Neurology Reviews covers innovative and emerging news in neurology and neuroscience every month, with a focus on practical approaches to treating Parkinson's disease, epilepsy, headache, stroke, multiple sclerosis, Alzheimer's disease, and other neurologic disorders.

Theme
medstat_nr
Top Sections
Literature Review
Expert Commentary
Expert Interview
nr
Main menu
NR Main Menu
Explore menu
NR Explore Menu
Proclivity ID
18828001
Unpublish
Negative Keywords
Ocrevus PML
PML
Progressive multifocal leukoencephalopathy
Rituxan
Altmetric
DSM Affiliated
Display in offset block
QuickLearn Excluded Topics/Sections
Best Practices
CME
CME Supplements
Education Center
Medical Education Library
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
Clinical
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off
Current Issue
Title
Neurology Reviews
Description

The leading independent newspaper covering neurology news and commentary.

Current Issue Reference

A New, Easily Identifiable Sign of Concussion?

Article Type
Changed
Fri, 10/25/2024 - 12:13

Researchers have identified a potential new sign of concussion in athletes, particularly football players, that can easily be spotted on the field, indicating the need for immediate removal from the game and evaluation for potential traumatic brain injury (TBI).

Spontaneous Headshake After a Kinematic Event (SHAAKE) refers to the rapid, back-and-forth head movement athletes exhibit following a blow to the head. This voluntary motion typically occurs within seconds to minutes after impact and is a familiar response in athletes.

In a recent survey, 7 out of 10 adult athletes recalled making this movement after a collision, and three out of four times they attributed this back-and-forth head movement to a concussion. The association was strongest among football players, who reported that over 90% of SHAAKE episodes were associated with a concussion.

The results were published online in Diagnostics.
 

Call to Action

“Everyone” — including sports and medical organizations — “should be adding this to their list of potential concussion signs and their protocol immediately,” study investigator Chris Nowinski, PhD, CEO and co-founder of the Concussion Legacy Foundation, told this news organization.

Nowinski said it’s “fascinating” that this concussion sign hasn’t been formally studied or added to formal concussion screening metrics before now, given that it’s been depicted in movies, television, and cartoons for decades.

Coaches, medical professionals, and concussion spotters should be trained to recognize when a SHAAKE happens, he said.

“The interesting thing is, I don’t think coaches or parents need much training other than to officially tie this to suspicion of a concussion,” Nowinski added.
 

The Case of Miami Dolphins QB Tua Tagovailoa

Nowinski said he was tipped off to SHAAKE as a concussion sign after Miami Dolphins quarterback Tua Tagovailoa’s controversial undiagnosed concussion during a National Football League (NFL) game in 2022.

After Tagovailoa’s head hit the ground, he rapidly shook his head side to side, indicating displaying SHAAKE, before stumbling and collapsing. At the time, a sideline doctor attributed his collapse to a prior back injury.

If Tagovailoa had been diagnosed with a concussion, he likely would not have been playing in a game just 4 days later, where he lost consciousness after suffering a suspected second concussion and was removed from the field on a stretcher.

For the survey, Nowinski and colleagues showed 347 current and former athletes, including 109 football players, video examples of SHAAKE and them asked about their experiences with this potential indicator of concussion.

Nearly 69% of athletes reported exhibiting a SHAAKE during their career, and 93% of those reported a SHAAKE in association with concussion at least once. Athletes reported SHAAKE a median of five times in their lives.

Of the athletes who reported SHAAKE, 85% linked this head-shaking movement to concussion symptoms such as disorientation (71%) and dizziness (54%).

Across all sports, SHAAKE showed a sensitivity of 49.6% and a positive predictive value (PPV) of 72.4% for diagnosing concussions.

Among football players, sensitivity improved to 52.3%, with an estimated specificity of 99.9%, a PPV of 91.9%, and an estimated negative predictive value of 99.5%.

The main limitation of the survey was the potential for recall bias due to survey participants self-reporting prior concussions. The researchers called for future prospective studies to validate SHAAKE as a sign of concussion.
 

 

 

Instant Replay for Brain Injury?

Experts echoed the need for validation. SHAAKE represents a “promising advance” in objective TBI assessment, particularly for sideline evaluation, said Shaheen Lakhan, MD, PhD, neurologist, and researcher based in Miami, Florida, who wasn’t involved in the research.

The potential value of SHAAKE is “particularly notable given the well-documented tendency for athletes to minimize or conceal symptoms to maintain play eligibility, a limitation that has historically challenged our reliance on subjective reporting and observational assessments,” Lakhan said.

“Moving forward, validation through prospective studies incorporating real-time video analysis, helmet sensor data, and clinician-confirmed TBI diagnoses will be essential. With appropriate validation, SHAAKE could emerge as a valuable component of our sideline assessment arsenal, complementing rather than replacing existing diagnostic approaches,” Lakhan said.

“SHAAKE could be the ‘instant replay’ for brain injuries that sports medicine has been waiting for — but like any new technology, we need to make sure it works for every player, not just some,” Lakhan added.

Also weighing in, Richard Figler, MD, director of the Concussion Center, Cleveland Clinic Sports Medicine Center, Cleveland, cautioned that the survey participants were recruited from a concussion registry and self-reported an average of 23 concussions — more than one third of which happened 5-10 years prior — which begs the question, “How much are they actually remembering?”

“Our goal is to make sure that the athletes are safe and that we’re not missing concussions, and we don’t have great tools to start off with. This study opens up the door for some prospective studies [of SHAAKE] moving forward. I think we need more data before this should be listed as a definitive marker,” said Figler, who also wasn’t involved in the study.

In any case, he said, when it comes to suspected concussion in sports, “when in doubt, you sit them out,” Figler said.

This research received no external funding. Nowinski has received travel reimbursement from the NFL Players Association (NFLPA), NFL, World Rugby, WWE, and All Elite Wrestling; served as an expert witness in cases related to concussion and chronic traumatic encephalopathy; and is compensated for speaking appearances and serving on the NFL Concussion Settlement Player Advocacy Committee. Daniel H. Daneshvar served as an expert witness in legal cases involving brain injury and concussion and received funding from the Football Players Health Study at Harvard University, which is funded by the NFLPA and evaluates patients for the MGH Brain and Body TRUST Center, sponsored in part by the NFLPA. Lakhan and Figler had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Researchers have identified a potential new sign of concussion in athletes, particularly football players, that can easily be spotted on the field, indicating the need for immediate removal from the game and evaluation for potential traumatic brain injury (TBI).

Spontaneous Headshake After a Kinematic Event (SHAAKE) refers to the rapid, back-and-forth head movement athletes exhibit following a blow to the head. This voluntary motion typically occurs within seconds to minutes after impact and is a familiar response in athletes.

In a recent survey, 7 out of 10 adult athletes recalled making this movement after a collision, and three out of four times they attributed this back-and-forth head movement to a concussion. The association was strongest among football players, who reported that over 90% of SHAAKE episodes were associated with a concussion.

The results were published online in Diagnostics.
 

Call to Action

“Everyone” — including sports and medical organizations — “should be adding this to their list of potential concussion signs and their protocol immediately,” study investigator Chris Nowinski, PhD, CEO and co-founder of the Concussion Legacy Foundation, told this news organization.

Nowinski said it’s “fascinating” that this concussion sign hasn’t been formally studied or added to formal concussion screening metrics before now, given that it’s been depicted in movies, television, and cartoons for decades.

Coaches, medical professionals, and concussion spotters should be trained to recognize when a SHAAKE happens, he said.

“The interesting thing is, I don’t think coaches or parents need much training other than to officially tie this to suspicion of a concussion,” Nowinski added.
 

The Case of Miami Dolphins QB Tua Tagovailoa

Nowinski said he was tipped off to SHAAKE as a concussion sign after Miami Dolphins quarterback Tua Tagovailoa’s controversial undiagnosed concussion during a National Football League (NFL) game in 2022.

After Tagovailoa’s head hit the ground, he rapidly shook his head side to side, indicating displaying SHAAKE, before stumbling and collapsing. At the time, a sideline doctor attributed his collapse to a prior back injury.

If Tagovailoa had been diagnosed with a concussion, he likely would not have been playing in a game just 4 days later, where he lost consciousness after suffering a suspected second concussion and was removed from the field on a stretcher.

For the survey, Nowinski and colleagues showed 347 current and former athletes, including 109 football players, video examples of SHAAKE and them asked about their experiences with this potential indicator of concussion.

Nearly 69% of athletes reported exhibiting a SHAAKE during their career, and 93% of those reported a SHAAKE in association with concussion at least once. Athletes reported SHAAKE a median of five times in their lives.

Of the athletes who reported SHAAKE, 85% linked this head-shaking movement to concussion symptoms such as disorientation (71%) and dizziness (54%).

Across all sports, SHAAKE showed a sensitivity of 49.6% and a positive predictive value (PPV) of 72.4% for diagnosing concussions.

Among football players, sensitivity improved to 52.3%, with an estimated specificity of 99.9%, a PPV of 91.9%, and an estimated negative predictive value of 99.5%.

