOLOGY:

  • The retrospective cohort study examined the association between PCOS and hypertension in adolescent girls within a diverse community-based US healthcare population.
  • The researchers analyzed data from 224,418 adolescent girls (mean age at index visit, 14.9 years; 15.8% classified as having obesity) who had a well-child visit between 2013 and 2019, during which their systolic blood pressure and diastolic blood pressure were measured.
  • Blood pressure in the hypertensive range was classified using the 2017 American Academy of Pediatrics Practice Guideline, with thresholds of 130/80 mm Hg or greater.

TAKEAWAY:

  • The proportion of adolescent girls with high blood pressure was significantly greater among those with PCOS than among those without the condition (18.2% vs 7.1%; P < .001).
  • Adolescent girls with PCOS had a 25% higher risk for hypertension than those without the disorder (adjusted odds ratio [aOR], 1.25; 95% CI, 1.10-1.42).
  • Similarly, adolescent girls with obesity and PCOS had a 23% higher risk for high blood pressure than those without PCOS (aOR, 1.23; 95% CI, 1.06-1.42).

IN PRACTICE:

“The high prevalence of [hypertension] associated with PCOS emphasizes the key role of early [blood pressure] monitoring in this high-risk group,” the authors of the study wrote.

SOURCE:

The study was led by Sherry Zhang, MD, Kaiser Permanente Oakland Medical Center, Oakland, California, and was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on coded diagnoses of PCOS from clinical settings, which may have led to detection and referral biases. The findings may not be generalizable to an unselected population in which adolescent girls are systematically screened for both PCOS and hypertension.

DISCLOSURES:

This study was funded by the Cardiovascular and Metabolic Conditions Research Section and the Biostatistical Consulting Unit at the Division of Research, Kaiser Permanente Northern California and by the Kaiser Permanente Northern California Community Health Program. The authors declared having no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Adolescent girls with polycystic ovary syndrome (PCOS) have an increased risk for hypertension, according to a new study which underscores the importance of blood pressure surveillance in this population.

METHODOLOGY:

  • The retrospective cohort study examined the association between PCOS and hypertension in adolescent girls within a diverse community-based US healthcare population.
  • The researchers analyzed data from 224,418 adolescent girls (mean age at index visit, 14.9 years; 15.8% classified as having obesity) who had a well-child visit between 2013 and 2019, during which their systolic blood pressure and diastolic blood pressure were measured.
  • Blood pressure in the hypertensive range was classified using the 2017 American Academy of Pediatrics Practice Guideline, with thresholds of 130/80 mm Hg or greater.

TAKEAWAY:

  • The proportion of adolescent girls with high blood pressure was significantly greater among those with PCOS than among those without the condition (18.2% vs 7.1%; P < .001).
  • Adolescent girls with PCOS had a 25% higher risk for hypertension than those without the disorder (adjusted odds ratio [aOR], 1.25; 95% CI, 1.10-1.42).
  • Similarly, adolescent girls with obesity and PCOS had a 23% higher risk for high blood pressure than those without PCOS (aOR, 1.23; 95% CI, 1.06-1.42).

IN PRACTICE:

“The high prevalence of [hypertension] associated with PCOS emphasizes the key role of early [blood pressure] monitoring in this high-risk group,” the authors of the study wrote.

SOURCE:

The study was led by Sherry Zhang, MD, Kaiser Permanente Oakland Medical Center, Oakland, California, and was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on coded diagnoses of PCOS from clinical settings, which may have led to detection and referral biases. The findings may not be generalizable to an unselected population in which adolescent girls are systematically screened for both PCOS and hypertension.

DISCLOSURES:

This study was funded by the Cardiovascular and Metabolic Conditions Research Section and the Biostatistical Consulting Unit at the Division of Research, Kaiser Permanente Northern California and by the Kaiser Permanente Northern California Community Health Program. The authors declared having no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Adolescent girls with polycystic ovary syndrome (PCOS) have an increased risk for hypertension, according to a new study which underscores the importance of blood pressure surveillance in this population.

METHODOLOGY:

  • The retrospective cohort study examined the association between PCOS and hypertension in adolescent girls within a diverse community-based US healthcare population.
  • The researchers analyzed data from 224,418 adolescent girls (mean age at index visit, 14.9 years; 15.8% classified as having obesity) who had a well-child visit between 2013 and 2019, during which their systolic blood pressure and diastolic blood pressure were measured.
  • Blood pressure in the hypertensive range was classified using the 2017 American Academy of Pediatrics Practice Guideline, with thresholds of 130/80 mm Hg or greater.

TAKEAWAY:

  • The proportion of adolescent girls with high blood pressure was significantly greater among those with PCOS than among those without the condition (18.2% vs 7.1%; P < .001).
  • Adolescent girls with PCOS had a 25% higher risk for hypertension than those without the disorder (adjusted odds ratio [aOR], 1.25; 95% CI, 1.10-1.42).
  • Similarly, adolescent girls with obesity and PCOS had a 23% higher risk for high blood pressure than those without PCOS (aOR, 1.23; 95% CI, 1.06-1.42).

IN PRACTICE:

“The high prevalence of [hypertension] associated with PCOS emphasizes the key role of early [blood pressure] monitoring in this high-risk group,” the authors of the study wrote.

SOURCE:

The study was led by Sherry Zhang, MD, Kaiser Permanente Oakland Medical Center, Oakland, California, and was published online in the American Journal of Preventive Medicine.

LIMITATIONS:

The study relied on coded diagnoses of PCOS from clinical settings, which may have led to detection and referral biases. The findings may not be generalizable to an unselected population in which adolescent girls are systematically screened for both PCOS and hypertension.

