LayerRx Mapping ID
951
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Forensiq API riskScore
80
Allow Teaser Image
Medscape Lead Concept
1551

Are Food Emulsifiers Associated With Increased Cancer Risk?

Article Type
Changed
Fri, 02/23/2024 - 13:55

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Democratic Lawmakers Press Pfizer on Chemotherapy Drug Shortages

Article Type
Changed
Thu, 02/22/2024 - 17:57

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

Publications
Topics
Sections

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Unleashing Our Immune Response to Quash Cancer

Article Type
Changed
Wed, 02/21/2024 - 21:08

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Measurable residual disease–guided therapy promising for CLL

Article Type
Changed
Tue, 12/12/2023 - 16:46

— In untreated chronic lymphocytic leukemia (CLL), patients who received ibrutinib plus venetoclax for a duration determined by disease characteristics rather than a fixed schedule had significantly better progression-free and overall survival compared with conventional chemoimmunotherapy, a new phase-3 analysis shows.

The targeted therapy combination was also associated with better progression-free survival among patients with CLL with worse prognostic features, including immunoglobulin heavy chain variable (IGHV) unmutated disease and cytogenetic abnormalities, such as the 11q deletion, trisomy 12, and 13q deletion.

Personalizing treatment duration of ibrutinib-venetoclax, as determined by measurable residual disease (MRD), allowed more than half of patients assigned to the combination therapy to stop therapy by 3 years because they had achieved MRD negativity, reported Peter Hillmen, MBChB, PhD, from the Leeds Institute of Medical Research at St James’s University Hospital in Leeds, United Kingdom.

The shorter course of therapy could help to ameliorate toxicities and lower the risk for the development of drug-resistant disease, he said.

“This is the first trial to show that an MRD-guided approach with treatment beyond [MRD] negativity has a significant advantage over chemoimmunotherapy, both in terms of [progression-free] and overall survival. Over 90% of patients achieve an MRD-negative in this combination in the peripheral blood,” said Dr. Hillmen in a media briefing prior to his presentation of the data in an oral abstract session here at the American Society of Hematology annual meeting.

The study results were also published online in The New England Journal of Medicine to coincide with the presentation.

Adaptive Trial

The FLAIR study is a phase 3 open-label platform trial that initially compared ibrutinib-rituximab with fludarabine-cyclophosphamide-rituximab (FCR) in patients with untreated CLL. However, in 2017 the trial was adapted to include both an ibrutinib monotherapy and an ibrutinib-venetoclax arm with therapy duration determined by MRD.

At ASH 2023, Dr. Hillmen presented data from an interim analysis of 523 patients comparing ibrutinib-venetoclax with FCR. 

In the ibrutinib-venetoclax group, patients received oral ibrutinib 420 mg daily, with venetoclax added after 2 months, beginning with a 20-mg dose ramped up to 400 mg in a weekly dose-escalation schedule. The combination could be given for 2-6 years, depending on MRD responses. FCR was delivered in up to six cycles of 28 days each. Two thirds of patients assigned to FCR completed all six cycles.

After a median follow-up of 43.7 months, 12 patients (4.6%) randomly assigned to ibrutinib-venetoclax had disease progression or died compared with 75 patients (28.5%) assigned to FCR. The estimated 3-year progression-free survival with ibrutinib-venetoclax was 97.2%, compared with 76.8% with FCR, translating into a hazard ratio (HR) for progression or death with the targeted therapy combination of 0.13 (P <.001).

Among patients with unmutated IGHV, the combination led to improved progression-free survival compared with FCR (hazard ratio [HR] for progression or death, 0.07); for patients with mutated IGHV, however, the combination did not improve progression-free survival (HR, 0.54; 95% CI, 0.21-1.38).

In all, eight patients (3.5%) assigned to ibrutinib-venetoclax and 23 assigned to FCR (9.5%) died. 

The 3-year overall survival rates were 98% in the targeted therapy group vs 93% in the FCR group (HR for progression or death, 0.31). 

At 2 years, 52.4% of patients assigned to ibrutinib-venetoclax had undetectable MRD in bone marrow compared with 49.8% with FCR. At 5 years, the respective percentages for MRD in bone marrow were 65.9% vs 49.8% and 92.7% vs 67.9% for MRD in peripheral blood.

The safety analysis showed higher rates of blood and lymphatic system disorders with FCR, whereas cardiac, metabolic/nutrition disorders, and eye disorders occurred more frequent with ibrutinib-venetoclax.

A total of 24 secondary cancers were diagnosed in 17 patients randomly assigned to ibrutinib-venetoclax and 45 secondary cancers among 34 patients randomly assigned to FCR. One patient assigned to ibrutinib-venetoclax developed myelodysplastic syndrome/acute myeloid leukemia (AML), as did eight patients assigned to FCR. One patient in the ibrutinib-venetoclax arm and four patients in the FCR arm had Richter’s transformation.

The incidence rate for other cancers was 2.6 per 100 person-years with ibrutinib-venetoclax compared with 5.4 per 100 person-years with FCR.

The most frequently occurring cancers in each arm were basal cell or squamous cell carcinomas. The incidence of myelodysplastic syndromes, AML lymphoma, and prostate/urologic cancers was higher among patients on FCR.

This research “unequivocally shows the superiority of targeted therapy over traditional cytotoxic chemotherapy,” commented briefing moderator Mikkael A. Sekeres, MD, from the University of Miami Miller School of Medicine.

The ibrutinib-venetoclax combination has the potential to reduce the incidence of myelodysplastic syndromes secondary to CLL therapy, Dr. Sekeres suggested.

“As someone who specializes in leukemia and myelodysplastic syndromes, I have the feeling I won’t be seeing these CLL patients in my clinic — years after being treated for CLL — much longer,” he said.

In an interview with this news organization, Lee Greenberger, PhD, said that “I think that duration-adapted therapy is a great story. Using MRD negativity is a perfectly justified way, I think, to go about a new combination that’s going to be really potent for CLL patients and probably give them many years of treatment and then to get off the drug, because ultimately the goal is to get cures.”

This combination, though highly efficacious, is unlikely to be curative; however, because even when MRD is undetectable, “it will come back,” said Dr. Greenberger, chief scientific officer for the Leukemia & Lymphoma Society.

Dr. Greenberger added that MRD testing of bone marrow, which provides a more detailed picture of MRD status than testing of peripheral blood, is feasible in academic medical centers but may be a barrier to MRD-adapted therapy in community oncology practices.

The FLAIR study is supported by grants from Cancer Research UK, Janssen, Pharmacyclics, and AbbVie. Dr. Hillmen disclosed employment and equity participation with Apellis Pharmaceuticals. Dr. Sekeres disclosed board activities for Geron, Novartis, and Bristol-Myers Squibb and owner of stock options Kurome. Dr. Greenberger reported no relevant financial disclosures.

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— In untreated chronic lymphocytic leukemia (CLL), patients who received ibrutinib plus venetoclax for a duration determined by disease characteristics rather than a fixed schedule had significantly better progression-free and overall survival compared with conventional chemoimmunotherapy, a new phase-3 analysis shows.

The targeted therapy combination was also associated with better progression-free survival among patients with CLL with worse prognostic features, including immunoglobulin heavy chain variable (IGHV) unmutated disease and cytogenetic abnormalities, such as the 11q deletion, trisomy 12, and 13q deletion.

Personalizing treatment duration of ibrutinib-venetoclax, as determined by measurable residual disease (MRD), allowed more than half of patients assigned to the combination therapy to stop therapy by 3 years because they had achieved MRD negativity, reported Peter Hillmen, MBChB, PhD, from the Leeds Institute of Medical Research at St James’s University Hospital in Leeds, United Kingdom.

The shorter course of therapy could help to ameliorate toxicities and lower the risk for the development of drug-resistant disease, he said.

“This is the first trial to show that an MRD-guided approach with treatment beyond [MRD] negativity has a significant advantage over chemoimmunotherapy, both in terms of [progression-free] and overall survival. Over 90% of patients achieve an MRD-negative in this combination in the peripheral blood,” said Dr. Hillmen in a media briefing prior to his presentation of the data in an oral abstract session here at the American Society of Hematology annual meeting.

The study results were also published online in The New England Journal of Medicine to coincide with the presentation.

Adaptive Trial

The FLAIR study is a phase 3 open-label platform trial that initially compared ibrutinib-rituximab with fludarabine-cyclophosphamide-rituximab (FCR) in patients with untreated CLL. However, in 2017 the trial was adapted to include both an ibrutinib monotherapy and an ibrutinib-venetoclax arm with therapy duration determined by MRD.

At ASH 2023, Dr. Hillmen presented data from an interim analysis of 523 patients comparing ibrutinib-venetoclax with FCR. 

In the ibrutinib-venetoclax group, patients received oral ibrutinib 420 mg daily, with venetoclax added after 2 months, beginning with a 20-mg dose ramped up to 400 mg in a weekly dose-escalation schedule. The combination could be given for 2-6 years, depending on MRD responses. FCR was delivered in up to six cycles of 28 days each. Two thirds of patients assigned to FCR completed all six cycles.

After a median follow-up of 43.7 months, 12 patients (4.6%) randomly assigned to ibrutinib-venetoclax had disease progression or died compared with 75 patients (28.5%) assigned to FCR. The estimated 3-year progression-free survival with ibrutinib-venetoclax was 97.2%, compared with 76.8% with FCR, translating into a hazard ratio (HR) for progression or death with the targeted therapy combination of 0.13 (P <.001).

Among patients with unmutated IGHV, the combination led to improved progression-free survival compared with FCR (hazard ratio [HR] for progression or death, 0.07); for patients with mutated IGHV, however, the combination did not improve progression-free survival (HR, 0.54; 95% CI, 0.21-1.38).

In all, eight patients (3.5%) assigned to ibrutinib-venetoclax and 23 assigned to FCR (9.5%) died. 

The 3-year overall survival rates were 98% in the targeted therapy group vs 93% in the FCR group (HR for progression or death, 0.31). 

At 2 years, 52.4% of patients assigned to ibrutinib-venetoclax had undetectable MRD in bone marrow compared with 49.8% with FCR. At 5 years, the respective percentages for MRD in bone marrow were 65.9% vs 49.8% and 92.7% vs 67.9% for MRD in peripheral blood.

The safety analysis showed higher rates of blood and lymphatic system disorders with FCR, whereas cardiac, metabolic/nutrition disorders, and eye disorders occurred more frequent with ibrutinib-venetoclax.

A total of 24 secondary cancers were diagnosed in 17 patients randomly assigned to ibrutinib-venetoclax and 45 secondary cancers among 34 patients randomly assigned to FCR. One patient assigned to ibrutinib-venetoclax developed myelodysplastic syndrome/acute myeloid leukemia (AML), as did eight patients assigned to FCR. One patient in the ibrutinib-venetoclax arm and four patients in the FCR arm had Richter’s transformation.

The incidence rate for other cancers was 2.6 per 100 person-years with ibrutinib-venetoclax compared with 5.4 per 100 person-years with FCR.

