Male Patient With a History of Monoclonal B Cell Lymphocytosis Presenting with Breast Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Case Report and Literature Review

Article Type
Changed
Wed, 09/18/2024 - 13:55

Background

Monoclonal B cell lymphocytosis (MBL) is defined as presence of clonal b cell population that is fewer than 5 × 10(9)/L B-cells in peripheral blood and no other signs of a lymphoproliferative disorder. Patients with MBL are usually monitored with periodic history, physical exam and blood counts. Here we presented a case of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in breast in a patient with a history of MBL.

Case Presentation

68-year-old male with history of MBL underwent mammogram for breast mass. It showed suspicious 4.4 x 1.6 cm solid and cystic lesion containing a 1.7 x 0.9 x 1.8 cm solid hypervascular mass. Patient underwent left breast mass excision. Histologic sections focus of ADH involving papilloma with uninvolved margins. Lymphoid infiltrates noted had CLL/SLL immunophenotype and that it consists mostly of small B cells positive for CD5, CD20, CD23, CD43, Bcl-2, LEF1. CT CAP and PET/CT were negative for lymphadenopathy. Bone marrow biopsy showed marrow involvement by mature B-cell lymphoproliferative process, immunophenotypically consistent with CLL/SLL. As intra-ductal papilloma completely excised and hemogram was normal tumor board recommended surveillance only for CLL/SLL.

Discussion

MBL can progress to CLL, but it can rarely be presented as an extra-nodal mass in solid organs. We described a case of MBL that progressed to CLL/ SLL in breast mass in a male patient. This is the first reported case in literature where MBL progressed to CLL/ SLL of breast without lymphadenopathy. Upon literature review 8 case reports were found where CLL/SLL were described in breast tissue. 7 of them were in females and 1 one was in male. Two patients had CLL before breast mass but none of them had a history of MBL. 3 described cases in females had CLL/SLL infiltration of breast along with invasive ductal carcinoma. So, a patient with MBL can progress to involve solid organs despite no absolute lymphocytosis and should be considered in differentials of a new mass. Although more common in females, but it can occur in males as well. It’s important to consider the possibility of both CLL/SLL and breast cancer existing simultaneously.

Issue
Federal Practitioner - 41(9)s
Publications
Topics
Page Number
S22,S33
Sections

Background

Monoclonal B cell lymphocytosis (MBL) is defined as presence of clonal b cell population that is fewer than 5 × 10(9)/L B-cells in peripheral blood and no other signs of a lymphoproliferative disorder. Patients with MBL are usually monitored with periodic history, physical exam and blood counts. Here we presented a case of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in breast in a patient with a history of MBL.

Case Presentation

68-year-old male with history of MBL underwent mammogram for breast mass. It showed suspicious 4.4 x 1.6 cm solid and cystic lesion containing a 1.7 x 0.9 x 1.8 cm solid hypervascular mass. Patient underwent left breast mass excision. Histologic sections focus of ADH involving papilloma with uninvolved margins. Lymphoid infiltrates noted had CLL/SLL immunophenotype and that it consists mostly of small B cells positive for CD5, CD20, CD23, CD43, Bcl-2, LEF1. CT CAP and PET/CT were negative for lymphadenopathy. Bone marrow biopsy showed marrow involvement by mature B-cell lymphoproliferative process, immunophenotypically consistent with CLL/SLL. As intra-ductal papilloma completely excised and hemogram was normal tumor board recommended surveillance only for CLL/SLL.

Discussion

MBL can progress to CLL, but it can rarely be presented as an extra-nodal mass in solid organs. We described a case of MBL that progressed to CLL/ SLL in breast mass in a male patient. This is the first reported case in literature where MBL progressed to CLL/ SLL of breast without lymphadenopathy. Upon literature review 8 case reports were found where CLL/SLL were described in breast tissue. 7 of them were in females and 1 one was in male. Two patients had CLL before breast mass but none of them had a history of MBL. 3 described cases in females had CLL/SLL infiltration of breast along with invasive ductal carcinoma. So, a patient with MBL can progress to involve solid organs despite no absolute lymphocytosis and should be considered in differentials of a new mass. Although more common in females, but it can occur in males as well. It’s important to consider the possibility of both CLL/SLL and breast cancer existing simultaneously.

Background

Monoclonal B cell lymphocytosis (MBL) is defined as presence of clonal b cell population that is fewer than 5 × 10(9)/L B-cells in peripheral blood and no other signs of a lymphoproliferative disorder. Patients with MBL are usually monitored with periodic history, physical exam and blood counts. Here we presented a case of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in breast in a patient with a history of MBL.

Case Presentation

68-year-old male with history of MBL underwent mammogram for breast mass. It showed suspicious 4.4 x 1.6 cm solid and cystic lesion containing a 1.7 x 0.9 x 1.8 cm solid hypervascular mass. Patient underwent left breast mass excision. Histologic sections focus of ADH involving papilloma with uninvolved margins. Lymphoid infiltrates noted had CLL/SLL immunophenotype and that it consists mostly of small B cells positive for CD5, CD20, CD23, CD43, Bcl-2, LEF1. CT CAP and PET/CT were negative for lymphadenopathy. Bone marrow biopsy showed marrow involvement by mature B-cell lymphoproliferative process, immunophenotypically consistent with CLL/SLL. As intra-ductal papilloma completely excised and hemogram was normal tumor board recommended surveillance only for CLL/SLL.

Discussion

MBL can progress to CLL, but it can rarely be presented as an extra-nodal mass in solid organs. We described a case of MBL that progressed to CLL/ SLL in breast mass in a male patient. This is the first reported case in literature where MBL progressed to CLL/ SLL of breast without lymphadenopathy. Upon literature review 8 case reports were found where CLL/SLL were described in breast tissue. 7 of them were in females and 1 one was in male. Two patients had CLL before breast mass but none of them had a history of MBL. 3 described cases in females had CLL/SLL infiltration of breast along with invasive ductal carcinoma. So, a patient with MBL can progress to involve solid organs despite no absolute lymphocytosis and should be considered in differentials of a new mass. Although more common in females, but it can occur in males as well. It’s important to consider the possibility of both CLL/SLL and breast cancer existing simultaneously.

Issue
Federal Practitioner - 41(9)s
Issue
Federal Practitioner - 41(9)s
Page Number
S22,S33
Page Number
S22,S33
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Eyebrow Default
Clinical Practice
Gate On Date
Tue, 09/10/2024 - 11:30
Un-Gate On Date
Tue, 09/10/2024 - 11:30
Use ProPublica
CFC Schedule Remove Status
Tue, 09/10/2024 - 11:30
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Do Clonal Hematopoiesis and Mosaic Chromosomal Alterations Increase Solid Tumor Risk?

Article Type
Changed
Wed, 09/25/2024 - 06:41

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) are associated with an increased risk for breast cancer, and CHIP is associated with increased mortality in patients with colon cancer, according to the authors of new research.

These findings, drawn from almost 11,000 patients in the Women’s Health Initiative (WHI) study, add further evidence that CHIP and mCA drive solid tumor risk, alongside known associations with hematologic malignancies, reported lead author Pinkal Desai, MD, associate professor of medicine and clinical director of molecular aging at Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, and colleagues.
 

How This Study Differs From Others of Breast Cancer Risk Factors

“The independent effect of CHIP and mCA on risk and mortality from solid tumors has not been elucidated due to lack of detailed data on mortality outcomes and risk factors,” the investigators wrote in Cancer, although some previous studies have suggested a link.

In particular, the investigators highlighted a 2022 UK Biobank study, which reported an association between CHIP and lung cancer and a borderline association with breast cancer that did not quite reach statistical significance.

But the UK Biobank study was confined to a UK population, Dr. Desai noted in an interview, and the data were less detailed than those in the present investigation.

“In terms of risk, the part that was lacking in previous studies was a comprehensive assessment of risk factors that increase risk for all these cancers,” Dr. Desai said. “For example, for breast cancer, we had very detailed data on [participants’] Gail risk score, which is known to impact breast cancer risk. We also had mammogram data and colonoscopy data.”

In an accompanying editorial, Koichi Takahashi, MD, PhD , and Nehali Shah, BS, of The University of Texas MD Anderson Cancer Center, Houston, Texas, pointed out the same UK Biobank findings, then noted that CHIP has also been linked with worse overall survival in unselected cancer patients. Still, they wrote, “the impact of CH on cancer risk and mortality remains controversial due to conflicting data and context‐dependent effects,” necessitating studies like this one by Dr. Desai and colleagues.
 

How Was the Relationship Between CHIP, MCA, and Solid Tumor Risk Assessed?

To explore possible associations between CHIP, mCA, and solid tumors, the investigators analyzed whole genome sequencing data from 10,866 women in the WHI, a multi-study program that began in 1992 and involved 161,808 women in both observational and clinical trial cohorts.

In 2002, the first big data release from the WHI suggested that hormone replacement therapy (HRT) increased breast cancer risk, leading to widespread reduction in HRT use.

More recent reports continue to shape our understanding of these risks, suggesting differences across cancer types. For breast cancer, the WHI data suggested that HRT-associated risk was largely driven by formulations involving progesterone and estrogen, whereas estrogen-only formulations, now more common, are generally considered to present an acceptable risk profile for suitable patients.

The new study accounted for this potential HRT-associated risk, including by adjusting for patients who received HRT, type of HRT received, and duration of HRT received. According to Desai, this approach is commonly used when analyzing data from the WHI, nullifying concerns about the potentially deleterious effects of the hormones used in the study.

“Our question was not ‘does HRT cause cancer?’ ” Dr. Desai said in an interview. “But HRT can be linked to breast cancer risk and has a potential to be a confounder, and hence the above methodology.

“So I can say that the confounding/effect modification that HRT would have contributed to in the relationship between exposure (CH and mCA) and outcome (cancer) is well adjusted for as described above. This is standard in WHI analyses,” she continued.

“Every Women’s Health Initiative analysis that comes out — not just for our study — uses a standard method ... where you account for hormonal therapy,” Dr. Desai added, again noting that many other potential risk factors were considered, enabling a “detailed, robust” analysis.

Dr. Takahashi and Ms. Shah agreed. “A notable strength of this study is its adjustment for many confounding factors,” they wrote. “The cohort’s well‐annotated data on other known cancer risk factors allowed for a robust assessment of CH’s independent risk.”
 

 

 

How Do Findings Compare With Those of the UK Biobank Study?

CHIP was associated with a 30% increased risk for breast cancer (hazard ratio [HR], 1.30; 95% CI, 1.03-1.64; P = .02), strengthening the borderline association reported by the UK Biobank study.

In contrast with the UK Biobank study, CHIP was not associated with lung cancer risk, although this may have been caused by fewer cases of lung cancer and a lack of male patients, Dr. Desai suggested.

“The discrepancy between the studies lies in the risk of lung cancer, although the point estimate in the current study suggested a positive association,” wrote Dr. Takahashi and Ms. Shah.

As in the UK Biobank study, CHIP was not associated with increased risk of developing colorectal cancer.

Mortality analysis, however, which was not conducted in the UK Biobank study, offered a new insight: Patients with existing colorectal cancer and CHIP had a significantly higher mortality risk than those without CHIP. Before stage adjustment, risk for mortality among those with colorectal cancer and CHIP was fourfold higher than those without CHIP (HR, 3.99; 95% CI, 2.41-6.62; P < .001). After stage adjustment, CHIP was still associated with a twofold higher mortality risk (HR, 2.50; 95% CI, 1.32-4.72; P = .004).

