Clinical Psychiatry News is the online destination and multimedia properties of Clinica Psychiatry News, the independent news publication for psychiatrists. Since 1971, Clinical Psychiatry News has been the leading source of news and commentary about clinical developments in psychiatry as well as health care policy and regulations that affect the physician's practice.

Theme
medstat_cpn
Top Sections
Conference Coverage
Families in Psychiatry
Weighty Issues
cpn

Dear Drupal User: You're seeing this because you're logged in to Drupal, and not redirected to MDedge.com/psychiatry. 

Main menu
CPN Main Menu
Explore menu
CPN Explore Menu
Proclivity ID
18814001
Unpublish
Specialty Focus
Addiction Medicine
Bipolar Disorder
Depression
Schizophrenia & Other Psychotic Disorders
Negative Keywords
Bipolar depression
Depression
adolescent depression
adolescent major depressive disorder
adolescent schizophrenia
adolescent with major depressive disorder
animals
autism
baby
brexpiprazole
child
child bipolar
child depression
child schizophrenia
children with bipolar disorder
children with depression
children with major depressive disorder
compulsive behaviors
cure
elderly bipolar
elderly depression
elderly major depressive disorder
elderly schizophrenia
elderly with dementia
first break
first episode
gambling
gaming
geriatric depression
geriatric major depressive disorder
geriatric schizophrenia
infant
ketamine
kid
major depressive disorder
major depressive disorder in adolescents
major depressive disorder in children
parenting
pediatric
pediatric bipolar
pediatric depression
pediatric major depressive disorder
pediatric schizophrenia
pregnancy
pregnant
rexulti
skin care
suicide
teen
wine
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-cpn')]
div[contains(@class, 'pane-pub-home-cpn')]
div[contains(@class, 'pane-pub-topic-cpn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Clinical Psychiatry News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Top 25
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Publication LayerRX Default ID
796,797
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off

Primary Care Internal Medicine Is Dead

Article Type
Changed
Thu, 08/22/2024 - 19:03
An autobiographical story that affects us all

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at [email protected].

A version of this article appeared on Medscape.com.

Publications
Topics
Sections
An autobiographical story that affects us all
An autobiographical story that affects us all

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at [email protected].

A version of this article appeared on Medscape.com.

 

Editor’s Note: This piece was originally published in Dr. Glasser’s bimonthly column in The Jolt, a nonprofit online news organization based in Olympia, Washington. She was inspired to write her story after meeting Christine Laine, MD, one of three female physician presenters at the Sommer Lectures in Portland, Oregon, in May 2024. The article has been edited lightly from the original

Primary care internal medicine — the medical field I chose, loved, and practiced for four decades — is dead. 

The grief and shock I feel about this is personal and transpersonal. The loss of internists (internal medicine physicians) practicing primary care is a major loss to us all. 

From the 1970s to roughly 2020, there were three groups of primary care physicians: family practice, pediatricians, and internists. In their 3-year residencies (after 4 years of medical school), pediatricians trained to care for children and adolescents; internists for adults; and FPs for children, adults, and women and pregnancy. Family practitioners are the most general of the generalists, whereas the others’ training involves comprehensive care of complex patients in their age groups.

How and when the field of primary care internal medicine flourished is my story. 

I was one of those kids who was hyperfocused on science, math, and the human body. By the end of high school, I was considering medicine for my career. 

To learn more, I volunteered at the local hospital. In my typical style, I requested not to be one of those candy stripers serving drinks on the wards. Instead, they put me in the emergency department, where I would transport patients and clean the stretchers. There I was free to watch whatever was going on if I did not interfere with the staff. On my first shift, a 20-year-old drowning victim arrived by ambulance. I watched the entire unsuccessful resuscitation and as shocked and saddened as I was, I knew (in the way only a headstrong 18-year-old can) that medicine was for me. 

It was a fortuitous time to graduate as a female pre-med student. 

In 1975, our country was in the midst of the women’s movement and a national effort to train primary care physicians. I was accepted to my state medical school. The University of Massachusetts Medical School had been established a few years earlier, with its main purpose to train primary care physicians and spread them around the state (especially out of the Boston metropolitan area). The curriculum was designed to expose students to primary care from year one. I was assigned to shadow a general practice physician in inner-city Springfield who saw over 50 patients a day! The patients knew they could see and afford him, so they crammed into his waiting room until their name was called in order of their arrival. No appointments necessary. His chart notes were a few scribbled sentences. I didn’t see myself in that practice exactly, but his work ethic and dedication inspired me. 

Over half of our graduating class chose to train in primary care specialties, and most stayed in-state. It turned out to be a good bet on the part of the government of Massachusetts. 

When I applied for residency in 1980, several internal medicine programs had a focus on primary care, which was my goal. I matched at Providence St. Vincent Hospital in Portland, Oregon, and moved across the country to the Pacific Northwest, never to look back. There, my attendings were doctors like I wanted to be: primary care internists in the community, not in academia. It was the perfect choice and an excellent training program. 

In 1984, I hung out my private practice internal medicine shingle in Hillsboro, Oregon, across the street from the community hospital. My primary care internal medicine colleagues and I shared weekend calls and admitted and cared for our patients in the hospital, and when they were discharged. That is now called “continuity of care.” It was a time when we ate in the doctors’ lounge together, met in hallways, and informally consulted each other about our patients. These were called “curbside consults.” They were invaluable to our ability to provide comprehensive care to our patients in primary care, led to fewer specialty referrals, and were free. That would now be called interprofessional communication and collegiality. 

“Burnout” was not a word you heard. We were busy and happy doing what we had spent 12 years of our precious youth to prepare for. 

What did internists offer to primary care? That also is part of my story. 

When I moved to Olympia, I took a position in the women’s health clinic at the American Lake Veterans Administration Medical Center. 

We were a small group: two family practice doctors, three nurse practitioners, and me, the only internist. Many of our patients were sick and complex. Two of the nurse practitioners (NPs) asked me to take their most complicated patients. Being comfortable with complexity as an internist, I said yes. 

One of the NPs was inappropriately hired, as she had experience in women’s health. She came to me freaked out: “Oh my God, I have no idea how to manage COPD!” The other wanted simpler patients. I don’t blame them for the patient transfers. NPs typically have 3 years of training before they practice, in contrast to primary care physicians’ 8. 

Guess who made friends with the custodian, staying until 8 p.m. most evenings, and who left by 5:30 p.m. 

What was I doing in those extra hours? I was trudging through clerical, yet important, tasks my medical assistant and transcriptionist used to do in private practice. In the 30 minutes allotted for the patient, I needed to focus entirely on them and their multiple complex medical problems. 

What is lost with the death of primary care internal medicine? 

At the recent Sommer Memorial Lectures in Portland, Steven D. Freer, MD, the current director of the residency program where I trained, has not had a single of his eight annual internal medicine graduates choose primary care in several years. Half (two of four) of those in my year did: One went to Tillamook, an underserved area on the Oregon coast, and I to Hillsboro. 

What are internal medicine training graduates doing now? They are becoming hospitalists or, more often, specialists in cardiology, pulmonology, nephrology, oncology, and other more lucrative fields of medicine. 

Why are they not choosing primary care? As when the University of Massachusetts Medical School was established, a shortage of primary care physicians persists and probably is more severe than it was in the 1970s. Massachusetts was proactive. We are already years behind catching up. The shortage is no longer in rural areas alone. 

Christine Laine, MD, who is editor in chief of Annals of Internal Medicine and spoke at the Sommer Memorial Lectures, lives in Philadelphia. Even there, she has lost her own primary care internal medicine physician and cannot find another primary care physician (much less an internist) for herself. 

Washington State, where I live, scores a D grade for our primary care staffing statewide. 

Is there hope for the future of primary care in general? Or for the restoration of primary care internal medicine? 

Maybe. I was relieved to hear from Dr. Freer and Dr. Laine that efforts are beginning to revive the field. 

Just like internists’ patients, the potential restoration of the field will be complex and multilayered. It will require new laws, policies, residency programs, and incentives for students, including debt reduction. Administrative burdens will need to be reduced; de-corporatization and restoring healthcare leadership to those with in-depth medical training will need to be a part of the solution as well. 

Let’s all hope the new resuscitation efforts will be successful for the field of primary care in general and primary care internal medicine specifically. It will be good for healthcare and for your patients! 

Many work for large systems in which they feel powerless to effect change.

Dr. Glasser is a retired internal medicine physician in Olympia, Washington. She can be reached at [email protected].

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Thu, 08/22/2024 - 19:03
Un-Gate On Date
Thu, 08/22/2024 - 19:03
Use ProPublica
CFC Schedule Remove Status
Thu, 08/22/2024 - 19:03
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Thu, 08/22/2024 - 19:03

TBI Significantly Increases Mortality Rate Among Veterans With Epilepsy

Article Type
Changed
Thu, 07/18/2024 - 10:11

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Publications
Topics
Sections

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Veterans diagnosed with epilepsy have a significantly higher mortality rate if they experience a traumatic brain injury either before or within 6 months of an epilepsy diagnosis, according to recent research published in Epilepsia.

In a retrospective cohort study, Ali Roghani, PhD, of the division of epidemiology at the University of Utah School of Medicine in Salt Lake City, and colleagues evaluated 938,890 veterans between 2000 and 2019 in the Defense Health Agency and the Veterans Health Administration who served in the US military after the September 11 attacks. Overall, 27,436 veterans met criteria for a diagnosis of epilepsy, 264,890 had received a diagnosis for a traumatic brain injury (TBI), and the remaining patients had neither epilepsy nor TBI.

Among the veterans with no epilepsy, 248,714 veterans had a TBI diagnosis, while in the group of patients with epilepsy, 10,358 veterans experienced a TBI before their epilepsy diagnosis, 1598 were diagnosed with a TBI within 6 months of epilepsy, and 4310 veterans had a TBI 6 months after an epilepsy diagnosis. The researchers assessed all-cause mortality in each group, calculating cumulative mortality rates compared with the group of veterans who had no TBI and no epilepsy diagnosis.

Dr. Roghani and colleagues found a significantly higher mortality rate among veterans who developed epilepsy compared with a control group with neither epilepsy nor TBI (6.26% vs. 1.12%; P < .01), with a majority of veterans in the group who died being White (67.4%) men (89.9%). Compared with veterans who were deceased, nondeceased veterans were significantly more likely to have a history of being deployed (70.7% vs. 64.8%; P < .001), were less likely to be in the army (52.2% vs. 55.0%; P < .001), and were more likely to reach the rank of officer or warrant officer (8.1% vs. 7.6%; P = .014).

There were also significant differences in clinical characteristics between nondeceased and deceased veterans, including a higher rate of substance abuse disorder, smoking history, cardiovascular disease, stroke, transient ischemic attack, cancer, liver disease, kidney disease, or other injury as well as overdose, suicidal ideation, and homelessness. “Most clinical conditions were significantly different between deceased and nondeceased in part due to the large cohort size,” the researchers said.

After performing Cox regression analyses, the researchers found a higher mortality risk in veterans with epilepsy and/or TBIs among those who developed a TBI within 6 months of an epilepsy diagnosis (hazard ratio [HR], 5.02; 95% CI, 4.21-5.99), had a TBI prior to epilepsy (HR, 4.25; 95% CI, 3.89-4.58), had epilepsy alone (HR, 4.00; 95% CI, 3.67-4.36), had a TBI more than 6 months after an epilepsy diagnosis (HR, 2.49; 95% CI, 2.17-2.85), and those who had epilepsy alone (HR, 1.30; 95% CI, 1.25-1.36) compared with veterans who had neither epilepsy nor a TBI.

“The temporal relationship with TBI that occurred within 6 months after epilepsy diagnosis may suggest an increased vulnerability to accidents, severe injuries, or TBI resulting from seizures, potentially elevating mortality risk,” Dr. Roghani and colleagues wrote.

The researchers said the results “raise concerns” about the subgroup of patients who are diagnosed with epilepsy close to experiencing a TBI.

“Our results provide information regarding the temporal relationship between epilepsy and TBI regarding mortality in a cohort of post-9/11 veterans, which highlights the need for enhanced primary prevention, such as more access to health care among people with epilepsy and TBI,” they said. “Given the rising incidence of TBI in both the military and civilian populations, these findings suggest close monitoring might be crucial to develop effective prevention strategies for long-term complications, particularly [post-traumatic epilepsy].”
 

 

 

Reevaluating the Treatment of Epilepsy

Juliann Paolicchi, MD, a neurologist and member of the epilepsy team at Northwell Health in New York, who was not involved with the study, said in an interview that TBIs have been studied more closely since the beginning of conflicts in the Middle East, particularly in Iran and Afghanistan, where “newer artillery causes more diffuse traumatic injury to the brain and the body than the effects of more typical weaponry.”

Northwell Health
Dr. Juliann Paolicchi


The study by Roghani and colleagues, she said, “is groundbreaking in that it looks at the connection and timing of these two disruptive forces, epilepsy and TBI, on the brain,” she said. “The study reveals that timing is everything: The combination of two disrupting circuitry effects in proximity can have a deadly effect. The summation is greater than either alone in veterans, and has significant effects on the brain’s ability to sustain the functions that keep us alive.”

The 6 months following either a diagnosis of epilepsy or TBI is “crucial,” Dr. Paolicchi noted. “Military and private citizens should be closely monitored during this period, and the results suggest they should refrain from activities that could predispose to further brain injury.”

In addition, current standards for treatment of epilepsy may need to be reevaluated, she said. “Patients are not always treated with a seizure medication after a first seizure, but perhaps, especially in patients at higher risk for brain injury such as the military and athletes, that policy warrants further examination.”

The findings by Roghani and colleagues may also extend to other groups, such as evaluating athletes after a concussion, patients after they are in a motor vehicle accident, and infants with traumatic brain injury, Dr. Paolicchi said. “The results suggest a reexamining of the proximity [of TBI] and epilepsy in these and other areas,” she noted.

The authors reported personal and institutional relationships in the form of research support and other financial compensation from AbbVie, Biohaven, CURE, Department of Defense, Department of Veterans Affairs (VA), Eisai, Engage, National Institutes of Health, Sanofi, SCS Consulting, Sunovion, and UCB. This study was supported by funding from the Department of Defense, VA Health Systems, and the VA HSR&D Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation. Dr. Paolicchi reports no relevant conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EPILEPSIA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Revamping Resident Schedules to Reduce Burnout

Article Type
Changed
Wed, 07/17/2024 - 12:34

It’s the difference between running a marathon and taking a leisurely stroll. That’s how recent pediatrics resident Joey Whelihan, MD, compared an 11-hour inpatient hospital day with an 8-hour outpatient shift where residents see patients in a clinic.