DISCLOSURES:

This study was funded by the Cardiovascular and Metabolic Conditions Research Section and the Biostatistical Consulting Unit at the Division of Research, Kaiser Permanente Northern California and by the Kaiser Permanente Northern California Community Health Program. The authors declared having no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Higher Doses of Vitamin D3 Do Not Reduce Cardiac Biomarkers in Older Adults

Article Type
Changed
Tue, 10/22/2024 - 11:14

 

TOPLINE:

Higher doses of vitamin D3 supplementation did not significantly reduce cardiac biomarkers in older adults with low serum vitamin D levels. The STURDY trial found no significant differences in high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) between low- and high-dose groups.

METHODOLOGY:

  • A total of 688 participants aged 70 years or older with low serum 25-hydroxy vitamin D levels (10-29 ng/mL) were included in the STURDY trial.
  • Participants were randomized to receive one of four doses of vitamin D3 supplementation: 200, 1000, 2000, or 4000 IU/d, with 200 IU/d as the reference dose.
  • Cardiac biomarkers, including hs-cTnI and NT-proBNP, were measured at baseline, 3 months, 12 months, and 24 months.
  • The trial was conducted at two community-based research institutions in the United States between July 2015 and March 2019.
  • The effects of vitamin D3 dose on biomarkers were assessed via mixed-effects tobit models, with participants followed up to 24 months or until study termination.

TAKEAWAY:

  • Higher doses of vitamin D3 supplementation did not significantly affect hs-cTnI levels compared with the low-dose group (1.6% difference; 95% CI, −5.3 to 8.9).
  • No significant differences were observed in NT-proBNP levels between the high-dose and low-dose groups (−1.8% difference; 95% CI, −9.3 to 6.3).
  • Both hs-cTnI and NT-proBNP levels increased in both low- and high-dose groups over time, with hs-cTnI increasing by 5.2% and 7.0%, respectively, and NT-proBNP increasing by 11.3% and 9.3%, respectively.
  • The findings suggest that higher doses of vitamin D3 supplementation do not reduce markers of subclinical cardiovascular disease in older adults with low serum vitamin D levels.

IN PRACTICE:

“We can speculate that the systemic effects of vitamin D deficiency are more profound among the very old, and there may be an inverse relationship between supplementation and inflammation. It is also possible that serum vitamin D level is a risk marker but not a risk factor for CVD risk and related underlying mechanisms,” wrote the authors of the study.

SOURCE:

The study was led by Katharine W. Rainer, MD, Beth Israel Deaconess Medical Center in Boston. It was published online in the Journal of the American College of Cardiology.

LIMITATIONS:

The study’s community-based population may limit the generalizability of the findings to populations at higher risk for cardiovascular disease. Additionally, the baseline cardiac biomarkers were lower than those in some high-risk populations, which may affect the precision of the assay performance. The study may not have had adequate power for cross-sectional and subgroup analyses. Both groups received some vitamin D3 supplementation, making it difficult to determine the impact of lower-dose supplementation vs no supplementation.

DISCLOSURES:

The study was supported by grants from the National Institute on Aging, the Office of Dietary Supplements, the Mid-Atlantic Nutrition Obesity Research Center, and the Johns Hopkins Institute for Clinical and Translational Research. Rainer disclosed receiving grants from these organizations.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher doses of vitamin D3 supplementation did not significantly reduce cardiac biomarkers in older adults with low serum vitamin D levels. The STURDY trial found no significant differences in high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) between low- and high-dose groups.

METHODOLOGY:

  • A total of 688 participants aged 70 years or older with low serum 25-hydroxy vitamin D levels (10-29 ng/mL) were included in the STURDY trial.
  • Participants were randomized to receive one of four doses of vitamin D3 supplementation: 200, 1000, 2000, or 4000 IU/d, with 200 IU/d as the reference dose.
  • Cardiac biomarkers, including hs-cTnI and NT-proBNP, were measured at baseline, 3 months, 12 months, and 24 months.
  • The trial was conducted at two community-based research institutions in the United States between July 2015 and March 2019.
  • The effects of vitamin D3 dose on biomarkers were assessed via mixed-effects tobit models, with participants followed up to 24 months or until study termination.

TAKEAWAY:

  • Higher doses of vitamin D3 supplementation did not significantly affect hs-cTnI levels compared with the low-dose group (1.6% difference; 95% CI, −5.3 to 8.9).
  • No significant differences were observed in NT-proBNP levels between the high-dose and low-dose groups (−1.8% difference; 95% CI, −9.3 to 6.3).
  • Both hs-cTnI and NT-proBNP levels increased in both low- and high-dose groups over time, with hs-cTnI increasing by 5.2% and 7.0%, respectively, and NT-proBNP increasing by 11.3% and 9.3%, respectively.
  • The findings suggest that higher doses of vitamin D3 supplementation do not reduce markers of subclinical cardiovascular disease in older adults with low serum vitamin D levels.

IN PRACTICE:

“We can speculate that the systemic effects of vitamin D deficiency are more profound among the very old, and there may be an inverse relationship between supplementation and inflammation. It is also possible that serum vitamin D level is a risk marker but not a risk factor for CVD risk and related underlying mechanisms,” wrote the authors of the study.

SOURCE:

The study was led by Katharine W. Rainer, MD, Beth Israel Deaconess Medical Center in Boston. It was published online in the Journal of the American College of Cardiology.

LIMITATIONS:

The study’s community-based population may limit the generalizability of the findings to populations at higher risk for cardiovascular disease. Additionally, the baseline cardiac biomarkers were lower than those in some high-risk populations, which may affect the precision of the assay performance. The study may not have had adequate power for cross-sectional and subgroup analyses. Both groups received some vitamin D3 supplementation, making it difficult to determine the impact of lower-dose supplementation vs no supplementation.