The investigators’ first mCA analyses, which employed a cell fraction cutoff greater than 3%, were unfruitful. But raising the cell fraction threshold to 5% in an exploratory analysis showed that autosomal mCA was associated with a 39% increased risk for breast cancer (HR, 1.39; 95% CI, 1.06-1.83; P = .01). No such associations were found between mCA and colorectal or lung cancer, regardless of cell fraction threshold.

The original 3% cell fraction threshold was selected on the basis of previous studies reporting a link between mCA and hematologic malignancies at this cutoff, Dr. Desai said.

She and her colleagues said a higher 5% cutoff might be needed, as they suspected that the link between mCA and solid tumors may not be causal, requiring a higher mutation rate.
 

Why Do Results Differ Between These Types of Studies?

Dr. Takahashi and Ms. Shah suggested that one possible limitation of the new study, and an obstacle to comparing results with the UK Biobank study and others like it, goes beyond population heterogeneity; incongruent findings could also be explained by differences in whole genome sequencing (WGS) technique.

“Although WGS allows sensitive detection of mCA through broad genomic coverage, it is less effective at detecting CHIP with low variant allele frequency (VAF) due to its relatively shallow depth (30x),” they wrote. “Consequently, the prevalence of mCA (18.8%) was much higher than that of CHIP (8.3%) in this cohort, contrasting with other studies using deeper sequencing.” As a result, the present study may have underestimated CHIP prevalence because of shallow sequencing depth.

“This inconsistency is a common challenge in CH population studies due to the lack of standardized methodologies and the frequent reliance on preexisting data not originally intended for CH detection,” Dr. Takahashi and Ms. Shah said.

Even so, despite the “heavily context-dependent” nature of these reported risks, the body of evidence to date now offers a convincing biological rationale linking CH with cancer development and outcomes, they added.
 

 

 

How Do the CHIP- and mCA-associated Risks Differ Between Solid Tumors and Blood Cancers?

“[These solid tumor risks are] not causal in the way CHIP mutations are causal for blood cancers,” Dr. Desai said. “Here we are talking about solid tumor risk, and it’s kind of scattered. It’s not just breast cancer ... there’s also increased colon cancer mortality. So I feel these mutations are doing something different ... they are sort of an added factor.”

Specific mechanisms remain unclear, Dr. Desai said, although she speculated about possible impacts on the inflammatory state or alterations to the tumor microenvironment.

“These are blood cells, right?” Dr. Desai asked. “They’re everywhere, and they’re changing something inherently in these tumors.”
 

Future research and therapeutic development

Siddhartha Jaiswal, MD, PhD, assistant professor in the Department of Pathology at Stanford University in California, whose lab focuses on clonal hematopoiesis, said the causality question is central to future research.

“The key question is, are these mutations acting because they alter the function of blood cells in some way to promote cancer risk, or is it reflective of some sort of shared etiology that’s not causal?” Dr. Jaiswal said in an interview.

Available data support both possibilities.

On one side, “reasonable evidence” supports the noncausal view, Dr. Jaiswal noted, because telomere length is one of the most common genetic risk factors for clonal hematopoiesis and also for solid tumors, suggesting a shared genetic factor. On the other hand, CHIP and mCA could be directly protumorigenic via conferred disturbances of immune cell function.

When asked if both causal and noncausal factors could be at play, Dr. Jaiswal said, “yeah, absolutely.”

The presence of a causal association could be promising from a therapeutic standpoint.

“If it turns out that this association is driven by a direct causal effect of the mutations, perhaps related to immune cell function or dysfunction, then targeting that dysfunction could be a therapeutic path to improve outcomes in people, and there’s a lot of interest in this,” Dr. Jaiswal said. He went on to explain how a trial exploring this approach via interleukin-8 inhibition in lung cancer fell short.

Yet earlier intervention may still hold promise, according to experts.

“[This study] provokes the hypothesis that CH‐targeted interventions could potentially reduce cancer risk in the future,” Dr. Takahashi and Ms. Shah said in their editorial.

The WHI program is funded by the National Heart, Lung, and Blood Institute; National Institutes of Health; and the Department of Health & Human Services. The investigators disclosed relationships with Eli Lilly, AbbVie, Celgene, and others. Dr. Jaiswal reported stock equity in a company that has an interest in clonal hematopoiesis.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CANCER

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Prediction, Management of Sjögren-Related Lymphomas Gain Ground With New Studies

Article Type
Changed
Thu, 09/05/2024 - 15:09

Hematologists and rheumatologists may be able to adopt a more aggressive approach for managing low-grade marginal lymphoma in Sjögren disease, particularly mucosa-associated lymphoid tissue (MALT) lymphoma, based on recent findings that confirmed a key early biomarker and found that a systemic treatment strategy reduced Sjögren disease activity and the risk for lymphoma relapse.

Two European studies published in The Lancet Rheumatology — one a case-control study reporting that rheumatoid factor (RF) was an early and strong predictor of Sjögren disease–related MALT lymphoma and the other a retrospective study that found a combination of chemotherapy and anti-CD20 therapy with rituximab as a first-line treatment for lymphoma was more effective than localized treatment or watch-and-wait approach in minimizing autoimmune activity and treating the lymphoma — potentially shed new light on strategies to manage Sjögren disease–related lymphoma.

A commentary accompanying the studies noted that 5%-10% of patients with Sjögren disease will develop non-Hodgkin B-cell lymphoma, with marginal lymphoma the most common type of low-grade lymphoma. The commentary, led by Suzanne Arends, MD, a rheumatologist at the University of Groningen in Groningen, the Netherlands, found the studies “clinically relevant” but stated that the lack of consistent definitions between the two studies along with their retrospective nature prevent any “definitive conclusions.”
 

High Lymphoma Risk in Sjögren Disease

“It is the autoimmune disease in which the risk of lymphoma is the highest, a 10- to 20-fold increase of the risk of lymphoma in this disease,” Xavier Mariette, MD, PhD, co-senior author of the retrospective treatment study, said of Sjögren disease.

These lymphomas are predominantly the marginal zone type, specifically MALT occurring in the salivary glands, the same site of the autoimmune disease, said Dr. Mariette, who is the head of Rheumatology and professor at Université Paris-Saclay and Hôpital Bicêtre. Autoimmune B cells become lymphomatous. “So there is a continuity between autoimmunity and lymphoma genesis,” Dr. Mariette told this news organization. Typically, hematologists do not treat the lymphoma if it doesn’t migrate beyond the salivary glands, he said.

Dr. Xavier Mariette


Dr. Mariette said his group’s findings make the case for a more aggressive treatment.

“When patients got the systemic treatment, there was a decreased risk of flare of the autoimmune disease of Sjögren’s, but there was no effect on the lymphoma formation,” Dr. Mariette said. “And when these patients have combined therapy, immunotherapy plus chemotherapy, compared to single immunotherapy, they did have improvement of the lymphoma progression-free survival.”

Their multicenter study enrolled 106 patients with Sjögren disease who developed lymphoma, 64% (n = 68) of whom had MALT, 13% (n = 14) of whom had other marginal zone subtypes, and the same percentage with diffuse large B-cell lymphoma. With a median follow-up of 7 years, 32 patients with marginal zone subtypes who had combination chemotherapy and anti-CD20 therapy had a 64% greater chance of lymphoma progression-free survival than 18 of their counterparts who received anti-CD20 monotherapy. Overall, outcomes for Sjögren disease systemic activity or survival were no different between the combination therapy and monotherapy arms.

Patients who had a systemic approach had a 57% reduced risk for new Sjögren disease activity compared with those who had first-line surgery or radiation (16%, n = 13) or underwent watch and wait (23%, n = 19).

The study strengthens the argument for a systemic treatment approach over localized therapy “because patients with Sjögren’s have a higher degree of development of MALT lymphoma of the salivary glands,” Juan Pablo Alderuccio, MD, a hematologist and lymphoma clinical site disease group leader at the Sylvester Comprehensive Cancer Center at the University of Miami Health Systems, Miami, Florida, told this news organization.

Dr. Juan Pablo Alderuccio


“We already knew that the combination of chemotherapy with rituximab usually achieves a better outcome,” Dr. Alderuccio added, citing a 2017 clinical trial that found combined chemotherapy with chlorambucil plus rituximab improved progression-free survival compared with either therapy alone. The latest retrospective study from France reinforces that, he said.

“The study also shows it’s very important to consider treatment-related specificities — to select the most appropriate treatment for these patients,” Dr. Alderuccio added.
 

 

 

RF Biomarker

The case-control study by researchers in Italy and Greece included 80 patients with Sjögren-related MALT lymphoma matched to controls with Sjögren disease who did not have lymphoma.

“We showed that rheumatoid factor positivity at the time of Sjögren’s disease diagnosis serves as the most reliable and temporally distant independent predictor of MALT lymphoma development,” lead author Andreas Goules, MD, a pathophysiologist at the National and Kapodistrian University of Athens, Athens, Greece, told this news organization.

Dr. Andreas Goules


He added that the study found that specific biomarkers in addition to RF positivity were signs of a high risk for MALT lymphoma and a more advanced stage of Sjögren disease–related lymphomagenesis. They included high systemic disease activity, measured as a European Alliance of Associations for Rheumatology Sjögren’s Syndrome Disease Activity Index ≥ 5, and specific B-cell manifestations, such as cryoglobulinemia, salivary gland enlargement, hypocomplementemia, and palpable purpura.

“Ideally, all patients should be evaluated at the time of diagnosis for the presence of RF and undergo a minor salivary gland biopsy to exclude an underlying ongoing lymphoproliferative process,” Dr. Goules said.

RF-positive patients with Sjögren disease require a closer follow-up to identify an advanced stage of lymphoma development, he added.

“It is well known that Sjögren’s disease is characterized by an increased mortality rate, compared to the general population, mainly due to the related lymphomas,” Dr. Goules added. “Thus, the early diagnosis of MALT lymphoma, which is associated with a better prognosis, is expected to improve the overall clinical outcome of Sjögren’s disease patients.”

Rheumatologists and hematologists should employ a similar strategy for Sjögren disease–related large B-cell lymphomas, he said.

“The pathogenetic mechanisms of these two lymphoma types are vastly different, so it wouldn’t be surprising if an entirely different risk factor emerges,” Dr. Goules said. “However, given the rarity of diffuse large B-cell lymphomas, much larger multinational cohorts will be necessary to obtain clinically and pathogenetically meaningful results.”

Alan Baer, MD, a rheumatologist and founder of the Sjögren’s Disease Clinic at Johns Hopkins University in Baltimore, noted Dr. Goules and colleagues are not the first to identify RF, along with a host of other clinical and laboratory findings, as a risk factor for lymphoma in patients with Sjögren disease. “The current study validates rheumatoid factor as an independent risk factor present at a time that is temporally distant from the time of lymphoma diagnosis,” he said.

Dr. Alan Baer


However, he cautioned that RF alone isn’t highly predictive of Sjögren-related lymphoma. Up to 60% of patients with Sjögren disease are positive for RF at the time of the diagnosis, Dr. Baer said.

“Thus, the finding of rheumatoid factor alone does not necessarily mandate closer surveillance of this group of patients, with the potential for more frequent clinical exams, imaging, and laboratory testing,” he said. “Such an approach has the risk of subjecting patients to unnecessary testing, including invasive procedures.” 

More detailed findings, such as if a certain RF level was more predictive of lymphoma or whether other features in combination with RF heightened the risk, would be helpful, he said.
 

 

 

What Future Studies Should Look At

The studies call for further research into biomarkers for Sjögren disease–related lymphoma and treatment of the disease, both Dr. Mariette and Dr. Goules said.

