Bringing you the latest news, research and reviews, exclusive interviews, podcasts, quizzes, and more.

Theme
medstat_cr
Top Sections
Clinical Review
Expert Commentary
cr
Main menu
CR Main Menu
Explore menu
CR Explore Menu
Proclivity ID
18822001
Unpublish
Negative Keywords Excluded Elements
div[contains(@class, 'view-clinical-edge-must-reads')]
div[contains(@class, 'read-next-article')]
div[contains(@class, 'nav-primary')]
nav[contains(@class, 'nav-primary')]
section[contains(@class, 'footer-nav-section-wrapper')]
nav[contains(@class, 'nav-ce-stack nav-ce-stack__large-screen')]
header[@id='header']
div[contains(@class, 'header__large-screen')]
div[contains(@class, 'read-next-article')]
div[contains(@class, 'main-prefix')]
div[contains(@class, 'nav-primary')]
nav[contains(@class, 'nav-primary')]
section[contains(@class, 'footer-nav-section-wrapper')]
footer[@id='footer']
section[contains(@class, 'nav-hidden')]
div[contains(@class, 'ce-card-content')]
nav[contains(@class, 'nav-ce-stack')]
div[contains(@class, 'view-medstat-quiz-listing-panes')]
div[contains(@class, 'pane-article-sidebar-latest-news')]
Altmetric
Click for Credit Button Label
Take Test
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
Clinical
Slot System
Featured Buckets
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off
publication_blueconic_enabled
Off
Show More Destinations Menu
Disable Adhesion on Publication
Off
Restore Menu Label on Mobile Navigation
Disable Facebook Pixel from Publication
Exclude this publication from publication selection on articles and quiz
Gating Strategy
First Page Free
Challenge Center
Disable Inline Native ads

OTC Topical Scar Products May Contain Allergens, Study Finds

Article Type
Changed
Tue, 02/13/2024 - 06:34

 

TOPLINE:

Allergens were present in more than half of evaluable over-the-counter (OTC) topical scar products, study finds. 

METHODOLOGY:

  • OTC topical scar treatments have the potential to cause an allergic reaction, but the prevalence of North American Contact Dermatitis Group (NACDG) core allergens in these products is unclear.
  • Researchers used the word scar in a query of Amazon.com and four other retail websites to identify topical scar products for consumers and noted the list of ingredients.
  • The investigators also surveyed the American Contact Dermatitis Society’s Contact Allergen Management Program (CAMP), a resource that helps patients with allergies find personal care products that are safe to use, for pertinent products.

TAKEAWAY: 

  • The search query identified 156 products. Of these, 119 (76.2%) were gels, creams, or oils and 37 (23.7%) were sheets, strips, or tape.
  • Of the 125 products that had a list of ingredients, 69 (55.2%) contained at least one NACDG allergen and 45 (36%) contained more than one.
  • The top six most common allergens listed in the ingredients were fragrance (16.8%), phenoxyethanol (16.8%), parabens (14.4%), panthenol (12.8%), sodium benzoate (9.60%), and ethylhexylglycerin (8%).
  • Analysis of CAMP revealed that the program only had five unique scar products in its list, suggesting that CAMP might not be a reliable source of scar product information for patients with known allergies to pertinent NACDG allergens.

IN PRACTICE:

“Patients can consider trying a ‘use test’ on the inner forearm before applying to the surgical site,” the authors wrote. “It may reveal they are sensitive or sensitized by a product. 

SOURCE:

First author Meera Kattapuram, MD, of the Department of Internal Medicine at Mount Sinai Hospital, New York, led the study, published in the February issue of Dermatologic Surgery.  

LIMITATIONS:

Limitations include the selection of five retailers and the top 100 products from each website and the potential for ingredient list inaccuracies. 

DISCLOSURES:

The authors reported having no financial conflicts of interest. The research was supported by a grant from the National Institutes of Health/National Cancer Institute. 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Allergens were present in more than half of evaluable over-the-counter (OTC) topical scar products, study finds. 