With inpatient training, “you are lucky if you have time to cook dinner, go to bed, and get ready for the next day,” said Dr. Whelihan, who recently started his adolescent medicine fellowship at Children’s Hospital of Philadelphia after 3 years of residency there. Some residents have call every fourth day during inpatient rotations, working 24-28 hours at a time. They come in one morning and go home the next, he told this news organization.

“Outpatient blocks give you more time to catch your breath and feel somewhat refreshed and ready to take care of patients.”

Longer stretches of inpatient rotations are not sustainable, Dr. Whelihan added, and residents are likely to become exhausted. Fatigue is a leading cause of burnout, a mental, physical, and emotional challenge that residency programs and national medical organizations have been struggling to address.

In recent years, there has been a movement to reduce the maximum consecutive duration of resident duty hours in residency programs across the country. Fueled by resident health and patient safety concerns, the movement is a shift from the previous 24- to 36-hour call duty schedules.
 

Improved Call Systems = Better Residents

The connection between burnout, well-being, and work schedules appears regularly in national program standards. “Residents and faculty members are at risk for burnout and depression,” according to the current Accreditation Council for Graduate Medical Education’s standard residency program requirements.

“Programs, in partnership with their sponsoring institutions, have the same responsibility to address well-being as other aspects of resident competence,” the guidelines state. That charge includes “attention to scheduling, work intensity, and work compression that impacts resident well-being.”

In Medscape’s Residents Lifestyle & Happiness Report 2023, a third of residents surveyed rarely or never paid attention to their well-being, which closely mirrors the 31% who rarely or never had time for a social life. Slightly more residents (37%) said their work-life balance was “somewhat worse” or “much worse” than they expected.

“I think everyone has burnout as a resident, regardless of the type of program they are in,” Dr. Whelihan said. He described the experience as when you lack fulfillment and empathy and feel exhausted, callous, and removed from interactions with colleagues and patients.

The American Medical Association’s recently released report on the state of residency well-being in 2023 also found that about 43% of residents and fellows had at least one symptom of burnout, about a 2% increase from 2022.
 

Efforts to Combat Burnout

One residency program found a way to reduce burnout by changing its block scheduling from 4 inpatient weeks followed by 1 outpatient week (4 + 1) to 4 inpatient call-based weeks and 4 outpatient ambulatory, non-call weeks (4 + 4), according to a survey study published recently in JAMA Network Open. The initiative drew praise from some residents and a med school professor who studies wellness issues.

In the survey of postgraduate year (PGY) 1 and PGY-2 hospitalist and primary care residents from the University of Colorado’s Internal Medicine Residency Program, Aurora, between June 2019 and June 2021, the schedule change resulted in improved burnout scores and self-reported professional, educational, and health benefits.

As part of the survey, residents rated symptoms on a 7-point scale on the basis of how frequently they experienced emotional exhaustion, depersonalization, and personal accomplishment.

Investigators also used a questionnaire to evaluate how participants perceived the rotation structure with various outcomes, including the ability to acquire clinical skills, access educational and scholarly opportunities, job satisfaction, and health.

The study concluded that the schedule change improved burnout, health, wellness, and professional development without weakening residents perceived clinical skills or standardized exam scores.

Still, the study authors acknowledged that several factors, including the pandemic, may have limited the findings. During that time, the study transitioned from in-person to electronic submissions, resulting in reduced response rates because of changes in staffing needs and fewer research and scholarly activities.

“One of the things we worried about was that the pandemic would make [burnout findings] look worse,” said lead author Dan Heppe, MD, a hospitalist and associate director of the CU Internal Medicine Residency Program. “Anecdotally, residents may have had more support in our program than perhaps some other programs. Though they had long hours with very sick patients, we tried to keep going in a positive direction.”

Dr. Heppe said in an interview that the purpose of the schedule change was to space out more intense rotations and build in more time for research, leadership, teaching, and professional development. He suggested the new schedule could help with other aspects of residents’ careers, exposing them to alternate avenues earlier in their training and in a more structured way.

Like most of the study authors, Dr. Heppe is a graduate of the residency program. He recalled how the program changed from multiple inpatient months in a row with clinic half days during those rotations to a 4 + 1 schedule. But the 1 week between inpatient rotations wasn’t enough time to recover or catch up on clinical work, said Dr. Heppe, who is also an associate professor of medicine at CU.

“It was too erratic,” he said of his former residency schedule. “There was a month of research here or there and clinic and then right back to the ICU for a couple of months without a break, and it was less predictable.”

Dr. Heppe said other residency programs have expressed interest in duplicating CU’s schedule change. He admits it may be difficult because of intensive schedule coordination, and some hospitals may not want to reduce clinical services.

The Yale Internal Medicine Traditional Residency Program also recently ended its 28-hour call, during which residents worked 24 hours with an additional 4 hours to transfer the patient to the incoming team. The move was made in response to residents’ requests, saying that the grueling call rotation’s time had come. The reaction has been overwhelmingly positive.

Proponents of alternate scheduling blocks [4 + 4 or 6 + 2] say that they improve residents’ educational experience, patient care, and continuity of care, reduce burnout, and guarantee residents time off.
 

 

 

Advancing Resident Well-Being

“The premise of looking at scheduling in a more intentional way is a sound one in the process of trying to support and advance resident well-being,” said Mark Greenawald, MD, vice chair of academic affairs, well-being, and professional development for the Virginia Tech Carilion School of Medicine’s Department of Family and Community Medicine in Roanoke.

He said it’s up to residency program directors or graduate medical education departments within a specialty to determine whether such scheduling changes fit their requirements for inpatient and outpatient care and training electives. Requirements may limit some scheduling changes, but within the specialty, there’s some flexibility to be creative with rotations. The CU study considered how to create a residency rhythm without stacking inpatient rotations so there’s recovery time.

“Human beings need a break. If residents work 80 hours continually, they will start to experience greater distress, which for many leads to burnout,” he said

Still, the study includes design flaws because it doesn’t explain how call times and hours differ between inpatient and outpatient rotations. “My own [family medicine] program also does outpatient clinics when we have inpatient service. We have half days in the clinic, which ensures better continuity care with the patient.”

Dr. Greenawald has yet to see much research published about the impact of resident schedule changes. By taking an experimental approach, the CU study showed that their particular change positively affected burnout. If the study leads to improvements in rotation schedules or encourages other programs to experiment with their schedules, it will be a step in the right direction.
 

How Residents Respond

Haidn Foster, MD, a third-year internal medicine resident at Penn State Health Milton S. Hershey Medical Center, Hershey, remembered experiencing burnout as an intern. At that time, he occasionally dealt with poor patient outcomes and sick patients while working long hours with only 1 day off each week. During a particularly challenging rotation, he felt overwhelmed and numb, which was exacerbated if a patient’s condition worsened or they passed away, he said.

His program follows a schedule of 6 weeks of inpatient training and 2 weeks of outpatient rotations (6 + 2). He said that restructuring residents’ schedules may be more effective than commonly used individual wellness modules, referring to the CU study. “The authors tried out a novel systematic way to tackle the epidemic of physician burnout overwhelming people in the medical community.”

Although the study found that schedule changes don’t affect standardized exam scores, Dr. Foster wondered about preceptor ratings, another marker for clinical competency.

He said future studies should attempt to change the structure of medical training delivery by evaluating models that best reduce burnout, are consistent with residents’ career goals, and produce competent physicians. “Burnout plagues our medical system and leads to too many physicians and physicians-in-training leaving the field or taking their lives. I’m not sure this particular mechanism gets us there, but it’s a step, and so that’s very important.”

Like Dr. Foster, Dr. Whelihan follows a 6 + 2 schedule. He said he would have welcomed a schedule that included more outpatient and less inpatient training and can see how changes in scheduling could reduce burnout. “More outpatient time gives you an opportunity to breathe. You get a little more time off working in clinic with less sick people at a slower pace.”

Ally Fuher, MD, said she chose CU’s Internal Medicine Residency Program 4 years ago largely because of its innovative schedule. Now the program’s chief medical resident, she knew the structure would give her more time to pursue other nonclinical interests including research and medical education, meet regularly with mentors, visit family in another state, and attend important life events.

She acknowledged that the alternative would have meant a more irregular schedule with the possibility of working as many as 80 hours a week on back-to-back inpatient rotations with only 1 day off a week, leaving minimal time to plan other activities, let alone rest and recover.

Dr. Fuher said a balanced schedule made her a more well-rounded person excited to engage in her profession. While she hasn’t personally experienced burnout, she realizes a schedule change may not completely solve the issue for others. However, it shows what progress programs can make when they create systemic structural change.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

It’s the difference between running a marathon and taking a leisurely stroll. That’s how recent pediatrics resident Joey Whelihan, MD, compared an 11-hour inpatient hospital day with an 8-hour outpatient shift where residents see patients in a clinic.

With inpatient training, “you are lucky if you have time to cook dinner, go to bed, and get ready for the next day,” said Dr. Whelihan, who recently started his adolescent medicine fellowship at Children’s Hospital of Philadelphia after 3 years of residency there. Some residents have call every fourth day during inpatient rotations, working 24-28 hours at a time. They come in one morning and go home the next, he told this news organization.

“Outpatient blocks give you more time to catch your breath and feel somewhat refreshed and ready to take care of patients.”

Longer stretches of inpatient rotations are not sustainable, Dr. Whelihan added, and residents are likely to become exhausted. Fatigue is a leading cause of burnout, a mental, physical, and emotional challenge that residency programs and national medical organizations have been struggling to address.

In recent years, there has been a movement to reduce the maximum consecutive duration of resident duty hours in residency programs across the country. Fueled by resident health and patient safety concerns, the movement is a shift from the previous 24- to 36-hour call duty schedules.
 

Improved Call Systems = Better Residents

The connection between burnout, well-being, and work schedules appears regularly in national program standards. “Residents and faculty members are at risk for burnout and depression,” according to the current Accreditation Council for Graduate Medical Education’s standard residency program requirements.

“Programs, in partnership with their sponsoring institutions, have the same responsibility to address well-being as other aspects of resident competence,” the guidelines state. That charge includes “attention to scheduling, work intensity, and work compression that impacts resident well-being.”

In Medscape’s Residents Lifestyle & Happiness Report 2023, a third of residents surveyed rarely or never paid attention to their well-being, which closely mirrors the 31% who rarely or never had time for a social life. Slightly more residents (37%) said their work-life balance was “somewhat worse” or “much worse” than they expected.

“I think everyone has burnout as a resident, regardless of the type of program they are in,” Dr. Whelihan said. He described the experience as when you lack fulfillment and empathy and feel exhausted, callous, and removed from interactions with colleagues and patients.

The American Medical Association’s recently released report on the state of residency well-being in 2023 also found that about 43% of residents and fellows had at least one symptom of burnout, about a 2% increase from 2022.
 

Efforts to Combat Burnout

One residency program found a way to reduce burnout by changing its block scheduling from 4 inpatient weeks followed by 1 outpatient week (4 + 1) to 4 inpatient call-based weeks and 4 outpatient ambulatory, non-call weeks (4 + 4), according to a survey study published recently in JAMA Network Open. The initiative drew praise from some residents and a med school professor who studies wellness issues.

In the survey of postgraduate year (PGY) 1 and PGY-2 hospitalist and primary care residents from the University of Colorado’s Internal Medicine Residency Program, Aurora, between June 2019 and June 2021, the schedule change resulted in improved burnout scores and self-reported professional, educational, and health benefits.

As part of the survey, residents rated symptoms on a 7-point scale on the basis of how frequently they experienced emotional exhaustion, depersonalization, and personal accomplishment.

Investigators also used a questionnaire to evaluate how participants perceived the rotation structure with various outcomes, including the ability to acquire clinical skills, access educational and scholarly opportunities, job satisfaction, and health.

The study concluded that the schedule change improved burnout, health, wellness, and professional development without weakening residents perceived clinical skills or standardized exam scores.

Still, the study authors acknowledged that several factors, including the pandemic, may have limited the findings. During that time, the study transitioned from in-person to electronic submissions, resulting in reduced response rates because of changes in staffing needs and fewer research and scholarly activities.

“One of the things we worried about was that the pandemic would make [burnout findings] look worse,” said lead author Dan Heppe, MD, a hospitalist and associate director of the CU Internal Medicine Residency Program. “Anecdotally, residents may have had more support in our program than perhaps some other programs. Though they had long hours with very sick patients, we tried to keep going in a positive direction.”

Dr. Heppe said in an interview that the purpose of the schedule change was to space out more intense rotations and build in more time for research, leadership, teaching, and professional development. He suggested the new schedule could help with other aspects of residents’ careers, exposing them to alternate avenues earlier in their training and in a more structured way.

Like most of the study authors, Dr. Heppe is a graduate of the residency program. He recalled how the program changed from multiple inpatient months in a row with clinic half days during those rotations to a 4 + 1 schedule. But the 1 week between inpatient rotations wasn’t enough time to recover or catch up on clinical work, said Dr. Heppe, who is also an associate professor of medicine at CU.

“It was too erratic,” he said of his former residency schedule. “There was a month of research here or there and clinic and then right back to the ICU for a couple of months without a break, and it was less predictable.”

Dr. Heppe said other residency programs have expressed interest in duplicating CU’s schedule change. He admits it may be difficult because of intensive schedule coordination, and some hospitals may not want to reduce clinical services.

The Yale Internal Medicine Traditional Residency Program also recently ended its 28-hour call, during which residents worked 24 hours with an additional 4 hours to transfer the patient to the incoming team. The move was made in response to residents’ requests, saying that the grueling call rotation’s time had come. The reaction has been overwhelmingly positive.

Proponents of alternate scheduling blocks [4 + 4 or 6 + 2] say that they improve residents’ educational experience, patient care, and continuity of care, reduce burnout, and guarantee residents time off.
 

 

 

Advancing Resident Well-Being

“The premise of looking at scheduling in a more intentional way is a sound one in the process of trying to support and advance resident well-being,” said Mark Greenawald, MD, vice chair of academic affairs, well-being, and professional development for the Virginia Tech Carilion School of Medicine’s Department of Family and Community Medicine in Roanoke.

He said it’s up to residency program directors or graduate medical education departments within a specialty to determine whether such scheduling changes fit their requirements for inpatient and outpatient care and training electives. Requirements may limit some scheduling changes, but within the specialty, there’s some flexibility to be creative with rotations. The CU study considered how to create a residency rhythm without stacking inpatient rotations so there’s recovery time.

“Human beings need a break. If residents work 80 hours continually, they will start to experience greater distress, which for many leads to burnout,” he said

Still, the study includes design flaws because it doesn’t explain how call times and hours differ between inpatient and outpatient rotations. “My own [family medicine] program also does outpatient clinics when we have inpatient service. We have half days in the clinic, which ensures better continuity care with the patient.”