The main limitation of the survey was the potential for recall bias due to survey participants self-reporting prior concussions. The researchers called for future prospective studies to validate SHAAKE as a sign of concussion.
 

 

 

Instant Replay for Brain Injury?

Experts echoed the need for validation. SHAAKE represents a “promising advance” in objective TBI assessment, particularly for sideline evaluation, said Shaheen Lakhan, MD, PhD, neurologist, and researcher based in Miami, Florida, who wasn’t involved in the research.

The potential value of SHAAKE is “particularly notable given the well-documented tendency for athletes to minimize or conceal symptoms to maintain play eligibility, a limitation that has historically challenged our reliance on subjective reporting and observational assessments,” Lakhan said.

“Moving forward, validation through prospective studies incorporating real-time video analysis, helmet sensor data, and clinician-confirmed TBI diagnoses will be essential. With appropriate validation, SHAAKE could emerge as a valuable component of our sideline assessment arsenal, complementing rather than replacing existing diagnostic approaches,” Lakhan said.

“SHAAKE could be the ‘instant replay’ for brain injuries that sports medicine has been waiting for — but like any new technology, we need to make sure it works for every player, not just some,” Lakhan added.

Also weighing in, Richard Figler, MD, director of the Concussion Center, Cleveland Clinic Sports Medicine Center, Cleveland, cautioned that the survey participants were recruited from a concussion registry and self-reported an average of 23 concussions — more than one third of which happened 5-10 years prior — which begs the question, “How much are they actually remembering?”

“Our goal is to make sure that the athletes are safe and that we’re not missing concussions, and we don’t have great tools to start off with. This study opens up the door for some prospective studies [of SHAAKE] moving forward. I think we need more data before this should be listed as a definitive marker,” said Figler, who also wasn’t involved in the study.

In any case, he said, when it comes to suspected concussion in sports, “when in doubt, you sit them out,” Figler said.

This research received no external funding. Nowinski has received travel reimbursement from the NFL Players Association (NFLPA), NFL, World Rugby, WWE, and All Elite Wrestling; served as an expert witness in cases related to concussion and chronic traumatic encephalopathy; and is compensated for speaking appearances and serving on the NFL Concussion Settlement Player Advocacy Committee. Daniel H. Daneshvar served as an expert witness in legal cases involving brain injury and concussion and received funding from the Football Players Health Study at Harvard University, which is funded by the NFLPA and evaluates patients for the MGH Brain and Body TRUST Center, sponsored in part by the NFLPA. Lakhan and Figler had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Researchers have identified a potential new sign of concussion in athletes, particularly football players, that can easily be spotted on the field, indicating the need for immediate removal from the game and evaluation for potential traumatic brain injury (TBI).

Spontaneous Headshake After a Kinematic Event (SHAAKE) refers to the rapid, back-and-forth head movement athletes exhibit following a blow to the head. This voluntary motion typically occurs within seconds to minutes after impact and is a familiar response in athletes.

In a recent survey, 7 out of 10 adult athletes recalled making this movement after a collision, and three out of four times they attributed this back-and-forth head movement to a concussion. The association was strongest among football players, who reported that over 90% of SHAAKE episodes were associated with a concussion.

The results were published online in Diagnostics.
 

Call to Action

“Everyone” — including sports and medical organizations — “should be adding this to their list of potential concussion signs and their protocol immediately,” study investigator Chris Nowinski, PhD, CEO and co-founder of the Concussion Legacy Foundation, told this news organization.

Nowinski said it’s “fascinating” that this concussion sign hasn’t been formally studied or added to formal concussion screening metrics before now, given that it’s been depicted in movies, television, and cartoons for decades.

Coaches, medical professionals, and concussion spotters should be trained to recognize when a SHAAKE happens, he said.

“The interesting thing is, I don’t think coaches or parents need much training other than to officially tie this to suspicion of a concussion,” Nowinski added.
 

The Case of Miami Dolphins QB Tua Tagovailoa

Nowinski said he was tipped off to SHAAKE as a concussion sign after Miami Dolphins quarterback Tua Tagovailoa’s controversial undiagnosed concussion during a National Football League (NFL) game in 2022.

After Tagovailoa’s head hit the ground, he rapidly shook his head side to side, indicating displaying SHAAKE, before stumbling and collapsing. At the time, a sideline doctor attributed his collapse to a prior back injury.

If Tagovailoa had been diagnosed with a concussion, he likely would not have been playing in a game just 4 days later, where he lost consciousness after suffering a suspected second concussion and was removed from the field on a stretcher.

For the survey, Nowinski and colleagues showed 347 current and former athletes, including 109 football players, video examples of SHAAKE and them asked about their experiences with this potential indicator of concussion.

Nearly 69% of athletes reported exhibiting a SHAAKE during their career, and 93% of those reported a SHAAKE in association with concussion at least once. Athletes reported SHAAKE a median of five times in their lives.

Of the athletes who reported SHAAKE, 85% linked this head-shaking movement to concussion symptoms such as disorientation (71%) and dizziness (54%).

Across all sports, SHAAKE showed a sensitivity of 49.6% and a positive predictive value (PPV) of 72.4% for diagnosing concussions.

Among football players, sensitivity improved to 52.3%, with an estimated specificity of 99.9%, a PPV of 91.9%, and an estimated negative predictive value of 99.5%.

The main limitation of the survey was the potential for recall bias due to survey participants self-reporting prior concussions. The researchers called for future prospective studies to validate SHAAKE as a sign of concussion.
 

 

 

Instant Replay for Brain Injury?

Experts echoed the need for validation. SHAAKE represents a “promising advance” in objective TBI assessment, particularly for sideline evaluation, said Shaheen Lakhan, MD, PhD, neurologist, and researcher based in Miami, Florida, who wasn’t involved in the research.

The potential value of SHAAKE is “particularly notable given the well-documented tendency for athletes to minimize or conceal symptoms to maintain play eligibility, a limitation that has historically challenged our reliance on subjective reporting and observational assessments,” Lakhan said.

“Moving forward, validation through prospective studies incorporating real-time video analysis, helmet sensor data, and clinician-confirmed TBI diagnoses will be essential. With appropriate validation, SHAAKE could emerge as a valuable component of our sideline assessment arsenal, complementing rather than replacing existing diagnostic approaches,” Lakhan said.

“SHAAKE could be the ‘instant replay’ for brain injuries that sports medicine has been waiting for — but like any new technology, we need to make sure it works for every player, not just some,” Lakhan added.

Also weighing in, Richard Figler, MD, director of the Concussion Center, Cleveland Clinic Sports Medicine Center, Cleveland, cautioned that the survey participants were recruited from a concussion registry and self-reported an average of 23 concussions — more than one third of which happened 5-10 years prior — which begs the question, “How much are they actually remembering?”

“Our goal is to make sure that the athletes are safe and that we’re not missing concussions, and we don’t have great tools to start off with. This study opens up the door for some prospective studies [of SHAAKE] moving forward. I think we need more data before this should be listed as a definitive marker,” said Figler, who also wasn’t involved in the study.

In any case, he said, when it comes to suspected concussion in sports, “when in doubt, you sit them out,” Figler said.

This research received no external funding. Nowinski has received travel reimbursement from the NFL Players Association (NFLPA), NFL, World Rugby, WWE, and All Elite Wrestling; served as an expert witness in cases related to concussion and chronic traumatic encephalopathy; and is compensated for speaking appearances and serving on the NFL Concussion Settlement Player Advocacy Committee. Daniel H. Daneshvar served as an expert witness in legal cases involving brain injury and concussion and received funding from the Football Players Health Study at Harvard University, which is funded by the NFLPA and evaluates patients for the MGH Brain and Body TRUST Center, sponsored in part by the NFLPA. Lakhan and Figler had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM DIAGNOSTICS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Why Scientists Are Linking More Diseases to Light at Night

Article Type
Changed
Thu, 10/24/2024 - 13:06

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

Publications
Topics
Sections

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.

It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear. 

“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program. 

Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.

Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.

But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said. 
 

Bright Lights, Big Problems

For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms. 

Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light). 

Research has found links between the nighttime glow outside and other diseases:

Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%. 

Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.

Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution. 
 

What Happens in Your Body When You’re Exposed to Light at Night

Research has revealed that light at night (indoors or out) disrupts circadian clocks, increases inflammation, affects cell division, and suppresses melatonin, the “hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.

Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.

“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.” 

This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.

The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half

When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.

Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers). 

Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact. 

When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.

similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
 

 

 

What Can You Do About This?

Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight

You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.

Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away

And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.” 
 

A version of this article appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Blood Tests for Alzheimer’s Are Here... Are Clinicians Ready?

Article Type
Changed
Thu, 10/24/2024 - 12:08

With the approval of anti-amyloid monoclonal antibodies to treat early-stage Alzheimer’s disease, the need for accurate and early diagnosis is crucial.

Blood-based biomarkers offer a promising alternative to amyloid PET scans and cerebrospinal fluid (CSF) analysis and are being increasingly used in clinical practice to support an Alzheimer’s disease diagnosis.

Recently, an expert workgroup convened by the Global CEO Initiative on Alzheimer’s Disease published recommendations for the clinical implementation of Alzheimer’s disease blood-based biomarkers.