METHODOLOGY:

  • OTC topical scar treatments have the potential to cause an allergic reaction, but the prevalence of North American Contact Dermatitis Group (NACDG) core allergens in these products is unclear.
  • Researchers used the word scar in a query of Amazon.com and four other retail websites to identify topical scar products for consumers and noted the list of ingredients.
  • The investigators also surveyed the American Contact Dermatitis Society’s Contact Allergen Management Program (CAMP), a resource that helps patients with allergies find personal care products that are safe to use, for pertinent products.

TAKEAWAY: 

  • The search query identified 156 products. Of these, 119 (76.2%) were gels, creams, or oils and 37 (23.7%) were sheets, strips, or tape.
  • Of the 125 products that had a list of ingredients, 69 (55.2%) contained at least one NACDG allergen and 45 (36%) contained more than one.
  • The top six most common allergens listed in the ingredients were fragrance (16.8%), phenoxyethanol (16.8%), parabens (14.4%), panthenol (12.8%), sodium benzoate (9.60%), and ethylhexylglycerin (8%).
  • Analysis of CAMP revealed that the program only had five unique scar products in its list, suggesting that CAMP might not be a reliable source of scar product information for patients with known allergies to pertinent NACDG allergens.

IN PRACTICE:

“Patients can consider trying a ‘use test’ on the inner forearm before applying to the surgical site,” the authors wrote. “It may reveal they are sensitive or sensitized by a product. 

SOURCE:

First author Meera Kattapuram, MD, of the Department of Internal Medicine at Mount Sinai Hospital, New York, led the study, published in the February issue of Dermatologic Surgery.  

LIMITATIONS:

Limitations include the selection of five retailers and the top 100 products from each website and the potential for ingredient list inaccuracies. 

DISCLOSURES:

The authors reported having no financial conflicts of interest. The research was supported by a grant from the National Institutes of Health/National Cancer Institute. 

A version of this article appeared on Medscape.com.

 

TOPLINE:

Allergens were present in more than half of evaluable over-the-counter (OTC) topical scar products, study finds. 

METHODOLOGY:

  • OTC topical scar treatments have the potential to cause an allergic reaction, but the prevalence of North American Contact Dermatitis Group (NACDG) core allergens in these products is unclear.
  • Researchers used the word scar in a query of Amazon.com and four other retail websites to identify topical scar products for consumers and noted the list of ingredients.
  • The investigators also surveyed the American Contact Dermatitis Society’s Contact Allergen Management Program (CAMP), a resource that helps patients with allergies find personal care products that are safe to use, for pertinent products.

TAKEAWAY: 

  • The search query identified 156 products. Of these, 119 (76.2%) were gels, creams, or oils and 37 (23.7%) were sheets, strips, or tape.
  • Of the 125 products that had a list of ingredients, 69 (55.2%) contained at least one NACDG allergen and 45 (36%) contained more than one.
  • The top six most common allergens listed in the ingredients were fragrance (16.8%), phenoxyethanol (16.8%), parabens (14.4%), panthenol (12.8%), sodium benzoate (9.60%), and ethylhexylglycerin (8%).
  • Analysis of CAMP revealed that the program only had five unique scar products in its list, suggesting that CAMP might not be a reliable source of scar product information for patients with known allergies to pertinent NACDG allergens.

IN PRACTICE:

“Patients can consider trying a ‘use test’ on the inner forearm before applying to the surgical site,” the authors wrote. “It may reveal they are sensitive or sensitized by a product. 

SOURCE:

First author Meera Kattapuram, MD, of the Department of Internal Medicine at Mount Sinai Hospital, New York, led the study, published in the February issue of Dermatologic Surgery.  

LIMITATIONS:

Limitations include the selection of five retailers and the top 100 products from each website and the potential for ingredient list inaccuracies. 

DISCLOSURES:

The authors reported having no financial conflicts of interest. The research was supported by a grant from the National Institutes of Health/National Cancer Institute. 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Study Suggests Mind-Body Benefits of GLP-1s

Article Type
Changed
Mon, 02/12/2024 - 13:04

People taking a popular type of drug for weight loss or to manage diabetes have a lower likelihood of being newly diagnosed with depression or anxiety, according to an analysis of millions of people’s health records.