Dr. Greenawald has yet to see much research published about the impact of resident schedule changes. By taking an experimental approach, the CU study showed that their particular change positively affected burnout. If the study leads to improvements in rotation schedules or encourages other programs to experiment with their schedules, it will be a step in the right direction.
 

How Residents Respond

Haidn Foster, MD, a third-year internal medicine resident at Penn State Health Milton S. Hershey Medical Center, Hershey, remembered experiencing burnout as an intern. At that time, he occasionally dealt with poor patient outcomes and sick patients while working long hours with only 1 day off each week. During a particularly challenging rotation, he felt overwhelmed and numb, which was exacerbated if a patient’s condition worsened or they passed away, he said.

His program follows a schedule of 6 weeks of inpatient training and 2 weeks of outpatient rotations (6 + 2). He said that restructuring residents’ schedules may be more effective than commonly used individual wellness modules, referring to the CU study. “The authors tried out a novel systematic way to tackle the epidemic of physician burnout overwhelming people in the medical community.”

Although the study found that schedule changes don’t affect standardized exam scores, Dr. Foster wondered about preceptor ratings, another marker for clinical competency.

He said future studies should attempt to change the structure of medical training delivery by evaluating models that best reduce burnout, are consistent with residents’ career goals, and produce competent physicians. “Burnout plagues our medical system and leads to too many physicians and physicians-in-training leaving the field or taking their lives. I’m not sure this particular mechanism gets us there, but it’s a step, and so that’s very important.”

Like Dr. Foster, Dr. Whelihan follows a 6 + 2 schedule. He said he would have welcomed a schedule that included more outpatient and less inpatient training and can see how changes in scheduling could reduce burnout. “More outpatient time gives you an opportunity to breathe. You get a little more time off working in clinic with less sick people at a slower pace.”

Ally Fuher, MD, said she chose CU’s Internal Medicine Residency Program 4 years ago largely because of its innovative schedule. Now the program’s chief medical resident, she knew the structure would give her more time to pursue other nonclinical interests including research and medical education, meet regularly with mentors, visit family in another state, and attend important life events.

She acknowledged that the alternative would have meant a more irregular schedule with the possibility of working as many as 80 hours a week on back-to-back inpatient rotations with only 1 day off a week, leaving minimal time to plan other activities, let alone rest and recover.

Dr. Fuher said a balanced schedule made her a more well-rounded person excited to engage in her profession. While she hasn’t personally experienced burnout, she realizes a schedule change may not completely solve the issue for others. However, it shows what progress programs can make when they create systemic structural change.

A version of this article first appeared on Medscape.com.

It’s the difference between running a marathon and taking a leisurely stroll. That’s how recent pediatrics resident Joey Whelihan, MD, compared an 11-hour inpatient hospital day with an 8-hour outpatient shift where residents see patients in a clinic.

With inpatient training, “you are lucky if you have time to cook dinner, go to bed, and get ready for the next day,” said Dr. Whelihan, who recently started his adolescent medicine fellowship at Children’s Hospital of Philadelphia after 3 years of residency there. Some residents have call every fourth day during inpatient rotations, working 24-28 hours at a time. They come in one morning and go home the next, he told this news organization.

“Outpatient blocks give you more time to catch your breath and feel somewhat refreshed and ready to take care of patients.”

Longer stretches of inpatient rotations are not sustainable, Dr. Whelihan added, and residents are likely to become exhausted. Fatigue is a leading cause of burnout, a mental, physical, and emotional challenge that residency programs and national medical organizations have been struggling to address.

In recent years, there has been a movement to reduce the maximum consecutive duration of resident duty hours in residency programs across the country. Fueled by resident health and patient safety concerns, the movement is a shift from the previous 24- to 36-hour call duty schedules.
 

Improved Call Systems = Better Residents

The connection between burnout, well-being, and work schedules appears regularly in national program standards. “Residents and faculty members are at risk for burnout and depression,” according to the current Accreditation Council for Graduate Medical Education’s standard residency program requirements.

“Programs, in partnership with their sponsoring institutions, have the same responsibility to address well-being as other aspects of resident competence,” the guidelines state. That charge includes “attention to scheduling, work intensity, and work compression that impacts resident well-being.”

In Medscape’s Residents Lifestyle & Happiness Report 2023, a third of residents surveyed rarely or never paid attention to their well-being, which closely mirrors the 31% who rarely or never had time for a social life. Slightly more residents (37%) said their work-life balance was “somewhat worse” or “much worse” than they expected.

“I think everyone has burnout as a resident, regardless of the type of program they are in,” Dr. Whelihan said. He described the experience as when you lack fulfillment and empathy and feel exhausted, callous, and removed from interactions with colleagues and patients.

The American Medical Association’s recently released report on the state of residency well-being in 2023 also found that about 43% of residents and fellows had at least one symptom of burnout, about a 2% increase from 2022.
 

Efforts to Combat Burnout

One residency program found a way to reduce burnout by changing its block scheduling from 4 inpatient weeks followed by 1 outpatient week (4 + 1) to 4 inpatient call-based weeks and 4 outpatient ambulatory, non-call weeks (4 + 4), according to a survey study published recently in JAMA Network Open. The initiative drew praise from some residents and a med school professor who studies wellness issues.

In the survey of postgraduate year (PGY) 1 and PGY-2 hospitalist and primary care residents from the University of Colorado’s Internal Medicine Residency Program, Aurora, between June 2019 and June 2021, the schedule change resulted in improved burnout scores and self-reported professional, educational, and health benefits.

As part of the survey, residents rated symptoms on a 7-point scale on the basis of how frequently they experienced emotional exhaustion, depersonalization, and personal accomplishment.

Investigators also used a questionnaire to evaluate how participants perceived the rotation structure with various outcomes, including the ability to acquire clinical skills, access educational and scholarly opportunities, job satisfaction, and health.

The study concluded that the schedule change improved burnout, health, wellness, and professional development without weakening residents perceived clinical skills or standardized exam scores.

Still, the study authors acknowledged that several factors, including the pandemic, may have limited the findings. During that time, the study transitioned from in-person to electronic submissions, resulting in reduced response rates because of changes in staffing needs and fewer research and scholarly activities.

“One of the things we worried about was that the pandemic would make [burnout findings] look worse,” said lead author Dan Heppe, MD, a hospitalist and associate director of the CU Internal Medicine Residency Program. “Anecdotally, residents may have had more support in our program than perhaps some other programs. Though they had long hours with very sick patients, we tried to keep going in a positive direction.”

Dr. Heppe said in an interview that the purpose of the schedule change was to space out more intense rotations and build in more time for research, leadership, teaching, and professional development. He suggested the new schedule could help with other aspects of residents’ careers, exposing them to alternate avenues earlier in their training and in a more structured way.

Like most of the study authors, Dr. Heppe is a graduate of the residency program. He recalled how the program changed from multiple inpatient months in a row with clinic half days during those rotations to a 4 + 1 schedule. But the 1 week between inpatient rotations wasn’t enough time to recover or catch up on clinical work, said Dr. Heppe, who is also an associate professor of medicine at CU.

“It was too erratic,” he said of his former residency schedule. “There was a month of research here or there and clinic and then right back to the ICU for a couple of months without a break, and it was less predictable.”

Dr. Heppe said other residency programs have expressed interest in duplicating CU’s schedule change. He admits it may be difficult because of intensive schedule coordination, and some hospitals may not want to reduce clinical services.

The Yale Internal Medicine Traditional Residency Program also recently ended its 28-hour call, during which residents worked 24 hours with an additional 4 hours to transfer the patient to the incoming team. The move was made in response to residents’ requests, saying that the grueling call rotation’s time had come. The reaction has been overwhelmingly positive.

Proponents of alternate scheduling blocks [4 + 4 or 6 + 2] say that they improve residents’ educational experience, patient care, and continuity of care, reduce burnout, and guarantee residents time off.
 

 

 

Advancing Resident Well-Being

“The premise of looking at scheduling in a more intentional way is a sound one in the process of trying to support and advance resident well-being,” said Mark Greenawald, MD, vice chair of academic affairs, well-being, and professional development for the Virginia Tech Carilion School of Medicine’s Department of Family and Community Medicine in Roanoke.

He said it’s up to residency program directors or graduate medical education departments within a specialty to determine whether such scheduling changes fit their requirements for inpatient and outpatient care and training electives. Requirements may limit some scheduling changes, but within the specialty, there’s some flexibility to be creative with rotations. The CU study considered how to create a residency rhythm without stacking inpatient rotations so there’s recovery time.

“Human beings need a break. If residents work 80 hours continually, they will start to experience greater distress, which for many leads to burnout,” he said

Still, the study includes design flaws because it doesn’t explain how call times and hours differ between inpatient and outpatient rotations. “My own [family medicine] program also does outpatient clinics when we have inpatient service. We have half days in the clinic, which ensures better continuity care with the patient.”

Dr. Greenawald has yet to see much research published about the impact of resident schedule changes. By taking an experimental approach, the CU study showed that their particular change positively affected burnout. If the study leads to improvements in rotation schedules or encourages other programs to experiment with their schedules, it will be a step in the right direction.
 

How Residents Respond

Haidn Foster, MD, a third-year internal medicine resident at Penn State Health Milton S. Hershey Medical Center, Hershey, remembered experiencing burnout as an intern. At that time, he occasionally dealt with poor patient outcomes and sick patients while working long hours with only 1 day off each week. During a particularly challenging rotation, he felt overwhelmed and numb, which was exacerbated if a patient’s condition worsened or they passed away, he said.

His program follows a schedule of 6 weeks of inpatient training and 2 weeks of outpatient rotations (6 + 2). He said that restructuring residents’ schedules may be more effective than commonly used individual wellness modules, referring to the CU study. “The authors tried out a novel systematic way to tackle the epidemic of physician burnout overwhelming people in the medical community.”

Although the study found that schedule changes don’t affect standardized exam scores, Dr. Foster wondered about preceptor ratings, another marker for clinical competency.

He said future studies should attempt to change the structure of medical training delivery by evaluating models that best reduce burnout, are consistent with residents’ career goals, and produce competent physicians. “Burnout plagues our medical system and leads to too many physicians and physicians-in-training leaving the field or taking their lives. I’m not sure this particular mechanism gets us there, but it’s a step, and so that’s very important.”

Like Dr. Foster, Dr. Whelihan follows a 6 + 2 schedule. He said he would have welcomed a schedule that included more outpatient and less inpatient training and can see how changes in scheduling could reduce burnout. “More outpatient time gives you an opportunity to breathe. You get a little more time off working in clinic with less sick people at a slower pace.”

Ally Fuher, MD, said she chose CU’s Internal Medicine Residency Program 4 years ago largely because of its innovative schedule. Now the program’s chief medical resident, she knew the structure would give her more time to pursue other nonclinical interests including research and medical education, meet regularly with mentors, visit family in another state, and attend important life events.

She acknowledged that the alternative would have meant a more irregular schedule with the possibility of working as many as 80 hours a week on back-to-back inpatient rotations with only 1 day off a week, leaving minimal time to plan other activities, let alone rest and recover.

Dr. Fuher said a balanced schedule made her a more well-rounded person excited to engage in her profession. While she hasn’t personally experienced burnout, she realizes a schedule change may not completely solve the issue for others. However, it shows what progress programs can make when they create systemic structural change.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Strong Sibling Link With Autism Spectrum Disorder

Article Type
Changed
Tue, 07/16/2024 - 11:27

One in five children (20.2%) who have an older sibling with autism spectrum disorder (ASD) are likely to be diagnosed with the disorder as well, according to a study published in Pediatrics.

When a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.

The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.

They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
 

Differences by Sex and Race

Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).

Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
 

Links with Maternal Education

Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).

Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”

The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.

Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
 

Eliminating Biases

Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”

The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”

Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.

The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.

“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.

Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.

Publications
Topics
Sections

One in five children (20.2%) who have an older sibling with autism spectrum disorder (ASD) are likely to be diagnosed with the disorder as well, according to a study published in Pediatrics.

When a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.

The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.

They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
 

Differences by Sex and Race

Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).

Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
 

Links with Maternal Education

Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).

Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”

The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.

Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
 

Eliminating Biases

Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”

The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”

Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.

The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.

“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.

Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.

One in five children (20.2%) who have an older sibling with autism spectrum disorder (ASD) are likely to be diagnosed with the disorder as well, according to a study published in Pediatrics.

When a baby had more than one older sibling with autism, the family recurrence rate rose to 36.9%, the study found.

The researchers, led by Sally Ozonoff, PhD, Department of Psychiatry and Behavioral Sciences at University of California Davis Health in Sacramento, analyzed data from 1,605 infants who had an older sibling with ASD using data from the global Baby Siblings Research Consortium.

They calculated that the rate of autism recurrence is seven times higher in families who already have one autistic child than in the general population, which points to the importance of close developmental observance in infants born in families with autistic children, particularly male infants in those families. This study replicated a 2011 study, also led by Dr. Ozonoff, which found a similar rate of familial recurrence.
 

Differences by Sex and Race

Dr. Ozonoff’s team found that sex and race played a part in likelihood of recurrence. Younger siblings of females with ASD were much more likely to develop the disorder (34.7%) than siblings of boys (22.5%). And male younger siblings were more likely to have ASD than girls (25.3% vs. 13.1%).

Additionally, ASD recurrence in White families was 17.8% while across other races collectively the recurrence rate was 25%.
 

Links with Maternal Education

Differences by maternal education were also striking. Recurrence was 32.6% when mothers had a high school or less education; 25.5% with some college; 19.7 with a college degree; and 16.9% with a graduate degree. The parental education revealed a significant effect only for mothers (P < .01); paternal education was not significant (P = .09).

Suzanne Rybczynski, MD, chief medical officer at East Tennessee Children’s Hospital in Knoxville, who was not part of the study, praised the study for following babies over time, “doing serial evaluation using two very standard tools in diagnosing autism and developmental delay.”

The babies were evaluated as early as 6 months of age, for up to seven visits. A final assessment was made at 36 months.

Dr. Rybczynski said it was interesting to see that, although ASD prevalence has increased substantially from the 2011 study (0.9%-2.8%), the findings regarding the sibling link have been consistent (18.7% in the 2011 study to 20.2% now).
 

Eliminating Biases

Dr. Rybczynski noted the current study also used diagnoses only from autism experts, which strengthened the findings, noting the potential for overdiagnosis when interviews are with the parents. “This really eliminates those biases.”

The authors explained the factors driving the need to update recurrence rate studies, including the growth in the prevalence of ASD in the last decade to 1 in 36. That may be caused partly by “greater awareness and identification of autistic females and cognitively able, verbal children.”

Also, new diagnostic criteria have been published, with different diagnostic thresholds since the last study. This study, they noted, had a sample size twice as large and more diverse than the 2011 sample.