DISCLOSURES:

The study was supported by grants from the National Institute on Aging, the Office of Dietary Supplements, the Mid-Atlantic Nutrition Obesity Research Center, and the Johns Hopkins Institute for Clinical and Translational Research. Rainer disclosed receiving grants from these organizations.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Higher doses of vitamin D3 supplementation did not significantly reduce cardiac biomarkers in older adults with low serum vitamin D levels. The STURDY trial found no significant differences in high-sensitivity cardiac troponin I (hs-cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) between low- and high-dose groups.

METHODOLOGY:

  • A total of 688 participants aged 70 years or older with low serum 25-hydroxy vitamin D levels (10-29 ng/mL) were included in the STURDY trial.
  • Participants were randomized to receive one of four doses of vitamin D3 supplementation: 200, 1000, 2000, or 4000 IU/d, with 200 IU/d as the reference dose.
  • Cardiac biomarkers, including hs-cTnI and NT-proBNP, were measured at baseline, 3 months, 12 months, and 24 months.
  • The trial was conducted at two community-based research institutions in the United States between July 2015 and March 2019.
  • The effects of vitamin D3 dose on biomarkers were assessed via mixed-effects tobit models, with participants followed up to 24 months or until study termination.

TAKEAWAY:

  • Higher doses of vitamin D3 supplementation did not significantly affect hs-cTnI levels compared with the low-dose group (1.6% difference; 95% CI, −5.3 to 8.9).
  • No significant differences were observed in NT-proBNP levels between the high-dose and low-dose groups (−1.8% difference; 95% CI, −9.3 to 6.3).
  • Both hs-cTnI and NT-proBNP levels increased in both low- and high-dose groups over time, with hs-cTnI increasing by 5.2% and 7.0%, respectively, and NT-proBNP increasing by 11.3% and 9.3%, respectively.
  • The findings suggest that higher doses of vitamin D3 supplementation do not reduce markers of subclinical cardiovascular disease in older adults with low serum vitamin D levels.

IN PRACTICE:

“We can speculate that the systemic effects of vitamin D deficiency are more profound among the very old, and there may be an inverse relationship between supplementation and inflammation. It is also possible that serum vitamin D level is a risk marker but not a risk factor for CVD risk and related underlying mechanisms,” wrote the authors of the study.

SOURCE:

The study was led by Katharine W. Rainer, MD, Beth Israel Deaconess Medical Center in Boston. It was published online in the Journal of the American College of Cardiology.

LIMITATIONS:

The study’s community-based population may limit the generalizability of the findings to populations at higher risk for cardiovascular disease. Additionally, the baseline cardiac biomarkers were lower than those in some high-risk populations, which may affect the precision of the assay performance. The study may not have had adequate power for cross-sectional and subgroup analyses. Both groups received some vitamin D3 supplementation, making it difficult to determine the impact of lower-dose supplementation vs no supplementation.

DISCLOSURES:

The study was supported by grants from the National Institute on Aging, the Office of Dietary Supplements, the Mid-Atlantic Nutrition Obesity Research Center, and the Johns Hopkins Institute for Clinical and Translational Research. Rainer disclosed receiving grants from these organizations.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ASA Releases New Primary Stroke Prevention Guideline

Article Type
Changed
Mon, 10/21/2024 - 14:46

 

The American Stroke Association (ASA) has issued a new updated guideline for primary stroke prevention.

The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.

“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.

It was published online on October 21 in Stroke.
 

Up to 80% of Strokes Preventable

Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.

This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.

The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.

Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.

“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell. 

She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
 

At Least Two Meds Needed to Reduce BP

Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.

Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.

In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
 

 

 

Emphasis on Women’s Health

Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.

They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.

Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”

Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
 

Challenges Lie Ahead

Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.

Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added. 

Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs. 

“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.

“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

The American Stroke Association (ASA) has issued a new updated guideline for primary stroke prevention.

The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.

“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.

It was published online on October 21 in Stroke.
 

Up to 80% of Strokes Preventable

Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.

This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.

The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.

Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.

“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell. 

She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
 

At Least Two Meds Needed to Reduce BP

Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.

Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.

In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
 

 

 

Emphasis on Women’s Health

Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.

They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.

Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”

Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
 

Challenges Lie Ahead

Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.

Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added. 

Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs. 

“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.

“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell. 
 

A version of this article appeared on Medscape.com.

 

The American Stroke Association (ASA) has issued a new updated guideline for primary stroke prevention.

The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.

“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.

It was published online on October 21 in Stroke.
 

Up to 80% of Strokes Preventable

Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.

This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.

The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.

Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.

“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell. 

She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
 

At Least Two Meds Needed to Reduce BP

Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.

Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.

In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
 

 

 

Emphasis on Women’s Health

Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.

They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.

Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”

Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
 

Challenges Lie Ahead

Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.

Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added. 

Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs. 

“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.

“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

State of Confusion: Should All Children Get Lipid Labs for High Cholesterol?

Article Type
Changed
Fri, 10/18/2024 - 11:42

 

Clinicians receive conflicting advice on whether to order blood tests to screen for lipids in children. A new study could add to the confusion. Researchers found that a combination of physical proxy measures such as hypertension and body mass index (BMI) predicted the risk for future cardiovascular events as well as the physical model plus lipid labs, questioning the value of those blood tests.

Some medical organizations advise screening only for high-risk children because more research is needed to define the harms and benefits of universal screening. Diet and behavioral changes are sufficient for most children, and universal screening could lead to false positives and unnecessary further testing, they said.

Groups that favor lipid tests for all children say these measurements detect familial hypercholesterolemia (FH) that would not otherwise be diagnosed, leading to treatment with drugs like statins and a greater chance of preventing cardiovascular disease (CVD) in adulthood.

Researchers from the new study said their findings do not address screenings for FH, which affects 1 in 250 US children and puts them at a risk for atherosclerotic CVD.
 