“Our hope was to provide some recommendations that clinicians could use to develop the best pathways for their clinical practice,” said workgroup co-chair Michelle M. Mielke, PhD, with Wake Forest University School of Medicine, Winston-Salem, North Carolina.
 

Triage and Confirmatory Pathways

The group recommends two implementation pathways for Alzheimer’s disease blood biomarkers — one for current use for triaging and another for future use to confirm amyloid pathology once blood biomarker tests have reached sufficient performance for this purpose.

In the triage pathway, a negative blood biomarker test would flag individuals unlikely to have detectable brain amyloid pathology. This outcome would prompt clinicians to focus on evaluating non–Alzheimer’s disease-related causes of cognitive impairment, which may streamline the diagnosis of other causes of cognitive impairment, the authors said.

A positive triage blood test would suggest a higher likelihood of amyloid pathology and prompt referral to secondary care for further assessment and consideration for a second, more accurate test, such as amyloid PET or CSF for amyloid confirmation.

In the confirmatory pathway, a positive blood biomarker test result would identify amyloid pathology without the need for a second test, providing a faster route to diagnosis, the authors noted.

Mielke emphasized that these recommendations represent a “first step” and will need to be updated as experiences with the Alzheimer’s disease blood biomarkers in clinical care increase and additional barriers and facilitators are identified.

“These updates will likely include community-informed approaches that incorporate feedback from patients as well as healthcare providers, alongside results from validation in diverse real-world settings,” said workgroup co-chair Chi Udeh-Momoh, PhD, MSc, with Wake Forest University School of Medicine and the Brain and Mind Institute, Aga Khan University, Nairobi, Kenya.

The Alzheimer’s Association published “appropriate use” recommendations for blood biomarkers in 2022.

“Currently, the Alzheimer’s Association is building an updated library of clinical guidance that distills the scientific evidence using de novo systematic reviews and translates them into clear and actionable recommendations for clinical practice,” said Rebecca M. Edelmayer, PhD, vice president of scientific engagement, Alzheimer’s Association.

“The first major effort with our new process will be the upcoming Evidence-based Clinical Practice Guideline on the Use of Blood-based Biomarkers (BBMs) in Specialty Care Settings. This guideline’s recommendations will be published in early 2025,” Edelmayer said.
 

Availability and Accuracy

Research has shown that amyloid beta and tau protein blood biomarkers — especially a high plasma phosphorylated (p)–tau217 levels — are highly accurate in identifying Alzheimer’s disease in patients with cognitive symptoms attending primary and secondary care clinics.

Several tests targeting plasma p-tau217 are now available for use. They include the PrecivityAD2 blood test from C2N Diagnostics and the Simoa p-Tau 217 Planar Kit and LucentAD p-Tau 217 — both from Quanterix.

In a recent head-to-head comparison of seven leading blood tests for AD pathology, measures of plasma p-tau217, either individually or in combination with other plasma biomarkers, had the strongest relationships with Alzheimer’s disease outcomes.

A recent Swedish study showed that the PrecivityAD2 test had an accuracy of 91% for correctly classifying clinical, biomarker-verified Alzheimer’s disease.

“We’ve been using these blood biomarkers in research for a long time and we’re now taking the jump to start using them in clinic to risk stratify patients,” said Fanny Elahi, MD, PhD, director of fluid biomarker research for the Barbara and Maurice Deane Center for Wellness and Cognitive Health at Icahn Mount Sinai in New York City.

New York’s Mount Sinai Health System is among the first in the northeast to offer blood tests across primary and specialty care settings for early diagnosis of AD and related dementias.

Edelmayer cautioned, “There is no single, stand-alone test to diagnose Alzheimer’s disease today. Blood testing is one piece of the diagnostic process.”

“Currently, physicians use well-established diagnostic tools combined with medical history and other information, including neurological exams, cognitive and functional assessments as well as brain imaging and spinal fluid analysis and blood to make an accurate diagnosis and to understand which patients are eligible for approved treatments,” she said.

There are also emerging biomarkers in the research pipeline, Edelmayer said.

“For example, some researchers think retinal imaging has the potential to detect biological signs of Alzheimer’s disease within certain areas of the eye,” she explained.

“Other emerging biomarkers include examining components in saliva and the skin for signals that may indicate early biological changes in the brain. These biomarkers are still very exploratory, and more research is needed before these tests or biomarkers can be used more routinely to study risk or aid in diagnosis,” Edelmayer said.
 

 

 

Ideal Candidates for Alzheimer’s Disease Blood Testing?

Experts agree that blood tests represent a convenient and scalable option to address the anticipated surge in demand for biomarker testing with the availability of disease-modifying treatments. For now, however, they are not for all older adults worried about their memory.

“Current practice should focus on using these blood biomarkers in individuals with cognitive impairment rather than in those with normal cognition or subjective cognitive decline until further research demonstrates effective interventions for individuals considered cognitively normal with elevated levels of amyloid,” the authors of a recent JAMA editorial noted.

At Mount Sinai, “we’re not starting with stone-cold asymptomatic individuals. But ultimately, this is what the blood tests are intended for — screening,” Elahi noted.

She also noted that Mount Sinai has a “very diverse population” — some with young onset cognitive symptoms, so the entry criteria for testing are “very wide.”

“Anyone above age 40 with symptoms can qualify to get a blood test. We do ask at this stage that either the individual report symptoms or someone in their life or their clinician be worried about their cognition or their brain function,” Elahi said.
 

Ethical Considerations, Counseling

Elahi emphasized the importance of counseling patients who come to the clinic seeking an Alzheimer’s disease blood test. This should include how the diagnostic process will unfold and what the next steps are with a given result.

Elahi said patients need to be informed that Alzheimer’s disease blood biomarkers are still “relatively new,” and a test can help a patient “know the likelihood of having the disease, but it won’t be 100% definitive.”

To ensure the ethical principle of “do no harm,” counseling should ensure that patients are fully prepared for the implications of the test results and ensure that the decision to test aligns with the patient’s readiness and well-being, Elahi said.

Edelmayer said the forthcoming clinical practice guidelines will provide “evidence-based recommendations for physicians to help guide them through the decision-making process around who should be tested and when. In the meantime, the Alzheimer’s Association urges providers to refer to the 2022 appropriate use recommendations for blood tests in clinical practice and trial settings.”

Mielke has served on scientific advisory boards and/or having consulted for Acadia, Biogen, Eisai, LabCorp, Lilly, Merck, PeerView Institute, Roche, Siemens Healthineers, and Sunbird Bio. Edelmayer and Elahi had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

With the approval of anti-amyloid monoclonal antibodies to treat early-stage Alzheimer’s disease, the need for accurate and early diagnosis is crucial.

Blood-based biomarkers offer a promising alternative to amyloid PET scans and cerebrospinal fluid (CSF) analysis and are being increasingly used in clinical practice to support an Alzheimer’s disease diagnosis.

Recently, an expert workgroup convened by the Global CEO Initiative on Alzheimer’s Disease published recommendations for the clinical implementation of Alzheimer’s disease blood-based biomarkers.

“Our hope was to provide some recommendations that clinicians could use to develop the best pathways for their clinical practice,” said workgroup co-chair Michelle M. Mielke, PhD, with Wake Forest University School of Medicine, Winston-Salem, North Carolina.
 

Triage and Confirmatory Pathways

The group recommends two implementation pathways for Alzheimer’s disease blood biomarkers — one for current use for triaging and another for future use to confirm amyloid pathology once blood biomarker tests have reached sufficient performance for this purpose.

In the triage pathway, a negative blood biomarker test would flag individuals unlikely to have detectable brain amyloid pathology. This outcome would prompt clinicians to focus on evaluating non–Alzheimer’s disease-related causes of cognitive impairment, which may streamline the diagnosis of other causes of cognitive impairment, the authors said.

A positive triage blood test would suggest a higher likelihood of amyloid pathology and prompt referral to secondary care for further assessment and consideration for a second, more accurate test, such as amyloid PET or CSF for amyloid confirmation.

In the confirmatory pathway, a positive blood biomarker test result would identify amyloid pathology without the need for a second test, providing a faster route to diagnosis, the authors noted.

Mielke emphasized that these recommendations represent a “first step” and will need to be updated as experiences with the Alzheimer’s disease blood biomarkers in clinical care increase and additional barriers and facilitators are identified.

“These updates will likely include community-informed approaches that incorporate feedback from patients as well as healthcare providers, alongside results from validation in diverse real-world settings,” said workgroup co-chair Chi Udeh-Momoh, PhD, MSc, with Wake Forest University School of Medicine and the Brain and Mind Institute, Aga Khan University, Nairobi, Kenya.

The Alzheimer’s Association published “appropriate use” recommendations for blood biomarkers in 2022.

“Currently, the Alzheimer’s Association is building an updated library of clinical guidance that distills the scientific evidence using de novo systematic reviews and translates them into clear and actionable recommendations for clinical practice,” said Rebecca M. Edelmayer, PhD, vice president of scientific engagement, Alzheimer’s Association.