The size and the diversity are particularly important, Dr. Rybczynski said, as it helps support more recent findings that ASD is not as heavily centered in White males as previously thought.

“We need to make sure we’re monitoring all children, especially from groups where there’s at least one older sibling or multiple siblings with autism or a sister with autism,” she said. The findings of this study are important not just for pediatricians but for families and all who have professional interactions with children.

Dr. Ozonoff reports travel reimbursements and honoraria from Autism Speaks and the Autism Science Foundation and book royalties from Guilford Press. One coauthor has served as a paid consultant to F. Hoffmann–La Roche and Servier and has received royalties from Sage Publications and Guilford Publications. Another is supported by the Stollery Children’s Hospital Foundation Chair in Autism. One coauthor reported a consulting agreement with EarliTec Diagnostics and book royalties from Wiley. A fourth coauthor has received funding from the Simons Foundation and consults for the Beasley Law Firm and Linus Technology. Dr. Rybczynski reported no relevant financial relationships.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM PEDIATRICS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Guidance on How Best to Manage Opioid Risks in Older Adults

Article Type
Changed
Wed, 07/17/2024 - 15:17

Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
 

Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.

“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”

Clinicians and health systems like Novant are spearheading efforts to best manage older adults who may need opioids because of conditions like chronic pain in an effort to reduce addiction and overdoses.
 

Older Adults Have Unique Needs

A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.

“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.

But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.

With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.

When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
 

Greater Risk

Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.

Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.

As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.

Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.

Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.

Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.

She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.

“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
 

 

 

New Protocols for Pain Management in Older Adults

At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.

If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.

Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.

If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.

And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.

“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.

In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.

Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.

Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.

The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.

“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
 

Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.

“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”

Clinicians and health systems like Novant are spearheading efforts to best manage older adults who may need opioids because of conditions like chronic pain in an effort to reduce addiction and overdoses.
 

Older Adults Have Unique Needs

A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.

“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.

But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.

With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.

When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
 

Greater Risk

Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.

Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.

As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.

Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.

Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.

Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.

She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.

“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
 

 

 

New Protocols for Pain Management in Older Adults

At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.

If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.

Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.

If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.

And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.

“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.

In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.

Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.

Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.

The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.

“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.

A version of this article first appeared on Medscape.com.

Polypharmacy and slow metabolism of drugs create a high risk among older adults for substance use disorder, raising the odds of intentional and unintentional overdoses. However, screening, assessment, and treatment for substance use disorder occurs less often in younger adults.
 

Rates of overdose from opioids increased the most among people aged 65 years and older from 2021 to 2022, compared with among younger age groups. Meanwhile, recent data show less than half older adults with opioid use disorder (OUD) receive care for the condition.

“Nobody is immune to developing some kind of use disorder, so don’t just assume that because someone’s 80 years old that there’s no way that they have a problem,” said Sara Meyer, PharmD, a medication safety pharmacist at Novant Health in Winston-Salem, North Carolina. “You never know who’s going to potentially have an issue.”

Clinicians and health systems like Novant are spearheading efforts to best manage older adults who may need opioids because of conditions like chronic pain in an effort to reduce addiction and overdoses.
 

Older Adults Have Unique Needs

A major challenge of treating older adults is their high incidence of chronic pain and multiple complex chronic conditions. As a result, some of the nonopioid medications clinicians might otherwise prescribe, like nonsteroidal anti-inflammatory drugs, cannot be used, according to Caroline Goldzweig, MD, chief medical officer of the Cedars-Sinai Medical Network in Los Angeles, California.

“Before you know it, the only thing left is an opiate, so you can sometimes be between a rock and a hard place,” she said.

But for adults older than 65 years, opioids can carry problematic side effects, including sedation, cognitive impairment, falls, and fractures.

With those factors in mind, part of a yearly checkup or wellness visit should include time to discuss how a patient is managing their chronic pain, according to Timothy Anderson, MD, an assistant professor of medicine at the University of Pittsburgh, Pittsburgh, Pennsylvania, and codirector of the Prescribing Wisely Lab, a research collaboration between that institution and Beth Israel Deaconess Medical Center in Boston.

When considering a prescription for pain medication, Dr. Anderson said he evaluates the potential worst, best, and average outcomes for a patient. Nonopioid options should always be considered first-line treatment. Patients and physicians often struggle with balancing an option that meets a patient’s goals for pain relief but does not put them at a risk for adverse outcomes, he said.
 

Greater Risk

Older adults experience neurophysiologic effects different from younger people, said Benjamin Han, MD, a geriatrician and addiction medicine specialist at the University of California, San Diego.

Seniors also absorb, metabolize, and excrete drugs differently, sometimes affected by decreased production of gastric acid, lean body mass, and renal function. Coupled with complications of other chronic conditions or medications, diagnosing problematic opioid use or OUD can be one of the most challenging experiences in geriatrics, Dr. Han said.

As a result, OUD is often underdiagnosed in these patients, he said. Single-item screening tools like the TAPS and OWLS can be used to assess if the benefits of an opioid outweigh a patient’s risk for addiction.

Dr. Han finds medications like buprenorphine to be relatively safe and effective, along with nonpharmacologic interventions like physical therapy. He also advised clinicians to provide patients with opioid-overdose reversal agents.

Naloxone is only used for reversing opioid withdrawal, but it is important to ensure that any patient at risk for an overdose, including being on chronic opioids, is provided naloxone and educated on preventing opioid overdoses,” he said.

Steroid injections and medications that target specific pathways, such as neuropathic pain, can be helpful in primary care for these older patients, according to Pooja Lagisetty, MD, an internal medicine physician at Michigan Medicine and a research scientist at VA Ann Arbor Health Care, Ann Arbor, Michigan.

She often recommends to her patients online programs that help them maintain strength and mobility, as well as low-impact exercises like tai chi, for pain management.

“This will ensure a much more balanced, patient-centered conversation with whatever decisions you and your patient come to,” Dr. Lagisetty said.
 

 

 

New Protocols for Pain Management in Older Adults

At the health system level, clinicians can use treatment agreements for patients taking opioids. At Novant, patients must attest they agree to take the medications only as prescribed and from a specified pharmacy. They promise not to seek opioids from other sources, to submit to random drug screenings, and to communicate regularly with their clinician about any health issues.

If a patient violates any part of this agreement, their clinician can stop the treatment. The system encourages clinicians to help patients find additional care for substance abuse disorder or pain management if it occurs.

Over the past 2 years, Novant also developed an AI prediction model, which generates a score for the risk a patient has in developing substance use disorder or experiencing an overdose within a year of initial opioid prescription. The model was validated by an internal team at the system but has not been independently certified.

If a patient has a high-risk score, their clinician considers additional risk mitigation strategies, such as seeing the patient more frequently or using an abuse deterrent formulation of an opioid. They also have the option of referring the patient to specialists in addiction medicine or neurology. Opioids are not necessarily withheld, according to Dr. Meyer. The tool is now used by clinicians during Medicare annual wellness visits.

And coming later this year are new protocols for pain management in patients aged 80 years and older. Clinicians will target a 50% dose reduction, compared with what a younger patient might receive to account for physiologic differences.

“We know that especially with some opioids like morphine, they’re not going to metabolize that the same way a young person with a young kidney will, so we’re trying to set the clinician up to select a lower starting dose for patients that are older,” Dr. Meyer said.

In 2017, the system implemented a program to reduce prescription of opioids to less than 350 morphine milligram equivalents (MME) per order following any kind of surgery. The health system compared numbers of prescriptions written among surgical colleagues and met with them to discuss alternative approaches. Novant said it continues to monitor the data and follow-up with surgeons who are not in alignment with the goal.

Between 2017 and 2019, patients switching to lower doses after surgeries rose by 20%.

Across the country at Cedars-Sinai Medical Network, leadership in 2016 made the move to deprescribe opioids or lower doses of the drugs to less than 90 MME per day, in accordance with Centers for Disease Control and Prevention guidelines established that year. Patients were referred to their pain program for support and for nonopioid interventions. Pharmacists worked closely with clinicians on safely tapering these medications in patients taking high doses.

The program worked, according to Dr. Goldzweig. Dr. Goldzweig could only find two patients currently taking high-dose opioids in the system’s database out of more than 7000 patients with Medicare Advantage insurance coverage.

“There will always be some patients who have no alternative than opioids, but we established some discipline with urine tox screens and pain agreements, and over time, we’ve been able to reduce the number of high-risk opioid prescriptions,” she said.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Night Owl or Lark? The Answer May Affect Cognition

Article Type
Changed
Mon, 07/15/2024 - 12:14

Individuals who are more active in the evening performed better on cognitive tests than did those who are typically more active in the morning hours, new research suggests. 

“Rather than just being personal preferences, these chronotypes could impact our cognitive function,” said study investigator, Raha West, MBChB, with Imperial College London, London, England, in a statement.

But the researchers also urged caution when interpreting the findings.

“It’s important to note that this doesn’t mean all morning people have worse cognitive performance. The findings reflect an overall trend where the majority might lean toward better cognition in the evening types,” Dr. West added. 

In addition, across the board, getting the recommended 7-9 hours of nightly sleep was best for cognitive function, and sleeping for less than 7 or more than 9 hours had detrimental effects on brain function regardless of whether an individual was a night owl or lark. 

The study was published online in BMJ Public Health
 

A UK Biobank Cohort Study 

The findings are based on a cross-sectional analysis of 26,820 adults aged 53-86 years from the UK Biobank database, who were categorized into two cohorts. 

Cohort 1 had 10,067 participants (56% women) who completed four cognitive tests measuring fluid intelligence/reasoning, pairs matching, reaction time, and prospective memory. Cohort 2 had 16,753 participants (56% women) who completed two cognitive assessments (pairs matching and reaction time).

Participants self-reported sleep duration, chronotype, and quality. Cognitive test scores were evaluated against sleep parameters and health and lifestyle factors including sex, age, vascular and cardiac conditions, diabetes,alcohol use, smoking habits, and body mass index.

The results revealed a positive association between normal sleep duration (7-9 hours) and cognitive scores in Cohort 1 (beta, 0.0567), while extended sleep duration negatively impacted scores across in Cohort 1 and 2 (beta, –0.188 and beta, –0.2619, respectively). 

An individual’s preference for evening or morning activity correlated strongly with their test scores. In particular, night owls consistently performed better on cognitive tests than early birds. 

“While understanding and working with your natural sleep tendencies is essential, it’s equally important to remember to get just enough sleep, not too long or too short,” Dr. West noted. “This is crucial for keeping your brain healthy and functioning at its best.”

Contrary to some previous findings, the study did not find a significant relationship between sleep, sleepiness/insomnia, and cognitive performance. This may be because specific aspects of insomnia, such as severity and chronicity, as well as comorbid conditions need to be considered, the investigators wrote. 

They added that age and diabetes consistently emerged as negative predictors of cognitive functioning across both cohorts, in line with previous research. 

Limitations of the study include the cross-sectional design, which limits causal inferences; the possibility of residual confounding; and reliance on self-reported sleep data.

Also, the study did not adjust for educational attainment, a factor potentially influential on cognitive performance and sleep patterns, because of incomplete data. The study also did not factor in depression and social isolation, which have been shown to increase the risk for cognitive decline.
 

No Real-World Implications

Several outside experts offered their perspective on the study in a statement from the UK nonprofit Science Media Centre. 

The study provides “interesting insights” into the difference in memory and thinking in people who identify themselves as a “morning” or “evening” person, Jacqui Hanley, PhD, with Alzheimer’s Research UK, said in the statement. 

However, without a detailed picture of what is going on in the brain, it’s not clear whether being a morning or evening person affects memory and thinking or whether a decline in cognition is causing changes to sleeping patterns, Dr. Hanley added. 

Roi Cohen Kadosh, PhD, CPsychol, professor of cognitive neuroscience, University of Surrey, Guildford, England, cautioned that there are “multiple potential reasons” for these associations. 

“Therefore, there are no implications in my view for the real world. I fear that the general public will not be able to understand that and will change their sleep pattern, while this study does not give any evidence that this will lead to any benefit,” Dr. Cohen Kadosh said. 

Jessica Chelekis, PhD, MBA, a sleep expert from Brunel University London, Uxbridge, England, said that the “main takeaway should be that the cultural belief that early risers are more productive than ‘night owls’ does not hold up to scientific scrutiny.” 

“While everyone should aim to get good-quality sleep each night, we should also try to be aware of what time of day we are at our (cognitive) best and work in ways that suit us. Night owls, in particular, should not be shamed into fitting a stereotype that favors an ‘early to bed, early to rise’ practice,” Dr. Chelekis said. 

Funding for the study was provided by the Korea Institute of Oriental Medicine in collaboration with Imperial College London. Dr. Hanley, Dr. Cohen Kadosh, and Dr. Chelekis have no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Individuals who are more active in the evening performed better on cognitive tests than did those who are typically more active in the morning hours, new research suggests. 

“Rather than just being personal preferences, these chronotypes could impact our cognitive function,” said study investigator, Raha West, MBChB, with Imperial College London, London, England, in a statement.

But the researchers also urged caution when interpreting the findings.

“It’s important to note that this doesn’t mean all morning people have worse cognitive performance. The findings reflect an overall trend where the majority might lean toward better cognition in the evening types,” Dr. West added. 

In addition, across the board, getting the recommended 7-9 hours of nightly sleep was best for cognitive function, and sleeping for less than 7 or more than 9 hours had detrimental effects on brain function regardless of whether an individual was a night owl or lark. 

The study was published online in BMJ Public Health
 

A UK Biobank Cohort Study 

The findings are based on a cross-sectional analysis of 26,820 adults aged 53-86 years from the UK Biobank database, who were categorized into two cohorts. 

Cohort 1 had 10,067 participants (56% women) who completed four cognitive tests measuring fluid intelligence/reasoning, pairs matching, reaction time, and prospective memory. Cohort 2 had 16,753 participants (56% women) who completed two cognitive assessments (pairs matching and reaction time).

Participants self-reported sleep duration, chronotype, and quality. Cognitive test scores were evaluated against sleep parameters and health and lifestyle factors including sex, age, vascular and cardiac conditions, diabetes,alcohol use, smoking habits, and body mass index.

The results revealed a positive association between normal sleep duration (7-9 hours) and cognitive scores in Cohort 1 (beta, 0.0567), while extended sleep duration negatively impacted scores across in Cohort 1 and 2 (beta, –0.188 and beta, –0.2619, respectively). 

An individual’s preference for evening or morning activity correlated strongly with their test scores. In particular, night owls consistently performed better on cognitive tests than early birds. 

“While understanding and working with your natural sleep tendencies is essential, it’s equally important to remember to get just enough sleep, not too long or too short,” Dr. West noted. “This is crucial for keeping your brain healthy and functioning at its best.”