Recommending Blood Tests in Age Groups

One of the seminal guidelines on screening lipids in children came from the National Heart, Lung, and Blood Institute (NHLBI), which in 2011 recommended children undergo dyslipidemia screening between the ages of 9 and 11 years and again between 17 and 21 years. Children should receive a screening starting at age 2 years if they have a family history of CVD or dyslipidemia or have diabetes, an elevated BMI, or hypertension. The American Academy of Pediatrics shortly followed suit, issuing similar recommendations.

Screening for the two subsets of ages was an expansion from the original 1992 guidelines from the National Cholesterol Education Program, which recommended screening only for children with either a family history of early CVD or elevated total cholesterol levels.

A 2011 panel for the NHLBI said the older approach identified significantly fewer children with abnormal levels of low-density lipoprotein cholesterol (LDL-C) than the addition of two age groups for screening, adding that many children do not have a complete family history. The American College of Cardiology and American Heart Association later supported NHLBI’s stance in their joint guidelines on the management of cholesterol.

Mark Corkins, MD, chair of the AAP’s Committee on Nutrition, told Medscape Medical News that if children are screened only because they have obesity or a family history of FH, some with elevated lipid levels will be missed. For instance, studies indicate caregiver recall of FH often is inaccurate, and the genetic disorder that causes the condition is not related to obesity.

“The screening is to find familial hypercholesterolemia, to try to find the ones that need therapy,” that would not be caught by the risk-based screening earlier on in childhood, Corkins said.
 

Only Screen Children With Risk Factors

But other groups do not agree. The US Preventive Services Task Force (USPSTF) found insufficient evidence to recommend for or against screening for lipid disorders in asymptomatic children and teens.

 

 

The group also said it found inadequate evidence that lipid-lowering interventions in the general pediatric population lead to reductions in cardiovascular events or all-cause mortality once they reached adulthood. USPSTF also raised questions about the safety of lipid-lowering drugs in children.

“The current evidence is insufficient to assess the balance of benefits and harms of screening for lipid disorders in children and adolescents 20 years or younger,” the panel wrote.

The American Academy of Family Physicians supports USPSTF’s recommendations.
 

Low Rate of Screening

While the uncertainty over screening in children continues, the practice has been adopted by a minority of clinicians.

A study published in JAMA Network Open in July found 9% of 700,000 9- to 11-year-olds had a documented result from a lipid screening. Among more than 1.3 million 17- to 21-year-olds, 13% had received a screening.

As BMI went up, so did screening rates. A little over 9% children and teens with a healthy weight were screened compared with 14.7% of those with moderate obesity and 21.9% of those with severe obesity.

Among those screened, 32.3% of 9- to 11-year-olds and 30.2% of 17- to 21-year-olds had abnormal lipid levels, defined as having one elevated measure out of five, including total cholesterol of 200 mg/dL or higher or LDL-C levels of 130 mg/dL or higher.

Justin Zachariah, MD, MPH, an associate professor of pediatrics-cardiology at Baylor College of Medicine in Houston, spoke about physicians screening children based only on factors like obesity during a presentation at the recent annual meeting of the American Academy of Pediatrics. He cited research showing roughly one in four children with abnormal lipids had a normal weight.

If a clinician is reserving a lipid screening for a child who is overweight or has obesity, “you’re missing nearly half the problem,” Zachariah said during his presentation.

One reason for the low rate of universal screening may be inattention to FH by clinicians, according to Samuel S. Gidding, MD, a professor in the Department of Genomic Health at Geisinger College of Health Sciences in Bridgewater Corners, Vermont.

For instance, a clinician has only a set amount of time during a well-child visit and other issues may take precedence, “so it doesn’t make sense to broach preventive screening for something that could happen 30 or 40 years from now, vs this [other] very immediate problem,” he said.

Clinicians “are triggered to act on the LDL level, but don’t think about FH as a possible diagnosis,” Gidding told Medscape Medical News.

Another barrier is that in some settings, caregivers must take children and teens to another facility on a different day to fulfill an order for a lipid test.

“It’s reluctance of doctors to order it, knowing patients won’t go through with it,” Gidding said.

Gidding is a consultant for Esperion Therapeutics. Other sources in this story reported no relevant financial conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Clinicians receive conflicting advice on whether to order blood tests to screen for lipids in children. A new study could add to the confusion. Researchers found that a combination of physical proxy measures such as hypertension and body mass index (BMI) predicted the risk for future cardiovascular events as well as the physical model plus lipid labs, questioning the value of those blood tests.

Some medical organizations advise screening only for high-risk children because more research is needed to define the harms and benefits of universal screening. Diet and behavioral changes are sufficient for most children, and universal screening could lead to false positives and unnecessary further testing, they said.

Groups that favor lipid tests for all children say these measurements detect familial hypercholesterolemia (FH) that would not otherwise be diagnosed, leading to treatment with drugs like statins and a greater chance of preventing cardiovascular disease (CVD) in adulthood.

Researchers from the new study said their findings do not address screenings for FH, which affects 1 in 250 US children and puts them at a risk for atherosclerotic CVD.
 

Recommending Blood Tests in Age Groups

One of the seminal guidelines on screening lipids in children came from the National Heart, Lung, and Blood Institute (NHLBI), which in 2011 recommended children undergo dyslipidemia screening between the ages of 9 and 11 years and again between 17 and 21 years. Children should receive a screening starting at age 2 years if they have a family history of CVD or dyslipidemia or have diabetes, an elevated BMI, or hypertension. The American Academy of Pediatrics shortly followed suit, issuing similar recommendations.

Screening for the two subsets of ages was an expansion from the original 1992 guidelines from the National Cholesterol Education Program, which recommended screening only for children with either a family history of early CVD or elevated total cholesterol levels.

A 2011 panel for the NHLBI said the older approach identified significantly fewer children with abnormal levels of low-density lipoprotein cholesterol (LDL-C) than the addition of two age groups for screening, adding that many children do not have a complete family history. The American College of Cardiology and American Heart Association later supported NHLBI’s stance in their joint guidelines on the management of cholesterol.