Dr. Goules said a multicenter prospective study is needed to measure RF positivity and RF titers over time and determine whether higher levels mean an increased risk for lymphoma development or a shorter time interval until lymphoma onset. “Such a study requires a large number of RF-positive Sjögren’s disease patients who would be followed up for a long period of time,” Dr. Goules said.

To further evaluate treatment approaches for Sjögren disease–related lymphoma, Dr. Mariette said, a prospective study should compare the watch-and-wait approach with combination chemotherapy and anti-CD20 therapy. “It would be difficult to run because the primary endpoint would be lymphoma progression–free survival, and the secondary would be Sjögren’s relapse and mortality, but it would take a lot of time,” he said.

He added, “It’s a reason why this retrospective study is important. Maybe if we had another retrospective study reaching the same conclusion, I think it would be very, very strong evidence.”

Funding for the case-control study came from the European Commission–Horizon 2020 program. The retrospective treatment study had no outside funding. Dr. Mariette disclosed financial relationships with AstraZeneca, Bristol-Myers Squibb, Galapagos, GlaxoSmithKline, Novartis, and Pfizer. Dr. Alderuccio, Dr. Goules, and Dr. Baer had no relevant relationships to disclose.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Hematologists and rheumatologists may be able to adopt a more aggressive approach for managing low-grade marginal lymphoma in Sjögren disease, particularly mucosa-associated lymphoid tissue (MALT) lymphoma, based on recent findings that confirmed a key early biomarker and found that a systemic treatment strategy reduced Sjögren disease activity and the risk for lymphoma relapse.

Two European studies published in The Lancet Rheumatology — one a case-control study reporting that rheumatoid factor (RF) was an early and strong predictor of Sjögren disease–related MALT lymphoma and the other a retrospective study that found a combination of chemotherapy and anti-CD20 therapy with rituximab as a first-line treatment for lymphoma was more effective than localized treatment or watch-and-wait approach in minimizing autoimmune activity and treating the lymphoma — potentially shed new light on strategies to manage Sjögren disease–related lymphoma.

A commentary accompanying the studies noted that 5%-10% of patients with Sjögren disease will develop non-Hodgkin B-cell lymphoma, with marginal lymphoma the most common type of low-grade lymphoma. The commentary, led by Suzanne Arends, MD, a rheumatologist at the University of Groningen in Groningen, the Netherlands, found the studies “clinically relevant” but stated that the lack of consistent definitions between the two studies along with their retrospective nature prevent any “definitive conclusions.”
 

High Lymphoma Risk in Sjögren Disease

“It is the autoimmune disease in which the risk of lymphoma is the highest, a 10- to 20-fold increase of the risk of lymphoma in this disease,” Xavier Mariette, MD, PhD, co-senior author of the retrospective treatment study, said of Sjögren disease.

These lymphomas are predominantly the marginal zone type, specifically MALT occurring in the salivary glands, the same site of the autoimmune disease, said Dr. Mariette, who is the head of Rheumatology and professor at Université Paris-Saclay and Hôpital Bicêtre. Autoimmune B cells become lymphomatous. “So there is a continuity between autoimmunity and lymphoma genesis,” Dr. Mariette told this news organization. Typically, hematologists do not treat the lymphoma if it doesn’t migrate beyond the salivary glands, he said.

Dr. Xavier Mariette


Dr. Mariette said his group’s findings make the case for a more aggressive treatment.

“When patients got the systemic treatment, there was a decreased risk of flare of the autoimmune disease of Sjögren’s, but there was no effect on the lymphoma formation,” Dr. Mariette said. “And when these patients have combined therapy, immunotherapy plus chemotherapy, compared to single immunotherapy, they did have improvement of the lymphoma progression-free survival.”

Their multicenter study enrolled 106 patients with Sjögren disease who developed lymphoma, 64% (n = 68) of whom had MALT, 13% (n = 14) of whom had other marginal zone subtypes, and the same percentage with diffuse large B-cell lymphoma. With a median follow-up of 7 years, 32 patients with marginal zone subtypes who had combination chemotherapy and anti-CD20 therapy had a 64% greater chance of lymphoma progression-free survival than 18 of their counterparts who received anti-CD20 monotherapy. Overall, outcomes for Sjögren disease systemic activity or survival were no different between the combination therapy and monotherapy arms.

Patients who had a systemic approach had a 57% reduced risk for new Sjögren disease activity compared with those who had first-line surgery or radiation (16%, n = 13) or underwent watch and wait (23%, n = 19).

The study strengthens the argument for a systemic treatment approach over localized therapy “because patients with Sjögren’s have a higher degree of development of MALT lymphoma of the salivary glands,” Juan Pablo Alderuccio, MD, a hematologist and lymphoma clinical site disease group leader at the Sylvester Comprehensive Cancer Center at the University of Miami Health Systems, Miami, Florida, told this news organization.

Dr. Juan Pablo Alderuccio


“We already knew that the combination of chemotherapy with rituximab usually achieves a better outcome,” Dr. Alderuccio added, citing a 2017 clinical trial that found combined chemotherapy with chlorambucil plus rituximab improved progression-free survival compared with either therapy alone. The latest retrospective study from France reinforces that, he said.

“The study also shows it’s very important to consider treatment-related specificities — to select the most appropriate treatment for these patients,” Dr. Alderuccio added.
 

 

 

RF Biomarker

The case-control study by researchers in Italy and Greece included 80 patients with Sjögren-related MALT lymphoma matched to controls with Sjögren disease who did not have lymphoma.

“We showed that rheumatoid factor positivity at the time of Sjögren’s disease diagnosis serves as the most reliable and temporally distant independent predictor of MALT lymphoma development,” lead author Andreas Goules, MD, a pathophysiologist at the National and Kapodistrian University of Athens, Athens, Greece, told this news organization.

Dr. Andreas Goules


He added that the study found that specific biomarkers in addition to RF positivity were signs of a high risk for MALT lymphoma and a more advanced stage of Sjögren disease–related lymphomagenesis. They included high systemic disease activity, measured as a European Alliance of Associations for Rheumatology Sjögren’s Syndrome Disease Activity Index ≥ 5, and specific B-cell manifestations, such as cryoglobulinemia, salivary gland enlargement, hypocomplementemia, and palpable purpura.

“Ideally, all patients should be evaluated at the time of diagnosis for the presence of RF and undergo a minor salivary gland biopsy to exclude an underlying ongoing lymphoproliferative process,” Dr. Goules said.

RF-positive patients with Sjögren disease require a closer follow-up to identify an advanced stage of lymphoma development, he added.

“It is well known that Sjögren’s disease is characterized by an increased mortality rate, compared to the general population, mainly due to the related lymphomas,” Dr. Goules added. “Thus, the early diagnosis of MALT lymphoma, which is associated with a better prognosis, is expected to improve the overall clinical outcome of Sjögren’s disease patients.”

Rheumatologists and hematologists should employ a similar strategy for Sjögren disease–related large B-cell lymphomas, he said.

“The pathogenetic mechanisms of these two lymphoma types are vastly different, so it wouldn’t be surprising if an entirely different risk factor emerges,” Dr. Goules said. “However, given the rarity of diffuse large B-cell lymphomas, much larger multinational cohorts will be necessary to obtain clinically and pathogenetically meaningful results.”

Alan Baer, MD, a rheumatologist and founder of the Sjögren’s Disease Clinic at Johns Hopkins University in Baltimore, noted Dr. Goules and colleagues are not the first to identify RF, along with a host of other clinical and laboratory findings, as a risk factor for lymphoma in patients with Sjögren disease. “The current study validates rheumatoid factor as an independent risk factor present at a time that is temporally distant from the time of lymphoma diagnosis,” he said.

Dr. Alan Baer


However, he cautioned that RF alone isn’t highly predictive of Sjögren-related lymphoma. Up to 60% of patients with Sjögren disease are positive for RF at the time of the diagnosis, Dr. Baer said.

“Thus, the finding of rheumatoid factor alone does not necessarily mandate closer surveillance of this group of patients, with the potential for more frequent clinical exams, imaging, and laboratory testing,” he said. “Such an approach has the risk of subjecting patients to unnecessary testing, including invasive procedures.” 

More detailed findings, such as if a certain RF level was more predictive of lymphoma or whether other features in combination with RF heightened the risk, would be helpful, he said.
 

 

 

What Future Studies Should Look At

The studies call for further research into biomarkers for Sjögren disease–related lymphoma and treatment of the disease, both Dr. Mariette and Dr. Goules said.

Dr. Goules said a multicenter prospective study is needed to measure RF positivity and RF titers over time and determine whether higher levels mean an increased risk for lymphoma development or a shorter time interval until lymphoma onset. “Such a study requires a large number of RF-positive Sjögren’s disease patients who would be followed up for a long period of time,” Dr. Goules said.

To further evaluate treatment approaches for Sjögren disease–related lymphoma, Dr. Mariette said, a prospective study should compare the watch-and-wait approach with combination chemotherapy and anti-CD20 therapy. “It would be difficult to run because the primary endpoint would be lymphoma progression–free survival, and the secondary would be Sjögren’s relapse and mortality, but it would take a lot of time,” he said.

He added, “It’s a reason why this retrospective study is important. Maybe if we had another retrospective study reaching the same conclusion, I think it would be very, very strong evidence.”

Funding for the case-control study came from the European Commission–Horizon 2020 program. The retrospective treatment study had no outside funding. Dr. Mariette disclosed financial relationships with AstraZeneca, Bristol-Myers Squibb, Galapagos, GlaxoSmithKline, Novartis, and Pfizer. Dr. Alderuccio, Dr. Goules, and Dr. Baer had no relevant relationships to disclose.

A version of this article first appeared on Medscape.com.

Hematologists and rheumatologists may be able to adopt a more aggressive approach for managing low-grade marginal lymphoma in Sjögren disease, particularly mucosa-associated lymphoid tissue (MALT) lymphoma, based on recent findings that confirmed a key early biomarker and found that a systemic treatment strategy reduced Sjögren disease activity and the risk for lymphoma relapse.

Two European studies published in The Lancet Rheumatology — one a case-control study reporting that rheumatoid factor (RF) was an early and strong predictor of Sjögren disease–related MALT lymphoma and the other a retrospective study that found a combination of chemotherapy and anti-CD20 therapy with rituximab as a first-line treatment for lymphoma was more effective than localized treatment or watch-and-wait approach in minimizing autoimmune activity and treating the lymphoma — potentially shed new light on strategies to manage Sjögren disease–related lymphoma.

A commentary accompanying the studies noted that 5%-10% of patients with Sjögren disease will develop non-Hodgkin B-cell lymphoma, with marginal lymphoma the most common type of low-grade lymphoma. The commentary, led by Suzanne Arends, MD, a rheumatologist at the University of Groningen in Groningen, the Netherlands, found the studies “clinically relevant” but stated that the lack of consistent definitions between the two studies along with their retrospective nature prevent any “definitive conclusions.”
 

High Lymphoma Risk in Sjögren Disease

“It is the autoimmune disease in which the risk of lymphoma is the highest, a 10- to 20-fold increase of the risk of lymphoma in this disease,” Xavier Mariette, MD, PhD, co-senior author of the retrospective treatment study, said of Sjögren disease.

These lymphomas are predominantly the marginal zone type, specifically MALT occurring in the salivary glands, the same site of the autoimmune disease, said Dr. Mariette, who is the head of Rheumatology and professor at Université Paris-Saclay and Hôpital Bicêtre. Autoimmune B cells become lymphomatous. “So there is a continuity between autoimmunity and lymphoma genesis,” Dr. Mariette told this news organization. Typically, hematologists do not treat the lymphoma if it doesn’t migrate beyond the salivary glands, he said.