The most frequently occurring cancers in each arm were basal cell or squamous cell carcinomas. The incidence of myelodysplastic syndromes, AML lymphoma, and prostate/urologic cancers was higher among patients on FCR.

This research “unequivocally shows the superiority of targeted therapy over traditional cytotoxic chemotherapy,” commented briefing moderator Mikkael A. Sekeres, MD, from the University of Miami Miller School of Medicine.

The ibrutinib-venetoclax combination has the potential to reduce the incidence of myelodysplastic syndromes secondary to CLL therapy, Dr. Sekeres suggested.

“As someone who specializes in leukemia and myelodysplastic syndromes, I have the feeling I won’t be seeing these CLL patients in my clinic — years after being treated for CLL — much longer,” he said.

In an interview with this news organization, Lee Greenberger, PhD, said that “I think that duration-adapted therapy is a great story. Using MRD negativity is a perfectly justified way, I think, to go about a new combination that’s going to be really potent for CLL patients and probably give them many years of treatment and then to get off the drug, because ultimately the goal is to get cures.”

This combination, though highly efficacious, is unlikely to be curative; however, because even when MRD is undetectable, “it will come back,” said Dr. Greenberger, chief scientific officer for the Leukemia & Lymphoma Society.

Dr. Greenberger added that MRD testing of bone marrow, which provides a more detailed picture of MRD status than testing of peripheral blood, is feasible in academic medical centers but may be a barrier to MRD-adapted therapy in community oncology practices.

The FLAIR study is supported by grants from Cancer Research UK, Janssen, Pharmacyclics, and AbbVie. Dr. Hillmen disclosed employment and equity participation with Apellis Pharmaceuticals. Dr. Sekeres disclosed board activities for Geron, Novartis, and Bristol-Myers Squibb and owner of stock options Kurome. Dr. Greenberger reported no relevant financial disclosures.

A version of this article appeared on Medscape.com.

— In untreated chronic lymphocytic leukemia (CLL), patients who received ibrutinib plus venetoclax for a duration determined by disease characteristics rather than a fixed schedule had significantly better progression-free and overall survival compared with conventional chemoimmunotherapy, a new phase-3 analysis shows.

The targeted therapy combination was also associated with better progression-free survival among patients with CLL with worse prognostic features, including immunoglobulin heavy chain variable (IGHV) unmutated disease and cytogenetic abnormalities, such as the 11q deletion, trisomy 12, and 13q deletion.

Personalizing treatment duration of ibrutinib-venetoclax, as determined by measurable residual disease (MRD), allowed more than half of patients assigned to the combination therapy to stop therapy by 3 years because they had achieved MRD negativity, reported Peter Hillmen, MBChB, PhD, from the Leeds Institute of Medical Research at St James’s University Hospital in Leeds, United Kingdom.

The shorter course of therapy could help to ameliorate toxicities and lower the risk for the development of drug-resistant disease, he said.

“This is the first trial to show that an MRD-guided approach with treatment beyond [MRD] negativity has a significant advantage over chemoimmunotherapy, both in terms of [progression-free] and overall survival. Over 90% of patients achieve an MRD-negative in this combination in the peripheral blood,” said Dr. Hillmen in a media briefing prior to his presentation of the data in an oral abstract session here at the American Society of Hematology annual meeting.

The study results were also published online in The New England Journal of Medicine to coincide with the presentation.

Adaptive Trial

The FLAIR study is a phase 3 open-label platform trial that initially compared ibrutinib-rituximab with fludarabine-cyclophosphamide-rituximab (FCR) in patients with untreated CLL. However, in 2017 the trial was adapted to include both an ibrutinib monotherapy and an ibrutinib-venetoclax arm with therapy duration determined by MRD.

At ASH 2023, Dr. Hillmen presented data from an interim analysis of 523 patients comparing ibrutinib-venetoclax with FCR. 

In the ibrutinib-venetoclax group, patients received oral ibrutinib 420 mg daily, with venetoclax added after 2 months, beginning with a 20-mg dose ramped up to 400 mg in a weekly dose-escalation schedule. The combination could be given for 2-6 years, depending on MRD responses. FCR was delivered in up to six cycles of 28 days each. Two thirds of patients assigned to FCR completed all six cycles.

After a median follow-up of 43.7 months, 12 patients (4.6%) randomly assigned to ibrutinib-venetoclax had disease progression or died compared with 75 patients (28.5%) assigned to FCR. The estimated 3-year progression-free survival with ibrutinib-venetoclax was 97.2%, compared with 76.8% with FCR, translating into a hazard ratio (HR) for progression or death with the targeted therapy combination of 0.13 (P <.001).

Among patients with unmutated IGHV, the combination led to improved progression-free survival compared with FCR (hazard ratio [HR] for progression or death, 0.07); for patients with mutated IGHV, however, the combination did not improve progression-free survival (HR, 0.54; 95% CI, 0.21-1.38).

In all, eight patients (3.5%) assigned to ibrutinib-venetoclax and 23 assigned to FCR (9.5%) died. 

The 3-year overall survival rates were 98% in the targeted therapy group vs 93% in the FCR group (HR for progression or death, 0.31). 

At 2 years, 52.4% of patients assigned to ibrutinib-venetoclax had undetectable MRD in bone marrow compared with 49.8% with FCR. At 5 years, the respective percentages for MRD in bone marrow were 65.9% vs 49.8% and 92.7% vs 67.9% for MRD in peripheral blood.

The safety analysis showed higher rates of blood and lymphatic system disorders with FCR, whereas cardiac, metabolic/nutrition disorders, and eye disorders occurred more frequent with ibrutinib-venetoclax.

A total of 24 secondary cancers were diagnosed in 17 patients randomly assigned to ibrutinib-venetoclax and 45 secondary cancers among 34 patients randomly assigned to FCR. One patient assigned to ibrutinib-venetoclax developed myelodysplastic syndrome/acute myeloid leukemia (AML), as did eight patients assigned to FCR. One patient in the ibrutinib-venetoclax arm and four patients in the FCR arm had Richter’s transformation.

The incidence rate for other cancers was 2.6 per 100 person-years with ibrutinib-venetoclax compared with 5.4 per 100 person-years with FCR.

The most frequently occurring cancers in each arm were basal cell or squamous cell carcinomas. The incidence of myelodysplastic syndromes, AML lymphoma, and prostate/urologic cancers was higher among patients on FCR.

This research “unequivocally shows the superiority of targeted therapy over traditional cytotoxic chemotherapy,” commented briefing moderator Mikkael A. Sekeres, MD, from the University of Miami Miller School of Medicine.

The ibrutinib-venetoclax combination has the potential to reduce the incidence of myelodysplastic syndromes secondary to CLL therapy, Dr. Sekeres suggested.

“As someone who specializes in leukemia and myelodysplastic syndromes, I have the feeling I won’t be seeing these CLL patients in my clinic — years after being treated for CLL — much longer,” he said.

In an interview with this news organization, Lee Greenberger, PhD, said that “I think that duration-adapted therapy is a great story. Using MRD negativity is a perfectly justified way, I think, to go about a new combination that’s going to be really potent for CLL patients and probably give them many years of treatment and then to get off the drug, because ultimately the goal is to get cures.”

This combination, though highly efficacious, is unlikely to be curative; however, because even when MRD is undetectable, “it will come back,” said Dr. Greenberger, chief scientific officer for the Leukemia & Lymphoma Society.

Dr. Greenberger added that MRD testing of bone marrow, which provides a more detailed picture of MRD status than testing of peripheral blood, is feasible in academic medical centers but may be a barrier to MRD-adapted therapy in community oncology practices.

The FLAIR study is supported by grants from Cancer Research UK, Janssen, Pharmacyclics, and AbbVie. Dr. Hillmen disclosed employment and equity participation with Apellis Pharmaceuticals. Dr. Sekeres disclosed board activities for Geron, Novartis, and Bristol-Myers Squibb and owner of stock options Kurome. Dr. Greenberger reported no relevant financial disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ASH 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA approves pirtobrutinib for previously treated CLL/SLL

Article Type
Changed
Tue, 12/05/2023 - 21:33

The US Food and Drug Administration (FDA) has granted accelerated approval to pirtobrutinib (Jaypirca; Eli Lilly and Company) for third-line or later treatment in adults with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) who previously received a Bruton tyrosine kinase (BTK) inhibitor and a BCL-2 inhibitor.

The agent was initially approved in January 2023 for patients with mantle cell lymphoma who had previously received a BTK inhibitor.

Like the mantle cell approval, the CLL/SLL approval was based on findings from the open-label, single-arm, phase 1/2 BRUIN study that included adults with at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor.

The trial included 108 patients with either CLL or SLL. Overall, patients demonstrated an overall response rate of 72%, all of which were partial responses, and median duration of response of 12.2 months.

Before starting pirtobrutinib, 77% of patients with CLL or SLL had discontinued their last BTK inhibitor for refractory or progressive disease.

“Once patients with CLL or SLL have progressed on covalent BTK inhibitor and BCL-2 inhibitor therapies, treatments are limited and outcomes can be poor, making the approval of Jaypirca a meaningful advance and much-needed new treatment option for these patients,” William G. Wierda, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, said in an Eli Lilly press release

Treatment during the study included the recommended dose of 200 mg given orally once daily until disease progression or unacceptable toxicity. Common adverse reactions that occurred in at least 20% of patients included fatigue, bruising, cough, musculoskeletal pain, COVID-19, diarrhea, pneumonia, abdominal pain, dyspnea, hemorrhage, edema, nausea, pyrexia, and headache. Grade 3 or 4 laboratory abnormalities occurring in more than 10% of patients included decreased neutrophil counts, anemia, and decreased platelet counts.

Serious infections occurred in 32% of patients, including fatal infections in 10% of patients. The prescribing information for pirtobrutinib includes warnings about infections, hemorrhage, cytopenias, cardiac arrhythmias, and secondary primary malignancies.

A version of this article first appeared on Medscape.com.

 

 

Publications
Topics
Sections

The US Food and Drug Administration (FDA) has granted accelerated approval to pirtobrutinib (Jaypirca; Eli Lilly and Company) for third-line or later treatment in adults with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) who previously received a Bruton tyrosine kinase (BTK) inhibitor and a BCL-2 inhibitor.

The agent was initially approved in January 2023 for patients with mantle cell lymphoma who had previously received a BTK inhibitor.

Like the mantle cell approval, the CLL/SLL approval was based on findings from the open-label, single-arm, phase 1/2 BRUIN study that included adults with at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor.

The trial included 108 patients with either CLL or SLL. Overall, patients demonstrated an overall response rate of 72%, all of which were partial responses, and median duration of response of 12.2 months.

Before starting pirtobrutinib, 77% of patients with CLL or SLL had discontinued their last BTK inhibitor for refractory or progressive disease.