“The first major effort with our new process will be the upcoming Evidence-based Clinical Practice Guideline on the Use of Blood-based Biomarkers (BBMs) in Specialty Care Settings. This guideline’s recommendations will be published in early 2025,” Edelmayer said.
 

Availability and Accuracy

Research has shown that amyloid beta and tau protein blood biomarkers — especially a high plasma phosphorylated (p)–tau217 levels — are highly accurate in identifying Alzheimer’s disease in patients with cognitive symptoms attending primary and secondary care clinics.

Several tests targeting plasma p-tau217 are now available for use. They include the PrecivityAD2 blood test from C2N Diagnostics and the Simoa p-Tau 217 Planar Kit and LucentAD p-Tau 217 — both from Quanterix.

In a recent head-to-head comparison of seven leading blood tests for AD pathology, measures of plasma p-tau217, either individually or in combination with other plasma biomarkers, had the strongest relationships with Alzheimer’s disease outcomes.

A recent Swedish study showed that the PrecivityAD2 test had an accuracy of 91% for correctly classifying clinical, biomarker-verified Alzheimer’s disease.

“We’ve been using these blood biomarkers in research for a long time and we’re now taking the jump to start using them in clinic to risk stratify patients,” said Fanny Elahi, MD, PhD, director of fluid biomarker research for the Barbara and Maurice Deane Center for Wellness and Cognitive Health at Icahn Mount Sinai in New York City.

New York’s Mount Sinai Health System is among the first in the northeast to offer blood tests across primary and specialty care settings for early diagnosis of AD and related dementias.

Edelmayer cautioned, “There is no single, stand-alone test to diagnose Alzheimer’s disease today. Blood testing is one piece of the diagnostic process.”

“Currently, physicians use well-established diagnostic tools combined with medical history and other information, including neurological exams, cognitive and functional assessments as well as brain imaging and spinal fluid analysis and blood to make an accurate diagnosis and to understand which patients are eligible for approved treatments,” she said.

There are also emerging biomarkers in the research pipeline, Edelmayer said.

“For example, some researchers think retinal imaging has the potential to detect biological signs of Alzheimer’s disease within certain areas of the eye,” she explained.

“Other emerging biomarkers include examining components in saliva and the skin for signals that may indicate early biological changes in the brain. These biomarkers are still very exploratory, and more research is needed before these tests or biomarkers can be used more routinely to study risk or aid in diagnosis,” Edelmayer said.
 

 

 

Ideal Candidates for Alzheimer’s Disease Blood Testing?

Experts agree that blood tests represent a convenient and scalable option to address the anticipated surge in demand for biomarker testing with the availability of disease-modifying treatments. For now, however, they are not for all older adults worried about their memory.

“Current practice should focus on using these blood biomarkers in individuals with cognitive impairment rather than in those with normal cognition or subjective cognitive decline until further research demonstrates effective interventions for individuals considered cognitively normal with elevated levels of amyloid,” the authors of a recent JAMA editorial noted.

At Mount Sinai, “we’re not starting with stone-cold asymptomatic individuals. But ultimately, this is what the blood tests are intended for — screening,” Elahi noted.

She also noted that Mount Sinai has a “very diverse population” — some with young onset cognitive symptoms, so the entry criteria for testing are “very wide.”

“Anyone above age 40 with symptoms can qualify to get a blood test. We do ask at this stage that either the individual report symptoms or someone in their life or their clinician be worried about their cognition or their brain function,” Elahi said.
 

Ethical Considerations, Counseling

Elahi emphasized the importance of counseling patients who come to the clinic seeking an Alzheimer’s disease blood test. This should include how the diagnostic process will unfold and what the next steps are with a given result.

Elahi said patients need to be informed that Alzheimer’s disease blood biomarkers are still “relatively new,” and a test can help a patient “know the likelihood of having the disease, but it won’t be 100% definitive.”

To ensure the ethical principle of “do no harm,” counseling should ensure that patients are fully prepared for the implications of the test results and ensure that the decision to test aligns with the patient’s readiness and well-being, Elahi said.

Edelmayer said the forthcoming clinical practice guidelines will provide “evidence-based recommendations for physicians to help guide them through the decision-making process around who should be tested and when. In the meantime, the Alzheimer’s Association urges providers to refer to the 2022 appropriate use recommendations for blood tests in clinical practice and trial settings.”

Mielke has served on scientific advisory boards and/or having consulted for Acadia, Biogen, Eisai, LabCorp, Lilly, Merck, PeerView Institute, Roche, Siemens Healthineers, and Sunbird Bio. Edelmayer and Elahi had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

With the approval of anti-amyloid monoclonal antibodies to treat early-stage Alzheimer’s disease, the need for accurate and early diagnosis is crucial.

Blood-based biomarkers offer a promising alternative to amyloid PET scans and cerebrospinal fluid (CSF) analysis and are being increasingly used in clinical practice to support an Alzheimer’s disease diagnosis.

Recently, an expert workgroup convened by the Global CEO Initiative on Alzheimer’s Disease published recommendations for the clinical implementation of Alzheimer’s disease blood-based biomarkers.

“Our hope was to provide some recommendations that clinicians could use to develop the best pathways for their clinical practice,” said workgroup co-chair Michelle M. Mielke, PhD, with Wake Forest University School of Medicine, Winston-Salem, North Carolina.
 

Triage and Confirmatory Pathways

The group recommends two implementation pathways for Alzheimer’s disease blood biomarkers — one for current use for triaging and another for future use to confirm amyloid pathology once blood biomarker tests have reached sufficient performance for this purpose.

In the triage pathway, a negative blood biomarker test would flag individuals unlikely to have detectable brain amyloid pathology. This outcome would prompt clinicians to focus on evaluating non–Alzheimer’s disease-related causes of cognitive impairment, which may streamline the diagnosis of other causes of cognitive impairment, the authors said.

A positive triage blood test would suggest a higher likelihood of amyloid pathology and prompt referral to secondary care for further assessment and consideration for a second, more accurate test, such as amyloid PET or CSF for amyloid confirmation.

In the confirmatory pathway, a positive blood biomarker test result would identify amyloid pathology without the need for a second test, providing a faster route to diagnosis, the authors noted.

Mielke emphasized that these recommendations represent a “first step” and will need to be updated as experiences with the Alzheimer’s disease blood biomarkers in clinical care increase and additional barriers and facilitators are identified.

“These updates will likely include community-informed approaches that incorporate feedback from patients as well as healthcare providers, alongside results from validation in diverse real-world settings,” said workgroup co-chair Chi Udeh-Momoh, PhD, MSc, with Wake Forest University School of Medicine and the Brain and Mind Institute, Aga Khan University, Nairobi, Kenya.

The Alzheimer’s Association published “appropriate use” recommendations for blood biomarkers in 2022.

“Currently, the Alzheimer’s Association is building an updated library of clinical guidance that distills the scientific evidence using de novo systematic reviews and translates them into clear and actionable recommendations for clinical practice,” said Rebecca M. Edelmayer, PhD, vice president of scientific engagement, Alzheimer’s Association.

“The first major effort with our new process will be the upcoming Evidence-based Clinical Practice Guideline on the Use of Blood-based Biomarkers (BBMs) in Specialty Care Settings. This guideline’s recommendations will be published in early 2025,” Edelmayer said.
 

Availability and Accuracy

Research has shown that amyloid beta and tau protein blood biomarkers — especially a high plasma phosphorylated (p)–tau217 levels — are highly accurate in identifying Alzheimer’s disease in patients with cognitive symptoms attending primary and secondary care clinics.

Several tests targeting plasma p-tau217 are now available for use. They include the PrecivityAD2 blood test from C2N Diagnostics and the Simoa p-Tau 217 Planar Kit and LucentAD p-Tau 217 — both from Quanterix.

In a recent head-to-head comparison of seven leading blood tests for AD pathology, measures of plasma p-tau217, either individually or in combination with other plasma biomarkers, had the strongest relationships with Alzheimer’s disease outcomes.

A recent Swedish study showed that the PrecivityAD2 test had an accuracy of 91% for correctly classifying clinical, biomarker-verified Alzheimer’s disease.

“We’ve been using these blood biomarkers in research for a long time and we’re now taking the jump to start using them in clinic to risk stratify patients,” said Fanny Elahi, MD, PhD, director of fluid biomarker research for the Barbara and Maurice Deane Center for Wellness and Cognitive Health at Icahn Mount Sinai in New York City.

New York’s Mount Sinai Health System is among the first in the northeast to offer blood tests across primary and specialty care settings for early diagnosis of AD and related dementias.

Edelmayer cautioned, “There is no single, stand-alone test to diagnose Alzheimer’s disease today. Blood testing is one piece of the diagnostic process.”

“Currently, physicians use well-established diagnostic tools combined with medical history and other information, including neurological exams, cognitive and functional assessments as well as brain imaging and spinal fluid analysis and blood to make an accurate diagnosis and to understand which patients are eligible for approved treatments,” she said.

There are also emerging biomarkers in the research pipeline, Edelmayer said.

“For example, some researchers think retinal imaging has the potential to detect biological signs of Alzheimer’s disease within certain areas of the eye,” she explained.