Dr. Xavier Mariette


Dr. Mariette said his group’s findings make the case for a more aggressive treatment.

“When patients got the systemic treatment, there was a decreased risk of flare of the autoimmune disease of Sjögren’s, but there was no effect on the lymphoma formation,” Dr. Mariette said. “And when these patients have combined therapy, immunotherapy plus chemotherapy, compared to single immunotherapy, they did have improvement of the lymphoma progression-free survival.”

Their multicenter study enrolled 106 patients with Sjögren disease who developed lymphoma, 64% (n = 68) of whom had MALT, 13% (n = 14) of whom had other marginal zone subtypes, and the same percentage with diffuse large B-cell lymphoma. With a median follow-up of 7 years, 32 patients with marginal zone subtypes who had combination chemotherapy and anti-CD20 therapy had a 64% greater chance of lymphoma progression-free survival than 18 of their counterparts who received anti-CD20 monotherapy. Overall, outcomes for Sjögren disease systemic activity or survival were no different between the combination therapy and monotherapy arms.

Patients who had a systemic approach had a 57% reduced risk for new Sjögren disease activity compared with those who had first-line surgery or radiation (16%, n = 13) or underwent watch and wait (23%, n = 19).

The study strengthens the argument for a systemic treatment approach over localized therapy “because patients with Sjögren’s have a higher degree of development of MALT lymphoma of the salivary glands,” Juan Pablo Alderuccio, MD, a hematologist and lymphoma clinical site disease group leader at the Sylvester Comprehensive Cancer Center at the University of Miami Health Systems, Miami, Florida, told this news organization.

Dr. Juan Pablo Alderuccio


“We already knew that the combination of chemotherapy with rituximab usually achieves a better outcome,” Dr. Alderuccio added, citing a 2017 clinical trial that found combined chemotherapy with chlorambucil plus rituximab improved progression-free survival compared with either therapy alone. The latest retrospective study from France reinforces that, he said.

“The study also shows it’s very important to consider treatment-related specificities — to select the most appropriate treatment for these patients,” Dr. Alderuccio added.
 

 

 

RF Biomarker

The case-control study by researchers in Italy and Greece included 80 patients with Sjögren-related MALT lymphoma matched to controls with Sjögren disease who did not have lymphoma.

“We showed that rheumatoid factor positivity at the time of Sjögren’s disease diagnosis serves as the most reliable and temporally distant independent predictor of MALT lymphoma development,” lead author Andreas Goules, MD, a pathophysiologist at the National and Kapodistrian University of Athens, Athens, Greece, told this news organization.

Dr. Andreas Goules


He added that the study found that specific biomarkers in addition to RF positivity were signs of a high risk for MALT lymphoma and a more advanced stage of Sjögren disease–related lymphomagenesis. They included high systemic disease activity, measured as a European Alliance of Associations for Rheumatology Sjögren’s Syndrome Disease Activity Index ≥ 5, and specific B-cell manifestations, such as cryoglobulinemia, salivary gland enlargement, hypocomplementemia, and palpable purpura.

“Ideally, all patients should be evaluated at the time of diagnosis for the presence of RF and undergo a minor salivary gland biopsy to exclude an underlying ongoing lymphoproliferative process,” Dr. Goules said.

RF-positive patients with Sjögren disease require a closer follow-up to identify an advanced stage of lymphoma development, he added.

“It is well known that Sjögren’s disease is characterized by an increased mortality rate, compared to the general population, mainly due to the related lymphomas,” Dr. Goules added. “Thus, the early diagnosis of MALT lymphoma, which is associated with a better prognosis, is expected to improve the overall clinical outcome of Sjögren’s disease patients.”

Rheumatologists and hematologists should employ a similar strategy for Sjögren disease–related large B-cell lymphomas, he said.

“The pathogenetic mechanisms of these two lymphoma types are vastly different, so it wouldn’t be surprising if an entirely different risk factor emerges,” Dr. Goules said. “However, given the rarity of diffuse large B-cell lymphomas, much larger multinational cohorts will be necessary to obtain clinically and pathogenetically meaningful results.”

Alan Baer, MD, a rheumatologist and founder of the Sjögren’s Disease Clinic at Johns Hopkins University in Baltimore, noted Dr. Goules and colleagues are not the first to identify RF, along with a host of other clinical and laboratory findings, as a risk factor for lymphoma in patients with Sjögren disease. “The current study validates rheumatoid factor as an independent risk factor present at a time that is temporally distant from the time of lymphoma diagnosis,” he said.

Dr. Alan Baer


However, he cautioned that RF alone isn’t highly predictive of Sjögren-related lymphoma. Up to 60% of patients with Sjögren disease are positive for RF at the time of the diagnosis, Dr. Baer said.

“Thus, the finding of rheumatoid factor alone does not necessarily mandate closer surveillance of this group of patients, with the potential for more frequent clinical exams, imaging, and laboratory testing,” he said. “Such an approach has the risk of subjecting patients to unnecessary testing, including invasive procedures.” 

More detailed findings, such as if a certain RF level was more predictive of lymphoma or whether other features in combination with RF heightened the risk, would be helpful, he said.
 

 

 

What Future Studies Should Look At

The studies call for further research into biomarkers for Sjögren disease–related lymphoma and treatment of the disease, both Dr. Mariette and Dr. Goules said.

Dr. Goules said a multicenter prospective study is needed to measure RF positivity and RF titers over time and determine whether higher levels mean an increased risk for lymphoma development or a shorter time interval until lymphoma onset. “Such a study requires a large number of RF-positive Sjögren’s disease patients who would be followed up for a long period of time,” Dr. Goules said.

To further evaluate treatment approaches for Sjögren disease–related lymphoma, Dr. Mariette said, a prospective study should compare the watch-and-wait approach with combination chemotherapy and anti-CD20 therapy. “It would be difficult to run because the primary endpoint would be lymphoma progression–free survival, and the secondary would be Sjögren’s relapse and mortality, but it would take a lot of time,” he said.

He added, “It’s a reason why this retrospective study is important. Maybe if we had another retrospective study reaching the same conclusion, I think it would be very, very strong evidence.”

Funding for the case-control study came from the European Commission–Horizon 2020 program. The retrospective treatment study had no outside funding. Dr. Mariette disclosed financial relationships with AstraZeneca, Bristol-Myers Squibb, Galapagos, GlaxoSmithKline, Novartis, and Pfizer. Dr. Alderuccio, Dr. Goules, and Dr. Baer had no relevant relationships to disclose.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET RHEUMATOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Teclistamab Promising as a Treatment of Last Resort for Refractory Autoimmune Diseases

Article Type
Changed
Thu, 09/05/2024 - 13:36

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

Teclistamab, a T-cell engager that targets B-cell maturation antigen (BCMA), improved disease activity in four patients with refractory autoimmune conditions. In a separately published case report, teclistamab treatment induced remission in a patient with refractory systemic lupus erythematosus (SLE).

BACKGROUND: 

  • Chimeric antigen receptor (CAR) T cells or T-cell engagers against CD19 have been effective in small studies of patients with treatment-resistant autoimmune diseases.
  • Some patients have disease rooted in long-lived plasma cells that express BCMA but not CD19, making them resistant to CD19 CAR T-cell therapy.
  • Teclistamab acts on T cells through CD3 and targets plasmablasts and plasma cells through BCMA.

METHODOLOGY:

  • In one case series, researchers administered teclistamab subcutaneously to four patients with autoimmune diseases resistant to more than five immunosuppressants, including rituximab.
  • Patient 1 had systemic sclerosis, patient 2 had primary Sjögren disease, patient 3 had idiopathic inflammatory myositis, and patient 4 had rheumatoid arthritis.
  • Researchers incrementally increased teclistamab dosage in an inpatient setting: 0.06 mg/kg on day 1, 0.3 mg/kg on day 3, and 1.5 mg/kg on day 5. Patients 2, 3, and 4 received one maintenance dose of 1.5 mg/kg after 4 weeks, and patient 1 received a 1.5-mg/kg dose after 12 weeks.
  • In the single case report, the patient with SLE received a step-up dosage of teclistamab (0.06 mg/kg and 0.3 mg/kg) followed by 0.8 mg/kg on day 7. She received 1.5 mg/kg at weeks 2 and 5.

TAKEAWAY: 

  • Teclistamab therapy led to significant improvements in disease activity in all four patients, with notable reductions in skin disease, arthritis, and lung function scores.
  • Teclistamab therapy had a good safety profile, with no neurotoxicity or myelotoxicity and only lower-grade cytokine release syndrome reported.
  • Researchers observed seroconversion of PM-Scl-75, PM-Scl-100, rheumatoid factor, and autoantibodies against mutated citrullinated vimentin and lower levels of autoantibodies ANA, MDAS, SS-A/Ro, SS-B/La, and PL-7 after treatment.
  • In the separate case report, the patient reached complete drug-free remission by week 6, as defined by the Systemic Lupus Erythematosus Disease Activity Index 2000.
  • The level of anti–double-stranded DNA antibodies in the patient with SLE decreased rapidly, reaching normal range by week 5 and remaining undetectable through week 16.

IN PRACTICE:

“These data show that the targeting of the plasma-cell compartment by a BCMA-targeted T-cell engager is feasible in patients with autoimmune disease. Whether such therapy results in sustained clinical remission warrants further study,” write the authors of the four-patient case series.

SOURCE: 

Melanie Hagen, MD, Friedrich Alexander University Erlangen–Nuremberg, Germany, and colleagues reported their case series online in The New England Journal of Medicine. Tobias Alexander, MD, and colleagues at Charité–Universitätsmedizin Berlin, Germany, also described their single case report in The New England Journal of Medicine.

 

 

LIMITATIONS:

The small number of patients limits the generalizability of the findings. The short duration of follow-up may not capture long-term effects and potential late-onset adverse events. The lack of a control group makes it difficult to attribute improvements solely to teclistamab therapy.

DISCLOSURES:

The four-patient case series was supported by grants from the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, and the European Union. The single case report was supported by grants from the Deutsche Forschungsgemeinschaft and the European Union. Several authors have disclosed financial relationships with pharmaceutical companies, including Janssen Biotech, which markets teclistamab.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer Cases, Deaths in Men Predicted to Surge by 2050

Article Type
Changed
Tue, 09/17/2024 - 19:29

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

The number of cancer cases in men is estimated to increase by 84% from 2022 to 2050 — reaching 19 million globally — and deaths are expected to rise by more than 93% — reaching 10.5 million globally — with substantial disparities in cancer cases and deaths by age and region of the world, a recent analysis found.

METHODOLOGY:

  • Overall, men have higher cancer incidence and mortality rates, which can be largely attributed to a higher prevalence of modifiable risk factors such as smoking, alcohol consumption, and occupational carcinogens, as well as the underuse of cancer prevention, screening, and treatment services.
  • To assess the burden of cancer in men of different ages and from different regions of the world, researchers analyzed data from the 2022 Global Cancer Observatory (GLOBOCAN), which provides national-level estimates for cancer cases and deaths.
  • Study outcomes included the incidence, mortality, and prevalence of cancer among men in 2022, along with projections for 2050. Estimates were stratified by several factors, including age; region; and Human Development Index (HDI), a composite score for health, education, and standard of living.
  • Researchers also calculated mortality-to-incidence ratios (MIRs) for various cancer types, where higher values indicate worse survival.