“Once patients with CLL or SLL have progressed on covalent BTK inhibitor and BCL-2 inhibitor therapies, treatments are limited and outcomes can be poor, making the approval of Jaypirca a meaningful advance and much-needed new treatment option for these patients,” William G. Wierda, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, said in an Eli Lilly press release

Treatment during the study included the recommended dose of 200 mg given orally once daily until disease progression or unacceptable toxicity. Common adverse reactions that occurred in at least 20% of patients included fatigue, bruising, cough, musculoskeletal pain, COVID-19, diarrhea, pneumonia, abdominal pain, dyspnea, hemorrhage, edema, nausea, pyrexia, and headache. Grade 3 or 4 laboratory abnormalities occurring in more than 10% of patients included decreased neutrophil counts, anemia, and decreased platelet counts.

Serious infections occurred in 32% of patients, including fatal infections in 10% of patients. The prescribing information for pirtobrutinib includes warnings about infections, hemorrhage, cytopenias, cardiac arrhythmias, and secondary primary malignancies.

A version of this article first appeared on Medscape.com.

 

 

The US Food and Drug Administration (FDA) has granted accelerated approval to pirtobrutinib (Jaypirca; Eli Lilly and Company) for third-line or later treatment in adults with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) who previously received a Bruton tyrosine kinase (BTK) inhibitor and a BCL-2 inhibitor.

The agent was initially approved in January 2023 for patients with mantle cell lymphoma who had previously received a BTK inhibitor.

Like the mantle cell approval, the CLL/SLL approval was based on findings from the open-label, single-arm, phase 1/2 BRUIN study that included adults with at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor.

The trial included 108 patients with either CLL or SLL. Overall, patients demonstrated an overall response rate of 72%, all of which were partial responses, and median duration of response of 12.2 months.

Before starting pirtobrutinib, 77% of patients with CLL or SLL had discontinued their last BTK inhibitor for refractory or progressive disease.

“Once patients with CLL or SLL have progressed on covalent BTK inhibitor and BCL-2 inhibitor therapies, treatments are limited and outcomes can be poor, making the approval of Jaypirca a meaningful advance and much-needed new treatment option for these patients,” William G. Wierda, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, said in an Eli Lilly press release

Treatment during the study included the recommended dose of 200 mg given orally once daily until disease progression or unacceptable toxicity. Common adverse reactions that occurred in at least 20% of patients included fatigue, bruising, cough, musculoskeletal pain, COVID-19, diarrhea, pneumonia, abdominal pain, dyspnea, hemorrhage, edema, nausea, pyrexia, and headache. Grade 3 or 4 laboratory abnormalities occurring in more than 10% of patients included decreased neutrophil counts, anemia, and decreased platelet counts.

Serious infections occurred in 32% of patients, including fatal infections in 10% of patients. The prescribing information for pirtobrutinib includes warnings about infections, hemorrhage, cytopenias, cardiac arrhythmias, and secondary primary malignancies.

A version of this article first appeared on Medscape.com.

 

 

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA panel voices concerns over 2 lymphoma accelerated approvals

Article Type
Changed
Mon, 11/20/2023 - 13:32

U.S. government advisers expressed discomfort with Acrotech Biopharma’s 2030 target completion date for a study meant to prove the clinical benefits of two lymphoma drugs that the company has been selling for years.

At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.

“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.

Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.

The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.

Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.

Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.

The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.

The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.

For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.

At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.

“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
 

 

 

‘Dangerous precedent’

The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.

For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.

But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.

And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.

“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.

The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.

The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.

Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.

ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.

“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.

Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.

Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.

Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”

Publications
Topics
Sections

U.S. government advisers expressed discomfort with Acrotech Biopharma’s 2030 target completion date for a study meant to prove the clinical benefits of two lymphoma drugs that the company has been selling for years.

At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.

“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.

Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.

The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.

Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.

Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.

The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.

The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.

For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.

At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.

“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
 

 

 

‘Dangerous precedent’

The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.

For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.

But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.

And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.

“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.

The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.

The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.

Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.

ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.

“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.

Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.

Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.

Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”

U.S. government advisers expressed discomfort with Acrotech Biopharma’s 2030 target completion date for a study meant to prove the clinical benefits of two lymphoma drugs that the company has been selling for years.

At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.

“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.

Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.

The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.

Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.

Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.

The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.

The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.

For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.

At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.

“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
 

 

 

‘Dangerous precedent’

The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.

For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.

But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.

And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.

“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.

The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.

The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.

Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.

ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.

“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.

Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.

Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.

Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Study confirms small blood cancer risk from CT scans

Article Type
Changed
Thu, 11/16/2023 - 11:06

New research strengthens the body of evidence demonstrating an increased risk of blood cancer from exposure to low doses of radiation from CT scans. The results suggest that, for every 10,000 children examined with an average low dose of 8 mGy, 1-2 will likely develop a hematologic malignancy related to radiation exposure over the next 12 years.

The findings, published online in Nature Medicine, are based on more than 1.3 million CT scans in nearly 900,000 people younger than 22 years old when scanned.

This study makes a “significant contribution to the understanding of the effects of ionizing radiation, specifically x-rays, on the human body at the levels of radiation exposure encountered in diagnostic CT procedures,” Peter Marsden, PhD, and Jim Thurston, radiation protection experts at Dorset County (England) Hospital, NHS Foundation Trust, said in a press release from the U.K. nonprofit Science Media Centre.

These findings highlight levels of risk that “align with those currently estimated and do not suggest that the use of CT carries a greater risk than previously thought,” Dr. Marsden and Thurston said.

Exposure to moderate- (≥ 100 mGy) to high-dose (≥ 1 Gy) ionizing radiation is a well-established risk factor for leukemia in both children and adults. However, the risk associated with low-dose exposure (< 100 mGy) typically associated with diagnostic CT exams in children and teens remains unclear.

The current study, coordinated by the International Agency for Research on Cancer, aimed to improve direct estimates of cancer risk from low-dose radiation exposure from CT scans performed in childhood and adolescence. The researchers estimated radiation doses to the active bone marrow based on body part scanned, patient characteristics, time period, and inferred CT technical parameters.

A total of 790 hematologic malignancies, including lymphoid and myeloid malignancies, were identified during follow-up. More than half (51%) of the cases were diagnosed in people under age 20 and 88.5% were diagnosed in people under age 30 years.

Overall, the observational study found a nearly twofold excess risk of all hematologic malignancies per 100 mGy in children, adolescents, and young adults, with similar risk estimates observed for lymphoid and myeloid cancers. The excess relative risk for hematologic malignancies increased as the number of CT exams increased – with risk rising by 43% per exam.

The results of this study “strengthen the findings from previous low-dose studies of a consistent and robust dose-related increased risk of radiation-induced hematological malignancies” and highlight the importance of optimizing doses in this patient population, study author Elisabeth Cardis, PhD, with the Barcelona Institute for Global Health, and colleagues concluded.

Sarah McQuaid, PhD, chair of the nuclear medicine special interest group, Institute of Physics and Engineering in Medicine, York, England, agreed.

“This publication indicates that there could be a small cancer risk from CT scans in young people, but it is important for this to be viewed in the context of the substantial benefit these scans bring, due to the important diagnostic information they provide,” Dr. McQuaid said in the press release. Overall, “the number of patients whose medical care will have been improved from these CT scans will have been very high, and lives undoubtedly saved as a result.”

The study had no commercial funding. The authors and outside experts reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

New research strengthens the body of evidence demonstrating an increased risk of blood cancer from exposure to low doses of radiation from CT scans. The results suggest that, for every 10,000 children examined with an average low dose of 8 mGy, 1-2 will likely develop a hematologic malignancy related to radiation exposure over the next 12 years.

The findings, published online in Nature Medicine, are based on more than 1.3 million CT scans in nearly 900,000 people younger than 22 years old when scanned.

This study makes a “significant contribution to the understanding of the effects of ionizing radiation, specifically x-rays, on the human body at the levels of radiation exposure encountered in diagnostic CT procedures,” Peter Marsden, PhD, and Jim Thurston, radiation protection experts at Dorset County (England) Hospital, NHS Foundation Trust, said in a press release from the U.K. nonprofit Science Media Centre.

These findings highlight levels of risk that “align with those currently estimated and do not suggest that the use of CT carries a greater risk than previously thought,” Dr. Marsden and Thurston said.

Exposure to moderate- (≥ 100 mGy) to high-dose (≥ 1 Gy) ionizing radiation is a well-established risk factor for leukemia in both children and adults. However, the risk associated with low-dose exposure (< 100 mGy) typically associated with diagnostic CT exams in children and teens remains unclear.

The current study, coordinated by the International Agency for Research on Cancer, aimed to improve direct estimates of cancer risk from low-dose radiation exposure from CT scans performed in childhood and adolescence. The researchers estimated radiation doses to the active bone marrow based on body part scanned, patient characteristics, time period, and inferred CT technical parameters.

A total of 790 hematologic malignancies, including lymphoid and myeloid malignancies, were identified during follow-up. More than half (51%) of the cases were diagnosed in people under age 20 and 88.5% were diagnosed in people under age 30 years.

Overall, the observational study found a nearly twofold excess risk of all hematologic malignancies per 100 mGy in children, adolescents, and young adults, with similar risk estimates observed for lymphoid and myeloid cancers. The excess relative risk for hematologic malignancies increased as the number of CT exams increased – with risk rising by 43% per exam.

The results of this study “strengthen the findings from previous low-dose studies of a consistent and robust dose-related increased risk of radiation-induced hematological malignancies” and highlight the importance of optimizing doses in this patient population, study author Elisabeth Cardis, PhD, with the Barcelona Institute for Global Health, and colleagues concluded.

Sarah McQuaid, PhD, chair of the nuclear medicine special interest group, Institute of Physics and Engineering in Medicine, York, England, agreed.

“This publication indicates that there could be a small cancer risk from CT scans in young people, but it is important for this to be viewed in the context of the substantial benefit these scans bring, due to the important diagnostic information they provide,” Dr. McQuaid said in the press release. Overall, “the number of patients whose medical care will have been improved from these CT scans will have been very high, and lives undoubtedly saved as a result.”

The study had no commercial funding. The authors and outside experts reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

New research strengthens the body of evidence demonstrating an increased risk of blood cancer from exposure to low doses of radiation from CT scans. The results suggest that, for every 10,000 children examined with an average low dose of 8 mGy, 1-2 will likely develop a hematologic malignancy related to radiation exposure over the next 12 years.

The findings, published online in Nature Medicine, are based on more than 1.3 million CT scans in nearly 900,000 people younger than 22 years old when scanned.

This study makes a “significant contribution to the understanding of the effects of ionizing radiation, specifically x-rays, on the human body at the levels of radiation exposure encountered in diagnostic CT procedures,” Peter Marsden, PhD, and Jim Thurston, radiation protection experts at Dorset County (England) Hospital, NHS Foundation Trust, said in a press release from the U.K. nonprofit Science Media Centre.

These findings highlight levels of risk that “align with those currently estimated and do not suggest that the use of CT carries a greater risk than previously thought,” Dr. Marsden and Thurston said.

Exposure to moderate- (≥ 100 mGy) to high-dose (≥ 1 Gy) ionizing radiation is a well-established risk factor for leukemia in both children and adults. However, the risk associated with low-dose exposure (< 100 mGy) typically associated with diagnostic CT exams in children and teens remains unclear.