“Other emerging biomarkers include examining components in saliva and the skin for signals that may indicate early biological changes in the brain. These biomarkers are still very exploratory, and more research is needed before these tests or biomarkers can be used more routinely to study risk or aid in diagnosis,” Edelmayer said.
 

 

 

Ideal Candidates for Alzheimer’s Disease Blood Testing?

Experts agree that blood tests represent a convenient and scalable option to address the anticipated surge in demand for biomarker testing with the availability of disease-modifying treatments. For now, however, they are not for all older adults worried about their memory.

“Current practice should focus on using these blood biomarkers in individuals with cognitive impairment rather than in those with normal cognition or subjective cognitive decline until further research demonstrates effective interventions for individuals considered cognitively normal with elevated levels of amyloid,” the authors of a recent JAMA editorial noted.

At Mount Sinai, “we’re not starting with stone-cold asymptomatic individuals. But ultimately, this is what the blood tests are intended for — screening,” Elahi noted.

She also noted that Mount Sinai has a “very diverse population” — some with young onset cognitive symptoms, so the entry criteria for testing are “very wide.”

“Anyone above age 40 with symptoms can qualify to get a blood test. We do ask at this stage that either the individual report symptoms or someone in their life or their clinician be worried about their cognition or their brain function,” Elahi said.
 

Ethical Considerations, Counseling

Elahi emphasized the importance of counseling patients who come to the clinic seeking an Alzheimer’s disease blood test. This should include how the diagnostic process will unfold and what the next steps are with a given result.

Elahi said patients need to be informed that Alzheimer’s disease blood biomarkers are still “relatively new,” and a test can help a patient “know the likelihood of having the disease, but it won’t be 100% definitive.”

To ensure the ethical principle of “do no harm,” counseling should ensure that patients are fully prepared for the implications of the test results and ensure that the decision to test aligns with the patient’s readiness and well-being, Elahi said.

Edelmayer said the forthcoming clinical practice guidelines will provide “evidence-based recommendations for physicians to help guide them through the decision-making process around who should be tested and when. In the meantime, the Alzheimer’s Association urges providers to refer to the 2022 appropriate use recommendations for blood tests in clinical practice and trial settings.”

Mielke has served on scientific advisory boards and/or having consulted for Acadia, Biogen, Eisai, LabCorp, Lilly, Merck, PeerView Institute, Roche, Siemens Healthineers, and Sunbird Bio. Edelmayer and Elahi had no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Remote Assessments: A Win-Win for ALS Patients and Clinics?

Article Type
Changed
Thu, 10/24/2024 - 09:39

Remote monitoring of respiratory scores in patients with amyotrophic lateral sclerosis (ALS) helps predict the best timing for the introduction of bilevel positive airway pressure (BiPAP), results of a retrospective study showed.

The findings, along with those of another study by the same group, suggest that remote monitoring of patients with ALS is a feasible option for both maximizing quality of life and minimizing cost and disruption.

Both studies were presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

“What we’re trying to do is look for screening tools that we can use when these patients are in the community to see if a specific score transition is associated with a high probability of needing an intervention that would require bringing them in to do gold standard tests,” said study investigator Tefani Perera, MD, a neurology resident at the University of Calgary, in Alberta, Canada.
 

Optimizing Quality of Life

Tailoring in-person care is particularly important for patients with ALS who often face significant challenges with mobility, Perera said. However, most multidisciplinary ALS clinics schedule in-person follow-ups at regular intervals rather than “as needed.

“These are very long clinic days where they are assessed for one thing after another, even if they don’t need it. So maybe we can actually select for what they need to be assessed for at each specific visit? Life expectancy is not that long for these patients, so we want to make sure their quality of life is optimized.”

For the BiPAP study, the investigators used the Pooled Resource Open-Access ALS Clinical Trials database to identify patients with ALS with two or more respiratory assessments on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R).

The ALSFRS-R is a 12-item questionnaire, which includes three respiratory sub-scores for respiratory insufficiency (RiS), dyspnea (DyS) and orthopnea (OS).

Patients with a baseline RiS sub-score of 4 — meaning no need for BiPAP — were included in the study (n = 3838), with the primary outcome being a drop in RiS sub-score indicating the need for BiPAP.

The median time from baseline to transition to BiPAP was 563 days, with 3.4% of patients reaching this outcome by 3 months.

Results showed the probability of needing BiPAP was significantly associated with baseline DyS and OS scores (P < .0001). Among patients with baseline DyS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 5.5%, 8.7%, and 20.1%, respectively. In addition, in patients with baseline OS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 9.1%, 12.7%, and 24.2%, respectively.

Regardless of the baseline score, any drop in either of these sub-scores over the study period was also associated with an increased likelihood of requiring BiPAP within 3 months, with a DyS transition from 3 to 2 and an OS transition from 4 to 3 being most notable.

These scores could be used to trigger gold standard assessments for BiPAP, such as nocturnal oximetry, overnight polysomnography, daytime hypercapnia, and forced and slow vital capacities, Perera said. On the other hand, the scores could also help patients and clinicians avoid unnecessary visits.

“When the dyspnea and orthopnea scores are high, they might not need this intervention until 2 years later, so do we even need to bring them in to do these tests or see a respirologist when they don’t actually need it?”

The group’s second study was a systematic review of 26 papers on ALS remote assessment devices and methods, including accelerometers (15.4%), telenursing protocols (3.8%), speech collection apps (26.9%), questionnaires (15.4%), multifactorial sensors (15.4%), and respiratory function monitors (19.2%). Domains of symptoms monitored included speech (12 studies), motor (11 studies), respiratory (11 studies), cardiac (three studies), and bulbar, psychiatric, and autonomic (one study each).

The researchers characterized various remote tools as having potential and concluded that a multidomain approach to symptom monitoring is achievable. They also noted that the majority of studies assessing adherence and patient feedback indicated a favorable response to patient monitoring.

“I work in a resource-rich center, where we have these huge multidisciplinary clinics, and we have the capacity to bring patients back every 3 months, but outside these big centers, in resource-limited settings, to have an ability to track remotely and bring patients in when they really need it is very important,” said Perera.
 

 

 

Best of Both Worlds

Ileana Howard, MD, physiatrist and professor of rehabilitation medicine at the University of Washington and medical co-director of the ALS Center of Excellence at VA Puget Sound in Seattle, agreed.

“One of the biggest challenges in ALS care today is ensuring equitable access to high quality care and supports, and telehealth was adopted by the VA early on as a means of doing that,” she said. “Remote monitoring technology is a really key development to help improve that type of care.”

However, she added that it should not be a question of one type of care versus the other. “The ideal care is when we have access to providing both face-to-face and virtual care for our patients so that we can meet their needs and preferences for care,” she said.

“Sometimes, in my experience, patients don’t understand why it’s important to go to an ALS specialty center. In those cases, I’ve been able to make initial contact with those individuals through telehealth and be able to provide education, which, in turn, often results in them making the decision to come to the specialty center once they understand what resources we have to offer.” 

Also commenting on the research, Ghazala Hayat, MD, also endorsed a mixed approach.

“Telehealth is a very good tool that we should use interspersed with in-person visits,” said Hayat, director of the multidisciplinary ALS clinic at St. Louis University School of Medicine, St. Louis, Missouri, and professor of neurology and director of neuromuscular and clinical neurophysiology.

“I think the first few visits should always be in person — you need to connect with the patient,” she said. “But then, once they feel comfortable, remote monitoring is a very good idea, especially later in the disease process, when it becomes really difficult for the family to bring the patient in.” 

The authors reported no relevant disclosures. Howard reported no disclosures. Hayat reported serving as a speaker and in advisory roles for argenx, Alexion, and MTPA. The study was funded by Amylyx Pharmaceuticals.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Remote monitoring of respiratory scores in patients with amyotrophic lateral sclerosis (ALS) helps predict the best timing for the introduction of bilevel positive airway pressure (BiPAP), results of a retrospective study showed.

The findings, along with those of another study by the same group, suggest that remote monitoring of patients with ALS is a feasible option for both maximizing quality of life and minimizing cost and disruption.

Both studies were presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

“What we’re trying to do is look for screening tools that we can use when these patients are in the community to see if a specific score transition is associated with a high probability of needing an intervention that would require bringing them in to do gold standard tests,” said study investigator Tefani Perera, MD, a neurology resident at the University of Calgary, in Alberta, Canada.
 

Optimizing Quality of Life

Tailoring in-person care is particularly important for patients with ALS who often face significant challenges with mobility, Perera said. However, most multidisciplinary ALS clinics schedule in-person follow-ups at regular intervals rather than “as needed.

“These are very long clinic days where they are assessed for one thing after another, even if they don’t need it. So maybe we can actually select for what they need to be assessed for at each specific visit? Life expectancy is not that long for these patients, so we want to make sure their quality of life is optimized.”

For the BiPAP study, the investigators used the Pooled Resource Open-Access ALS Clinical Trials database to identify patients with ALS with two or more respiratory assessments on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R).

The ALSFRS-R is a 12-item questionnaire, which includes three respiratory sub-scores for respiratory insufficiency (RiS), dyspnea (DyS) and orthopnea (OS).