Contrary to some previous findings, the study did not find a significant relationship between sleep, sleepiness/insomnia, and cognitive performance. This may be because specific aspects of insomnia, such as severity and chronicity, as well as comorbid conditions need to be considered, the investigators wrote. 

They added that age and diabetes consistently emerged as negative predictors of cognitive functioning across both cohorts, in line with previous research. 

Limitations of the study include the cross-sectional design, which limits causal inferences; the possibility of residual confounding; and reliance on self-reported sleep data.

Also, the study did not adjust for educational attainment, a factor potentially influential on cognitive performance and sleep patterns, because of incomplete data. The study also did not factor in depression and social isolation, which have been shown to increase the risk for cognitive decline.
 

No Real-World Implications

Several outside experts offered their perspective on the study in a statement from the UK nonprofit Science Media Centre. 

The study provides “interesting insights” into the difference in memory and thinking in people who identify themselves as a “morning” or “evening” person, Jacqui Hanley, PhD, with Alzheimer’s Research UK, said in the statement. 

However, without a detailed picture of what is going on in the brain, it’s not clear whether being a morning or evening person affects memory and thinking or whether a decline in cognition is causing changes to sleeping patterns, Dr. Hanley added. 

Roi Cohen Kadosh, PhD, CPsychol, professor of cognitive neuroscience, University of Surrey, Guildford, England, cautioned that there are “multiple potential reasons” for these associations. 

“Therefore, there are no implications in my view for the real world. I fear that the general public will not be able to understand that and will change their sleep pattern, while this study does not give any evidence that this will lead to any benefit,” Dr. Cohen Kadosh said. 

Jessica Chelekis, PhD, MBA, a sleep expert from Brunel University London, Uxbridge, England, said that the “main takeaway should be that the cultural belief that early risers are more productive than ‘night owls’ does not hold up to scientific scrutiny.” 

“While everyone should aim to get good-quality sleep each night, we should also try to be aware of what time of day we are at our (cognitive) best and work in ways that suit us. Night owls, in particular, should not be shamed into fitting a stereotype that favors an ‘early to bed, early to rise’ practice,” Dr. Chelekis said. 

Funding for the study was provided by the Korea Institute of Oriental Medicine in collaboration with Imperial College London. Dr. Hanley, Dr. Cohen Kadosh, and Dr. Chelekis have no relevant disclosures.

A version of this article first appeared on Medscape.com.

Individuals who are more active in the evening performed better on cognitive tests than did those who are typically more active in the morning hours, new research suggests. 

“Rather than just being personal preferences, these chronotypes could impact our cognitive function,” said study investigator, Raha West, MBChB, with Imperial College London, London, England, in a statement.

But the researchers also urged caution when interpreting the findings.

“It’s important to note that this doesn’t mean all morning people have worse cognitive performance. The findings reflect an overall trend where the majority might lean toward better cognition in the evening types,” Dr. West added. 

In addition, across the board, getting the recommended 7-9 hours of nightly sleep was best for cognitive function, and sleeping for less than 7 or more than 9 hours had detrimental effects on brain function regardless of whether an individual was a night owl or lark. 

The study was published online in BMJ Public Health
 

A UK Biobank Cohort Study 

The findings are based on a cross-sectional analysis of 26,820 adults aged 53-86 years from the UK Biobank database, who were categorized into two cohorts. 

Cohort 1 had 10,067 participants (56% women) who completed four cognitive tests measuring fluid intelligence/reasoning, pairs matching, reaction time, and prospective memory. Cohort 2 had 16,753 participants (56% women) who completed two cognitive assessments (pairs matching and reaction time).

Participants self-reported sleep duration, chronotype, and quality. Cognitive test scores were evaluated against sleep parameters and health and lifestyle factors including sex, age, vascular and cardiac conditions, diabetes,alcohol use, smoking habits, and body mass index.

The results revealed a positive association between normal sleep duration (7-9 hours) and cognitive scores in Cohort 1 (beta, 0.0567), while extended sleep duration negatively impacted scores across in Cohort 1 and 2 (beta, –0.188 and beta, –0.2619, respectively). 

An individual’s preference for evening or morning activity correlated strongly with their test scores. In particular, night owls consistently performed better on cognitive tests than early birds. 

“While understanding and working with your natural sleep tendencies is essential, it’s equally important to remember to get just enough sleep, not too long or too short,” Dr. West noted. “This is crucial for keeping your brain healthy and functioning at its best.”

Contrary to some previous findings, the study did not find a significant relationship between sleep, sleepiness/insomnia, and cognitive performance. This may be because specific aspects of insomnia, such as severity and chronicity, as well as comorbid conditions need to be considered, the investigators wrote. 

They added that age and diabetes consistently emerged as negative predictors of cognitive functioning across both cohorts, in line with previous research. 

Limitations of the study include the cross-sectional design, which limits causal inferences; the possibility of residual confounding; and reliance on self-reported sleep data.

Also, the study did not adjust for educational attainment, a factor potentially influential on cognitive performance and sleep patterns, because of incomplete data. The study also did not factor in depression and social isolation, which have been shown to increase the risk for cognitive decline.
 

No Real-World Implications

Several outside experts offered their perspective on the study in a statement from the UK nonprofit Science Media Centre. 

The study provides “interesting insights” into the difference in memory and thinking in people who identify themselves as a “morning” or “evening” person, Jacqui Hanley, PhD, with Alzheimer’s Research UK, said in the statement. 

However, without a detailed picture of what is going on in the brain, it’s not clear whether being a morning or evening person affects memory and thinking or whether a decline in cognition is causing changes to sleeping patterns, Dr. Hanley added. 

Roi Cohen Kadosh, PhD, CPsychol, professor of cognitive neuroscience, University of Surrey, Guildford, England, cautioned that there are “multiple potential reasons” for these associations. 

“Therefore, there are no implications in my view for the real world. I fear that the general public will not be able to understand that and will change their sleep pattern, while this study does not give any evidence that this will lead to any benefit,” Dr. Cohen Kadosh said. 

Jessica Chelekis, PhD, MBA, a sleep expert from Brunel University London, Uxbridge, England, said that the “main takeaway should be that the cultural belief that early risers are more productive than ‘night owls’ does not hold up to scientific scrutiny.” 

“While everyone should aim to get good-quality sleep each night, we should also try to be aware of what time of day we are at our (cognitive) best and work in ways that suit us. Night owls, in particular, should not be shamed into fitting a stereotype that favors an ‘early to bed, early to rise’ practice,” Dr. Chelekis said. 

Funding for the study was provided by the Korea Institute of Oriental Medicine in collaboration with Imperial College London. Dr. Hanley, Dr. Cohen Kadosh, and Dr. Chelekis have no relevant disclosures.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BMJ PUBLIC HEALTH

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Key Questions to Ask Patients With Somatic Symptom Disorder

Article Type
Changed
Thu, 07/11/2024 - 13:56

Every doctor encounters patients who complain of symptoms without identifiable physical causes. According to a recent review in The Lancet, one third of all symptoms lack somatic explanations.

How can these patients be helped, and what crucial question should always be asked? This news organization discussed this topic with Professor Peter Henningsen, a coauthor of the review, at the German Congress for Psychosomatic Medicine and Psychotherapy. Dr. Henningsen is the director of the Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy at the University Hospital Rechts der Isar of the Technical University of Munich, Munich, Germany.
 

One Common Factor

Patients often experience a wide range of symptoms that appear without any obvious cause. These symptoms include persistent pain, dizziness, cardiovascular complaints, digestive disorders, gait disturbances, exhaustion, and fatigue. There’s often a notable gap between perceived distress and the impairment of a patient’s physical functions and examination findings.

In recent years, a descriptive umbrella term has emerged for these health challenges: persistent physical symptoms. This term includes functional physical complaints lasting for months or longer without a clearly identifiable organic cause, such as chronic fatigue syndrome, irritable bowel syndrome, fibromyalgia, or multiple chemical sensitivity. It also encompasses persistent complaints in patients with an underlying condition.

According to the review, 70% of people with chronic kidney disease experience fatigue; 63% of patients with coronary artery disease have persistent pain in their arms, legs, or joints; and 31% of patients with ulcerative colitis in remission report persistent gastrointestinal symptoms.

In International Classification of Diseases (ICD), 10th Revision, the term “somatoform disorders” is used when no organic causes are identifiable. However, ICD-11 has replaced this term with the category of “somatic symptom disorders.”

“For this diagnosis, it is no longer necessary to rule out physical causes entirely,” explained Dr. Henningsen. “Instead, the focus is on psychologic and behavioral abnormalities, anxiety, increased attention to symptoms, frequent doctor consultations, and the conviction of having a serious physical illness.”

This new diagnostic approach is considered sensible because it focuses on the patient’s experience of their illness. However, it has also been criticized for potentially “psychiatrizing” patients with genuine physical ailments.
 

The ‘Prediction Machine’

Understanding the new model is crucial. “It’s about grasping what is happening with a person who persistently complains of physical symptoms,” said Dr. Henningsen.

Previously, the bottom-up model of perception, which started from the pain stimulus, was widely accepted. It was believed that pain could secondarily cause psychological symptoms. However, the role of the brain has now come to the forefront. Terms like “predictive processing” or “predictive coding” are key: The brain constantly makes predictions about the most likely interpretation of sensory impressions.

These predictions incorporate expectations, beliefs, and past experiences with symptoms, which unconsciously influence these predictions. Therefore, expectations play a role in perception for all patients regardless of whether they have an organic precondition. This phenomenon can result in patients experiencing symptoms despite minimal or no sensory input.

“Perception is always biopsychosocial,” Dr. Henningsen emphasized, and diseases are not strictly physical or psychological but rather a combination of both. The proportions of these components vary, especially in chronic illnesses, where expectations play a more significant role in pain perception than they do in fresh injuries. Because predictive processing is a general mechanism of perception, it can be involved in various diseases.

The good news is that many factors contributing to persistent physical symptoms, such as increased attention to symptoms, dysfunctional expectations, or avoidance behavior, can be positively influenced.
 

 

 

What Can Doctors Do?

Dr. Henningsen recommended that doctors treating patients with functional physical complaints focus on the following three key aspects:

  • Consider the subjective experience. “The psychologic aspect is relevant in every illness. Always ask, ‘How are you coping with your symptoms? What are your expectations for the future?’ ” Dr. Henningsen explained. For instance, if a patient has been experiencing back pain for weeks, feels it’s getting worse, and believes that they will no longer be able to work, this is a significant prognostic factor. Such a patient is less likely to return to work compared with someone who is confident in their recovery.
  • Communicate mindfully. The way doctors communicate with patients about their symptoms is crucial. Dr. Henningsen illustrated this with a patient with tension headaches. “An MRI might show a slight increase in signal intensity. If the doctor casually says, ‘It could be MS, but I don’t think so,’ the patient will fixate on the mention of MS.”
  • Treat body and mind. There is no either-or in therapy. For example, medications can help with irritable bowel syndrome but so can psychotherapeutic measures — without implying that the condition is purely psychological. Exercise therapy can demonstrate that pain does not increase with movement, thus positively changing a patient’s expectations and reducing symptoms.

A Doctor’s ‘Toolbox’

A Norwegian study published last year in eClinicalMedicine, a Lancet journal, demonstrated the effectiveness of such an approach for treating medically unexplained physical symptoms (MUPS) in general practice.

In this study, 541 patients with MUPS participated in a two-arm, cluster-randomized trial. In total, 10 clusters of 103 general practitioners were each divided into two groups. One group used the Individual Challenge Inventory Tool (ICIT) for 11 weeks, while the other received usual treatment.

The ICIT, a structured communication tool based on cognitive-behavioral therapy, was developed by the study’s lead author, a general practitioner. Participating general practitioners were trained in using the ICIT.

Patients in the study received two or more sessions with their general practitioners. Outcomes were assessed individually, and the primary outcome was patient-reported change in function, symptoms, and quality of life as measured by the Patient Global Impression of Change. Secondary end points included work capability.

In the intervention group, 76% (n = 223) experienced significant overall improvement in function, symptoms, and the quality of life compared with 38% (n = 236) in the control group receiving usual care (mean difference, −0.8; 95% confidence interval [CI], −1.0 to −0.6; P < .0001).

After 11 weeks, sick leave decreased by 27 percentage points in the intervention group (from 52.0 to 25.2), while it dropped by only four percentage points in the usual care group (from 49.7 to 45.7).

“ICIT in primary care led to significant improvements in treatment outcomes and a reduction in sickness absence for patients with MUPS,” the authors concluded.
 

Guideline Under Revision

Medications alone often fail to adequately alleviate persistent physical symptoms. The S3 guideline “Functional Physical Complaints” lists various alternative therapies such as yoga and psychological interventions.

Dr. Henningsen and his team are revising this guideline, and publication is expected later this year. While no major changes in therapy recommendations are anticipated, the focus will be on making the guideline more user-friendly.

“It is crucial for doctors to consider psychosocial factors,” said Dr. Henningsen. “ ‘Both-and’ instead of ‘either-or’ is our motto.”

Dr. Henningsen declared no conflicts of interest.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Every doctor encounters patients who complain of symptoms without identifiable physical causes. According to a recent review in The Lancet, one third of all symptoms lack somatic explanations.

How can these patients be helped, and what crucial question should always be asked? This news organization discussed this topic with Professor Peter Henningsen, a coauthor of the review, at the German Congress for Psychosomatic Medicine and Psychotherapy. Dr. Henningsen is the director of the Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy at the University Hospital Rechts der Isar of the Technical University of Munich, Munich, Germany.
 

One Common Factor

Patients often experience a wide range of symptoms that appear without any obvious cause. These symptoms include persistent pain, dizziness, cardiovascular complaints, digestive disorders, gait disturbances, exhaustion, and fatigue. There’s often a notable gap between perceived distress and the impairment of a patient’s physical functions and examination findings.

In recent years, a descriptive umbrella term has emerged for these health challenges: persistent physical symptoms. This term includes functional physical complaints lasting for months or longer without a clearly identifiable organic cause, such as chronic fatigue syndrome, irritable bowel syndrome, fibromyalgia, or multiple chemical sensitivity. It also encompasses persistent complaints in patients with an underlying condition.

According to the review, 70% of people with chronic kidney disease experience fatigue; 63% of patients with coronary artery disease have persistent pain in their arms, legs, or joints; and 31% of patients with ulcerative colitis in remission report persistent gastrointestinal symptoms.

In International Classification of Diseases (ICD), 10th Revision, the term “somatoform disorders” is used when no organic causes are identifiable. However, ICD-11 has replaced this term with the category of “somatic symptom disorders.”

“For this diagnosis, it is no longer necessary to rule out physical causes entirely,” explained Dr. Henningsen. “Instead, the focus is on psychologic and behavioral abnormalities, anxiety, increased attention to symptoms, frequent doctor consultations, and the conviction of having a serious physical illness.”