The current study, coordinated by the International Agency for Research on Cancer, aimed to improve direct estimates of cancer risk from low-dose radiation exposure from CT scans performed in childhood and adolescence. The researchers estimated radiation doses to the active bone marrow based on body part scanned, patient characteristics, time period, and inferred CT technical parameters.

A total of 790 hematologic malignancies, including lymphoid and myeloid malignancies, were identified during follow-up. More than half (51%) of the cases were diagnosed in people under age 20 and 88.5% were diagnosed in people under age 30 years.

Overall, the observational study found a nearly twofold excess risk of all hematologic malignancies per 100 mGy in children, adolescents, and young adults, with similar risk estimates observed for lymphoid and myeloid cancers. The excess relative risk for hematologic malignancies increased as the number of CT exams increased – with risk rising by 43% per exam.

The results of this study “strengthen the findings from previous low-dose studies of a consistent and robust dose-related increased risk of radiation-induced hematological malignancies” and highlight the importance of optimizing doses in this patient population, study author Elisabeth Cardis, PhD, with the Barcelona Institute for Global Health, and colleagues concluded.

Sarah McQuaid, PhD, chair of the nuclear medicine special interest group, Institute of Physics and Engineering in Medicine, York, England, agreed.

“This publication indicates that there could be a small cancer risk from CT scans in young people, but it is important for this to be viewed in the context of the substantial benefit these scans bring, due to the important diagnostic information they provide,” Dr. McQuaid said in the press release. Overall, “the number of patients whose medical care will have been improved from these CT scans will have been very high, and lives undoubtedly saved as a result.”

The study had no commercial funding. The authors and outside experts reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM NATURE MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

‘Promising’ new txs for most common adult leukemia

Article Type
Changed
Fri, 09/08/2023 - 17:49

The rapid rise of chimeric antigen receptor T (CAR T-cell) therapy has allowed hematologists to make great strides in treating aggressive cases of multiple myeloma and several types of lymphoma and leukemia. But patients with chronic lymphocytic leukemia (CLL), the most common leukemia in adults, have been left out.

Now there are encouraging signs that CLL could join the list of blood cancers that can be effectively treated by CAR T therapy. On another front, bispecific antibodies – which just received FDA approval to treat B-cell lymphoma – are being tested as treatments for CLL.

“These are the two immunotherapies that have the most potential right now,” said Ohio State University, Columbus, hematologist Kerry A. Rogers, MD, in an interview. She went on to say that these treatments could be a boon for patients with CLL who don’t respond well to targeted therapy drugs or are so young that those medications may not retain effectiveness throughout the patients’ lifespans.

As the American Cancer Society explains, CAR T therapy is a way to get T cells “to fight cancer by changing them in the lab so they can find and destroy cancer cells.” The cells are then returned to the patient.

As the National Cancer Institute says, “If all goes as planned, the CAR T cells will continue to multiply in the patient’s body and, with guidance from their engineered receptor, recognize and kill any cancer cells that harbor the target antigen on their surfaces.”

According to Dr. Rogers, CAR T therapy is less toxic than stem cell transplantation, a related treatment. That means older people can better tolerate it, including many CLL patients in their late 60s and beyond, she said. (Side effects of CAR T therapy include cytokine release syndrome, nervous system impairment, and weakening of the immune system.)

Thus far, CAR T therapy has been approved by the U.S. Food and Drug Administration to treat lymphomas, some forms of leukemia, and multiple myeloma. “Despite the excitement around these therapies, they lead to long-term survival in fewer than half of the patients treated,” cautions the National Cancer Institute, which also notes their high cost: more than $450,000 in one case.

CAR T therapy is not FDA-approved for CLL. “There are many reasons why CAR T is less effective in patients with CLL versus other lymphomas,” said Lee Greenberger, PhD, chief scientific officer of the Leukemia & Lymphoma Society, in an interview. “For one, many patients with heavily pretreated CLL – prior to any use of CAR T – have mutations that are known to be difficult to treat. Dysfunctional T cells are also common in patients with CLL, and there’s often a lower number of available T-cells to manufacture.”

The results of a phase 1/2 trial released in August 2023 offered new insight about CAR T for CLL. In the open-label trial reported in The Lancet, 117 U.S. patients with CLL or small lymphocytic lymphoma underwent a form of CAR T therapy called lisocabtagene maraleucel after failing treatment with two lines of therapy, including a Bruton´s tyrosine kinase inhibitor. Among 49 patients at a specific dose, “the rate of complete response or remission (including with incomplete marrow recovery) was statistically significant at 18%,” the researchers reported. A total of 51 patients in the entire study died.

The rate of undetectable minimal residual disease blood was 64%. That rate is impressive, said University of Texas MD Anderson Cancer Center leukemia specialist Nitin Jain, MD, in an interview. It’s not nearly as high as researchers have seen in other disease settings, but it’s “a good, good thing for these patients. We’ll have to see in the longer follow-up how these patients fare 2, 3, or 4 years down the line.”

Dr. Rogers, the Ohio physician, said doctors had hoped durable benefit in the Lancet study would be more impressive. An important factor limiting its value may be the aggressiveness of the disease in patients who have already failed several treatments, she said. “The efficacy of CAR T might be improved by giving it as an earlier line of therapy before the CLL has become this aggressive. But it’s difficult to propose that you should use this before a Bruton´s tyrosine kinase inhibitor or venetoclax because it’s expensive and difficult.”

What’s next for CART T research in CLL? Understanding the best timing for treatment will be key, Dr. Rogers said.

The Leukemia & Lymphoma Society’s Dr. Greenberger predicted that “we will begin to see CAR T explored in CLL patients whose disease has a high risk of failing approved agents, such as Bruton´s tyrosine kinase and B cell lymphoma 2 inhibitors. However, CLL patients may still receive prior therapy with more effective Bruton’s tyrosine kinase or B cell lymphoma 2 inhibitors in the future before using CAR T. This will likely be heightened as more Bruton´s tyrosine kinase inhibitors become generic in the next 5 to 10 years and, hopefully, less expensive than CAR T therapy.”

In the big picture, he said, “treatment of CLL with CAR T is possible, but still needs significant improvements if it is to become a mainline therapy in the future.”

CAR T therapy remains available via clinical trials, and Dr. Rogers said it is “currently an important option for patients whose CLL has become resistant to standard targeted agents. We can certainly expect to extend someone’s expected survival by years if they have a favorable response.” She acknowledged that the cost is quite high, but noted that targeted therapies are also expensive, especially over the long term. They can run to $10,000-$20,000 a month. Bispecific antibodies are also being explored as potential therapy for CLL. “They’re really exciting,” Dr. Rogers said, with the potential to spur responses similar to those from CAR T therapy.

A 2022 review described these drugs as “molecules that combine antibody-directed therapies with cellular mediated immunotherapy.” The FDA explains that “by targeting two antigens or epitopes, they can cause multiple physiological or antitumor responses, which may be independent or connected.”

According to Dr. Greenberger, many bispecifics are in clinical trials now. However, “in the context of CLL, actually, the data is actually very, very limited. The development is just starting, and there are phase 1 and phase 2 trials ongoing.”

But data from lymphoma trials are encouraging, he said, and bispecifics “are actually looking as good as CAR T in some settings.”

Regimens can be a challenge for patients taking bispecifics, Dr. Greenberger said. “Repeat dosing with a step-up dosing approach to start is typically required when treating lymphoma.”

On the other hand, Dr. Rogers noted that antibody treatment can be easier for hematologists to arrange than CAR T therapy and stem cell transplants. “From an administrative side, there’s not as many things you need to have set up. So it’s able to be administered in a wider variety of settings,” she said,

Bispecific side effects include cytokine release syndrome and neurotoxicity as well as infusion reactions, Dr. Greenberger said, adding that “I would not exclude cost as a challenge.”

According to Formulary Watch, the bispecific Columvi (glofitamab-gxbm), which recently gained FDA approval to treat diffuse large B-cell lymphoma, is estimated to cost $350,000 for an 8.5-month round of treatment. Reuters reported that the bispecific Talvey (talquetamab-tgvs), which just received FDA approval to treat multiple myeloma, is estimated to cost $270,000-$360,000 for 6-8 months of treatment.

For now, bispecific trials “are mostly now reserved for patients with CLL who become resistant to our current standard targeted agents,” Dr. Rogers said. “It’s a little unclear if you can do CAR T therapy first and then bispecifics, or bispecifics and then CAR T therapy.”

What’s coming next for bispecifics? “On the horizon is better ease of administration, which is already being addressed by subcutaneous dosing for some bispecifics in lymphomas,” Dr. Greenberger said. “There’s also the possibility of combining bispecifics with conventional therapy.”

Dr. Rogers discloses ties with Genentech, AbbVie, Novartis, AstraZeneca, Janssen, Pharmacyclics, Beigene, and LOXO@Lilly. Dr. Greenberger discloses employment with the Leukemia & Lymphoma Society, which supports academic grants and a venture philanthropy via the Therapy Acceleration Program.

Dr. Jain reports ties with Pharmacyclics, AbbVie, Genentech, AstraZeneca, Pfizer, and numerous other disclosures.
 

Publications
Topics
Sections

The rapid rise of chimeric antigen receptor T (CAR T-cell) therapy has allowed hematologists to make great strides in treating aggressive cases of multiple myeloma and several types of lymphoma and leukemia. But patients with chronic lymphocytic leukemia (CLL), the most common leukemia in adults, have been left out.

Now there are encouraging signs that CLL could join the list of blood cancers that can be effectively treated by CAR T therapy. On another front, bispecific antibodies – which just received FDA approval to treat B-cell lymphoma – are being tested as treatments for CLL.

“These are the two immunotherapies that have the most potential right now,” said Ohio State University, Columbus, hematologist Kerry A. Rogers, MD, in an interview. She went on to say that these treatments could be a boon for patients with CLL who don’t respond well to targeted therapy drugs or are so young that those medications may not retain effectiveness throughout the patients’ lifespans.

As the American Cancer Society explains, CAR T therapy is a way to get T cells “to fight cancer by changing them in the lab so they can find and destroy cancer cells.” The cells are then returned to the patient.

As the National Cancer Institute says, “If all goes as planned, the CAR T cells will continue to multiply in the patient’s body and, with guidance from their engineered receptor, recognize and kill any cancer cells that harbor the target antigen on their surfaces.”

According to Dr. Rogers, CAR T therapy is less toxic than stem cell transplantation, a related treatment. That means older people can better tolerate it, including many CLL patients in their late 60s and beyond, she said. (Side effects of CAR T therapy include cytokine release syndrome, nervous system impairment, and weakening of the immune system.)

Thus far, CAR T therapy has been approved by the U.S. Food and Drug Administration to treat lymphomas, some forms of leukemia, and multiple myeloma. “Despite the excitement around these therapies, they lead to long-term survival in fewer than half of the patients treated,” cautions the National Cancer Institute, which also notes their high cost: more than $450,000 in one case.