Patients with a baseline RiS sub-score of 4 — meaning no need for BiPAP — were included in the study (n = 3838), with the primary outcome being a drop in RiS sub-score indicating the need for BiPAP.

The median time from baseline to transition to BiPAP was 563 days, with 3.4% of patients reaching this outcome by 3 months.

Results showed the probability of needing BiPAP was significantly associated with baseline DyS and OS scores (P < .0001). Among patients with baseline DyS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 5.5%, 8.7%, and 20.1%, respectively. In addition, in patients with baseline OS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 9.1%, 12.7%, and 24.2%, respectively.

Regardless of the baseline score, any drop in either of these sub-scores over the study period was also associated with an increased likelihood of requiring BiPAP within 3 months, with a DyS transition from 3 to 2 and an OS transition from 4 to 3 being most notable.

These scores could be used to trigger gold standard assessments for BiPAP, such as nocturnal oximetry, overnight polysomnography, daytime hypercapnia, and forced and slow vital capacities, Perera said. On the other hand, the scores could also help patients and clinicians avoid unnecessary visits.

“When the dyspnea and orthopnea scores are high, they might not need this intervention until 2 years later, so do we even need to bring them in to do these tests or see a respirologist when they don’t actually need it?”

The group’s second study was a systematic review of 26 papers on ALS remote assessment devices and methods, including accelerometers (15.4%), telenursing protocols (3.8%), speech collection apps (26.9%), questionnaires (15.4%), multifactorial sensors (15.4%), and respiratory function monitors (19.2%). Domains of symptoms monitored included speech (12 studies), motor (11 studies), respiratory (11 studies), cardiac (three studies), and bulbar, psychiatric, and autonomic (one study each).

The researchers characterized various remote tools as having potential and concluded that a multidomain approach to symptom monitoring is achievable. They also noted that the majority of studies assessing adherence and patient feedback indicated a favorable response to patient monitoring.

“I work in a resource-rich center, where we have these huge multidisciplinary clinics, and we have the capacity to bring patients back every 3 months, but outside these big centers, in resource-limited settings, to have an ability to track remotely and bring patients in when they really need it is very important,” said Perera.
 

 

 

Best of Both Worlds

Ileana Howard, MD, physiatrist and professor of rehabilitation medicine at the University of Washington and medical co-director of the ALS Center of Excellence at VA Puget Sound in Seattle, agreed.

“One of the biggest challenges in ALS care today is ensuring equitable access to high quality care and supports, and telehealth was adopted by the VA early on as a means of doing that,” she said. “Remote monitoring technology is a really key development to help improve that type of care.”

However, she added that it should not be a question of one type of care versus the other. “The ideal care is when we have access to providing both face-to-face and virtual care for our patients so that we can meet their needs and preferences for care,” she said.

“Sometimes, in my experience, patients don’t understand why it’s important to go to an ALS specialty center. In those cases, I’ve been able to make initial contact with those individuals through telehealth and be able to provide education, which, in turn, often results in them making the decision to come to the specialty center once they understand what resources we have to offer.” 

Also commenting on the research, Ghazala Hayat, MD, also endorsed a mixed approach.

“Telehealth is a very good tool that we should use interspersed with in-person visits,” said Hayat, director of the multidisciplinary ALS clinic at St. Louis University School of Medicine, St. Louis, Missouri, and professor of neurology and director of neuromuscular and clinical neurophysiology.

“I think the first few visits should always be in person — you need to connect with the patient,” she said. “But then, once they feel comfortable, remote monitoring is a very good idea, especially later in the disease process, when it becomes really difficult for the family to bring the patient in.” 

The authors reported no relevant disclosures. Howard reported no disclosures. Hayat reported serving as a speaker and in advisory roles for argenx, Alexion, and MTPA. The study was funded by Amylyx Pharmaceuticals.
 

A version of this article appeared on Medscape.com.

Remote monitoring of respiratory scores in patients with amyotrophic lateral sclerosis (ALS) helps predict the best timing for the introduction of bilevel positive airway pressure (BiPAP), results of a retrospective study showed.

The findings, along with those of another study by the same group, suggest that remote monitoring of patients with ALS is a feasible option for both maximizing quality of life and minimizing cost and disruption.

Both studies were presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

“What we’re trying to do is look for screening tools that we can use when these patients are in the community to see if a specific score transition is associated with a high probability of needing an intervention that would require bringing them in to do gold standard tests,” said study investigator Tefani Perera, MD, a neurology resident at the University of Calgary, in Alberta, Canada.
 

Optimizing Quality of Life

Tailoring in-person care is particularly important for patients with ALS who often face significant challenges with mobility, Perera said. However, most multidisciplinary ALS clinics schedule in-person follow-ups at regular intervals rather than “as needed.

“These are very long clinic days where they are assessed for one thing after another, even if they don’t need it. So maybe we can actually select for what they need to be assessed for at each specific visit? Life expectancy is not that long for these patients, so we want to make sure their quality of life is optimized.”

For the BiPAP study, the investigators used the Pooled Resource Open-Access ALS Clinical Trials database to identify patients with ALS with two or more respiratory assessments on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R).

The ALSFRS-R is a 12-item questionnaire, which includes three respiratory sub-scores for respiratory insufficiency (RiS), dyspnea (DyS) and orthopnea (OS).

Patients with a baseline RiS sub-score of 4 — meaning no need for BiPAP — were included in the study (n = 3838), with the primary outcome being a drop in RiS sub-score indicating the need for BiPAP.

The median time from baseline to transition to BiPAP was 563 days, with 3.4% of patients reaching this outcome by 3 months.

Results showed the probability of needing BiPAP was significantly associated with baseline DyS and OS scores (P < .0001). Among patients with baseline DyS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 5.5%, 8.7%, and 20.1%, respectively. In addition, in patients with baseline OS scores of 3, 2, and 1, the percentages of patients needing BiPAP within 3 months were 9.1%, 12.7%, and 24.2%, respectively.

Regardless of the baseline score, any drop in either of these sub-scores over the study period was also associated with an increased likelihood of requiring BiPAP within 3 months, with a DyS transition from 3 to 2 and an OS transition from 4 to 3 being most notable.

These scores could be used to trigger gold standard assessments for BiPAP, such as nocturnal oximetry, overnight polysomnography, daytime hypercapnia, and forced and slow vital capacities, Perera said. On the other hand, the scores could also help patients and clinicians avoid unnecessary visits.

“When the dyspnea and orthopnea scores are high, they might not need this intervention until 2 years later, so do we even need to bring them in to do these tests or see a respirologist when they don’t actually need it?”

The group’s second study was a systematic review of 26 papers on ALS remote assessment devices and methods, including accelerometers (15.4%), telenursing protocols (3.8%), speech collection apps (26.9%), questionnaires (15.4%), multifactorial sensors (15.4%), and respiratory function monitors (19.2%). Domains of symptoms monitored included speech (12 studies), motor (11 studies), respiratory (11 studies), cardiac (three studies), and bulbar, psychiatric, and autonomic (one study each).

The researchers characterized various remote tools as having potential and concluded that a multidomain approach to symptom monitoring is achievable. They also noted that the majority of studies assessing adherence and patient feedback indicated a favorable response to patient monitoring.

“I work in a resource-rich center, where we have these huge multidisciplinary clinics, and we have the capacity to bring patients back every 3 months, but outside these big centers, in resource-limited settings, to have an ability to track remotely and bring patients in when they really need it is very important,” said Perera.
 

 

 

Best of Both Worlds

Ileana Howard, MD, physiatrist and professor of rehabilitation medicine at the University of Washington and medical co-director of the ALS Center of Excellence at VA Puget Sound in Seattle, agreed.

“One of the biggest challenges in ALS care today is ensuring equitable access to high quality care and supports, and telehealth was adopted by the VA early on as a means of doing that,” she said. “Remote monitoring technology is a really key development to help improve that type of care.”

However, she added that it should not be a question of one type of care versus the other. “The ideal care is when we have access to providing both face-to-face and virtual care for our patients so that we can meet their needs and preferences for care,” she said.

“Sometimes, in my experience, patients don’t understand why it’s important to go to an ALS specialty center. In those cases, I’ve been able to make initial contact with those individuals through telehealth and be able to provide education, which, in turn, often results in them making the decision to come to the specialty center once they understand what resources we have to offer.” 

Also commenting on the research, Ghazala Hayat, MD, also endorsed a mixed approach.

“Telehealth is a very good tool that we should use interspersed with in-person visits,” said Hayat, director of the multidisciplinary ALS clinic at St. Louis University School of Medicine, St. Louis, Missouri, and professor of neurology and director of neuromuscular and clinical neurophysiology.

“I think the first few visits should always be in person — you need to connect with the patient,” she said. “But then, once they feel comfortable, remote monitoring is a very good idea, especially later in the disease process, when it becomes really difficult for the family to bring the patient in.” 