TAKEAWAY:

  • The researchers reported an estimated 10.3 million cancer cases and 5.4 million deaths globally in 2022, with almost two thirds of cases and deaths occurring in men aged 65 years or older.
  • By 2050, cancer cases and deaths were projected to increase by 84.3% (to 19 million) and 93.2% (to 10.5 million), respectively. The increase from 2022 to 2050 was more than twofold higher for older men and countries with low and medium HDI.
  • In 2022, the estimated global cancer MIR among men was nearly 55%, with variations by cancer types, age, and HDI. The MIR was lowest for thyroid cancer (7.6%) and highest for pancreatic cancer (90.9%); among World Health Organization regions, Africa had the highest MIR (72.6%), while the Americas had the lowest MIR (39.1%); countries with the lowest HDI had the highest MIR (73.5% vs 41.1% for very high HDI).
  • Lung cancer was the leading cause for cases and deaths in 2022 and was projected to remain the leading cause in 2050.

IN PRACTICE:

“Disparities in cancer incidence and mortality among men were observed across age groups, countries/territories, and HDI in 2022, with these disparities projected to widen further by 2050,” according to the authors, who called for efforts to “reduce disparities in cancer burden and ensure equity in cancer prevention and care for men across the globe.”

SOURCE:

The study, led by Habtamu Mellie Bizuayehu, PhD, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia, was published online in Cancer.

LIMITATIONS:

The findings may be influenced by the quality of GLOBOCAN data. Interpretation should be cautious as MIR may not fully reflect cancer outcome inequalities. The study did not include other measures of cancer burden, such as years of life lost or years lived with disability, which were unavailable from the data source.

DISCLOSURES:

The authors did not disclose any funding information. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 09/17/2024 - 19:29
Un-Gate On Date
Tue, 09/17/2024 - 19:29
Use ProPublica
CFC Schedule Remove Status
Tue, 09/17/2024 - 19:29
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 09/17/2024 - 19:29

Cancer Treatment 101: A Primer for Non-Oncologists

Article Type
Changed
Fri, 08/23/2024 - 13:14

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Each year in the United States, approximately 1.7 million Americans are diagnosed with a potentially lethal malignancy. Typical therapies of choice include surgery, radiation, and occasionally, toxic chemotherapy (chemo) — approaches that eliminate the cancer in about 1,000,000 of these cases. The remaining 700,000 or so often proceed to chemotherapy either immediately or upon cancer recurrence, spread, or newly recognized metastases. “Cures” after that point are rare.

I’m speaking in generalities, understanding that each cancer and each patient is unique.
 

Chemotherapy

Chemotherapy alone can cure a small number of cancer types. When added to radiation or surgery, chemotherapy can help to cure a wider range of cancer types. As an add-on, chemotherapy can extend the length and quality of life for many patients with cancer. Since chemotherapy is by definition “toxic,” it can also shorten the duration or harm the quality of life and provide false hope. The Table summarizes what chemotherapy can and cannot achieve in selected cancer types.



Careful, compassionate communication between patient and physician is key. Goals and expectations must be clearly understood.

Organized chemotherapeutic efforts are further categorized as first line, second line, and third line.

First-line treatment. The initial round of recommended chemotherapy for a specific cancer. It is typically considered the most effective treatment for that type and stage of cancer on the basis of current research and clinical trials.

Second-line treatment. This is the treatment used if the first-line chemotherapy doesn’t work as desired. Reasons to switch to second-line chemo include:

  • Lack of response (the tumor failed to shrink).
  • Progression (the cancer may have grown or spread further).
  • Adverse side effects were too severe to continue.

The drugs used in second-line chemo will typically be different from those used in first line, sometimes because cancer cells can develop resistance to chemotherapy drugs over time. Moreover, the goal of second-line chemo may differ from that of first-line therapy. Rather than chiefly aiming for a cure, second-line treatment might focus on slowing cancer growth, managing symptoms, or improving quality of life. Unfortunately, not every type of cancer has a readily available second-line option.

Third-line treatment. Third-line options come into play when both the initial course of chemo (first line) and the subsequent treatment (second line) have failed to achieve remission or control the cancer’s spread. Owing to the progressive nature of advanced cancers, patients might not be eligible or healthy enough for third-line therapy. Depending on cancer type, the patient’s general health, and response to previous treatments, third-line options could include:

  • New or different chemotherapy drugs compared with prior lines.
  • Surgery to debulk the tumor.
  • Radiation for symptom control.
  • Targeted therapy: drugs designed to target specific vulnerabilities in cancer cells.
  • Immunotherapy: agents that help the body’s immune system fight cancer cells.
  • Clinical trials testing new or investigational treatments, which may be applicable at any time, depending on the questions being addressed.
 

 

The goals of third-line therapy may shift from aiming for a cure to managing symptoms, improving quality of life, and potentially slowing cancer growth. The decision to pursue third-line therapy involves careful consideration by the doctor and patient, weighing the potential benefits and risks of treatment considering the individual’s overall health and specific situation.

It’s important to have realistic expectations about the potential outcomes of third-line therapy. Although remission may be unlikely, third-line therapy can still play a role in managing the disease.

Navigating advanced cancer treatment is very complex. The patient and physician must together consider detailed explanations and clarifications to set expectations and make informed decisions about care.
 

Interventions to Consider Earlier

In traditional clinical oncology practice, other interventions are possible, but these may not be offered until treatment has reached the third line:

  • Molecular testing.
  • Palliation.
  • Clinical trials.
  • Innovative testing to guide targeted therapy by ascertaining which agents are most likely (or not likely at all) to be effective.

I would argue that the patient’s interests are better served by considering and offering these other interventions much earlier, even before starting first-line chemotherapy.

Molecular testing. The best time for molecular testing of a new malignant tumor is typically at the time of diagnosis. Here’s why:

  • Molecular testing helps identify specific genetic mutations in the cancer cells. This information can be crucial for selecting targeted therapies that are most effective against those specific mutations. Early detection allows for the most treatment options. For example, for non–small cell lung cancer, early is best because treatment and outcomes may well be changed by test results.
  • Knowing the tumor’s molecular makeup can help determine whether a patient qualifies for clinical trials of new drugs designed for specific mutations.
  • Some molecular markers can offer information about the tumor’s aggressiveness and potential for metastasis so that prognosis can be informed.

Molecular testing can be a valuable tool throughout a cancer patient’s journey. With genetically diverse tumors, the initial biopsy might not capture the full picture. Molecular testing of circulating tumor DNA can be used to monitor a patient’s response to treatment and detect potential mutations that might arise during treatment resistance. Retesting after metastasis can provide additional information that can aid in treatment decisions.

Palliative care. The ideal time to discuss palliative care with a patient with cancer is early in the diagnosis and treatment process. Palliative care is not the same as hospice care; it isn’t just about end-of-life. Palliative care focuses on improving a patient’s quality of life throughout cancer treatment. Palliative care specialists can address a wide range of symptoms a patient might experience from cancer or its treatment, including pain, fatigue, nausea, and anxiety.

Early discussions allow for a more comprehensive care plan. Open communication about all treatment options, including palliative care, empowers patients to make informed decisions about their care goals and preferences.

Specific situations where discussing palliative care might be appropriate are:

  • Soon after a cancer diagnosis.
  • If the patient experiences significant side effects from cancer treatment.
  • When considering different treatment options, palliative care can complement those treatments.
  • In advanced stages of cancer, to focus on comfort and quality of life.

Clinical trials. Participation in a clinical trial to explore new or investigational treatments should always be considered.

In theory, clinical trials should be an option at any time in the patient’s course. But the organized clinical trial experience may not be available or appropriate. Then, the individual becomes a de facto “clinical trial with an n of 1.” Read this brief open-access blog post at Cancer Commons to learn more about that circumstance.

Innovative testing. The best choice of chemotherapeutic or targeted therapies is often unclear. The clinician is likely to follow published guidelines, often from the National Comprehensive Cancer Network.

These are evidence based and driven by consensus of experts. But guideline-recommended therapy is not always effective, and weeks or months can pass before this ineffectiveness becomes apparent. Thus, many researchers and companies are seeking methods of testing each patient’s specific cancer to determine in advance, or very quickly, whether a particular drug is likely to be effective.

Read more about these leading innovations:

SAGE Oncotest: Entering the Next Generation of Tailored Cancer Treatment

Alibrex: A New Blood Test to Reveal Whether a Cancer Treatment is Working

PARIS Test Uses Lab-Grown Mini-Tumors to Find a Patient’s Best Treatment

Using Live Cells from Patients to Find the Right Cancer Drug


Other innovative therapies under investigation could even be agnostic to cancer type:

Treating Pancreatic Cancer: Could Metabolism — Not Genomics — Be the Key?

High-Energy Blue Light Powers a Promising New Treatment to Destroy Cancer Cells

All-Clear Follow-Up: Hydrogen Peroxide Appears to Treat Oral and Skin Lesions


Cancer is a tough nut to crack. Many people and organizations are trying very hard. So much is being learned. Some approaches will be effective. We can all hope.

Dr. Lundberg, editor in chief, Cancer Commons, has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

When Childhood Cancer Survivors Face Sexual Challenges

Article Type
Changed
Thu, 08/22/2024 - 12:46

Childhood cancers represent a diverse group of neoplasms, and thanks to advances in treatment, survival rates have improved significantly. Today, more than 80%-85% of children diagnosed with cancer in developed countries survive into adulthood.

This increase in survival has brought new challenges, however. Compared with the general population, childhood cancer survivors (CCS) are at a notably higher risk for early mortality, developing secondary cancers, and experiencing various long-term clinical and psychosocial issues stemming from their disease or its treatment.

Long-term follow-up care for CCS is a complex and evolving field. Despite ongoing efforts to establish global and national guidelines, current evidence indicates that the care and management of these patients remain suboptimal.

Sexual dysfunction is a common and significant late effect among CCS. The disruptions caused by cancer and its treatment can interfere with normal physiological and psychological development, leading to issues with sexual function. This aspect of health is critical as it influences not just physical well-being but also psychosocial, developmental, and emotional health.
 

Characteristics and Mechanisms

Sexual functioning encompasses the physiological and psychological aspects of sexual behavior, including desire, arousal, orgasm, sexual pleasure, and overall satisfaction.

As CCS reach adolescence or adulthood, they often face sexual and reproductive issues, particularly as they enter romantic relationships.

Sexual functioning is a complex process that relies on the interaction of various factors, including physiological health, psychosexual development, romantic relationships, body image, and desire.

Despite its importance, the impact of childhood cancer on sexual function is often overlooked, even though cancer and its treatments can have lifelong effects. 
 

Sexual Function in CCS

A recent review aimed to summarize the existing research on sexual function among CCS, highlighting assessment tools, key stages of psychosexual development, common sexual problems, and the prevalence of sexual dysfunction.

The review study included 22 studies published between 2000 and 2022, comprising two qualitative, six cohort, and 14 cross-sectional studies.

Most CCS reached all key stages of psychosexual development at an average age of 29.8 years. Although some milestones were achieved later than is typical, many survivors felt they reached these stages at the appropriate time. Sexual initiation was less common among those who had undergone intensive neurotoxic treatments, such as those diagnosed with brain tumors or leukemia in childhood.

In a cross-sectional study of CCS aged 17-39 years, about one third had never engaged in sexual intercourse, 41.4% reported never experiencing sexual attraction, 44.8% were dissatisfied with their sex lives, and many rarely felt sexually attractive to others. Another study found that common issues among CCS included a lack of interest in sex (30%), difficulty enjoying sex (24%), and difficulty becoming aroused (23%). However, comparing and analyzing these problems was challenging due to the lack of standardized assessment criteria.