CAR T therapy is not FDA-approved for CLL. “There are many reasons why CAR T is less effective in patients with CLL versus other lymphomas,” said Lee Greenberger, PhD, chief scientific officer of the Leukemia & Lymphoma Society, in an interview. “For one, many patients with heavily pretreated CLL – prior to any use of CAR T – have mutations that are known to be difficult to treat. Dysfunctional T cells are also common in patients with CLL, and there’s often a lower number of available T-cells to manufacture.”

The results of a phase 1/2 trial released in August 2023 offered new insight about CAR T for CLL. In the open-label trial reported in The Lancet, 117 U.S. patients with CLL or small lymphocytic lymphoma underwent a form of CAR T therapy called lisocabtagene maraleucel after failing treatment with two lines of therapy, including a Bruton´s tyrosine kinase inhibitor. Among 49 patients at a specific dose, “the rate of complete response or remission (including with incomplete marrow recovery) was statistically significant at 18%,” the researchers reported. A total of 51 patients in the entire study died.

The rate of undetectable minimal residual disease blood was 64%. That rate is impressive, said University of Texas MD Anderson Cancer Center leukemia specialist Nitin Jain, MD, in an interview. It’s not nearly as high as researchers have seen in other disease settings, but it’s “a good, good thing for these patients. We’ll have to see in the longer follow-up how these patients fare 2, 3, or 4 years down the line.”

Dr. Rogers, the Ohio physician, said doctors had hoped durable benefit in the Lancet study would be more impressive. An important factor limiting its value may be the aggressiveness of the disease in patients who have already failed several treatments, she said. “The efficacy of CAR T might be improved by giving it as an earlier line of therapy before the CLL has become this aggressive. But it’s difficult to propose that you should use this before a Bruton´s tyrosine kinase inhibitor or venetoclax because it’s expensive and difficult.”

What’s next for CART T research in CLL? Understanding the best timing for treatment will be key, Dr. Rogers said.

The Leukemia & Lymphoma Society’s Dr. Greenberger predicted that “we will begin to see CAR T explored in CLL patients whose disease has a high risk of failing approved agents, such as Bruton´s tyrosine kinase and B cell lymphoma 2 inhibitors. However, CLL patients may still receive prior therapy with more effective Bruton’s tyrosine kinase or B cell lymphoma 2 inhibitors in the future before using CAR T. This will likely be heightened as more Bruton´s tyrosine kinase inhibitors become generic in the next 5 to 10 years and, hopefully, less expensive than CAR T therapy.”

In the big picture, he said, “treatment of CLL with CAR T is possible, but still needs significant improvements if it is to become a mainline therapy in the future.”

CAR T therapy remains available via clinical trials, and Dr. Rogers said it is “currently an important option for patients whose CLL has become resistant to standard targeted agents. We can certainly expect to extend someone’s expected survival by years if they have a favorable response.” She acknowledged that the cost is quite high, but noted that targeted therapies are also expensive, especially over the long term. They can run to $10,000-$20,000 a month. Bispecific antibodies are also being explored as potential therapy for CLL. “They’re really exciting,” Dr. Rogers said, with the potential to spur responses similar to those from CAR T therapy.

A 2022 review described these drugs as “molecules that combine antibody-directed therapies with cellular mediated immunotherapy.” The FDA explains that “by targeting two antigens or epitopes, they can cause multiple physiological or antitumor responses, which may be independent or connected.”

According to Dr. Greenberger, many bispecifics are in clinical trials now. However, “in the context of CLL, actually, the data is actually very, very limited. The development is just starting, and there are phase 1 and phase 2 trials ongoing.”

But data from lymphoma trials are encouraging, he said, and bispecifics “are actually looking as good as CAR T in some settings.”

Regimens can be a challenge for patients taking bispecifics, Dr. Greenberger said. “Repeat dosing with a step-up dosing approach to start is typically required when treating lymphoma.”

On the other hand, Dr. Rogers noted that antibody treatment can be easier for hematologists to arrange than CAR T therapy and stem cell transplants. “From an administrative side, there’s not as many things you need to have set up. So it’s able to be administered in a wider variety of settings,” she said,

Bispecific side effects include cytokine release syndrome and neurotoxicity as well as infusion reactions, Dr. Greenberger said, adding that “I would not exclude cost as a challenge.”

According to Formulary Watch, the bispecific Columvi (glofitamab-gxbm), which recently gained FDA approval to treat diffuse large B-cell lymphoma, is estimated to cost $350,000 for an 8.5-month round of treatment. Reuters reported that the bispecific Talvey (talquetamab-tgvs), which just received FDA approval to treat multiple myeloma, is estimated to cost $270,000-$360,000 for 6-8 months of treatment.

For now, bispecific trials “are mostly now reserved for patients with CLL who become resistant to our current standard targeted agents,” Dr. Rogers said. “It’s a little unclear if you can do CAR T therapy first and then bispecifics, or bispecifics and then CAR T therapy.”

What’s coming next for bispecifics? “On the horizon is better ease of administration, which is already being addressed by subcutaneous dosing for some bispecifics in lymphomas,” Dr. Greenberger said. “There’s also the possibility of combining bispecifics with conventional therapy.”

Dr. Rogers discloses ties with Genentech, AbbVie, Novartis, AstraZeneca, Janssen, Pharmacyclics, Beigene, and LOXO@Lilly. Dr. Greenberger discloses employment with the Leukemia & Lymphoma Society, which supports academic grants and a venture philanthropy via the Therapy Acceleration Program.

Dr. Jain reports ties with Pharmacyclics, AbbVie, Genentech, AstraZeneca, Pfizer, and numerous other disclosures.
 

The rapid rise of chimeric antigen receptor T (CAR T-cell) therapy has allowed hematologists to make great strides in treating aggressive cases of multiple myeloma and several types of lymphoma and leukemia. But patients with chronic lymphocytic leukemia (CLL), the most common leukemia in adults, have been left out.

Now there are encouraging signs that CLL could join the list of blood cancers that can be effectively treated by CAR T therapy. On another front, bispecific antibodies – which just received FDA approval to treat B-cell lymphoma – are being tested as treatments for CLL.

“These are the two immunotherapies that have the most potential right now,” said Ohio State University, Columbus, hematologist Kerry A. Rogers, MD, in an interview. She went on to say that these treatments could be a boon for patients with CLL who don’t respond well to targeted therapy drugs or are so young that those medications may not retain effectiveness throughout the patients’ lifespans.

As the American Cancer Society explains, CAR T therapy is a way to get T cells “to fight cancer by changing them in the lab so they can find and destroy cancer cells.” The cells are then returned to the patient.

As the National Cancer Institute says, “If all goes as planned, the CAR T cells will continue to multiply in the patient’s body and, with guidance from their engineered receptor, recognize and kill any cancer cells that harbor the target antigen on their surfaces.”

According to Dr. Rogers, CAR T therapy is less toxic than stem cell transplantation, a related treatment. That means older people can better tolerate it, including many CLL patients in their late 60s and beyond, she said. (Side effects of CAR T therapy include cytokine release syndrome, nervous system impairment, and weakening of the immune system.)

Thus far, CAR T therapy has been approved by the U.S. Food and Drug Administration to treat lymphomas, some forms of leukemia, and multiple myeloma. “Despite the excitement around these therapies, they lead to long-term survival in fewer than half of the patients treated,” cautions the National Cancer Institute, which also notes their high cost: more than $450,000 in one case.

CAR T therapy is not FDA-approved for CLL. “There are many reasons why CAR T is less effective in patients with CLL versus other lymphomas,” said Lee Greenberger, PhD, chief scientific officer of the Leukemia & Lymphoma Society, in an interview. “For one, many patients with heavily pretreated CLL – prior to any use of CAR T – have mutations that are known to be difficult to treat. Dysfunctional T cells are also common in patients with CLL, and there’s often a lower number of available T-cells to manufacture.”

The results of a phase 1/2 trial released in August 2023 offered new insight about CAR T for CLL. In the open-label trial reported in The Lancet, 117 U.S. patients with CLL or small lymphocytic lymphoma underwent a form of CAR T therapy called lisocabtagene maraleucel after failing treatment with two lines of therapy, including a Bruton´s tyrosine kinase inhibitor. Among 49 patients at a specific dose, “the rate of complete response or remission (including with incomplete marrow recovery) was statistically significant at 18%,” the researchers reported. A total of 51 patients in the entire study died.

The rate of undetectable minimal residual disease blood was 64%. That rate is impressive, said University of Texas MD Anderson Cancer Center leukemia specialist Nitin Jain, MD, in an interview. It’s not nearly as high as researchers have seen in other disease settings, but it’s “a good, good thing for these patients. We’ll have to see in the longer follow-up how these patients fare 2, 3, or 4 years down the line.”

Dr. Rogers, the Ohio physician, said doctors had hoped durable benefit in the Lancet study would be more impressive. An important factor limiting its value may be the aggressiveness of the disease in patients who have already failed several treatments, she said. “The efficacy of CAR T might be improved by giving it as an earlier line of therapy before the CLL has become this aggressive. But it’s difficult to propose that you should use this before a Bruton´s tyrosine kinase inhibitor or venetoclax because it’s expensive and difficult.”

What’s next for CART T research in CLL? Understanding the best timing for treatment will be key, Dr. Rogers said.

The Leukemia & Lymphoma Society’s Dr. Greenberger predicted that “we will begin to see CAR T explored in CLL patients whose disease has a high risk of failing approved agents, such as Bruton´s tyrosine kinase and B cell lymphoma 2 inhibitors. However, CLL patients may still receive prior therapy with more effective Bruton’s tyrosine kinase or B cell lymphoma 2 inhibitors in the future before using CAR T. This will likely be heightened as more Bruton´s tyrosine kinase inhibitors become generic in the next 5 to 10 years and, hopefully, less expensive than CAR T therapy.”

In the big picture, he said, “treatment of CLL with CAR T is possible, but still needs significant improvements if it is to become a mainline therapy in the future.”

CAR T therapy remains available via clinical trials, and Dr. Rogers said it is “currently an important option for patients whose CLL has become resistant to standard targeted agents. We can certainly expect to extend someone’s expected survival by years if they have a favorable response.” She acknowledged that the cost is quite high, but noted that targeted therapies are also expensive, especially over the long term. They can run to $10,000-$20,000 a month. Bispecific antibodies are also being explored as potential therapy for CLL. “They’re really exciting,” Dr. Rogers said, with the potential to spur responses similar to those from CAR T therapy.

A 2022 review described these drugs as “molecules that combine antibody-directed therapies with cellular mediated immunotherapy.” The FDA explains that “by targeting two antigens or epitopes, they can cause multiple physiological or antitumor responses, which may be independent or connected.”

According to Dr. Greenberger, many bispecifics are in clinical trials now. However, “in the context of CLL, actually, the data is actually very, very limited. The development is just starting, and there are phase 1 and phase 2 trials ongoing.”

But data from lymphoma trials are encouraging, he said, and bispecifics “are actually looking as good as CAR T in some settings.”

Regimens can be a challenge for patients taking bispecifics, Dr. Greenberger said. “Repeat dosing with a step-up dosing approach to start is typically required when treating lymphoma.”