The authors reported no relevant disclosures. Howard reported no disclosures. Hayat reported serving as a speaker and in advisory roles for argenx, Alexion, and MTPA. The study was funded by Amylyx Pharmaceuticals.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Industry Payments to Peer Reviewers Scrutinized at Four Major Medical Journals

Article Type
Changed
Thu, 10/24/2024 - 09:35

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE: 

More than half of the US peer reviewers for four major medical journals received industry payments between 2020-2022, new research shows. Altogether they received more than $64 million in general, non-research payments, with a median payment per physician of $7614. Research payments — including money paid directly to physicians as well as funds related to research for which a physician was registered as a principal investigator — exceeded $1 billion.

METHODOLOGY:

  • Researchers identified peer reviewers in 2022 for The BMJJAMAThe Lancet, and The New England Journal of Medicine using each journal’s list of reviewers for that year. They included 1962 US-based physicians in their analysis.
  • General and research payments made to the peer reviewers between 2020-2022 were extracted from the Open Payments database.

TAKEAWAY:

  • Nearly 59% of the peer reviewers received industry payments between 2020-2022.
  • Payments included $34.31 million in consulting fees and $11.8 million for speaking compensation unrelated to continuing medical education programs.
  • Male reviewers received a significantly higher median total payment than did female reviewers ($38,959 vs $19,586). General payments were higher for men as well ($8663 vs $4183).
  • For comparison, the median general payment to all physicians in 2018 was $216, the researchers noted.

IN PRACTICE:

“Additional research and transparency regarding industry payments in the peer review process are needed,” the authors of the study wrote.

SOURCE:

Christopher J. D. Wallis, MD, PhD, with the division of urology at the University of Toronto, Canada, was the corresponding author for the study. The article was published online October 10 in JAMA.

LIMITATIONS: 

Whether the financial ties were relevant to any of the papers that the peer reviewers critiqued is not known. Some reviewers might have received additional payments from insurance and technology companies that were not captured in this study. The findings might not apply to other journals, the researchers noted. 

DISCLOSURES:

Wallis disclosed personal fees from Janssen Oncology, Nanostics, Precision Point Specialty, Sesen Bio, AbbVie, Astellas, AstraZeneca, Bayer, EMD Serono, Knight Therapeutics, Merck, Science and Medicine Canada, TerSera, and Tolmar. He and some coauthors also disclosed support and grants from foundations and government institutions.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Game We Play Every Day

Article Type
Changed
Wed, 10/23/2024 - 13:40

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

Publications
Topics
Sections

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

 

Words do have power. Names have power. Words are events, they do things, change things. They transform both speaker and hearer ... They feed understanding or emotion back and forth and amplify it. — Ursula K. Le Guin
 

Every medical student should have a class in linguistics. I’m just unsure what it might replace. Maybe physiology? (When was the last time you used Fick’s or Fourier’s Laws anyway?). Even if we don’t supplant any core curriculum, it’s worth noting that we spend more time in our daily work calculating how to communicate things than calculating cardiac outputs. That we can convey so much so consistently and without specific training is a marvel. Making the diagnosis or a plan is often the easy part. The difficulty comes in trying to communicate what we know to patients such that they understand and can act on it.

Linguistics is a broad field. At its essence, it studies how we communicate. It’s fascinating how we use tone, word choice, gestures, syntax, and grammar to explain, reassure, instruct or implore patients. Medical appointments are sometimes high stakes and occur within a huge variety of circumstances. In a single day of clinic, I had a patient with dementia, and one pursuing a PhD in P-Chem. I had English speakers, second language English speakers, and a Vietnamese patient who knew no English. In just one day, I explained things to toddlers and adults, a Black woman from Oklahoma and a Jewish woman from New York. For a brief few minutes, each of them was my partner in a game of medical charades. For each one, I had to figure out how to get them to know what I’m thinking.

Dr. Benabio
Dr. Jeffey Benabio

I learned of this game of charades concept from a podcast featuring Morten Christiansen, professor of psychology at Cornell University, and professor in Cognitive Science of Language, at Aarhus University, Denmark. The idea is that language can be thought of as a game where speakers constantly improvise based on the topic, each one’s expertise, and the shared understanding. I found this intriguing. In his explanation, grammar and definitions are less important than the mutual understanding of what is being communicated. It helps explain the wide variations of speech even among those speaking the same language. It also flips the idea that brains are designed for language, a concept proposed by linguistic greats such as Noam Chomsky and Steven Pinker. Rather, what we call language is just the best solution our brains could create to convey information.

I thought about how each of us instinctively varies the complexity of sentences and tone of voice based on the ability of each patient to understand. Gestures, storytelling and analogies are linguistic tools we use without thinking about them. We’ve a unique communications conundrum in that we often need patients to understand a complex idea, but only have minutes to get them there. We don’t want them to panic. We also don’t want them to be so dispassionate as to not act. To speed things up, we often use a technique known as chunking, short phrases that capture an idea in one bite. For example, “soak and smear” to get atopic patients to moisturize or “scrape and burn” to describe a curettage and electrodesiccation of a basal cell carcinoma or “a stick and a burn” before injecting them (I never liked that one). These are pithy, efficient. But they don’t always work.

One afternoon I had a 93-year-old woman with glossodynia. She had dementia and her 96-year-old husband was helping. When I explained how she’d “swish and spit” her magic mouthwash, he looked perplexed. Is she swishing a wand or something? I shook my head, “No” and gestured with my hands palms down, waving back and forth. It is just a mouthwash. She should rinse, then spit it out. I lost that round.

Then a 64-year-old woman whom I had to advise that the pink bump on her arm was a cutaneous neuroendocrine tumor. Do I call it a Merkel cell carcinoma? Do I say, “You know, like the one Jimmy Buffett had?” (Nope, not a good use of storytelling). She wanted to know how she got it. Sun exposure, we think. Or, perhaps a virus. Just how does one explain a virus called MCPyV that is ubiquitous but somehow caused cancer just for you? How do you convey, “This is serious, but you might not die like Jimmy Buffett?” I had to use all my language skills to get this right.

Then there is the Henderson-Hasselbalch problem of linguistics: communicating through a translator. When doing so, I’m cognizant of choosing short, simple sentences. Subject, verb, object. First this, then that. This mitigates what’s lost in translation and reduces waiting for translations (especially when your patient is storytelling in paragraphs). But try doing this with an emotionally wrought condition like alopecia. Finding the fewest words to convey that your FSH and estrogen levels are irrelevant to your telogen effluvium to a Vietnamese speaker is tricky. “Yes, I see your primary care physician ordered these tests. No, the numbers do not matter.” Did that translate as they are normal? Or that they don’t matter because she is 54? Or that they don’t matter to me because I didn’t order them?

When you find yourself exhausted at the day’s end, perhaps you’ll better appreciate how it was not only the graduate level medicine you did today; you’ve practically got a PhD in linguistics as well. You just didn’t realize it.

Dr. Benabio is chief of dermatology at Kaiser Permanente San Diego. The opinions expressed in this column are his own and do not represent those of Kaiser Permanente. Dr. Benabio is @Dermdoc on X. Write to him at [email protected].

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

A Doctor Gets the Save When a Little League Umpire Collapses

Article Type
Changed
Wed, 10/23/2024 - 13:36

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

 

Emergencies happen anywhere, anytime, and sometimes, medical professionals find themselves in situations where they are the only ones who can help. Is There a Doctor in the House? is a Medscape Medical News series telling these stories.



I sincerely believe that what goes around comes around. Good things come to good people. And sometimes that saves lives.

My 10-year-old son was in the semifinals of the Little League district championship. And we were losing. My son is an excellent pitcher, and he had started the game. But that night, he was struggling. He just couldn’t find where to throw the ball. Needless to say, he was frustrated.

He was changed to shortstop in the second inning, and the home plate umpire walked over to him. This umpire is well known in the area for his kindness and commitment, how he encourages the kids and helps make baseball fun even when it’s stressful.

We didn’t know him well, but he was really supportive of my kid in that moment, talking to him about how baseball is a team sport and we’re here to have fun. Just being really positive.

As the game continued, I saw the umpire suddenly walk to the side of the field. I hadn’t seen it, but he had been hit by a wild pitch on the side of his neck. He was wearing protective gear, but the ball managed to bounce up the side and caught bare neck. I knew something wasn’t right.

I went down to talk to him, and my medical assistant (MA), who was also at the game, came with me. I could tell the umpire was injured, but he didn’t want to leave the game. I suggested going to the hospital, but he wouldn’t consider it. So I sat there with my arms crossed, watching him.

His symptoms got worse. I could see he was in pain, and it was getting harder for him to speak. My concern was that there was a tracheal injury, a carotid injury, or something of that nature that was expanding.

Again, I strongly urged him to go to the hospital, but again, he said no.

In the sixth inning, things got bad enough that the umpire finally agreed to leave the game. As I was figuring out how to get him to the hospital, he disappeared on me. He had walked up to the second floor of the snack shack. My MA and I got him back downstairs and sat him on a bench behind home plate.

We were in the process of calling 911 ... when he arrested.

Luckily, when he lost vital signs, my MA and I were standing right next to him. We were able to activate ACLS protocol and start CPR within seconds.

Many times in these critical situations — especially if people are scared or have never seen an emergency like this — there’s the potential for chaos. Well, that was the polar opposite of what happened.