Mark Corkins, MD, chair of the AAP’s Committee on Nutrition, told Medscape Medical News that if children are screened only because they have obesity or a family history of FH, some with elevated lipid levels will be missed. For instance, studies indicate caregiver recall of FH often is inaccurate, and the genetic disorder that causes the condition is not related to obesity.

“The screening is to find familial hypercholesterolemia, to try to find the ones that need therapy,” that would not be caught by the risk-based screening earlier on in childhood, Corkins said.
 

Only Screen Children With Risk Factors

But other groups do not agree. The US Preventive Services Task Force (USPSTF) found insufficient evidence to recommend for or against screening for lipid disorders in asymptomatic children and teens.

 

 

The group also said it found inadequate evidence that lipid-lowering interventions in the general pediatric population lead to reductions in cardiovascular events or all-cause mortality once they reached adulthood. USPSTF also raised questions about the safety of lipid-lowering drugs in children.

“The current evidence is insufficient to assess the balance of benefits and harms of screening for lipid disorders in children and adolescents 20 years or younger,” the panel wrote.

The American Academy of Family Physicians supports USPSTF’s recommendations.
 

Low Rate of Screening

While the uncertainty over screening in children continues, the practice has been adopted by a minority of clinicians.

A study published in JAMA Network Open in July found 9% of 700,000 9- to 11-year-olds had a documented result from a lipid screening. Among more than 1.3 million 17- to 21-year-olds, 13% had received a screening.

As BMI went up, so did screening rates. A little over 9% children and teens with a healthy weight were screened compared with 14.7% of those with moderate obesity and 21.9% of those with severe obesity.

Among those screened, 32.3% of 9- to 11-year-olds and 30.2% of 17- to 21-year-olds had abnormal lipid levels, defined as having one elevated measure out of five, including total cholesterol of 200 mg/dL or higher or LDL-C levels of 130 mg/dL or higher.

Justin Zachariah, MD, MPH, an associate professor of pediatrics-cardiology at Baylor College of Medicine in Houston, spoke about physicians screening children based only on factors like obesity during a presentation at the recent annual meeting of the American Academy of Pediatrics. He cited research showing roughly one in four children with abnormal lipids had a normal weight.

If a clinician is reserving a lipid screening for a child who is overweight or has obesity, “you’re missing nearly half the problem,” Zachariah said during his presentation.

One reason for the low rate of universal screening may be inattention to FH by clinicians, according to Samuel S. Gidding, MD, a professor in the Department of Genomic Health at Geisinger College of Health Sciences in Bridgewater Corners, Vermont.

For instance, a clinician has only a set amount of time during a well-child visit and other issues may take precedence, “so it doesn’t make sense to broach preventive screening for something that could happen 30 or 40 years from now, vs this [other] very immediate problem,” he said.

Clinicians “are triggered to act on the LDL level, but don’t think about FH as a possible diagnosis,” Gidding told Medscape Medical News.

Another barrier is that in some settings, caregivers must take children and teens to another facility on a different day to fulfill an order for a lipid test.

“It’s reluctance of doctors to order it, knowing patients won’t go through with it,” Gidding said.

Gidding is a consultant for Esperion Therapeutics. Other sources in this story reported no relevant financial conflicts of interest.
 

A version of this article first appeared on Medscape.com.

 

Clinicians receive conflicting advice on whether to order blood tests to screen for lipids in children. A new study could add to the confusion. Researchers found that a combination of physical proxy measures such as hypertension and body mass index (BMI) predicted the risk for future cardiovascular events as well as the physical model plus lipid labs, questioning the value of those blood tests.

Some medical organizations advise screening only for high-risk children because more research is needed to define the harms and benefits of universal screening. Diet and behavioral changes are sufficient for most children, and universal screening could lead to false positives and unnecessary further testing, they said.

Groups that favor lipid tests for all children say these measurements detect familial hypercholesterolemia (FH) that would not otherwise be diagnosed, leading to treatment with drugs like statins and a greater chance of preventing cardiovascular disease (CVD) in adulthood.

Researchers from the new study said their findings do not address screenings for FH, which affects 1 in 250 US children and puts them at a risk for atherosclerotic CVD.
 

Recommending Blood Tests in Age Groups

One of the seminal guidelines on screening lipids in children came from the National Heart, Lung, and Blood Institute (NHLBI), which in 2011 recommended children undergo dyslipidemia screening between the ages of 9 and 11 years and again between 17 and 21 years. Children should receive a screening starting at age 2 years if they have a family history of CVD or dyslipidemia or have diabetes, an elevated BMI, or hypertension. The American Academy of Pediatrics shortly followed suit, issuing similar recommendations.

Screening for the two subsets of ages was an expansion from the original 1992 guidelines from the National Cholesterol Education Program, which recommended screening only for children with either a family history of early CVD or elevated total cholesterol levels.

A 2011 panel for the NHLBI said the older approach identified significantly fewer children with abnormal levels of low-density lipoprotein cholesterol (LDL-C) than the addition of two age groups for screening, adding that many children do not have a complete family history. The American College of Cardiology and American Heart Association later supported NHLBI’s stance in their joint guidelines on the management of cholesterol.

Mark Corkins, MD, chair of the AAP’s Committee on Nutrition, told Medscape Medical News that if children are screened only because they have obesity or a family history of FH, some with elevated lipid levels will be missed. For instance, studies indicate caregiver recall of FH often is inaccurate, and the genetic disorder that causes the condition is not related to obesity.

“The screening is to find familial hypercholesterolemia, to try to find the ones that need therapy,” that would not be caught by the risk-based screening earlier on in childhood, Corkins said.
 