This new diagnostic approach is considered sensible because it focuses on the patient’s experience of their illness. However, it has also been criticized for potentially “psychiatrizing” patients with genuine physical ailments.
 

The ‘Prediction Machine’

Understanding the new model is crucial. “It’s about grasping what is happening with a person who persistently complains of physical symptoms,” said Dr. Henningsen.

Previously, the bottom-up model of perception, which started from the pain stimulus, was widely accepted. It was believed that pain could secondarily cause psychological symptoms. However, the role of the brain has now come to the forefront. Terms like “predictive processing” or “predictive coding” are key: The brain constantly makes predictions about the most likely interpretation of sensory impressions.

These predictions incorporate expectations, beliefs, and past experiences with symptoms, which unconsciously influence these predictions. Therefore, expectations play a role in perception for all patients regardless of whether they have an organic precondition. This phenomenon can result in patients experiencing symptoms despite minimal or no sensory input.

“Perception is always biopsychosocial,” Dr. Henningsen emphasized, and diseases are not strictly physical or psychological but rather a combination of both. The proportions of these components vary, especially in chronic illnesses, where expectations play a more significant role in pain perception than they do in fresh injuries. Because predictive processing is a general mechanism of perception, it can be involved in various diseases.

The good news is that many factors contributing to persistent physical symptoms, such as increased attention to symptoms, dysfunctional expectations, or avoidance behavior, can be positively influenced.
 

 

 

What Can Doctors Do?

Dr. Henningsen recommended that doctors treating patients with functional physical complaints focus on the following three key aspects:

  • Consider the subjective experience. “The psychologic aspect is relevant in every illness. Always ask, ‘How are you coping with your symptoms? What are your expectations for the future?’ ” Dr. Henningsen explained. For instance, if a patient has been experiencing back pain for weeks, feels it’s getting worse, and believes that they will no longer be able to work, this is a significant prognostic factor. Such a patient is less likely to return to work compared with someone who is confident in their recovery.
  • Communicate mindfully. The way doctors communicate with patients about their symptoms is crucial. Dr. Henningsen illustrated this with a patient with tension headaches. “An MRI might show a slight increase in signal intensity. If the doctor casually says, ‘It could be MS, but I don’t think so,’ the patient will fixate on the mention of MS.”
  • Treat body and mind. There is no either-or in therapy. For example, medications can help with irritable bowel syndrome but so can psychotherapeutic measures — without implying that the condition is purely psychological. Exercise therapy can demonstrate that pain does not increase with movement, thus positively changing a patient’s expectations and reducing symptoms.

A Doctor’s ‘Toolbox’

A Norwegian study published last year in eClinicalMedicine, a Lancet journal, demonstrated the effectiveness of such an approach for treating medically unexplained physical symptoms (MUPS) in general practice.

In this study, 541 patients with MUPS participated in a two-arm, cluster-randomized trial. In total, 10 clusters of 103 general practitioners were each divided into two groups. One group used the Individual Challenge Inventory Tool (ICIT) for 11 weeks, while the other received usual treatment.

The ICIT, a structured communication tool based on cognitive-behavioral therapy, was developed by the study’s lead author, a general practitioner. Participating general practitioners were trained in using the ICIT.

Patients in the study received two or more sessions with their general practitioners. Outcomes were assessed individually, and the primary outcome was patient-reported change in function, symptoms, and quality of life as measured by the Patient Global Impression of Change. Secondary end points included work capability.

In the intervention group, 76% (n = 223) experienced significant overall improvement in function, symptoms, and the quality of life compared with 38% (n = 236) in the control group receiving usual care (mean difference, −0.8; 95% confidence interval [CI], −1.0 to −0.6; P < .0001).

After 11 weeks, sick leave decreased by 27 percentage points in the intervention group (from 52.0 to 25.2), while it dropped by only four percentage points in the usual care group (from 49.7 to 45.7).

“ICIT in primary care led to significant improvements in treatment outcomes and a reduction in sickness absence for patients with MUPS,” the authors concluded.
 

Guideline Under Revision

Medications alone often fail to adequately alleviate persistent physical symptoms. The S3 guideline “Functional Physical Complaints” lists various alternative therapies such as yoga and psychological interventions.

Dr. Henningsen and his team are revising this guideline, and publication is expected later this year. While no major changes in therapy recommendations are anticipated, the focus will be on making the guideline more user-friendly.

“It is crucial for doctors to consider psychosocial factors,” said Dr. Henningsen. “ ‘Both-and’ instead of ‘either-or’ is our motto.”

Dr. Henningsen declared no conflicts of interest.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Every doctor encounters patients who complain of symptoms without identifiable physical causes. According to a recent review in The Lancet, one third of all symptoms lack somatic explanations.

How can these patients be helped, and what crucial question should always be asked? This news organization discussed this topic with Professor Peter Henningsen, a coauthor of the review, at the German Congress for Psychosomatic Medicine and Psychotherapy. Dr. Henningsen is the director of the Clinic and Polyclinic for Psychosomatic Medicine and Psychotherapy at the University Hospital Rechts der Isar of the Technical University of Munich, Munich, Germany.
 

One Common Factor

Patients often experience a wide range of symptoms that appear without any obvious cause. These symptoms include persistent pain, dizziness, cardiovascular complaints, digestive disorders, gait disturbances, exhaustion, and fatigue. There’s often a notable gap between perceived distress and the impairment of a patient’s physical functions and examination findings.

In recent years, a descriptive umbrella term has emerged for these health challenges: persistent physical symptoms. This term includes functional physical complaints lasting for months or longer without a clearly identifiable organic cause, such as chronic fatigue syndrome, irritable bowel syndrome, fibromyalgia, or multiple chemical sensitivity. It also encompasses persistent complaints in patients with an underlying condition.

According to the review, 70% of people with chronic kidney disease experience fatigue; 63% of patients with coronary artery disease have persistent pain in their arms, legs, or joints; and 31% of patients with ulcerative colitis in remission report persistent gastrointestinal symptoms.

In International Classification of Diseases (ICD), 10th Revision, the term “somatoform disorders” is used when no organic causes are identifiable. However, ICD-11 has replaced this term with the category of “somatic symptom disorders.”

“For this diagnosis, it is no longer necessary to rule out physical causes entirely,” explained Dr. Henningsen. “Instead, the focus is on psychologic and behavioral abnormalities, anxiety, increased attention to symptoms, frequent doctor consultations, and the conviction of having a serious physical illness.”

This new diagnostic approach is considered sensible because it focuses on the patient’s experience of their illness. However, it has also been criticized for potentially “psychiatrizing” patients with genuine physical ailments.
 

The ‘Prediction Machine’

Understanding the new model is crucial. “It’s about grasping what is happening with a person who persistently complains of physical symptoms,” said Dr. Henningsen.

Previously, the bottom-up model of perception, which started from the pain stimulus, was widely accepted. It was believed that pain could secondarily cause psychological symptoms. However, the role of the brain has now come to the forefront. Terms like “predictive processing” or “predictive coding” are key: The brain constantly makes predictions about the most likely interpretation of sensory impressions.

These predictions incorporate expectations, beliefs, and past experiences with symptoms, which unconsciously influence these predictions. Therefore, expectations play a role in perception for all patients regardless of whether they have an organic precondition. This phenomenon can result in patients experiencing symptoms despite minimal or no sensory input.

“Perception is always biopsychosocial,” Dr. Henningsen emphasized, and diseases are not strictly physical or psychological but rather a combination of both. The proportions of these components vary, especially in chronic illnesses, where expectations play a more significant role in pain perception than they do in fresh injuries. Because predictive processing is a general mechanism of perception, it can be involved in various diseases.

The good news is that many factors contributing to persistent physical symptoms, such as increased attention to symptoms, dysfunctional expectations, or avoidance behavior, can be positively influenced.
 

 

 

What Can Doctors Do?

Dr. Henningsen recommended that doctors treating patients with functional physical complaints focus on the following three key aspects:

  • Consider the subjective experience. “The psychologic aspect is relevant in every illness. Always ask, ‘How are you coping with your symptoms? What are your expectations for the future?’ ” Dr. Henningsen explained. For instance, if a patient has been experiencing back pain for weeks, feels it’s getting worse, and believes that they will no longer be able to work, this is a significant prognostic factor. Such a patient is less likely to return to work compared with someone who is confident in their recovery.
  • Communicate mindfully. The way doctors communicate with patients about their symptoms is crucial. Dr. Henningsen illustrated this with a patient with tension headaches. “An MRI might show a slight increase in signal intensity. If the doctor casually says, ‘It could be MS, but I don’t think so,’ the patient will fixate on the mention of MS.”
  • Treat body and mind. There is no either-or in therapy. For example, medications can help with irritable bowel syndrome but so can psychotherapeutic measures — without implying that the condition is purely psychological. Exercise therapy can demonstrate that pain does not increase with movement, thus positively changing a patient’s expectations and reducing symptoms.

A Doctor’s ‘Toolbox’

A Norwegian study published last year in eClinicalMedicine, a Lancet journal, demonstrated the effectiveness of such an approach for treating medically unexplained physical symptoms (MUPS) in general practice.

In this study, 541 patients with MUPS participated in a two-arm, cluster-randomized trial. In total, 10 clusters of 103 general practitioners were each divided into two groups. One group used the Individual Challenge Inventory Tool (ICIT) for 11 weeks, while the other received usual treatment.

The ICIT, a structured communication tool based on cognitive-behavioral therapy, was developed by the study’s lead author, a general practitioner. Participating general practitioners were trained in using the ICIT.

Patients in the study received two or more sessions with their general practitioners. Outcomes were assessed individually, and the primary outcome was patient-reported change in function, symptoms, and quality of life as measured by the Patient Global Impression of Change. Secondary end points included work capability.

In the intervention group, 76% (n = 223) experienced significant overall improvement in function, symptoms, and the quality of life compared with 38% (n = 236) in the control group receiving usual care (mean difference, −0.8; 95% confidence interval [CI], −1.0 to −0.6; P < .0001).

After 11 weeks, sick leave decreased by 27 percentage points in the intervention group (from 52.0 to 25.2), while it dropped by only four percentage points in the usual care group (from 49.7 to 45.7).

“ICIT in primary care led to significant improvements in treatment outcomes and a reduction in sickness absence for patients with MUPS,” the authors concluded.
 

Guideline Under Revision

Medications alone often fail to adequately alleviate persistent physical symptoms. The S3 guideline “Functional Physical Complaints” lists various alternative therapies such as yoga and psychological interventions.

Dr. Henningsen and his team are revising this guideline, and publication is expected later this year. While no major changes in therapy recommendations are anticipated, the focus will be on making the guideline more user-friendly.

“It is crucial for doctors to consider psychosocial factors,” said Dr. Henningsen. “ ‘Both-and’ instead of ‘either-or’ is our motto.”

Dr. Henningsen declared no conflicts of interest.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Medicare Rates in 2025 Would Cut Pay For Docs by 3%

Article Type
Changed
Fri, 07/12/2024 - 09:00

Federal officials on July 11 proposed Medicare rates that effectively would cut physician pay by about 3% in 2025, touching off a fresh round of protests from medical associations.

The 2025 draft base rate, or conversion factor, is slated to drop to $32.36 from the current level of $33.29, the Centers for Medicare & Medicaid Services said.

The American Medical Association (AMA), the American Academy of Family Physicians (AAFP) and other groups on July 10 reiterated calls on Congress to revise the law on Medicare payment for physicians and move away from short-term tweaks.

This proposed cut is mostly due to the 5-year freeze in the physician schedule base rate mandated by the 2015 Medicare Access and CHIP Reauthorization Act (MACRA). Congress designed MACRA with an aim of shifting clinicians toward programs that would peg pay increases to quality measures.

Lawmakers have since had to soften the blow of that freeze, acknowledging flaws in MACRA and inflation’s significant toll on medical practices. Yet lawmakers have made temporary fixes, such as a 2.93% increase in current payment that’s set to expire.

“Previous quick fixes have been insufficient — this situation requires a bold, substantial approach,” Bruce A. Scott, MD, the AMA president, said in a statement. “A Band-Aid goes only so far when the patient is in dire need.”

Dr. Scott noted that the Medicare Economic Index — a measure of practice cost inflation — is expected to rise by 3.6% in 2025.

“As a first step, Congress must enact an annual inflationary update to help physician payment rates keep pace with rising practice costs,” Steven P. Furr, MD, AAFP’s president, said in a statement released July 10. “Any payment reductions will threaten practices and exacerbate workforce shortages, preventing patients from accessing the primary care, behavioral health care, and other critical preventive services they need.”

Many medical groups, including the AMA, AAFP, and the Medical Group Management Association, are pressing Congress to pass a law that would tie the conversion factor of the physician fee schedule to inflation.

Influential advisory groups also have backed the idea of increasing the conversion factor. For example, the Medicare Payment Advisory Commission in March recommended to Congress that it increase the 2025 conversion factor, suggesting a bump of half of the projected increase in the Medicare Economic Index.

Congress seems unlikely to revamp the physician fee schedule this year, with members spending significant time away from Washington ahead of the November election.

That could make it likely that Congress’ next action on Medicare payment rates would be another short-term tweak — instead of long-lasting change.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Federal officials on July 11 proposed Medicare rates that effectively would cut physician pay by about 3% in 2025, touching off a fresh round of protests from medical associations.

The 2025 draft base rate, or conversion factor, is slated to drop to $32.36 from the current level of $33.29, the Centers for Medicare & Medicaid Services said.

The American Medical Association (AMA), the American Academy of Family Physicians (AAFP) and other groups on July 10 reiterated calls on Congress to revise the law on Medicare payment for physicians and move away from short-term tweaks.

This proposed cut is mostly due to the 5-year freeze in the physician schedule base rate mandated by the 2015 Medicare Access and CHIP Reauthorization Act (MACRA). Congress designed MACRA with an aim of shifting clinicians toward programs that would peg pay increases to quality measures.

Lawmakers have since had to soften the blow of that freeze, acknowledging flaws in MACRA and inflation’s significant toll on medical practices. Yet lawmakers have made temporary fixes, such as a 2.93% increase in current payment that’s set to expire.

“Previous quick fixes have been insufficient — this situation requires a bold, substantial approach,” Bruce A. Scott, MD, the AMA president, said in a statement. “A Band-Aid goes only so far when the patient is in dire need.”

Dr. Scott noted that the Medicare Economic Index — a measure of practice cost inflation — is expected to rise by 3.6% in 2025.

“As a first step, Congress must enact an annual inflationary update to help physician payment rates keep pace with rising practice costs,” Steven P. Furr, MD, AAFP’s president, said in a statement released July 10. “Any payment reductions will threaten practices and exacerbate workforce shortages, preventing patients from accessing the primary care, behavioral health care, and other critical preventive services they need.”