As soon as I started to run the code, there was this sense of order. People were keeping their composure and following directions. My MA and I would say, “this is what we need,” and the task would immediately be assigned to someone. It was quiet. There was no yelling. Everyone trusted me, even though some of them had never met me before. It was so surprising. I remember thinking, we’re running an arrest, but it’s so calm.

We were an organized team, and it really worked like clockwork, which was remarkable given where we were. It’s one thing to be in the hospital for an event like that. But to be on a baseball field where you have nothing is a completely different scenario.

Meanwhile, the game went on.

I had requested that all the kids be placed in the dugout when they weren’t on the field. So they saw the umpire walk off, but none of them saw him arrest. Some parents were really helpful with making sure the kids were okay.

The president of Oxford Little League ran across the street to a fire station to get an AED. But the fire department personnel were out on a call. He had to break down the door.

By the time he got back, the umpire’s vital signs were returning. And then EMS arrived.

They loaded him in the ambulance, and I called ahead to the trauma team, so they knew exactly what was happening.

I was pretty worried. My hypothesis was that there was probably compression on the vasculature, which had caused him to lose his vital signs. I thought he probably had an impending airway loss. I wasn’t sure if he was going to make it through the night.

What I didn’t know was that while I was giving CPR, my son stole home, and we won the game. As the ambulance was leaving, the celebration was going on in the outfield.

The umpire was in the hospital for several days. Early on, I got permission from his family to visit him. The first time I saw him, I felt this incredible gratitude and peace.

My dad was an ER doctor, and growing up, it seemed like every time we went on a family vacation, there was an emergency. We would be near a car accident or something, and my father would fly in and save the day. I remember being on the Autobahn somewhere in Europe, and there was a devastating accident between a car and a motorcycle. My father stabilized the guy, had him airlifted out, and apparently, he did fine. I grew up watching things like this and thinking, wow, that’s incredible.

Fast forward to 2 years ago, my father was diagnosed with a lung cancer he never should have had. He never smoked. As a cancer surgeon, I know we did everything in our power to save him. But it didn’t happen. He passed away.

I realize this is superstitious, but seeing the umpire alive, I had this feeling that somehow my dad was there. It was bittersweet but also a joyful moment — like I could breathe again.

I met the umpire’s family that first time, and it was like meeting family that you didn’t know you had but now you have forever. Even though the event was traumatic — I’m still trying not to be on high alert every time I go to a game — it felt like a gift to be part of this journey with them.

Little League’s mission is to teach kids about teamwork, leadership, and making good choices so communities are stronger. Our umpire is a guy who does that every day. He’s not a Little League umpire because he makes any money. He shows up at every single game to support these kids and engage them, to model respect, gratitude, and kindness.

I think our obligation as people is to live with intentionality. We all need to make sure we leave the world a better place, even when we are called upon to do uncomfortable things. Our umpire showed our kids what that looks like, and in that moment when he could have died, we were able to do the same for him.

Jennifer LaFemina, MD, is a surgical oncologist at UMass Memorial Medical Center in Massachusetts.
 

Are you a medical professional with a dramatic story outside the clinic? Medscape Medical News would love to consider your story for Is There a Doctor in the House? Please email your contact information and a short summary to [email protected].

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cannabis in Cancer: What Oncologists and Patients Should Know

Article Type
Changed
Wed, 11/06/2024 - 05:20

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Pediatric Myasthenia Gravis: Don’t Treat Children Like Adults

Article Type
Changed
Tue, 10/22/2024 - 13:17

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA OKs Novel Levodopa-Based Continuous Sub-Q Regimen for Parkinson’s Disease

Article Type
Changed
Tue, 10/22/2024 - 13:12

The US Food and Drug Administration (FDA) has approved foscarbidopa and foslevodopa (Vyalev, AbbVie), a solution of carbidopa and levodopa prodrugs for 24-hour continuous subcutaneous infusion, for the treatment of motor fluctuations in adults with advanced Parkinson’s disease. 

Due to the progressive nature of Parkinson’s disease, “oral medications are eventually no longer as effective at motor symptom control and surgical treatment may be required. This new, non-surgical regimen provides continuous delivery of levodopa morning, day, and night,” Robert A. Hauser, MD, MBA, director of the Parkinson’s and Movement Disorder Center at the University of South Florida, Tampa, said in a news release. 

The FDA approval was supported by results of a 12-week, phase 3 study evaluating the efficacy of continuous subcutaneous infusion foscarbidopa/foslevodopa in adults with advanced Parkinson’s disease compared with oral immediate-release carbidopa/levodopa

The study showed that patients treated with foscarbidopa/foslevodopa had superior improvement in motor fluctuations, with increased “on” time without troublesome dyskinesia and decreased “off” time, compared with peers receiving oral immediate-release carbidopa/levodopa.

At week 12, the increase in “on” time without troublesome dyskinesia was 2.72 hours for foscarbidopa/foslevodopa continuous infusion versus 0.97 hours for carbidopa/levodopa (P =.0083). 

Improvements in “on” time were observed as early as the first week and persisted throughout the 12 weeks.

The approval of foscarbidopa/foslevodopa for advanced Parkinson’s disease was also supported by a 52-week, open-label study which evaluated the long-term safety and efficacy of the drug.

Most adverse reactions with foscarbidopa/foslevodopa were non-serious and mild or moderate in severity. The most frequent adverse reactions were infusion site events, hallucinations, and dyskinesia.

Full prescribing information is available online. 

AbbVie said coverage for Medicare patients is expected in the second half of 2025.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Food and Drug Administration (FDA) has approved foscarbidopa and foslevodopa (Vyalev, AbbVie), a solution of carbidopa and levodopa prodrugs for 24-hour continuous subcutaneous infusion, for the treatment of motor fluctuations in adults with advanced Parkinson’s disease. 

Due to the progressive nature of Parkinson’s disease, “oral medications are eventually no longer as effective at motor symptom control and surgical treatment may be required. This new, non-surgical regimen provides continuous delivery of levodopa morning, day, and night,” Robert A. Hauser, MD, MBA, director of the Parkinson’s and Movement Disorder Center at the University of South Florida, Tampa, said in a news release. 

The FDA approval was supported by results of a 12-week, phase 3 study evaluating the efficacy of continuous subcutaneous infusion foscarbidopa/foslevodopa in adults with advanced Parkinson’s disease compared with oral immediate-release carbidopa/levodopa

The study showed that patients treated with foscarbidopa/foslevodopa had superior improvement in motor fluctuations, with increased “on” time without troublesome dyskinesia and decreased “off” time, compared with peers receiving oral immediate-release carbidopa/levodopa.

At week 12, the increase in “on” time without troublesome dyskinesia was 2.72 hours for foscarbidopa/foslevodopa continuous infusion versus 0.97 hours for carbidopa/levodopa (P =.0083). 

Improvements in “on” time were observed as early as the first week and persisted throughout the 12 weeks.

The approval of foscarbidopa/foslevodopa for advanced Parkinson’s disease was also supported by a 52-week, open-label study which evaluated the long-term safety and efficacy of the drug.

Most adverse reactions with foscarbidopa/foslevodopa were non-serious and mild or moderate in severity. The most frequent adverse reactions were infusion site events, hallucinations, and dyskinesia.

Full prescribing information is available online. 

AbbVie said coverage for Medicare patients is expected in the second half of 2025.
 

A version of this article appeared on Medscape.com.

The US Food and Drug Administration (FDA) has approved foscarbidopa and foslevodopa (Vyalev, AbbVie), a solution of carbidopa and levodopa prodrugs for 24-hour continuous subcutaneous infusion, for the treatment of motor fluctuations in adults with advanced Parkinson’s disease. 

Due to the progressive nature of Parkinson’s disease, “oral medications are eventually no longer as effective at motor symptom control and surgical treatment may be required. This new, non-surgical regimen provides continuous delivery of levodopa morning, day, and night,” Robert A. Hauser, MD, MBA, director of the Parkinson’s and Movement Disorder Center at the University of South Florida, Tampa, said in a news release. 

The FDA approval was supported by results of a 12-week, phase 3 study evaluating the efficacy of continuous subcutaneous infusion foscarbidopa/foslevodopa in adults with advanced Parkinson’s disease compared with oral immediate-release carbidopa/levodopa

The study showed that patients treated with foscarbidopa/foslevodopa had superior improvement in motor fluctuations, with increased “on” time without troublesome dyskinesia and decreased “off” time, compared with peers receiving oral immediate-release carbidopa/levodopa.

At week 12, the increase in “on” time without troublesome dyskinesia was 2.72 hours for foscarbidopa/foslevodopa continuous infusion versus 0.97 hours for carbidopa/levodopa (P =.0083). 

Improvements in “on” time were observed as early as the first week and persisted throughout the 12 weeks.

The approval of foscarbidopa/foslevodopa for advanced Parkinson’s disease was also supported by a 52-week, open-label study which evaluated the long-term safety and efficacy of the drug.

Most adverse reactions with foscarbidopa/foslevodopa were non-serious and mild or moderate in severity. The most frequent adverse reactions were infusion site events, hallucinations, and dyskinesia.

Full prescribing information is available online. 

AbbVie said coverage for Medicare patients is expected in the second half of 2025.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article