The prevalence of sexual dysfunction among CCS ranged from 12.3% to 46.5%. For males, the prevalence ranged from 12.3% to 54.0%, while for females, it ranged from 19.9% to 57.0%.
 

Factors Influencing Sexual Function

The review identified the following four categories of factors influencing sexual function in CCS: Demographic, treatment-related, psychological, and physiological.

Demographic factors: Gender, age, education level, relationship status, income level, and race all play roles in sexual function.

Female survivors reported more severe sexual dysfunction and poorer sexual health than did male survivors. Age at cancer diagnosis, age at evaluation, and the time since diagnosis were closely linked to sexual experiences. Patients diagnosed with cancer during childhood tended to report better sexual function than those diagnosed during adolescence.

Treatment-related factors: The type of cancer and intensity of treatment, along with surgical history, were significant factors. Surgeries involving the spinal cord or sympathetic nerves, as well as a history of prostate or pelvic surgery, were strongly associated with erectile dysfunction in men. In women, pelvic surgeries and treatments to the pelvic area were commonly linked to sexual dysfunction.

The association between treatment intensity and sexual function was noted across several studies, although the results were not always consistent. For example, testicular radiation above 10 Gy was positively correlated with sexual dysfunction. Women who underwent more intensive treatments were more likely to report issues in multiple areas of sexual function, while men in this group were less likely to have children.

Among female CCS, certain types of cancer, such as germ cell tumors, renal tumors, and leukemia, present a higher risk for sexual dysfunction. Women who had CNS tumors in childhood frequently reported problems like difficulty in sexual arousal, low sexual satisfaction, infrequent sexual activity, and fewer sexual partners, compared with survivors of other cancers. Survivors of acute lymphoblastic leukemia and those who underwent hematopoietic stem cell transplantation (HSCT) also showed varying degrees of impaired sexual function, compared with the general population. The HSCT group showed significant testicular damage, including reduced testicular volumes, low testosterone levels, and low sperm counts.

Psychological factors: These factors, such as emotional distress, play a significant role in sexual dysfunction among CCS. Symptoms like anxiety, nervousness during sexual activity, and depression are commonly reported by those with sexual dysfunction. The connection between body image and sexual function is complex. Many CCS with sexual dysfunction express concern about how others, particularly their partners, perceived their altered body image due to cancer and its treatment.

Physiological factors: In male CCS, low serum testosterone levels and low lean muscle mass are linked to an increased risk for sexual dysfunction. Treatments involving alkylating agents or testicular radiation, and surgery or radiotherapy targeting the genitourinary organs or the hypothalamic-pituitary region, can lead to various physiological and endocrine disorders, contributing to sexual dysfunction. Despite these risks, there is a lack of research evaluating sexual function through the lens of the hypothalamic-pituitary-gonadal axis and neuroendocrine pathways.
 

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Childhood cancers represent a diverse group of neoplasms, and thanks to advances in treatment, survival rates have improved significantly. Today, more than 80%-85% of children diagnosed with cancer in developed countries survive into adulthood.

This increase in survival has brought new challenges, however. Compared with the general population, childhood cancer survivors (CCS) are at a notably higher risk for early mortality, developing secondary cancers, and experiencing various long-term clinical and psychosocial issues stemming from their disease or its treatment.

Long-term follow-up care for CCS is a complex and evolving field. Despite ongoing efforts to establish global and national guidelines, current evidence indicates that the care and management of these patients remain suboptimal.

Sexual dysfunction is a common and significant late effect among CCS. The disruptions caused by cancer and its treatment can interfere with normal physiological and psychological development, leading to issues with sexual function. This aspect of health is critical as it influences not just physical well-being but also psychosocial, developmental, and emotional health.
 

Characteristics and Mechanisms

Sexual functioning encompasses the physiological and psychological aspects of sexual behavior, including desire, arousal, orgasm, sexual pleasure, and overall satisfaction.

As CCS reach adolescence or adulthood, they often face sexual and reproductive issues, particularly as they enter romantic relationships.

Sexual functioning is a complex process that relies on the interaction of various factors, including physiological health, psychosexual development, romantic relationships, body image, and desire.

Despite its importance, the impact of childhood cancer on sexual function is often overlooked, even though cancer and its treatments can have lifelong effects. 
 

Sexual Function in CCS

A recent review aimed to summarize the existing research on sexual function among CCS, highlighting assessment tools, key stages of psychosexual development, common sexual problems, and the prevalence of sexual dysfunction.

The review study included 22 studies published between 2000 and 2022, comprising two qualitative, six cohort, and 14 cross-sectional studies.

Most CCS reached all key stages of psychosexual development at an average age of 29.8 years. Although some milestones were achieved later than is typical, many survivors felt they reached these stages at the appropriate time. Sexual initiation was less common among those who had undergone intensive neurotoxic treatments, such as those diagnosed with brain tumors or leukemia in childhood.

In a cross-sectional study of CCS aged 17-39 years, about one third had never engaged in sexual intercourse, 41.4% reported never experiencing sexual attraction, 44.8% were dissatisfied with their sex lives, and many rarely felt sexually attractive to others. Another study found that common issues among CCS included a lack of interest in sex (30%), difficulty enjoying sex (24%), and difficulty becoming aroused (23%). However, comparing and analyzing these problems was challenging due to the lack of standardized assessment criteria.

The prevalence of sexual dysfunction among CCS ranged from 12.3% to 46.5%. For males, the prevalence ranged from 12.3% to 54.0%, while for females, it ranged from 19.9% to 57.0%.
 

Factors Influencing Sexual Function

The review identified the following four categories of factors influencing sexual function in CCS: Demographic, treatment-related, psychological, and physiological.

Demographic factors: Gender, age, education level, relationship status, income level, and race all play roles in sexual function.

Female survivors reported more severe sexual dysfunction and poorer sexual health than did male survivors. Age at cancer diagnosis, age at evaluation, and the time since diagnosis were closely linked to sexual experiences. Patients diagnosed with cancer during childhood tended to report better sexual function than those diagnosed during adolescence.

Treatment-related factors: The type of cancer and intensity of treatment, along with surgical history, were significant factors. Surgeries involving the spinal cord or sympathetic nerves, as well as a history of prostate or pelvic surgery, were strongly associated with erectile dysfunction in men. In women, pelvic surgeries and treatments to the pelvic area were commonly linked to sexual dysfunction.

The association between treatment intensity and sexual function was noted across several studies, although the results were not always consistent. For example, testicular radiation above 10 Gy was positively correlated with sexual dysfunction. Women who underwent more intensive treatments were more likely to report issues in multiple areas of sexual function, while men in this group were less likely to have children.

Among female CCS, certain types of cancer, such as germ cell tumors, renal tumors, and leukemia, present a higher risk for sexual dysfunction. Women who had CNS tumors in childhood frequently reported problems like difficulty in sexual arousal, low sexual satisfaction, infrequent sexual activity, and fewer sexual partners, compared with survivors of other cancers. Survivors of acute lymphoblastic leukemia and those who underwent hematopoietic stem cell transplantation (HSCT) also showed varying degrees of impaired sexual function, compared with the general population. The HSCT group showed significant testicular damage, including reduced testicular volumes, low testosterone levels, and low sperm counts.

Psychological factors: These factors, such as emotional distress, play a significant role in sexual dysfunction among CCS. Symptoms like anxiety, nervousness during sexual activity, and depression are commonly reported by those with sexual dysfunction. The connection between body image and sexual function is complex. Many CCS with sexual dysfunction express concern about how others, particularly their partners, perceived their altered body image due to cancer and its treatment.

Physiological factors: In male CCS, low serum testosterone levels and low lean muscle mass are linked to an increased risk for sexual dysfunction. Treatments involving alkylating agents or testicular radiation, and surgery or radiotherapy targeting the genitourinary organs or the hypothalamic-pituitary region, can lead to various physiological and endocrine disorders, contributing to sexual dysfunction. Despite these risks, there is a lack of research evaluating sexual function through the lens of the hypothalamic-pituitary-gonadal axis and neuroendocrine pathways.
 

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Childhood cancers represent a diverse group of neoplasms, and thanks to advances in treatment, survival rates have improved significantly. Today, more than 80%-85% of children diagnosed with cancer in developed countries survive into adulthood.

This increase in survival has brought new challenges, however. Compared with the general population, childhood cancer survivors (CCS) are at a notably higher risk for early mortality, developing secondary cancers, and experiencing various long-term clinical and psychosocial issues stemming from their disease or its treatment.

Long-term follow-up care for CCS is a complex and evolving field. Despite ongoing efforts to establish global and national guidelines, current evidence indicates that the care and management of these patients remain suboptimal.

Sexual dysfunction is a common and significant late effect among CCS. The disruptions caused by cancer and its treatment can interfere with normal physiological and psychological development, leading to issues with sexual function. This aspect of health is critical as it influences not just physical well-being but also psychosocial, developmental, and emotional health.
 

Characteristics and Mechanisms

Sexual functioning encompasses the physiological and psychological aspects of sexual behavior, including desire, arousal, orgasm, sexual pleasure, and overall satisfaction.

As CCS reach adolescence or adulthood, they often face sexual and reproductive issues, particularly as they enter romantic relationships.

Sexual functioning is a complex process that relies on the interaction of various factors, including physiological health, psychosexual development, romantic relationships, body image, and desire.

Despite its importance, the impact of childhood cancer on sexual function is often overlooked, even though cancer and its treatments can have lifelong effects. 
 

Sexual Function in CCS

A recent review aimed to summarize the existing research on sexual function among CCS, highlighting assessment tools, key stages of psychosexual development, common sexual problems, and the prevalence of sexual dysfunction.

The review study included 22 studies published between 2000 and 2022, comprising two qualitative, six cohort, and 14 cross-sectional studies.

Most CCS reached all key stages of psychosexual development at an average age of 29.8 years. Although some milestones were achieved later than is typical, many survivors felt they reached these stages at the appropriate time. Sexual initiation was less common among those who had undergone intensive neurotoxic treatments, such as those diagnosed with brain tumors or leukemia in childhood.

In a cross-sectional study of CCS aged 17-39 years, about one third had never engaged in sexual intercourse, 41.4% reported never experiencing sexual attraction, 44.8% were dissatisfied with their sex lives, and many rarely felt sexually attractive to others. Another study found that common issues among CCS included a lack of interest in sex (30%), difficulty enjoying sex (24%), and difficulty becoming aroused (23%). However, comparing and analyzing these problems was challenging due to the lack of standardized assessment criteria.

The prevalence of sexual dysfunction among CCS ranged from 12.3% to 46.5%. For males, the prevalence ranged from 12.3% to 54.0%, while for females, it ranged from 19.9% to 57.0%.
 

Factors Influencing Sexual Function

The review identified the following four categories of factors influencing sexual function in CCS: Demographic, treatment-related, psychological, and physiological.

Demographic factors: Gender, age, education level, relationship status, income level, and race all play roles in sexual function.

Female survivors reported more severe sexual dysfunction and poorer sexual health than did male survivors. Age at cancer diagnosis, age at evaluation, and the time since diagnosis were closely linked to sexual experiences. Patients diagnosed with cancer during childhood tended to report better sexual function than those diagnosed during adolescence.

Treatment-related factors: The type of cancer and intensity of treatment, along with surgical history, were significant factors. Surgeries involving the spinal cord or sympathetic nerves, as well as a history of prostate or pelvic surgery, were strongly associated with erectile dysfunction in men. In women, pelvic surgeries and treatments to the pelvic area were commonly linked to sexual dysfunction.