Many medical groups, including the AMA, AAFP, and the Medical Group Management Association, are pressing Congress to pass a law that would tie the conversion factor of the physician fee schedule to inflation.

Influential advisory groups also have backed the idea of increasing the conversion factor. For example, the Medicare Payment Advisory Commission in March recommended to Congress that it increase the 2025 conversion factor, suggesting a bump of half of the projected increase in the Medicare Economic Index.

Congress seems unlikely to revamp the physician fee schedule this year, with members spending significant time away from Washington ahead of the November election.

That could make it likely that Congress’ next action on Medicare payment rates would be another short-term tweak — instead of long-lasting change.

A version of this article first appeared on Medscape.com.

Federal officials on July 11 proposed Medicare rates that effectively would cut physician pay by about 3% in 2025, touching off a fresh round of protests from medical associations.

The 2025 draft base rate, or conversion factor, is slated to drop to $32.36 from the current level of $33.29, the Centers for Medicare & Medicaid Services said.

The American Medical Association (AMA), the American Academy of Family Physicians (AAFP) and other groups on July 10 reiterated calls on Congress to revise the law on Medicare payment for physicians and move away from short-term tweaks.

This proposed cut is mostly due to the 5-year freeze in the physician schedule base rate mandated by the 2015 Medicare Access and CHIP Reauthorization Act (MACRA). Congress designed MACRA with an aim of shifting clinicians toward programs that would peg pay increases to quality measures.

Lawmakers have since had to soften the blow of that freeze, acknowledging flaws in MACRA and inflation’s significant toll on medical practices. Yet lawmakers have made temporary fixes, such as a 2.93% increase in current payment that’s set to expire.

“Previous quick fixes have been insufficient — this situation requires a bold, substantial approach,” Bruce A. Scott, MD, the AMA president, said in a statement. “A Band-Aid goes only so far when the patient is in dire need.”

Dr. Scott noted that the Medicare Economic Index — a measure of practice cost inflation — is expected to rise by 3.6% in 2025.

“As a first step, Congress must enact an annual inflationary update to help physician payment rates keep pace with rising practice costs,” Steven P. Furr, MD, AAFP’s president, said in a statement released July 10. “Any payment reductions will threaten practices and exacerbate workforce shortages, preventing patients from accessing the primary care, behavioral health care, and other critical preventive services they need.”

Many medical groups, including the AMA, AAFP, and the Medical Group Management Association, are pressing Congress to pass a law that would tie the conversion factor of the physician fee schedule to inflation.

Influential advisory groups also have backed the idea of increasing the conversion factor. For example, the Medicare Payment Advisory Commission in March recommended to Congress that it increase the 2025 conversion factor, suggesting a bump of half of the projected increase in the Medicare Economic Index.

Congress seems unlikely to revamp the physician fee schedule this year, with members spending significant time away from Washington ahead of the November election.

That could make it likely that Congress’ next action on Medicare payment rates would be another short-term tweak — instead of long-lasting change.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Managing Agitation in Alzheimer’s Disease: Five Things to Know

Article Type
Changed
Thu, 07/11/2024 - 13:05

Agitation is a neuropsychiatric symptom in patients with Alzheimer’s disease (AD), the most common form of dementia. The prevalence of this symptom is about 40%-65%, with the higher end of the range applying to patients who have moderate to severe dementia. Agitation often begins early in the course of the disease and is persistent, which contributes to increased healthcare costs and significantly increases both caregiver burden and patient distress. The DICE approach is a collaborative process for managing behavioral symptoms in dementia, wherein the caregiver describes the behaviors, the provider investigates the etiology, the provider and caregiver create a treatment plan, and the provider evaluates the outcome of the interventions. We use this widely adopted approach as the framework for discussing recent advances in the management of agitation.

Here are five things to know about managing agitation in AD.
 

1. There is a new operational definition for agitation in dementia.

Agitation in dementia is a syndrome that encompasses specific behaviors across all dementia types. The 2023 operational definition of agitation in dementia by the International Psychogeriatric Association (IPA) includes three domains: excessive motor activity (including pacing, rocking, restlessness, and performing repetitious mannerisms), verbal aggression (including using profanity, screaming, and shouting), and physical aggression (including interpersonal aggression and mishandling or destruction of property). These behaviors must be persistent or recurrent for at least 2 weeks or represent a dramatic change from the person’s baseline behavior, must be associated with excessive distress or disability beyond what is caused by the cognitive impairment itself, and result in significant impairment in at least one of the three specified functional domains. Behavioral symptoms in dementia frequently co-occur, which affects treatment and prognosis. For instance, the risk for stroke associated with antipsychotic treatments appears to be higher in dementia-related psychosis without agitation than in agitation alone or in psychosis with agitation. Therefore, the use of a rating scale such as the Neuropsychiatric Inventory–Questionnaire (NPI-Q), which takes 5 minutes or less to administer, is recommended to identify and track behavioral symptoms and caregiver distress.

2. The etiology of agitation in dementia may be multifactorial.

It is important in every case to identify all underlying etiologies so that presumed causal and/or exacerbating factors are not inadvertently missed. Agitation may be a means of communicating distress owing to unmet needs or a patient-environment mismatch (function-focused approach) or may be a direct consequence of the dementia itself (behavioral-symptom approach). These approaches are not mutually exclusive. A patient can present with agitation as a direct consequence of dementia and inadequately treated pain concurrently. 

The new IPA definition specifies several exclusion criteria for agitation in dementia, including underlying medical conditions, delirium, substance use, and suboptimal care conditions. It is especially crucial to accurately identify delirium because dementia is an independent risk factor for delirium, which in turn may accelerate the progression of cognitive and functional decline. Even subsyndromal delirium in older adults leads to a higher 3-year mortality rate that is comparable to that seen in delirium. Older adults with acute-onset agitation in the context of dementia should undergo a comprehensive assessment for delirium, as agitation may be the only indication of a serious underlying medical condition
 

 

 

3. Nonpharmacologic interventions should be used whenever possible. 

The wider adoption of nonpharmacologic interventions in clinical practice has been greatly limited by the heterogeneity in study protocols, including in selection of participants, in the types of dementias included, and in defining and applying the intervention strategies. Nevertheless, there is general consensus that individualized behavioral strategies that build on the patients’ interests and preserved abilities are more effective, at least in the short term. Patients best suited for these interventions are those with less cognitive decline, better communication skills, less impairment in activities of daily living, and higher responsiveness. A systematic review of systematic reviews found music therapy to be the most effective intervention for reducing agitation and aggression in dementia, along with behavioral management techniques when supervised by healthcare professionals. On the other hand, physical restraints are best avoided, as their use in hospitalized patients has been associated with longer stays, higher costs, lower odds of being discharged to home, and in long-term care patients with longer stays, with increased risk for medical complications and functional decline. 

4. Antidepressants are not all equally safe or efficacious in managing agitation.

In a network meta-analysis that looked at the effects of several antidepressants on agitation in dementia, citalopram had just under 95% probability of efficacy and was the only antidepressant that was significantly more efficacious than placebo. In the multicenter CitAD trial, citalopram was efficacious and well tolerated for the treatment of agitation in AD, but the mean dose of citalopram used, 30 mg/d, was higher than the maximum dose of 20 mg/d recommended by the US Food and Drug Administration (FDA) in those aged 60 years or above. The optimal candidates for citalopram were those under the age of 85 with mild to moderate AD and mild to moderate nonpsychotic agitation, and it took up to 9 weeks for it to be fully effective. Due to the risk for dose-dependent QTc prolongation with citalopram, a baseline ECG must be done, and a second ECG is recommended if a clinical decision is made to exceed the recommended maximum daily dose. In the CitAD trial, 66% of patients in the citalopram arm received cholinesterase inhibitors concurrently while 44% received memantine, so these symptomatic treatments for AD should not be stopped solely for initiating a citalopram trial. 

The antiagitation effect of citalopram may well be a class effect of all selective serotonin reuptake inhibitors (SSRIs), given that there is also evidence favoring the use of sertraline and escitalopram. The S-CitAD trial, the first large, randomized controlled study of escitalopram for the treatment of agitation in dementia, is expected to announce its top-line results sometime this year. However, not all antidepressant classes appear to be equally efficacious or safe. In the large, 12-week randomized placebo-controlled trial SYMBAD, mirtazapine was not only ineffective in treating nonpsychotic agitation in AD but was also associated with a higher mortality rate that just missed statistical significance. Trazodone is also often used for treating agitation, but there is insufficient evidence regarding efficacy and a high probability of adverse effects, even at low doses.
 

5. Antipsychotics may be effective drugs for treating severe dementia-related agitation.

The CATIE-AD study found that the small beneficial effects of antipsychotics for treating agitation and psychosis in AD were offset by their adverse effects and high discontinuation rates, and the FDA-imposed boxed warnings in 2005 and 2008 cautioned against the use of both first- and second-generation antipsychotics to manage dementia-related psychosis owing to an increased risk for death. Subsequently, the quest for safer and more effective alternatives culminated in the FDA approval of brexpiprazole in 2023 for the treatment of agitation in AD, but the black box warning was left in place. Three randomized controlled trials found brexpiprazole to be relatively safe, with statistically significant improvement in agitation. It was especially efficacious for severe agitation, but there is controversy about whether such improvement is clinically meaningful and whether brexpiprazole is truly superior to other antipsychotics for treating dementia-related agitation. As in the previously mentioned citalopram studies, most patients in the brexpiprazole studies received the drug as an add-on to memantine and/or a cholinesterase inhibitor, and it was proven effective over a period of up to 12 weeks across the three trials. Regarding other antipsychotics, aripiprazole and risperidone have been shown to be effective in treating agitation in patients with mixed dementia, but risperidone has also been associated with the highest risk for strokes (about 80% probability). Unfortunately, an unintended consequence of the boxed warnings on antipsychotics has been an increase in off-label substitution of psychotropic drugs with unproven efficacy and a questionable safety profile, such as valproic acid preparations, that have been linked to an increased short-term risk for accelerated brain volume loss and rapid cognitive decline, as well as a higher risk for mortality.

Lisa M. Wise, assistant professor, Psychiatry, at Oregon Health & Science University, and staff psychiatrist, Department of Psychiatry, Portland VA Medical Center, Portland, Oregon, and Vimal M. Aga, adjunct assistant professor, Department of Neurology, Oregon Health & Science University, and geriatric psychiatrist, Layton Aging and Alzheimer’s Disease Center, Portland, Oregon, have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Agitation is a neuropsychiatric symptom in patients with Alzheimer’s disease (AD), the most common form of dementia. The prevalence of this symptom is about 40%-65%, with the higher end of the range applying to patients who have moderate to severe dementia. Agitation often begins early in the course of the disease and is persistent, which contributes to increased healthcare costs and significantly increases both caregiver burden and patient distress. The DICE approach is a collaborative process for managing behavioral symptoms in dementia, wherein the caregiver describes the behaviors, the provider investigates the etiology, the provider and caregiver create a treatment plan, and the provider evaluates the outcome of the interventions. We use this widely adopted approach as the framework for discussing recent advances in the management of agitation.

Here are five things to know about managing agitation in AD.
 

1. There is a new operational definition for agitation in dementia.

Agitation in dementia is a syndrome that encompasses specific behaviors across all dementia types. The 2023 operational definition of agitation in dementia by the International Psychogeriatric Association (IPA) includes three domains: excessive motor activity (including pacing, rocking, restlessness, and performing repetitious mannerisms), verbal aggression (including using profanity, screaming, and shouting), and physical aggression (including interpersonal aggression and mishandling or destruction of property). These behaviors must be persistent or recurrent for at least 2 weeks or represent a dramatic change from the person’s baseline behavior, must be associated with excessive distress or disability beyond what is caused by the cognitive impairment itself, and result in significant impairment in at least one of the three specified functional domains. Behavioral symptoms in dementia frequently co-occur, which affects treatment and prognosis. For instance, the risk for stroke associated with antipsychotic treatments appears to be higher in dementia-related psychosis without agitation than in agitation alone or in psychosis with agitation. Therefore, the use of a rating scale such as the Neuropsychiatric Inventory–Questionnaire (NPI-Q), which takes 5 minutes or less to administer, is recommended to identify and track behavioral symptoms and caregiver distress.

2. The etiology of agitation in dementia may be multifactorial.

It is important in every case to identify all underlying etiologies so that presumed causal and/or exacerbating factors are not inadvertently missed. Agitation may be a means of communicating distress owing to unmet needs or a patient-environment mismatch (function-focused approach) or may be a direct consequence of the dementia itself (behavioral-symptom approach). These approaches are not mutually exclusive. A patient can present with agitation as a direct consequence of dementia and inadequately treated pain concurrently. 

The new IPA definition specifies several exclusion criteria for agitation in dementia, including underlying medical conditions, delirium, substance use, and suboptimal care conditions. It is especially crucial to accurately identify delirium because dementia is an independent risk factor for delirium, which in turn may accelerate the progression of cognitive and functional decline. Even subsyndromal delirium in older adults leads to a higher 3-year mortality rate that is comparable to that seen in delirium. Older adults with acute-onset agitation in the context of dementia should undergo a comprehensive assessment for delirium, as agitation may be the only indication of a serious underlying medical condition
 

 

 

3. Nonpharmacologic interventions should be used whenever possible. 

The wider adoption of nonpharmacologic interventions in clinical practice has been greatly limited by the heterogeneity in study protocols, including in selection of participants, in the types of dementias included, and in defining and applying the intervention strategies. Nevertheless, there is general consensus that individualized behavioral strategies that build on the patients’ interests and preserved abilities are more effective, at least in the short term. Patients best suited for these interventions are those with less cognitive decline, better communication skills, less impairment in activities of daily living, and higher responsiveness. A systematic review of systematic reviews found music therapy to be the most effective intervention for reducing agitation and aggression in dementia, along with behavioral management techniques when supervised by healthcare professionals. On the other hand, physical restraints are best avoided, as their use in hospitalized patients has been associated with longer stays, higher costs, lower odds of being discharged to home, and in long-term care patients with longer stays, with increased risk for medical complications and functional decline. 

4. Antidepressants are not all equally safe or efficacious in managing agitation.

In a network meta-analysis that looked at the effects of several antidepressants on agitation in dementia, citalopram had just under 95% probability of efficacy and was the only antidepressant that was significantly more efficacious than placebo. In the multicenter CitAD trial, citalopram was efficacious and well tolerated for the treatment of agitation in AD, but the mean dose of citalopram used, 30 mg/d, was higher than the maximum dose of 20 mg/d recommended by the US Food and Drug Administration (FDA) in those aged 60 years or above. The optimal candidates for citalopram were those under the age of 85 with mild to moderate AD and mild to moderate nonpsychotic agitation, and it took up to 9 weeks for it to be fully effective. Due to the risk for dose-dependent QTc prolongation with citalopram, a baseline ECG must be done, and a second ECG is recommended if a clinical decision is made to exceed the recommended maximum daily dose. In the CitAD trial, 66% of patients in the citalopram arm received cholinesterase inhibitors concurrently while 44% received memantine, so these symptomatic treatments for AD should not be stopped solely for initiating a citalopram trial. 