On the other hand, Dr. Rogers noted that antibody treatment can be easier for hematologists to arrange than CAR T therapy and stem cell transplants. “From an administrative side, there’s not as many things you need to have set up. So it’s able to be administered in a wider variety of settings,” she said,

Bispecific side effects include cytokine release syndrome and neurotoxicity as well as infusion reactions, Dr. Greenberger said, adding that “I would not exclude cost as a challenge.”

According to Formulary Watch, the bispecific Columvi (glofitamab-gxbm), which recently gained FDA approval to treat diffuse large B-cell lymphoma, is estimated to cost $350,000 for an 8.5-month round of treatment. Reuters reported that the bispecific Talvey (talquetamab-tgvs), which just received FDA approval to treat multiple myeloma, is estimated to cost $270,000-$360,000 for 6-8 months of treatment.

For now, bispecific trials “are mostly now reserved for patients with CLL who become resistant to our current standard targeted agents,” Dr. Rogers said. “It’s a little unclear if you can do CAR T therapy first and then bispecifics, or bispecifics and then CAR T therapy.”

What’s coming next for bispecifics? “On the horizon is better ease of administration, which is already being addressed by subcutaneous dosing for some bispecifics in lymphomas,” Dr. Greenberger said. “There’s also the possibility of combining bispecifics with conventional therapy.”

Dr. Rogers discloses ties with Genentech, AbbVie, Novartis, AstraZeneca, Janssen, Pharmacyclics, Beigene, and LOXO@Lilly. Dr. Greenberger discloses employment with the Leukemia & Lymphoma Society, which supports academic grants and a venture philanthropy via the Therapy Acceleration Program.

Dr. Jain reports ties with Pharmacyclics, AbbVie, Genentech, AstraZeneca, Pfizer, and numerous other disclosures.
 

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

For CLL, BTKi combo bests chemoimmunotherapy

Article Type
Changed
Fri, 08/11/2023 - 10:13

A new interim analysis of a large randomized, phase 3 trial provides more evidence that a combination of ibrutinib and rituximab is a better option for younger patients with untreated chronic lymphocytic leukemia (CLL) than the once-standard combination of fludarabine, cyclophosphamide, and rituximab (FCR).

The analysis of the open-label FLAIR trial, published in The Lancet Oncology, tracked 771 patients with CLL for a median follow-up of 53 months (interquartile ratio, 41-61 months) and found that median progression-free survival was not reached with ibrutinib/rituximab versus 67 months with FCR (hazard ratio, 0.44, P < .0001).

“This paper is another confirmation to say that Bruton’s tyrosine kinase inhibitors are more powerful than even our strongest chemoimmunotherapy. That’s very reassuring,” said hematologist/oncologist Jan A. Burger, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, in an interview. He did not take part in the analysis but is familiar with its findings.

There are caveats to the study. More patients in the ibrutinib/rituximab arm died of cardiac events, possibly reflecting a known risk of those drugs. And for unclear reasons, there was no difference in overall survival – a secondary endpoint – between the groups. The study authors speculate that this may be because some patients on FCR progressed and turned to effective second-line drugs.

Still, the findings are consistent with the landmark E1912 trial, the authors wrote, and adds “to a body of evidence that suggests that the use of ibrutinib-based regimens should be considered for patients with previously untreated CLL, especially those with IGHV-unmutated CLL.”

The study, partially funded by industry, was led by Peter Hillmen, PhD, of Leeds (England) Cancer Center.

According to Dr. Burger, FCR was the standard treatment for younger, fitter patients with CLL about 10-15 years ago. Then Bruton’s tyrosine kinase inhibitors such as ibrutinib entered the picture. But, as the new report notes, initial studies focused on older patients who weren’t considered fit enough to tolerate FCR.

The new study, like the E1912 trial, aimed to compare ibrutinib-rituximab versus FCR in younger, fitter patients.

From 2014 to 2018, researchers assigned 771 patients (median age, 62 years; IQR 56-67; 73% male; 95% White; 66% with World Health Organization performance status, 0) to FCR (n = 385) or ibrutinib/rituximab (n = 386).

Nearly three-quarters (74%) in the FCR group received six cycles of therapy, and 97% of those in the ibrutinib-rituximab group received six cycles of rituximab. Those in the ibrutinib-rituximab group also received daily doses of ibrutinib. Doses could be modified. The data cutoff was May 24, 2021.

Notably, there was no improvement in overall survival in the ibrutinib/rituximab group: 92.1% of patients lived 4 years versus 93.5% in the FCR group. This contrasts with an improvement in overall survival in the earlier E1912 study in the ibrutinib/rituximab group.

However, the study authors noted that overall survival in the FCR group is higher than in earlier studies, perhaps reflecting the wider availability of targeted therapy. The final study analysis will offer more insight into overall survival.

In an interview, hematologist David A. Bond, MD, of Ohio State University, Columbus, who is familiar with the study findings, said “the lack of an improvement in overall survival could be due to differences in available treatments at relapse, as the FLAIR study was conducted more recently than the prior E1912 study.” He added that “the younger ages in the E1912 study may have led to less risk for cardiovascular events or deaths for the patients treated with ibrutinib in the E1912 study.”

The previous E1912 trial showed a larger effect for ibrutinib/rituximab versus FCR on progression-free survival (HR, 0.37, P < .001 for E1912 and HR, 0.44, P< .0001 for the FLAIR trial). However, the study authors noted that FLAIR trial had older subjects (mean age, 62 vs 56.7 in the E1912 trial.)

As for grade 3 or 4 adverse events, leukopenia was most common in the FCR group (n = 203, 54%), compared with the ibrutinib/rituximab group (n = 55, 14%). Serious adverse events were reported in 205 (53%) of patients in the ibrutinib/rituximab group versus 203 (54%) patients in the FCR group.

All-cause infections, myelodysplastic syndrome, acute myeloid leukemia, Richter’s transformation, and other diagnosed cancers were rare but more common in the FCR group. Deaths from COVID-19 were the same at 3 in each group; 2 of 29 deaths in the FCR group and 3 of 30 deaths in the ibrutinib/rituximab group were considered to be likely linked to treatment.

Sudden unexplained or cardiac deaths were more common in the ibrutinib-rituximab group (n = 8, 2%) vs. the FCR group (n = 2, less than 1%).

Dr. Bond said “one of the takeaways for practicing hematologists from the FLAIR study is that cardiovascular complications and sudden cardiac death are clearly an issue for older patients with hypertension treated with ibrutinib. Patients should be monitored for signs or symptoms of cardiovascular disease and have close management of blood pressure.” 

Dr. Burger also noted that cardiac problems are a known risk of ibrutinib. “Fortunately, we have second-generation Bruton’s tyrosine kinase inhibitors that could be chosen for patients when we are worried about side effects.”

He said that chemotherapy remains the preferred – or only – treatment in some parts of the world. And patients may prefer FCR to ibrutinib because of the latter drug’s side effects or a preference for therapy that doesn’t take as long.

The study was funded by Cancer Research UK and Janssen. The study authors reported relationships with companies such as Lilly, Janssen, AbbVie, AstraZeneca, BeiGene, Gilead, and many others. Dr. Burger reports financial support for clinical trials from Pharmacyclics, AstraZeneca, Biogen, and Janssen. Dr. Bond reported no disclosures.

Publications
Topics
Sections

A new interim analysis of a large randomized, phase 3 trial provides more evidence that a combination of ibrutinib and rituximab is a better option for younger patients with untreated chronic lymphocytic leukemia (CLL) than the once-standard combination of fludarabine, cyclophosphamide, and rituximab (FCR).

The analysis of the open-label FLAIR trial, published in The Lancet Oncology, tracked 771 patients with CLL for a median follow-up of 53 months (interquartile ratio, 41-61 months) and found that median progression-free survival was not reached with ibrutinib/rituximab versus 67 months with FCR (hazard ratio, 0.44, P < .0001).

“This paper is another confirmation to say that Bruton’s tyrosine kinase inhibitors are more powerful than even our strongest chemoimmunotherapy. That’s very reassuring,” said hematologist/oncologist Jan A. Burger, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, in an interview. He did not take part in the analysis but is familiar with its findings.

There are caveats to the study. More patients in the ibrutinib/rituximab arm died of cardiac events, possibly reflecting a known risk of those drugs. And for unclear reasons, there was no difference in overall survival – a secondary endpoint – between the groups. The study authors speculate that this may be because some patients on FCR progressed and turned to effective second-line drugs.

Still, the findings are consistent with the landmark E1912 trial, the authors wrote, and adds “to a body of evidence that suggests that the use of ibrutinib-based regimens should be considered for patients with previously untreated CLL, especially those with IGHV-unmutated CLL.”

The study, partially funded by industry, was led by Peter Hillmen, PhD, of Leeds (England) Cancer Center.

According to Dr. Burger, FCR was the standard treatment for younger, fitter patients with CLL about 10-15 years ago. Then Bruton’s tyrosine kinase inhibitors such as ibrutinib entered the picture. But, as the new report notes, initial studies focused on older patients who weren’t considered fit enough to tolerate FCR.

The new study, like the E1912 trial, aimed to compare ibrutinib-rituximab versus FCR in younger, fitter patients.

From 2014 to 2018, researchers assigned 771 patients (median age, 62 years; IQR 56-67; 73% male; 95% White; 66% with World Health Organization performance status, 0) to FCR (n = 385) or ibrutinib/rituximab (n = 386).

Nearly three-quarters (74%) in the FCR group received six cycles of therapy, and 97% of those in the ibrutinib-rituximab group received six cycles of rituximab. Those in the ibrutinib-rituximab group also received daily doses of ibrutinib. Doses could be modified. The data cutoff was May 24, 2021.

Notably, there was no improvement in overall survival in the ibrutinib/rituximab group: 92.1% of patients lived 4 years versus 93.5% in the FCR group. This contrasts with an improvement in overall survival in the earlier E1912 study in the ibrutinib/rituximab group.

However, the study authors noted that overall survival in the FCR group is higher than in earlier studies, perhaps reflecting the wider availability of targeted therapy. The final study analysis will offer more insight into overall survival.

In an interview, hematologist David A. Bond, MD, of Ohio State University, Columbus, who is familiar with the study findings, said “the lack of an improvement in overall survival could be due to differences in available treatments at relapse, as the FLAIR study was conducted more recently than the prior E1912 study.” He added that “the younger ages in the E1912 study may have led to less risk for cardiovascular events or deaths for the patients treated with ibrutinib in the E1912 study.”

The previous E1912 trial showed a larger effect for ibrutinib/rituximab versus FCR on progression-free survival (HR, 0.37, P < .001 for E1912 and HR, 0.44, P< .0001 for the FLAIR trial). However, the study authors noted that FLAIR trial had older subjects (mean age, 62 vs 56.7 in the E1912 trial.)

As for grade 3 or 4 adverse events, leukopenia was most common in the FCR group (n = 203, 54%), compared with the ibrutinib/rituximab group (n = 55, 14%). Serious adverse events were reported in 205 (53%) of patients in the ibrutinib/rituximab group versus 203 (54%) patients in the FCR group.