The association between treatment intensity and sexual function was noted across several studies, although the results were not always consistent. For example, testicular radiation above 10 Gy was positively correlated with sexual dysfunction. Women who underwent more intensive treatments were more likely to report issues in multiple areas of sexual function, while men in this group were less likely to have children.

Among female CCS, certain types of cancer, such as germ cell tumors, renal tumors, and leukemia, present a higher risk for sexual dysfunction. Women who had CNS tumors in childhood frequently reported problems like difficulty in sexual arousal, low sexual satisfaction, infrequent sexual activity, and fewer sexual partners, compared with survivors of other cancers. Survivors of acute lymphoblastic leukemia and those who underwent hematopoietic stem cell transplantation (HSCT) also showed varying degrees of impaired sexual function, compared with the general population. The HSCT group showed significant testicular damage, including reduced testicular volumes, low testosterone levels, and low sperm counts.

Psychological factors: These factors, such as emotional distress, play a significant role in sexual dysfunction among CCS. Symptoms like anxiety, nervousness during sexual activity, and depression are commonly reported by those with sexual dysfunction. The connection between body image and sexual function is complex. Many CCS with sexual dysfunction express concern about how others, particularly their partners, perceived their altered body image due to cancer and its treatment.

Physiological factors: In male CCS, low serum testosterone levels and low lean muscle mass are linked to an increased risk for sexual dysfunction. Treatments involving alkylating agents or testicular radiation, and surgery or radiotherapy targeting the genitourinary organs or the hypothalamic-pituitary region, can lead to various physiological and endocrine disorders, contributing to sexual dysfunction. Despite these risks, there is a lack of research evaluating sexual function through the lens of the hypothalamic-pituitary-gonadal axis and neuroendocrine pathways.
 

This story was translated from Univadis Italy using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA Approves Lymphir for R/R Cutaneous T-Cell Lymphoma

Article Type
Changed
Fri, 08/09/2024 - 13:11

The Food and Drug Administration has approved denileukin diftitox-cxdl (Lymphir, Citius Pharmaceuticals) for adults with relapsed or refractory stage 1-3 cutaneous T-cell lymphoma after at least one prior systemic therapy.

The immunotherapy is a reformulation of denileukin diftitox (Ontak), initially approved in 1999 for certain patients with persistent or recurrent cutaneous T-cell lymphoma. In 2014, the original formulation was voluntarily withdrawn from the US market. Citius acquired rights to market a reformulated product outside of Asia in 2021. 

This is the first indication for Lymphir, which targets interleukin-2 receptors on malignant T cells.

This approval marks “a significant milestone” for patients with cutaneous T-cell lymphoma, a rare cancer, company CEO Leonard Mazur said in a press release announcing the approval. “The introduction of Lymphir, with its potential to rapidly reduce skin disease and control symptomatic itching without cumulative toxicity, is expected to expand the [cutaneous T-cell lymphoma] treatment landscape and grow the overall market, currently estimated to be $300-$400 million.” 

Approval was based on the single-arm, open-label 302 study in 69 patients who had a median of four prior anticancer therapies. Patients received 9 mcg/kg daily from day 1 to day 5 of 21-day cycles until disease progression or unacceptable toxicity.

The objective response rate was 36.2%, including complete responses in 8.7% of patients. Responses lasted 6 months or longer in 52% of patients. Over 80% of subjects had a decrease in skin tumor burden, and almost a third had clinically significant improvements in pruritus. 

Adverse events occurring in 20% or more of patients include increased transaminases, decreased albumin, decreased hemoglobin, nausea, edema, fatigue, musculoskeletal pain, rash, chills, constipation, pyrexia, and capillary leak syndrome.

Labeling carries a boxed warning of capillary leak syndrome. Other warnings include visual impairment, infusion reactions, hepatotoxicity, and embryo-fetal toxicity. Citius is under a postmarketing requirement to characterize the risk for visual impairment.

The company expects to launch the agent within 5 months.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

The Food and Drug Administration has approved denileukin diftitox-cxdl (Lymphir, Citius Pharmaceuticals) for adults with relapsed or refractory stage 1-3 cutaneous T-cell lymphoma after at least one prior systemic therapy.

The immunotherapy is a reformulation of denileukin diftitox (Ontak), initially approved in 1999 for certain patients with persistent or recurrent cutaneous T-cell lymphoma. In 2014, the original formulation was voluntarily withdrawn from the US market. Citius acquired rights to market a reformulated product outside of Asia in 2021. 

This is the first indication for Lymphir, which targets interleukin-2 receptors on malignant T cells.

This approval marks “a significant milestone” for patients with cutaneous T-cell lymphoma, a rare cancer, company CEO Leonard Mazur said in a press release announcing the approval. “The introduction of Lymphir, with its potential to rapidly reduce skin disease and control symptomatic itching without cumulative toxicity, is expected to expand the [cutaneous T-cell lymphoma] treatment landscape and grow the overall market, currently estimated to be $300-$400 million.” 

Approval was based on the single-arm, open-label 302 study in 69 patients who had a median of four prior anticancer therapies. Patients received 9 mcg/kg daily from day 1 to day 5 of 21-day cycles until disease progression or unacceptable toxicity.

The objective response rate was 36.2%, including complete responses in 8.7% of patients. Responses lasted 6 months or longer in 52% of patients. Over 80% of subjects had a decrease in skin tumor burden, and almost a third had clinically significant improvements in pruritus. 

Adverse events occurring in 20% or more of patients include increased transaminases, decreased albumin, decreased hemoglobin, nausea, edema, fatigue, musculoskeletal pain, rash, chills, constipation, pyrexia, and capillary leak syndrome.

Labeling carries a boxed warning of capillary leak syndrome. Other warnings include visual impairment, infusion reactions, hepatotoxicity, and embryo-fetal toxicity. Citius is under a postmarketing requirement to characterize the risk for visual impairment.

The company expects to launch the agent within 5 months.

A version of this article first appeared on Medscape.com.

The Food and Drug Administration has approved denileukin diftitox-cxdl (Lymphir, Citius Pharmaceuticals) for adults with relapsed or refractory stage 1-3 cutaneous T-cell lymphoma after at least one prior systemic therapy.

The immunotherapy is a reformulation of denileukin diftitox (Ontak), initially approved in 1999 for certain patients with persistent or recurrent cutaneous T-cell lymphoma. In 2014, the original formulation was voluntarily withdrawn from the US market. Citius acquired rights to market a reformulated product outside of Asia in 2021. 

This is the first indication for Lymphir, which targets interleukin-2 receptors on malignant T cells.

This approval marks “a significant milestone” for patients with cutaneous T-cell lymphoma, a rare cancer, company CEO Leonard Mazur said in a press release announcing the approval. “The introduction of Lymphir, with its potential to rapidly reduce skin disease and control symptomatic itching without cumulative toxicity, is expected to expand the [cutaneous T-cell lymphoma] treatment landscape and grow the overall market, currently estimated to be $300-$400 million.” 

Approval was based on the single-arm, open-label 302 study in 69 patients who had a median of four prior anticancer therapies. Patients received 9 mcg/kg daily from day 1 to day 5 of 21-day cycles until disease progression or unacceptable toxicity.

The objective response rate was 36.2%, including complete responses in 8.7% of patients. Responses lasted 6 months or longer in 52% of patients. Over 80% of subjects had a decrease in skin tumor burden, and almost a third had clinically significant improvements in pruritus. 

Adverse events occurring in 20% or more of patients include increased transaminases, decreased albumin, decreased hemoglobin, nausea, edema, fatigue, musculoskeletal pain, rash, chills, constipation, pyrexia, and capillary leak syndrome.

Labeling carries a boxed warning of capillary leak syndrome. Other warnings include visual impairment, infusion reactions, hepatotoxicity, and embryo-fetal toxicity. Citius is under a postmarketing requirement to characterize the risk for visual impairment.

The company expects to launch the agent within 5 months.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Immunotherapy May Be Overused in Dying Patients With Cancer

Article Type
Changed
Wed, 08/14/2024 - 02:28

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Chemotherapy has fallen out of favor for treating cancer toward the end of life. The toxicity is too high, and the benefit, if any, is often too low.

Immunotherapy, however, has been taking its place. Checkpoint inhibitors are increasingly being initiated to treat metastatic cancer in patients approaching the end of life and have become the leading driver of end-of-life cancer spending.

This means “there are patients who are getting immunotherapy who shouldn’t,” said Yale University, New Haven, Connecticut, surgical oncologist Sajid Khan, MD, senior investigator on a recent study that highlighted the growing use of these agents in patients’ last month of life.

What’s driving this trend, and how can oncologists avoid overtreatment with immunotherapy at the end of life?
 

The N-of-1 Patient

With immunotherapy at the end of life, “each of us has had our N-of-1” where a patient bounces back with a remarkable and durable response, said Don Dizon, MD, a gynecologic oncologist at Brown University, Providence, Rhode Island.

He recalled a patient with sarcoma who did not respond to chemotherapy. But after Dr. Dizon started her on immunotherapy, everything turned around. She has now been in remission for 8 years and counting.

The possibility of an unexpected or remarkable responder is seductive. And the improved safety of immunotherapy over chemotherapy adds to the allure.

Meanwhile, patients are often desperate. It’s rare for someone to be ready to stop treatment, Dr. Dizon said. Everybody “hopes that they’re going to be the exceptional responder.”

At the end of the day, the question often becomes: “Why not try immunotherapy? What’s there to lose?”

This thinking may be prompting broader use of immunotherapy in late-stage disease, even in instances with no Food and Drug Administration indication and virtually no supportive data, such as for metastatic ovarian cancer, Dr. Dizon said.
 

Back to Earth

The problem with the hopeful approach is that end-of-life turnarounds with immunotherapy are rare, and there’s no way at the moment to predict who will have one, said Laura Petrillo, MD, a palliative care physician at Massachusetts General Hospital, Boston.

Even though immunotherapy generally comes with fewer adverse events than chemotherapy, catastrophic side effects are still possible.

Dr. Petrillo recalled a 95-year-old woman with metastatic cancer who was largely asymptomatic.

She had a qualifying mutation for a checkpoint inhibitor, so her oncologist started her on one. The patient never bounced back from the severe colitis the agent caused, and she died of complications in the hospital.

Although such reactions with immunotherapy are uncommon, less serious problems caused by the agents can still have a major impact on a person’s quality of life. Low-grade diarrhea, for instance, may not sound too bad, but in a patient’s daily life, it can translate to six or more episodes a day.

Even with no side effects, prescribing immunotherapy can mean that patients with limited time left spend a good portion of it at an infusion clinic instead of at home. These patients are also less likely to be referred to hospice and more likely to be admitted to and die in the hospital.

And with treatments that can cost $20,000 per dose, financial toxicity becomes a big concern.

In short, some of the reasons why chemotherapy is not recommended at the end of life also apply to immunotherapy, Dr. Petrillo said.
 

 

 

Prescribing Decisions

Recent research highlights the growing use of immunotherapy at the end of life.

Dr. Khan’s retrospective study found, for instance, that the percentage of patients starting immunotherapy in the last 30 days of life increased by about fourfold to fivefold over the study period for the three cancers analyzed — stage IV melanoma, lung, and kidney cancers.

Among the population that died within 30 days, the percentage receiving immunotherapy increased over the study periods — 0.8%-4.3% for melanoma, 0.9%-3.2% for NSCLC, and 0.5%-2.6% for kidney cell carcinoma — prompting the conclusion that immunotherapy prescriptions in the last month of life are on the rise.