Only Screen Children With Risk Factors

But other groups do not agree. The US Preventive Services Task Force (USPSTF) found insufficient evidence to recommend for or against screening for lipid disorders in asymptomatic children and teens.

 

 

The group also said it found inadequate evidence that lipid-lowering interventions in the general pediatric population lead to reductions in cardiovascular events or all-cause mortality once they reached adulthood. USPSTF also raised questions about the safety of lipid-lowering drugs in children.

“The current evidence is insufficient to assess the balance of benefits and harms of screening for lipid disorders in children and adolescents 20 years or younger,” the panel wrote.

The American Academy of Family Physicians supports USPSTF’s recommendations.
 

Low Rate of Screening

While the uncertainty over screening in children continues, the practice has been adopted by a minority of clinicians.

A study published in JAMA Network Open in July found 9% of 700,000 9- to 11-year-olds had a documented result from a lipid screening. Among more than 1.3 million 17- to 21-year-olds, 13% had received a screening.

As BMI went up, so did screening rates. A little over 9% children and teens with a healthy weight were screened compared with 14.7% of those with moderate obesity and 21.9% of those with severe obesity.

Among those screened, 32.3% of 9- to 11-year-olds and 30.2% of 17- to 21-year-olds had abnormal lipid levels, defined as having one elevated measure out of five, including total cholesterol of 200 mg/dL or higher or LDL-C levels of 130 mg/dL or higher.

Justin Zachariah, MD, MPH, an associate professor of pediatrics-cardiology at Baylor College of Medicine in Houston, spoke about physicians screening children based only on factors like obesity during a presentation at the recent annual meeting of the American Academy of Pediatrics. He cited research showing roughly one in four children with abnormal lipids had a normal weight.

If a clinician is reserving a lipid screening for a child who is overweight or has obesity, “you’re missing nearly half the problem,” Zachariah said during his presentation.

One reason for the low rate of universal screening may be inattention to FH by clinicians, according to Samuel S. Gidding, MD, a professor in the Department of Genomic Health at Geisinger College of Health Sciences in Bridgewater Corners, Vermont.

For instance, a clinician has only a set amount of time during a well-child visit and other issues may take precedence, “so it doesn’t make sense to broach preventive screening for something that could happen 30 or 40 years from now, vs this [other] very immediate problem,” he said.

Clinicians “are triggered to act on the LDL level, but don’t think about FH as a possible diagnosis,” Gidding told Medscape Medical News.

Another barrier is that in some settings, caregivers must take children and teens to another facility on a different day to fulfill an order for a lipid test.

“It’s reluctance of doctors to order it, knowing patients won’t go through with it,” Gidding said.

Gidding is a consultant for Esperion Therapeutics. Other sources in this story reported no relevant financial conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

AHA Scientific Statement Links Three Common Cardiovascular Diseases to Cognitive Decline, Dementia

Article Type
Changed
Tue, 10/22/2024 - 09:02

 

The American Heart Association (AHA) has issued a new scientific statement on the link between heart failure, atrial fibrillation, and coronary heart disease and the increased risk for cognitive impairment and dementia.

The statement includes an extensive research review and offers compelling evidence of the inextricable link between heart health and brain health, which investigators said underscores the benefit of early intervention.

The cumulative evidence “confirms that the trajectories of cardiac health and brain health are inextricably intertwined through modifiable and nonmodifiable factors,” the authors wrote.

Investigators say the findings reinforce the message that addressing cardiovascular health early in life may deter the onset or progression of cognitive impairment later on.

And the earlier this is done, the better, said lead author Fernando D. Testai, MD, PhD, a professor of neurology and the vascular neurology section head, Department of Neurology and Rehabilitation, University of Illinois, Chicago.

The statement was published online in Stroke.
 

Bridging the Research Gap

It’s well known that there’s a bidirectional relationship between heart and brain function. For example, heart failure can lead to decreased blood flow that can damage the brain, and stroke in some areas of the brain can affect the heart.

However, that’s only part of the puzzle and doesn’t address all the gaps in the understanding of how cardiovascular disease contributes to cognition, said Testai.

“What we’re trying to do here is to go one step further and describe other connections between the heart and the brain,” he said.

Investigators carried out an extensive PubMed search for heart failure, atrial fibrillation, and coronary heart disease. Researchers detailed the frequency of each condition, mechanisms by which they might cause cognitive impairment, and prospects for prevention and treatment to maintain brain health.

A recurring theme in the paper is the role of inflammation. Evidence shows there are “remarkable similarities in the inflammatory response that takes place,” with both cardiac disease and cognitive decline, said Testai.

Another potential shared mechanism relates to biomarkers, particularly amyloid, which is strongly linked to Alzheimer’s disease.

“But some studies show amyloid can also be present in the heart, especially in patients who have decreased ejection fraction,” said Testai.
 

Robust Heart-Brain Connection

The statement’s authors collected a substantial amount of evidence showing vascular risk factors such as hypertension and diabetes “can change how the brain processes and clears up amyloid,” Testai added.

The paper also provides a compilation of evidence of shared genetic predispositions when it comes to heart and brain disorders.

“We noticed that some genetic signatures that have historically been associated with heart disease seem to also correlate with structural changes in the brain. That means that at the end of the day, some patients may be born with a genetic predisposition to developing both conditions,” said Testai.

This indicates that the link between the two organs “begins as early as conception” and underscores the importance of adopting healthy lifestyle habits as early as possible, he added.

“That means you can avoid bad habits that eventually lead to hypertension, diabetes, and cholesterol, that eventually will lead to cardiac disease, which eventually will lead to stroke, which eventually will lead to cognitive decline,” Testai noted.

However, cardiovascular health is more complicated than having good genes and adhering to a healthy lifestyle. It’s not clear, for example, why some people who should be predisposed to developing heart disease do not develop it, something Testai refers to as enhanced “resilience.”