The antiagitation effect of citalopram may well be a class effect of all selective serotonin reuptake inhibitors (SSRIs), given that there is also evidence favoring the use of sertraline and escitalopram. The S-CitAD trial, the first large, randomized controlled study of escitalopram for the treatment of agitation in dementia, is expected to announce its top-line results sometime this year. However, not all antidepressant classes appear to be equally efficacious or safe. In the large, 12-week randomized placebo-controlled trial SYMBAD, mirtazapine was not only ineffective in treating nonpsychotic agitation in AD but was also associated with a higher mortality rate that just missed statistical significance. Trazodone is also often used for treating agitation, but there is insufficient evidence regarding efficacy and a high probability of adverse effects, even at low doses.
 

5. Antipsychotics may be effective drugs for treating severe dementia-related agitation.

The CATIE-AD study found that the small beneficial effects of antipsychotics for treating agitation and psychosis in AD were offset by their adverse effects and high discontinuation rates, and the FDA-imposed boxed warnings in 2005 and 2008 cautioned against the use of both first- and second-generation antipsychotics to manage dementia-related psychosis owing to an increased risk for death. Subsequently, the quest for safer and more effective alternatives culminated in the FDA approval of brexpiprazole in 2023 for the treatment of agitation in AD, but the black box warning was left in place. Three randomized controlled trials found brexpiprazole to be relatively safe, with statistically significant improvement in agitation. It was especially efficacious for severe agitation, but there is controversy about whether such improvement is clinically meaningful and whether brexpiprazole is truly superior to other antipsychotics for treating dementia-related agitation. As in the previously mentioned citalopram studies, most patients in the brexpiprazole studies received the drug as an add-on to memantine and/or a cholinesterase inhibitor, and it was proven effective over a period of up to 12 weeks across the three trials. Regarding other antipsychotics, aripiprazole and risperidone have been shown to be effective in treating agitation in patients with mixed dementia, but risperidone has also been associated with the highest risk for strokes (about 80% probability). Unfortunately, an unintended consequence of the boxed warnings on antipsychotics has been an increase in off-label substitution of psychotropic drugs with unproven efficacy and a questionable safety profile, such as valproic acid preparations, that have been linked to an increased short-term risk for accelerated brain volume loss and rapid cognitive decline, as well as a higher risk for mortality.

Lisa M. Wise, assistant professor, Psychiatry, at Oregon Health & Science University, and staff psychiatrist, Department of Psychiatry, Portland VA Medical Center, Portland, Oregon, and Vimal M. Aga, adjunct assistant professor, Department of Neurology, Oregon Health & Science University, and geriatric psychiatrist, Layton Aging and Alzheimer’s Disease Center, Portland, Oregon, have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Agitation is a neuropsychiatric symptom in patients with Alzheimer’s disease (AD), the most common form of dementia. The prevalence of this symptom is about 40%-65%, with the higher end of the range applying to patients who have moderate to severe dementia. Agitation often begins early in the course of the disease and is persistent, which contributes to increased healthcare costs and significantly increases both caregiver burden and patient distress. The DICE approach is a collaborative process for managing behavioral symptoms in dementia, wherein the caregiver describes the behaviors, the provider investigates the etiology, the provider and caregiver create a treatment plan, and the provider evaluates the outcome of the interventions. We use this widely adopted approach as the framework for discussing recent advances in the management of agitation.

Here are five things to know about managing agitation in AD.
 

1. There is a new operational definition for agitation in dementia.

Agitation in dementia is a syndrome that encompasses specific behaviors across all dementia types. The 2023 operational definition of agitation in dementia by the International Psychogeriatric Association (IPA) includes three domains: excessive motor activity (including pacing, rocking, restlessness, and performing repetitious mannerisms), verbal aggression (including using profanity, screaming, and shouting), and physical aggression (including interpersonal aggression and mishandling or destruction of property). These behaviors must be persistent or recurrent for at least 2 weeks or represent a dramatic change from the person’s baseline behavior, must be associated with excessive distress or disability beyond what is caused by the cognitive impairment itself, and result in significant impairment in at least one of the three specified functional domains. Behavioral symptoms in dementia frequently co-occur, which affects treatment and prognosis. For instance, the risk for stroke associated with antipsychotic treatments appears to be higher in dementia-related psychosis without agitation than in agitation alone or in psychosis with agitation. Therefore, the use of a rating scale such as the Neuropsychiatric Inventory–Questionnaire (NPI-Q), which takes 5 minutes or less to administer, is recommended to identify and track behavioral symptoms and caregiver distress.

2. The etiology of agitation in dementia may be multifactorial.

It is important in every case to identify all underlying etiologies so that presumed causal and/or exacerbating factors are not inadvertently missed. Agitation may be a means of communicating distress owing to unmet needs or a patient-environment mismatch (function-focused approach) or may be a direct consequence of the dementia itself (behavioral-symptom approach). These approaches are not mutually exclusive. A patient can present with agitation as a direct consequence of dementia and inadequately treated pain concurrently. 

The new IPA definition specifies several exclusion criteria for agitation in dementia, including underlying medical conditions, delirium, substance use, and suboptimal care conditions. It is especially crucial to accurately identify delirium because dementia is an independent risk factor for delirium, which in turn may accelerate the progression of cognitive and functional decline. Even subsyndromal delirium in older adults leads to a higher 3-year mortality rate that is comparable to that seen in delirium. Older adults with acute-onset agitation in the context of dementia should undergo a comprehensive assessment for delirium, as agitation may be the only indication of a serious underlying medical condition
 

 

 

3. Nonpharmacologic interventions should be used whenever possible. 

The wider adoption of nonpharmacologic interventions in clinical practice has been greatly limited by the heterogeneity in study protocols, including in selection of participants, in the types of dementias included, and in defining and applying the intervention strategies. Nevertheless, there is general consensus that individualized behavioral strategies that build on the patients’ interests and preserved abilities are more effective, at least in the short term. Patients best suited for these interventions are those with less cognitive decline, better communication skills, less impairment in activities of daily living, and higher responsiveness. A systematic review of systematic reviews found music therapy to be the most effective intervention for reducing agitation and aggression in dementia, along with behavioral management techniques when supervised by healthcare professionals. On the other hand, physical restraints are best avoided, as their use in hospitalized patients has been associated with longer stays, higher costs, lower odds of being discharged to home, and in long-term care patients with longer stays, with increased risk for medical complications and functional decline. 

4. Antidepressants are not all equally safe or efficacious in managing agitation.

In a network meta-analysis that looked at the effects of several antidepressants on agitation in dementia, citalopram had just under 95% probability of efficacy and was the only antidepressant that was significantly more efficacious than placebo. In the multicenter CitAD trial, citalopram was efficacious and well tolerated for the treatment of agitation in AD, but the mean dose of citalopram used, 30 mg/d, was higher than the maximum dose of 20 mg/d recommended by the US Food and Drug Administration (FDA) in those aged 60 years or above. The optimal candidates for citalopram were those under the age of 85 with mild to moderate AD and mild to moderate nonpsychotic agitation, and it took up to 9 weeks for it to be fully effective. Due to the risk for dose-dependent QTc prolongation with citalopram, a baseline ECG must be done, and a second ECG is recommended if a clinical decision is made to exceed the recommended maximum daily dose. In the CitAD trial, 66% of patients in the citalopram arm received cholinesterase inhibitors concurrently while 44% received memantine, so these symptomatic treatments for AD should not be stopped solely for initiating a citalopram trial. 

The antiagitation effect of citalopram may well be a class effect of all selective serotonin reuptake inhibitors (SSRIs), given that there is also evidence favoring the use of sertraline and escitalopram. The S-CitAD trial, the first large, randomized controlled study of escitalopram for the treatment of agitation in dementia, is expected to announce its top-line results sometime this year. However, not all antidepressant classes appear to be equally efficacious or safe. In the large, 12-week randomized placebo-controlled trial SYMBAD, mirtazapine was not only ineffective in treating nonpsychotic agitation in AD but was also associated with a higher mortality rate that just missed statistical significance. Trazodone is also often used for treating agitation, but there is insufficient evidence regarding efficacy and a high probability of adverse effects, even at low doses.
 

5. Antipsychotics may be effective drugs for treating severe dementia-related agitation.

The CATIE-AD study found that the small beneficial effects of antipsychotics for treating agitation and psychosis in AD were offset by their adverse effects and high discontinuation rates, and the FDA-imposed boxed warnings in 2005 and 2008 cautioned against the use of both first- and second-generation antipsychotics to manage dementia-related psychosis owing to an increased risk for death. Subsequently, the quest for safer and more effective alternatives culminated in the FDA approval of brexpiprazole in 2023 for the treatment of agitation in AD, but the black box warning was left in place. Three randomized controlled trials found brexpiprazole to be relatively safe, with statistically significant improvement in agitation. It was especially efficacious for severe agitation, but there is controversy about whether such improvement is clinically meaningful and whether brexpiprazole is truly superior to other antipsychotics for treating dementia-related agitation. As in the previously mentioned citalopram studies, most patients in the brexpiprazole studies received the drug as an add-on to memantine and/or a cholinesterase inhibitor, and it was proven effective over a period of up to 12 weeks across the three trials. Regarding other antipsychotics, aripiprazole and risperidone have been shown to be effective in treating agitation in patients with mixed dementia, but risperidone has also been associated with the highest risk for strokes (about 80% probability). Unfortunately, an unintended consequence of the boxed warnings on antipsychotics has been an increase in off-label substitution of psychotropic drugs with unproven efficacy and a questionable safety profile, such as valproic acid preparations, that have been linked to an increased short-term risk for accelerated brain volume loss and rapid cognitive decline, as well as a higher risk for mortality.

Lisa M. Wise, assistant professor, Psychiatry, at Oregon Health & Science University, and staff psychiatrist, Department of Psychiatry, Portland VA Medical Center, Portland, Oregon, and Vimal M. Aga, adjunct assistant professor, Department of Neurology, Oregon Health & Science University, and geriatric psychiatrist, Layton Aging and Alzheimer’s Disease Center, Portland, Oregon, have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Gut Biomarkers Accurately Flag Autism Spectrum Disorder

Article Type
Changed
Thu, 07/11/2024 - 10:28

Bacterial and nonbacterial components of the gut microbiome and their function can accurately differentiate children with autism spectrum disorder (ASD) from neurotypical children, new research shows. 

The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.

Their study was published online in Nature Microbiology
 

Beyond Bacteria

The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD. 

However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear. 

To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China. 

After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD. 

Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children. 

A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls. 

“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote. 

They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets. 
 

‘Exciting’ Possibilities 

“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre. 

“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added. 

He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.

“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted. 

This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Bacterial and nonbacterial components of the gut microbiome and their function can accurately differentiate children with autism spectrum disorder (ASD) from neurotypical children, new research shows. 

The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.

Their study was published online in Nature Microbiology
 

Beyond Bacteria

The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD. 

However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear. 

To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China. 

After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD. 

Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children. 

A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls. 

“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote. 

They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets. 
 

‘Exciting’ Possibilities 

“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre. 

“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added. 

He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.

“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted. 

This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Bacterial and nonbacterial components of the gut microbiome and their function can accurately differentiate children with autism spectrum disorder (ASD) from neurotypical children, new research shows. 

The findings could form the basis for development of a noninvasive diagnostic test for ASD and also provide novel therapeutic targets, wrote investigators, led by Siew C. Ng, MBBS, PhD, with the Microbiota I-Center (MagIC), the Chinese University of Hong Kong.

Their study was published online in Nature Microbiology
 

Beyond Bacteria

The gut microbiome has been shown to play a central role in modulating the gut-brain axis, potentially influencing the development of ASD. 

However, most studies in ASD have focused on the bacterial component of the microbiome. Whether nonbacterial microorganisms (such as gut archaea, fungi, and viruses) or function of the gut microbiome are altered in ASD remains unclear. 

To investigate, the researchers performed metagenomic sequencing on fecal samples from 1627 boys and girls aged 1-13 years with and without ASD from five cohorts in China. 

After controlling for diet, medication, and comorbidity, they identified 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes, and 12 metabolic pathways that were altered in children with ASD. 

Machine-learning models using single-kingdom panels (archaea, bacteria, fungi, viruses) achieved area under the curve (AUC) values ranging from 0.68 to 0.87 in differentiating children with ASD from neurotypical control children. 

A model based on a panel of 31 multikingdom and functional markers achieved “high predictive value” for ASD, achieving an AUC of 0.91, with comparable performance among boys and girls. 

“The reproducible performance of the models across ages, sexes, and cohorts highlights their potential as promising diagnostic tools for ASD,” the investigators wrote. 

They also noted that the accuracy of the model was largely driven by the biosynthesis pathways of ubiquinol-7 and thiamine diphosphate, which were less abundant in children with ASD, and may serve as therapeutic targets. 
 

‘Exciting’ Possibilities 

“This study broadens our understanding by including fungi, archaea, and viruses, where previous studies have largely focused on the role of gut bacteria in autism,” Bhismadev Chakrabarti, PhD, research director of the Centre for Autism at the University of Reading, United Kingdom, said in a statement from the nonprofit UK Science Media Centre. 

“The results are broadly in line with previous studies that show reduced microbial diversity in autistic individuals. It also examines one of the largest samples seen in a study like this, which further strengthens the results,” Dr. Chakrabarti added. 

He said this research may provide “new ways of detecting autism, if microbial markers turn out to strengthen the ability of genetic and behavioral tests to detect autism. A future platform that can combine genetic, microbial, and simple behavioral assessments could help address the detection gap.

“One limitation of this data is that it cannot assess any causal role for the microbiota in the development of autism,” Dr. Chakrabarti noted. 

This study was supported by InnoHK, the Government of Hong Kong, Special Administrative Region of the People’s Republic of China, The D. H. Chen Foundation, and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Dr. Ng has served as an advisory board member for Pfizer, Ferring, Janssen, and AbbVie; has received honoraria as a speaker for Ferring, Tillotts, Menarini, Janssen, AbbVie, and Takeda; is a scientific cofounder and shareholder of GenieBiome; receives patent royalties through her affiliated institutions; and is named as a co-inventor of patent applications that cover the therapeutic and diagnostic use of microbiome. Dr. Chakrabarti has no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NATURE MICROBIOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article