All-cause infections, myelodysplastic syndrome, acute myeloid leukemia, Richter’s transformation, and other diagnosed cancers were rare but more common in the FCR group. Deaths from COVID-19 were the same at 3 in each group; 2 of 29 deaths in the FCR group and 3 of 30 deaths in the ibrutinib/rituximab group were considered to be likely linked to treatment.

Sudden unexplained or cardiac deaths were more common in the ibrutinib-rituximab group (n = 8, 2%) vs. the FCR group (n = 2, less than 1%).

Dr. Bond said “one of the takeaways for practicing hematologists from the FLAIR study is that cardiovascular complications and sudden cardiac death are clearly an issue for older patients with hypertension treated with ibrutinib. Patients should be monitored for signs or symptoms of cardiovascular disease and have close management of blood pressure.” 

Dr. Burger also noted that cardiac problems are a known risk of ibrutinib. “Fortunately, we have second-generation Bruton’s tyrosine kinase inhibitors that could be chosen for patients when we are worried about side effects.”

He said that chemotherapy remains the preferred – or only – treatment in some parts of the world. And patients may prefer FCR to ibrutinib because of the latter drug’s side effects or a preference for therapy that doesn’t take as long.

The study was funded by Cancer Research UK and Janssen. The study authors reported relationships with companies such as Lilly, Janssen, AbbVie, AstraZeneca, BeiGene, Gilead, and many others. Dr. Burger reports financial support for clinical trials from Pharmacyclics, AstraZeneca, Biogen, and Janssen. Dr. Bond reported no disclosures.

A new interim analysis of a large randomized, phase 3 trial provides more evidence that a combination of ibrutinib and rituximab is a better option for younger patients with untreated chronic lymphocytic leukemia (CLL) than the once-standard combination of fludarabine, cyclophosphamide, and rituximab (FCR).

The analysis of the open-label FLAIR trial, published in The Lancet Oncology, tracked 771 patients with CLL for a median follow-up of 53 months (interquartile ratio, 41-61 months) and found that median progression-free survival was not reached with ibrutinib/rituximab versus 67 months with FCR (hazard ratio, 0.44, P < .0001).

“This paper is another confirmation to say that Bruton’s tyrosine kinase inhibitors are more powerful than even our strongest chemoimmunotherapy. That’s very reassuring,” said hematologist/oncologist Jan A. Burger, MD, PhD, of the University of Texas MD Anderson Cancer Center, Houston, in an interview. He did not take part in the analysis but is familiar with its findings.

There are caveats to the study. More patients in the ibrutinib/rituximab arm died of cardiac events, possibly reflecting a known risk of those drugs. And for unclear reasons, there was no difference in overall survival – a secondary endpoint – between the groups. The study authors speculate that this may be because some patients on FCR progressed and turned to effective second-line drugs.

Still, the findings are consistent with the landmark E1912 trial, the authors wrote, and adds “to a body of evidence that suggests that the use of ibrutinib-based regimens should be considered for patients with previously untreated CLL, especially those with IGHV-unmutated CLL.”

The study, partially funded by industry, was led by Peter Hillmen, PhD, of Leeds (England) Cancer Center.

According to Dr. Burger, FCR was the standard treatment for younger, fitter patients with CLL about 10-15 years ago. Then Bruton’s tyrosine kinase inhibitors such as ibrutinib entered the picture. But, as the new report notes, initial studies focused on older patients who weren’t considered fit enough to tolerate FCR.

The new study, like the E1912 trial, aimed to compare ibrutinib-rituximab versus FCR in younger, fitter patients.

From 2014 to 2018, researchers assigned 771 patients (median age, 62 years; IQR 56-67; 73% male; 95% White; 66% with World Health Organization performance status, 0) to FCR (n = 385) or ibrutinib/rituximab (n = 386).

Nearly three-quarters (74%) in the FCR group received six cycles of therapy, and 97% of those in the ibrutinib-rituximab group received six cycles of rituximab. Those in the ibrutinib-rituximab group also received daily doses of ibrutinib. Doses could be modified. The data cutoff was May 24, 2021.

Notably, there was no improvement in overall survival in the ibrutinib/rituximab group: 92.1% of patients lived 4 years versus 93.5% in the FCR group. This contrasts with an improvement in overall survival in the earlier E1912 study in the ibrutinib/rituximab group.

However, the study authors noted that overall survival in the FCR group is higher than in earlier studies, perhaps reflecting the wider availability of targeted therapy. The final study analysis will offer more insight into overall survival.

In an interview, hematologist David A. Bond, MD, of Ohio State University, Columbus, who is familiar with the study findings, said “the lack of an improvement in overall survival could be due to differences in available treatments at relapse, as the FLAIR study was conducted more recently than the prior E1912 study.” He added that “the younger ages in the E1912 study may have led to less risk for cardiovascular events or deaths for the patients treated with ibrutinib in the E1912 study.”

The previous E1912 trial showed a larger effect for ibrutinib/rituximab versus FCR on progression-free survival (HR, 0.37, P < .001 for E1912 and HR, 0.44, P< .0001 for the FLAIR trial). However, the study authors noted that FLAIR trial had older subjects (mean age, 62 vs 56.7 in the E1912 trial.)

As for grade 3 or 4 adverse events, leukopenia was most common in the FCR group (n = 203, 54%), compared with the ibrutinib/rituximab group (n = 55, 14%). Serious adverse events were reported in 205 (53%) of patients in the ibrutinib/rituximab group versus 203 (54%) patients in the FCR group.

All-cause infections, myelodysplastic syndrome, acute myeloid leukemia, Richter’s transformation, and other diagnosed cancers were rare but more common in the FCR group. Deaths from COVID-19 were the same at 3 in each group; 2 of 29 deaths in the FCR group and 3 of 30 deaths in the ibrutinib/rituximab group were considered to be likely linked to treatment.

Sudden unexplained or cardiac deaths were more common in the ibrutinib-rituximab group (n = 8, 2%) vs. the FCR group (n = 2, less than 1%).

Dr. Bond said “one of the takeaways for practicing hematologists from the FLAIR study is that cardiovascular complications and sudden cardiac death are clearly an issue for older patients with hypertension treated with ibrutinib. Patients should be monitored for signs or symptoms of cardiovascular disease and have close management of blood pressure.” 

Dr. Burger also noted that cardiac problems are a known risk of ibrutinib. “Fortunately, we have second-generation Bruton’s tyrosine kinase inhibitors that could be chosen for patients when we are worried about side effects.”

He said that chemotherapy remains the preferred – or only – treatment in some parts of the world. And patients may prefer FCR to ibrutinib because of the latter drug’s side effects or a preference for therapy that doesn’t take as long.

The study was funded by Cancer Research UK and Janssen. The study authors reported relationships with companies such as Lilly, Janssen, AbbVie, AstraZeneca, BeiGene, Gilead, and many others. Dr. Burger reports financial support for clinical trials from Pharmacyclics, AstraZeneca, Biogen, and Janssen. Dr. Bond reported no disclosures.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET ONCOLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Antibody shows promise in preventing GVHD

Article Type
Changed
Tue, 08/08/2023 - 11:50

Early, intriguing research suggests that preventing acute graft-versus-host disease (GVHD) in the gut – a potentially life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) – could be accomplished by the administration of a single antibody that targets the anti-DLL4 Notch signaling pathway, without compromising the stem cell transplant.

“The major surprise was that none of the anti–DLL4-treated animals developed acute gastrointestinal GVHD for the entire duration of the study. This was a remarkable finding, given that intestinal GVHD is otherwise seen in the vast majority of nonhuman primate transplant recipients that receive either no prophylaxis, or prophylaxis with agents other than anti-DLL4 antibodies,” co–senior author Ivan Maillard, MD, PhD, a professor of medicine and vice chief for research in hematology-oncology at the University of Pennsylvania, Philadelphia, said in an interview.

“The timing was critical,” the authors noted in the study, recently published in Science Translational Medicine. “Intervening before any symptoms of GvHD appear made the long-term protection possible.”

While GVHD may be mild to moderate in chronic forms, acute cases can be serious, if not fatal, and nearly all severe acute GVHD prominently involves the gastrointestinal tract, which can drive activation of pathogenic T cells and potentially lead to tissue damage following allo-HCT.

Systemic corticosteroids are standard first-line treatment for acute GVHD. However, response rates generally range only from 40% to 60%, and there are concerns of side effects. Meanwhile, second-line treatments are of inconsistent benefit.

With previous studies on mice showing benefits of targeting Notch pathway inhibition, particularly DLL4, Dr. Maillard and colleagues further investigated the effects in nonhuman primates that were allo-HCT recipients, using the anti-DLL4 antibody REGN421, which has pharmacokinetic and toxicity information available from previous studies.

The nonhuman primates were treated with one of two dosing regimens: a single dose of REGN421 3 mg/kg at baseline, post HCT, (n = 7) or three weekly doses at days 0, 7 and 14, post transplant (n = 4). Those primates were compared with 11 primates receiving allo-HCT transplants that received supportive care only.

Primates receiving three weekly doses of REGN421 showed antibody concentrations of greater than 2 mcg/mL for more than 30 days post HCT. A single dose of REGN421 was associated with protection from acute GVHD at day 0, while three weekly doses showed protection at day 0, 7, and 14, consistent with an impact of REGN421 during the early phases of T-cell activation.

Compared with animals receiving only supportive care, prophylaxis with REGN421 was associated with delayed acute GVHD onset and lengthened survival.

Of the 11 primates treated with REGN421, none developed clinical signs of gastrointestinal acute GVHD, whereas the majority of those receiving standard care or other preventive interventions did.

“Detailed analysis of acute GVHD clinical presentations in REGN421-treated animals in comparison to no treatment controls revealed near complete protection from GI-acute GvHD with REGN421,” the authors reported.

Furthermore, pathology scores in the gastrointestinal tract were lower with REGN421 treatment, compared with the no-treatment cohort, and the scores matched those of healthy nontransplanted nonhuman primates.

The primates treated with REGN421 did ultimately develop other clinical and pathologic signs of skin, hepatic or pulmonary acute GVHD, but without gastrointestinal disease.

The treatment was not associated with any adverse effects on the allo-HCT, with primates receiving either a single dose or three weekly doses of REGN421 showing rapid donor engraftment after allo-HCT, including high bone marrow, whole blood, and T-cell donor chimerism.

“Reassuringly, short-term systemic DLL4 blockade with REGN421 did not trigger unexpected side effects in our nonhuman primate model, while preserving rapid engraftment as well hematopoietic and immune reconstitution.”

The mechanism preserving the engraftment, described as a “major surprise,” specifically involved DLL4 inhibition blocking the homing of pathogenic T cells to the gut while preserving homing of regulatory T cells that dampen the immune response, Dr. Maillard explained.

“This effect turned out to be at least in part through a posttranslational effect of DLL4/Notch blockade on integrin pairing at the T-cell surface,” he explained. “This was a novel and quite unexpected mechanism of action conserved from mice to nonhuman primates.”

The results are encouraging in terms of translating to humans because of their closer similarities in various physiological factors, Dr. Maillard said.