For example, Hispanic or Latino patients, who have relatively poor cardiovascular risk factor profiles, seem to be less susceptible to developing cardiac disease.
 

More Research Needed

While genetics may partly explain the paradox, Testai believes other protective factors are at play, including strong social support networks.

Testai referred to the AHA’s “Life’s Essential 8” — the eight components of cardiovascular health. These include a healthy diet, participation in physical activity, nicotine avoidance, healthy sleep, healthy weight, and healthy levels of blood lipids, blood glucose, and blood pressure.

More evidence is needed to show that effective management of cardiac disease positively affects cognition. Currently, cognitive measures are rarely included in studies examining various heart disease treatments, said Testai.

“There should probably be an effort to include brain health outcomes in some of the cardiac literature to make sure we can also measure whether the intervention in the heart leads to an advantage for the brain,” he said.

More research is also needed to determine whether immunomodulation has a beneficial effect on the cognitive trajectory, the statement’s authors noted.

They point out that the interpretation and generalizability of the studies described in the statement are confounded by disparate methodologies, including small sample sizes, cross-sectional designs, and underrepresentation of Black and Hispanic individuals.
 

‘An Important Step’

Reached for a comment, Natalia S. Rost, MD, Chief of the Stroke Division at Massachusetts General Hospital and professor of neurology at Harvard Medical School, both in Boston, said this paper “is an important step” in terms of pulling together pertinent information on the topic of heart-brain health.

She praised the authors for gathering evidence on risk factors related to atrial fibrillation, heart failure, and coronary heart disease, which is “the part of the puzzle that is controllable.”

This helps reinforce the message that controlling vascular risk factors helps with brain health, said Rost.

But brain health is “much more complex than just vascular health,” she said. It includes other elements such as freedom from epilepsy, migraine, traumatic brain injury, and adult learning disabilities.

No relevant conflicts of interest were disclosed.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

The American Heart Association (AHA) has issued a new scientific statement on the link between heart failure, atrial fibrillation, and coronary heart disease and the increased risk for cognitive impairment and dementia.

The statement includes an extensive research review and offers compelling evidence of the inextricable link between heart health and brain health, which investigators said underscores the benefit of early intervention.

The cumulative evidence “confirms that the trajectories of cardiac health and brain health are inextricably intertwined through modifiable and nonmodifiable factors,” the authors wrote.

Investigators say the findings reinforce the message that addressing cardiovascular health early in life may deter the onset or progression of cognitive impairment later on.

And the earlier this is done, the better, said lead author Fernando D. Testai, MD, PhD, a professor of neurology and the vascular neurology section head, Department of Neurology and Rehabilitation, University of Illinois, Chicago.

The statement was published online in Stroke.
 

Bridging the Research Gap

It’s well known that there’s a bidirectional relationship between heart and brain function. For example, heart failure can lead to decreased blood flow that can damage the brain, and stroke in some areas of the brain can affect the heart.

However, that’s only part of the puzzle and doesn’t address all the gaps in the understanding of how cardiovascular disease contributes to cognition, said Testai.

“What we’re trying to do here is to go one step further and describe other connections between the heart and the brain,” he said.

Investigators carried out an extensive PubMed search for heart failure, atrial fibrillation, and coronary heart disease. Researchers detailed the frequency of each condition, mechanisms by which they might cause cognitive impairment, and prospects for prevention and treatment to maintain brain health.

A recurring theme in the paper is the role of inflammation. Evidence shows there are “remarkable similarities in the inflammatory response that takes place,” with both cardiac disease and cognitive decline, said Testai.

Another potential shared mechanism relates to biomarkers, particularly amyloid, which is strongly linked to Alzheimer’s disease.

“But some studies show amyloid can also be present in the heart, especially in patients who have decreased ejection fraction,” said Testai.
 

Robust Heart-Brain Connection

The statement’s authors collected a substantial amount of evidence showing vascular risk factors such as hypertension and diabetes “can change how the brain processes and clears up amyloid,” Testai added.

The paper also provides a compilation of evidence of shared genetic predispositions when it comes to heart and brain disorders.

“We noticed that some genetic signatures that have historically been associated with heart disease seem to also correlate with structural changes in the brain. That means that at the end of the day, some patients may be born with a genetic predisposition to developing both conditions,” said Testai.

This indicates that the link between the two organs “begins as early as conception” and underscores the importance of adopting healthy lifestyle habits as early as possible, he added.

“That means you can avoid bad habits that eventually lead to hypertension, diabetes, and cholesterol, that eventually will lead to cardiac disease, which eventually will lead to stroke, which eventually will lead to cognitive decline,” Testai noted.

However, cardiovascular health is more complicated than having good genes and adhering to a healthy lifestyle. It’s not clear, for example, why some people who should be predisposed to developing heart disease do not develop it, something Testai refers to as enhanced “resilience.”

For example, Hispanic or Latino patients, who have relatively poor cardiovascular risk factor profiles, seem to be less susceptible to developing cardiac disease.
 

More Research Needed

While genetics may partly explain the paradox, Testai believes other protective factors are at play, including strong social support networks.

Testai referred to the AHA’s “Life’s Essential 8” — the eight components of cardiovascular health. These include a healthy diet, participation in physical activity, nicotine avoidance, healthy sleep, healthy weight, and healthy levels of blood lipids, blood glucose, and blood pressure.

More evidence is needed to show that effective management of cardiac disease positively affects cognition. Currently, cognitive measures are rarely included in studies examining various heart disease treatments, said Testai.

“There should probably be an effort to include brain health outcomes in some of the cardiac literature to make sure we can also measure whether the intervention in the heart leads to an advantage for the brain,” he said.

More research is also needed to determine whether immunomodulation has a beneficial effect on the cognitive trajectory, the statement’s authors noted.