Prescribing immunotherapy in patients who ultimately died within 1 month occurred more frequently at low-volume, nonacademic centers than at academic or high-volume centers, and outcomes varied by practice setting.

Patients had better survival outcomes overall when receiving immunotherapy at academic or high-volume centers — a finding Dr. Khan said is worth investigating further. Possible explanations include better management of severe immune-related side effects at larger centers and more caution when prescribing immunotherapy to “borderline” candidates, such as those with several comorbidities.

Importantly, given the retrospective design, Dr. Khan and colleagues already knew which patients prescribed immunotherapy died within 30 days of initiating treatment.

More specifically, 5192 of 71,204 patients who received immunotherapy (7.3%) died within a month of initiating therapy, while 66,012 (92.7%) lived beyond that point.

The study, however, did not assess how the remaining 92.7% who lived beyond 30 days fared on immunotherapy and the differences between those who lived less than 30 days and those who survived longer.

Knowing the outcome of patients at the outset of the analysis still leaves open the question of when immunotherapy can extend life and when it can’t for the patient in front of you.

To avoid overtreating at the end of life, it’s important to have “the same standard that you have for giving chemotherapy. You have to treat it with the same respect,” said Moshe Chasky, MD, a community medical oncologist with Alliance Cancer Specialists in Philadelphia, Pennsylvania. “You can’t just be throwing” immunotherapy around “at the end of life.”

While there are no clear predictors of risk and benefit, there are some factors to help guide decisions.

As with chemotherapy, Dr. Petrillo said performance status is key. Dr. Petrillo and colleagues found that median overall survival with immune checkpoint inhibitors for advanced non–small cell lung cancer was 14.3 months in patients with an Eastern Cooperative Oncology Group performance score of 0-1 but only 4.5 months with scores of ≥ 2.

Dr. Khan also found that immunotherapy survival is, unsurprisingly, worse in patients with high metastatic burdens and more comorbidities.

“You should still consider immunotherapy for metastatic melanoma, non–small cell lung cancer, and renal cell carcinoma,” Dr. Khan said. The message here is to “think twice before using” it, especially in comorbid patients with widespread metastases.

“Just because something can be done doesn’t always mean it should be done,” he said.

At Yale, when Dr. Khan works, immunotherapy decisions are considered by a multidisciplinary tumor board. At Mass General, immunotherapy has generally moved to the frontline setting, and the hospital no longer prescribes checkpoint inhibitors to hospitalized patients because the cost is too high relative to the potential benefit, Dr. Petrillo explained.

Still, with all the uncertainties about risk and benefit, counseling patients is a challenge. Dr. Dizon called it “the epitome of shared decision-making.”

Dr. Petrillo noted that it’s critical not to counsel patients based solely on the anecdotal patients who do surprisingly well.

“It’s hard to mention that and not have that be what somebody anchors on,” she said. But that speaks to “how desperate people can feel, how hopeful they can be.”

Dr. Khan, Dr. Petrillo, and Dr. Chasky all reported no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Last 30 Days: How Oncologists’ Choices Affect End-of-Life Cancer Care

Article Type
Changed
Wed, 08/07/2024 - 04:48

 

TOPLINE:

Oncologists show significant variability in prescribing systemic cancer therapies in the last 30 days of life. Patients treated by oncologists in the top quartile for end-of-life prescribing behavior were almost four and a half times more likely to receive end-of-life therapy than those treated by these specialists in the bottom quartile.

METHODOLOGY:

  • Researchers analyzed data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database, focusing on patients who died of cancer between 2012 and 2017.
  • A total of 17,609 patients with breast, lung, colorectal, or prostate cancer were included, treated by 960 oncologists across 388 practices.
  • Patients were required to have had at least one systemic cancer therapy claim in the last 180 days of life, with the treating oncologist identified on the basis of the therapy claim closest to the time of death.
  • The study used multilevel models to estimate oncologists’ rates of providing cancer therapy in the last 30 days of life, adjusting for patient characteristics and practice variation.
  • Functional status was assessed on the basis of paid claims for durable medical equipment in the last 60 months of life, with scores categorized as 0, 1, ≥ 2, or unknown.

TAKEAWAY:

  • Oncologists in the 95th percentile for high end-of-life prescribing behavior had a 45% adjusted rate of treating patients in the last 30 days of life, compared with 17% among those in the 5th percentile.
  • Patients treated by high end-of-life prescribing oncologists had over four times higher odds of receiving systemic therapy in the last 30 days of life (odds ratio [OR], 4.42; 95% CI, 4.00-4.89).
  • Higher end-of-life prescribing oncologists also had a higher proportion of patients hospitalized in the last 30 days of life than low prescribers (58% vs 51.9%).
  • No significant association was found between oncologist prescribing behavior and patient race or ethnicity, except for Black patients who had lower odds of receiving treatment (OR, 0.77; P < .001).

IN PRACTICE:

“Given calls to rein in overutilization of end-of-life six to eight cancer therapies, our findings highlight an underappreciated area for further research: How treatment discontinuation before death is shaped by oncologists’ unique treatment propensities. Elucidating the reasons for this remarkable variability in oncologist treatment behavior could inform efforts to reduce end-of-life cancer treatment overutilization,” wrote the authors of the study.

SOURCE:

The study was led by Login S. George, PhD, Institute for Health, Health Care Policy and Aging Research, Rutgers University in New Brunswick, New Jersey. It was published online in Cancer.

LIMITATIONS:

The study’s reliance on SEER-Medicare data may limit the generalizability of the findings to patients with Medicare Advantage, private insurance, or Medicaid, as well as younger patients. The lack of data on patient preferences and other health characteristics could confound the results. The study focused on systemic therapies and may not be generalizable to other treatments such as clinical trial drugs, oral therapies, surgery, or radiation. The data from 2012 to 2017 may not reflect more recent trends in cancer treatment.

DISCLOSURES:

The study was supported by grants from the National Cancer Institute and the Rutgers Cancer Institute of New Jersey. George disclosed receiving grants from these organizations. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Oncologists show significant variability in prescribing systemic cancer therapies in the last 30 days of life. Patients treated by oncologists in the top quartile for end-of-life prescribing behavior were almost four and a half times more likely to receive end-of-life therapy than those treated by these specialists in the bottom quartile.

METHODOLOGY:

  • Researchers analyzed data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database, focusing on patients who died of cancer between 2012 and 2017.
  • A total of 17,609 patients with breast, lung, colorectal, or prostate cancer were included, treated by 960 oncologists across 388 practices.
  • Patients were required to have had at least one systemic cancer therapy claim in the last 180 days of life, with the treating oncologist identified on the basis of the therapy claim closest to the time of death.
  • The study used multilevel models to estimate oncologists’ rates of providing cancer therapy in the last 30 days of life, adjusting for patient characteristics and practice variation.
  • Functional status was assessed on the basis of paid claims for durable medical equipment in the last 60 months of life, with scores categorized as 0, 1, ≥ 2, or unknown.

TAKEAWAY:

  • Oncologists in the 95th percentile for high end-of-life prescribing behavior had a 45% adjusted rate of treating patients in the last 30 days of life, compared with 17% among those in the 5th percentile.
  • Patients treated by high end-of-life prescribing oncologists had over four times higher odds of receiving systemic therapy in the last 30 days of life (odds ratio [OR], 4.42; 95% CI, 4.00-4.89).
  • Higher end-of-life prescribing oncologists also had a higher proportion of patients hospitalized in the last 30 days of life than low prescribers (58% vs 51.9%).
  • No significant association was found between oncologist prescribing behavior and patient race or ethnicity, except for Black patients who had lower odds of receiving treatment (OR, 0.77; P < .001).

IN PRACTICE:

“Given calls to rein in overutilization of end-of-life six to eight cancer therapies, our findings highlight an underappreciated area for further research: How treatment discontinuation before death is shaped by oncologists’ unique treatment propensities. Elucidating the reasons for this remarkable variability in oncologist treatment behavior could inform efforts to reduce end-of-life cancer treatment overutilization,” wrote the authors of the study.

SOURCE:

The study was led by Login S. George, PhD, Institute for Health, Health Care Policy and Aging Research, Rutgers University in New Brunswick, New Jersey. It was published online in Cancer.

LIMITATIONS:

The study’s reliance on SEER-Medicare data may limit the generalizability of the findings to patients with Medicare Advantage, private insurance, or Medicaid, as well as younger patients. The lack of data on patient preferences and other health characteristics could confound the results. The study focused on systemic therapies and may not be generalizable to other treatments such as clinical trial drugs, oral therapies, surgery, or radiation. The data from 2012 to 2017 may not reflect more recent trends in cancer treatment.

DISCLOSURES:

The study was supported by grants from the National Cancer Institute and the Rutgers Cancer Institute of New Jersey. George disclosed receiving grants from these organizations. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Oncologists show significant variability in prescribing systemic cancer therapies in the last 30 days of life. Patients treated by oncologists in the top quartile for end-of-life prescribing behavior were almost four and a half times more likely to receive end-of-life therapy than those treated by these specialists in the bottom quartile.

METHODOLOGY:

  • Researchers analyzed data from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database, focusing on patients who died of cancer between 2012 and 2017.
  • A total of 17,609 patients with breast, lung, colorectal, or prostate cancer were included, treated by 960 oncologists across 388 practices.
  • Patients were required to have had at least one systemic cancer therapy claim in the last 180 days of life, with the treating oncologist identified on the basis of the therapy claim closest to the time of death.
  • The study used multilevel models to estimate oncologists’ rates of providing cancer therapy in the last 30 days of life, adjusting for patient characteristics and practice variation.
  • Functional status was assessed on the basis of paid claims for durable medical equipment in the last 60 months of life, with scores categorized as 0, 1, ≥ 2, or unknown.

TAKEAWAY:

  • Oncologists in the 95th percentile for high end-of-life prescribing behavior had a 45% adjusted rate of treating patients in the last 30 days of life, compared with 17% among those in the 5th percentile.
  • Patients treated by high end-of-life prescribing oncologists had over four times higher odds of receiving systemic therapy in the last 30 days of life (odds ratio [OR], 4.42; 95% CI, 4.00-4.89).
  • Higher end-of-life prescribing oncologists also had a higher proportion of patients hospitalized in the last 30 days of life than low prescribers (58% vs 51.9%).
  • No significant association was found between oncologist prescribing behavior and patient race or ethnicity, except for Black patients who had lower odds of receiving treatment (OR, 0.77; P < .001).

IN PRACTICE:

“Given calls to rein in overutilization of end-of-life six to eight cancer therapies, our findings highlight an underappreciated area for further research: How treatment discontinuation before death is shaped by oncologists’ unique treatment propensities. Elucidating the reasons for this remarkable variability in oncologist treatment behavior could inform efforts to reduce end-of-life cancer treatment overutilization,” wrote the authors of the study.

SOURCE:

The study was led by Login S. George, PhD, Institute for Health, Health Care Policy and Aging Research, Rutgers University in New Brunswick, New Jersey. It was published online in Cancer.

LIMITATIONS:

The study’s reliance on SEER-Medicare data may limit the generalizability of the findings to patients with Medicare Advantage, private insurance, or Medicaid, as well as younger patients. The lack of data on patient preferences and other health characteristics could confound the results. The study focused on systemic therapies and may not be generalizable to other treatments such as clinical trial drugs, oral therapies, surgery, or radiation. The data from 2012 to 2017 may not reflect more recent trends in cancer treatment.

DISCLOSURES:

The study was supported by grants from the National Cancer Institute and the Rutgers Cancer Institute of New Jersey. George disclosed receiving grants from these organizations. Additional disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article