“The nonhuman primate model of transplantation [offers] a transplantation model very close to what is being performed in humans, as well as the opportunity to study an immune system very similar to that of humans in nonhuman primates,” he said.

Dr. Maillard noted that, while trials in humans are not underway yet, “we are in active discussions about it,” and the team is indeed interested in testing REGN421 itself, with the effects likely to be as a prophylactic strategy.

There are currently no approved anti-DLL4 antibody drugs for use in humans.

“Our approach is mostly promising as a preventive treatment, rather than as a secondary treatment for GVHD, because DLL4/Notch blockade seems most active when applied early after transplantation during the time of initial seeding of the gut by T cells (in mice, we had observed the critical time window for a successful intervention to be within 48 hours of transplantation),” Dr. Maillard said.“There remain questions about which other prophylactic treatments we should ideally combine anti-DLL4 antibodies with.”

Dr. Maillard has received research funding from Regeneron and Genentech and is a member of Garuda Therapeutics’s scientific advisory board.

Publications
Topics
Sections

Early, intriguing research suggests that preventing acute graft-versus-host disease (GVHD) in the gut – a potentially life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) – could be accomplished by the administration of a single antibody that targets the anti-DLL4 Notch signaling pathway, without compromising the stem cell transplant.

“The major surprise was that none of the anti–DLL4-treated animals developed acute gastrointestinal GVHD for the entire duration of the study. This was a remarkable finding, given that intestinal GVHD is otherwise seen in the vast majority of nonhuman primate transplant recipients that receive either no prophylaxis, or prophylaxis with agents other than anti-DLL4 antibodies,” co–senior author Ivan Maillard, MD, PhD, a professor of medicine and vice chief for research in hematology-oncology at the University of Pennsylvania, Philadelphia, said in an interview.

“The timing was critical,” the authors noted in the study, recently published in Science Translational Medicine. “Intervening before any symptoms of GvHD appear made the long-term protection possible.”

While GVHD may be mild to moderate in chronic forms, acute cases can be serious, if not fatal, and nearly all severe acute GVHD prominently involves the gastrointestinal tract, which can drive activation of pathogenic T cells and potentially lead to tissue damage following allo-HCT.

Systemic corticosteroids are standard first-line treatment for acute GVHD. However, response rates generally range only from 40% to 60%, and there are concerns of side effects. Meanwhile, second-line treatments are of inconsistent benefit.

With previous studies on mice showing benefits of targeting Notch pathway inhibition, particularly DLL4, Dr. Maillard and colleagues further investigated the effects in nonhuman primates that were allo-HCT recipients, using the anti-DLL4 antibody REGN421, which has pharmacokinetic and toxicity information available from previous studies.

The nonhuman primates were treated with one of two dosing regimens: a single dose of REGN421 3 mg/kg at baseline, post HCT, (n = 7) or three weekly doses at days 0, 7 and 14, post transplant (n = 4). Those primates were compared with 11 primates receiving allo-HCT transplants that received supportive care only.

Primates receiving three weekly doses of REGN421 showed antibody concentrations of greater than 2 mcg/mL for more than 30 days post HCT. A single dose of REGN421 was associated with protection from acute GVHD at day 0, while three weekly doses showed protection at day 0, 7, and 14, consistent with an impact of REGN421 during the early phases of T-cell activation.

Compared with animals receiving only supportive care, prophylaxis with REGN421 was associated with delayed acute GVHD onset and lengthened survival.

Of the 11 primates treated with REGN421, none developed clinical signs of gastrointestinal acute GVHD, whereas the majority of those receiving standard care or other preventive interventions did.

“Detailed analysis of acute GVHD clinical presentations in REGN421-treated animals in comparison to no treatment controls revealed near complete protection from GI-acute GvHD with REGN421,” the authors reported.

Furthermore, pathology scores in the gastrointestinal tract were lower with REGN421 treatment, compared with the no-treatment cohort, and the scores matched those of healthy nontransplanted nonhuman primates.

The primates treated with REGN421 did ultimately develop other clinical and pathologic signs of skin, hepatic or pulmonary acute GVHD, but without gastrointestinal disease.

The treatment was not associated with any adverse effects on the allo-HCT, with primates receiving either a single dose or three weekly doses of REGN421 showing rapid donor engraftment after allo-HCT, including high bone marrow, whole blood, and T-cell donor chimerism.

“Reassuringly, short-term systemic DLL4 blockade with REGN421 did not trigger unexpected side effects in our nonhuman primate model, while preserving rapid engraftment as well hematopoietic and immune reconstitution.”

The mechanism preserving the engraftment, described as a “major surprise,” specifically involved DLL4 inhibition blocking the homing of pathogenic T cells to the gut while preserving homing of regulatory T cells that dampen the immune response, Dr. Maillard explained.

“This effect turned out to be at least in part through a posttranslational effect of DLL4/Notch blockade on integrin pairing at the T-cell surface,” he explained. “This was a novel and quite unexpected mechanism of action conserved from mice to nonhuman primates.”

The results are encouraging in terms of translating to humans because of their closer similarities in various physiological factors, Dr. Maillard said.

“The nonhuman primate model of transplantation [offers] a transplantation model very close to what is being performed in humans, as well as the opportunity to study an immune system very similar to that of humans in nonhuman primates,” he said.

Dr. Maillard noted that, while trials in humans are not underway yet, “we are in active discussions about it,” and the team is indeed interested in testing REGN421 itself, with the effects likely to be as a prophylactic strategy.

There are currently no approved anti-DLL4 antibody drugs for use in humans.

“Our approach is mostly promising as a preventive treatment, rather than as a secondary treatment for GVHD, because DLL4/Notch blockade seems most active when applied early after transplantation during the time of initial seeding of the gut by T cells (in mice, we had observed the critical time window for a successful intervention to be within 48 hours of transplantation),” Dr. Maillard said.“There remain questions about which other prophylactic treatments we should ideally combine anti-DLL4 antibodies with.”

Dr. Maillard has received research funding from Regeneron and Genentech and is a member of Garuda Therapeutics’s scientific advisory board.

Early, intriguing research suggests that preventing acute graft-versus-host disease (GVHD) in the gut – a potentially life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) – could be accomplished by the administration of a single antibody that targets the anti-DLL4 Notch signaling pathway, without compromising the stem cell transplant.

“The major surprise was that none of the anti–DLL4-treated animals developed acute gastrointestinal GVHD for the entire duration of the study. This was a remarkable finding, given that intestinal GVHD is otherwise seen in the vast majority of nonhuman primate transplant recipients that receive either no prophylaxis, or prophylaxis with agents other than anti-DLL4 antibodies,” co–senior author Ivan Maillard, MD, PhD, a professor of medicine and vice chief for research in hematology-oncology at the University of Pennsylvania, Philadelphia, said in an interview.

“The timing was critical,” the authors noted in the study, recently published in Science Translational Medicine. “Intervening before any symptoms of GvHD appear made the long-term protection possible.”

While GVHD may be mild to moderate in chronic forms, acute cases can be serious, if not fatal, and nearly all severe acute GVHD prominently involves the gastrointestinal tract, which can drive activation of pathogenic T cells and potentially lead to tissue damage following allo-HCT.

Systemic corticosteroids are standard first-line treatment for acute GVHD. However, response rates generally range only from 40% to 60%, and there are concerns of side effects. Meanwhile, second-line treatments are of inconsistent benefit.

With previous studies on mice showing benefits of targeting Notch pathway inhibition, particularly DLL4, Dr. Maillard and colleagues further investigated the effects in nonhuman primates that were allo-HCT recipients, using the anti-DLL4 antibody REGN421, which has pharmacokinetic and toxicity information available from previous studies.

The nonhuman primates were treated with one of two dosing regimens: a single dose of REGN421 3 mg/kg at baseline, post HCT, (n = 7) or three weekly doses at days 0, 7 and 14, post transplant (n = 4). Those primates were compared with 11 primates receiving allo-HCT transplants that received supportive care only.

Primates receiving three weekly doses of REGN421 showed antibody concentrations of greater than 2 mcg/mL for more than 30 days post HCT. A single dose of REGN421 was associated with protection from acute GVHD at day 0, while three weekly doses showed protection at day 0, 7, and 14, consistent with an impact of REGN421 during the early phases of T-cell activation.

Compared with animals receiving only supportive care, prophylaxis with REGN421 was associated with delayed acute GVHD onset and lengthened survival.

Of the 11 primates treated with REGN421, none developed clinical signs of gastrointestinal acute GVHD, whereas the majority of those receiving standard care or other preventive interventions did.

“Detailed analysis of acute GVHD clinical presentations in REGN421-treated animals in comparison to no treatment controls revealed near complete protection from GI-acute GvHD with REGN421,” the authors reported.

Furthermore, pathology scores in the gastrointestinal tract were lower with REGN421 treatment, compared with the no-treatment cohort, and the scores matched those of healthy nontransplanted nonhuman primates.

The primates treated with REGN421 did ultimately develop other clinical and pathologic signs of skin, hepatic or pulmonary acute GVHD, but without gastrointestinal disease.

The treatment was not associated with any adverse effects on the allo-HCT, with primates receiving either a single dose or three weekly doses of REGN421 showing rapid donor engraftment after allo-HCT, including high bone marrow, whole blood, and T-cell donor chimerism.

“Reassuringly, short-term systemic DLL4 blockade with REGN421 did not trigger unexpected side effects in our nonhuman primate model, while preserving rapid engraftment as well hematopoietic and immune reconstitution.”

The mechanism preserving the engraftment, described as a “major surprise,” specifically involved DLL4 inhibition blocking the homing of pathogenic T cells to the gut while preserving homing of regulatory T cells that dampen the immune response, Dr. Maillard explained.

“This effect turned out to be at least in part through a posttranslational effect of DLL4/Notch blockade on integrin pairing at the T-cell surface,” he explained. “This was a novel and quite unexpected mechanism of action conserved from mice to nonhuman primates.”

The results are encouraging in terms of translating to humans because of their closer similarities in various physiological factors, Dr. Maillard said.

“The nonhuman primate model of transplantation [offers] a transplantation model very close to what is being performed in humans, as well as the opportunity to study an immune system very similar to that of humans in nonhuman primates,” he said.

Dr. Maillard noted that, while trials in humans are not underway yet, “we are in active discussions about it,” and the team is indeed interested in testing REGN421 itself, with the effects likely to be as a prophylactic strategy.

There are currently no approved anti-DLL4 antibody drugs for use in humans.

“Our approach is mostly promising as a preventive treatment, rather than as a secondary treatment for GVHD, because DLL4/Notch blockade seems most active when applied early after transplantation during the time of initial seeding of the gut by T cells (in mice, we had observed the critical time window for a successful intervention to be within 48 hours of transplantation),” Dr. Maillard said.“There remain questions about which other prophylactic treatments we should ideally combine anti-DLL4 antibodies with.”

Dr. Maillard has received research funding from Regeneron and Genentech and is a member of Garuda Therapeutics’s scientific advisory board.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SCIENCE TRANSLATIONAL MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article