They point out that the interpretation and generalizability of the studies described in the statement are confounded by disparate methodologies, including small sample sizes, cross-sectional designs, and underrepresentation of Black and Hispanic individuals.
 

‘An Important Step’

Reached for a comment, Natalia S. Rost, MD, Chief of the Stroke Division at Massachusetts General Hospital and professor of neurology at Harvard Medical School, both in Boston, said this paper “is an important step” in terms of pulling together pertinent information on the topic of heart-brain health.

She praised the authors for gathering evidence on risk factors related to atrial fibrillation, heart failure, and coronary heart disease, which is “the part of the puzzle that is controllable.”

This helps reinforce the message that controlling vascular risk factors helps with brain health, said Rost.

But brain health is “much more complex than just vascular health,” she said. It includes other elements such as freedom from epilepsy, migraine, traumatic brain injury, and adult learning disabilities.

No relevant conflicts of interest were disclosed.

A version of this article first appeared on Medscape.com.

 

The American Heart Association (AHA) has issued a new scientific statement on the link between heart failure, atrial fibrillation, and coronary heart disease and the increased risk for cognitive impairment and dementia.

The statement includes an extensive research review and offers compelling evidence of the inextricable link between heart health and brain health, which investigators said underscores the benefit of early intervention.

The cumulative evidence “confirms that the trajectories of cardiac health and brain health are inextricably intertwined through modifiable and nonmodifiable factors,” the authors wrote.

Investigators say the findings reinforce the message that addressing cardiovascular health early in life may deter the onset or progression of cognitive impairment later on.

And the earlier this is done, the better, said lead author Fernando D. Testai, MD, PhD, a professor of neurology and the vascular neurology section head, Department of Neurology and Rehabilitation, University of Illinois, Chicago.

The statement was published online in Stroke.
 

Bridging the Research Gap

It’s well known that there’s a bidirectional relationship between heart and brain function. For example, heart failure can lead to decreased blood flow that can damage the brain, and stroke in some areas of the brain can affect the heart.

However, that’s only part of the puzzle and doesn’t address all the gaps in the understanding of how cardiovascular disease contributes to cognition, said Testai.

“What we’re trying to do here is to go one step further and describe other connections between the heart and the brain,” he said.

Investigators carried out an extensive PubMed search for heart failure, atrial fibrillation, and coronary heart disease. Researchers detailed the frequency of each condition, mechanisms by which they might cause cognitive impairment, and prospects for prevention and treatment to maintain brain health.

A recurring theme in the paper is the role of inflammation. Evidence shows there are “remarkable similarities in the inflammatory response that takes place,” with both cardiac disease and cognitive decline, said Testai.

Another potential shared mechanism relates to biomarkers, particularly amyloid, which is strongly linked to Alzheimer’s disease.

“But some studies show amyloid can also be present in the heart, especially in patients who have decreased ejection fraction,” said Testai.
 

Robust Heart-Brain Connection

The statement’s authors collected a substantial amount of evidence showing vascular risk factors such as hypertension and diabetes “can change how the brain processes and clears up amyloid,” Testai added.

The paper also provides a compilation of evidence of shared genetic predispositions when it comes to heart and brain disorders.

“We noticed that some genetic signatures that have historically been associated with heart disease seem to also correlate with structural changes in the brain. That means that at the end of the day, some patients may be born with a genetic predisposition to developing both conditions,” said Testai.

This indicates that the link between the two organs “begins as early as conception” and underscores the importance of adopting healthy lifestyle habits as early as possible, he added.

“That means you can avoid bad habits that eventually lead to hypertension, diabetes, and cholesterol, that eventually will lead to cardiac disease, which eventually will lead to stroke, which eventually will lead to cognitive decline,” Testai noted.

However, cardiovascular health is more complicated than having good genes and adhering to a healthy lifestyle. It’s not clear, for example, why some people who should be predisposed to developing heart disease do not develop it, something Testai refers to as enhanced “resilience.”

For example, Hispanic or Latino patients, who have relatively poor cardiovascular risk factor profiles, seem to be less susceptible to developing cardiac disease.
 

More Research Needed

While genetics may partly explain the paradox, Testai believes other protective factors are at play, including strong social support networks.

Testai referred to the AHA’s “Life’s Essential 8” — the eight components of cardiovascular health. These include a healthy diet, participation in physical activity, nicotine avoidance, healthy sleep, healthy weight, and healthy levels of blood lipids, blood glucose, and blood pressure.

More evidence is needed to show that effective management of cardiac disease positively affects cognition. Currently, cognitive measures are rarely included in studies examining various heart disease treatments, said Testai.

“There should probably be an effort to include brain health outcomes in some of the cardiac literature to make sure we can also measure whether the intervention in the heart leads to an advantage for the brain,” he said.

More research is also needed to determine whether immunomodulation has a beneficial effect on the cognitive trajectory, the statement’s authors noted.

They point out that the interpretation and generalizability of the studies described in the statement are confounded by disparate methodologies, including small sample sizes, cross-sectional designs, and underrepresentation of Black and Hispanic individuals.
 

‘An Important Step’

Reached for a comment, Natalia S. Rost, MD, Chief of the Stroke Division at Massachusetts General Hospital and professor of neurology at Harvard Medical School, both in Boston, said this paper “is an important step” in terms of pulling together pertinent information on the topic of heart-brain health.

She praised the authors for gathering evidence on risk factors related to atrial fibrillation, heart failure, and coronary heart disease, which is “the part of the puzzle that is controllable.”

This helps reinforce the message that controlling vascular risk factors helps with brain health, said Rost.

But brain health is “much more complex than just vascular health,” she said. It includes other elements such as freedom from epilepsy, migraine, traumatic brain injury, and adult learning disabilities.

No relevant conflicts of interest were disclosed.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM STROKE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article