The findings were published this week by researchers from the electronic health record company Epic. Researchers looked for new diagnoses of depression or anxiety among people who started taking drugs from a class called GLP-1 agonists that can help manage blood sugar or treat obesity by mimicking hormone levels in the body that can affect appetite and blood sugar. Many people who take the drugs experience significant weight loss.

The researchers found that people with diabetes who started taking most versions of GLP-1 agonists were between 11% and 65% less likely to be newly diagnosed with depression than people with diabetes who didn’t take one of the drugs. The greatest reduction in likelihood of a new depression diagnosis was observed among people taking tirzepatide, which is sold under the brand names Mounjaro and Zepbound. 

A reduced likelihood of being diagnosed with anxiety was also observed among people with diabetes after they started taking a GLP-1 agonist, compared to people with diabetes who didn’t take one of the drugs. Again, tirzepatide showed the greatest reduction in odds, with people taking that drug experiencing a 60% reduced likelihood of being newly diagnosed with anxiety.

Similar reductions in the likelihood of new depression or anxiety diagnoses were observed among people who didn’t have diabetes but were taking GLP-1 agonists, such as for weight loss.

The mind-body connection has been well established by research.

“Thoughts, feelings, beliefs, and attitudes can affect how healthy your body is,” according to a summary from the CDC about the connection between diabetes and depression. “Untreated mental health issues can make diabetes worse, and problems with diabetes can make mental health issues worse. But fortunately if one gets better, the other tends to get better, too.”

This latest analysis included the drugs dulaglutide, exenatide, liraglutide, semaglutide, and tirzepatide. The medicines, used for weight loss or to manage diabetes, include the brand names Byetta, Ozempic, Mounjaro, Trulicity, Wegovy, and Zepbound. The researchers also looked for links between depression or anxiety diagnoses among people taking liraglutide (sold under brand names Saxenda and Victoza), but found that there was little to no change in the likelihood of being diagnosed with depression or anxiety after starting liraglutide.

The findings are timely as regulators in the U.S. and Europe are investigating reports of suicidal thoughts among people using the drugs. In January, the FDA announced that a preliminary investigation showed no increased risk of suicidal thoughts or actions, but the agency could not “definitively rule out that a small risk may exist; therefore, FDA is continuing to look into this issue.”

This latest analysis from Epic Research only looked at health records, was not published in a peer-reviewed journal, nor could it establish a definitive role the medications may have played in whether or not someone was diagnosed with depression or anxiety. It’s unknown whether people in the study had symptoms of depression or anxiety before starting the medications.

“These results show that these medications may serve a dual purpose for patients, but we do not understand them well enough yet to say these medications should be given as a treatment for anxiety or depression outside of diabetes or weight management,” Kersten Bartelt, a researcher employed by Epic, told ABC News.

A version of this article appeared on WebMD.com.

Publications
Topics
Sections

People taking a popular type of drug for weight loss or to manage diabetes have a lower likelihood of being newly diagnosed with depression or anxiety, according to an analysis of millions of people’s health records.

The findings were published this week by researchers from the electronic health record company Epic. Researchers looked for new diagnoses of depression or anxiety among people who started taking drugs from a class called GLP-1 agonists that can help manage blood sugar or treat obesity by mimicking hormone levels in the body that can affect appetite and blood sugar. Many people who take the drugs experience significant weight loss.

The researchers found that people with diabetes who started taking most versions of GLP-1 agonists were between 11% and 65% less likely to be newly diagnosed with depression than people with diabetes who didn’t take one of the drugs. The greatest reduction in likelihood of a new depression diagnosis was observed among people taking tirzepatide, which is sold under the brand names Mounjaro and Zepbound. 

A reduced likelihood of being diagnosed with anxiety was also observed among people with diabetes after they started taking a GLP-1 agonist, compared to people with diabetes who didn’t take one of the drugs. Again, tirzepatide showed the greatest reduction in odds, with people taking that drug experiencing a 60% reduced likelihood of being newly diagnosed with anxiety.

Similar reductions in the likelihood of new depression or anxiety diagnoses were observed among people who didn’t have diabetes but were taking GLP-1 agonists, such as for weight loss.

The mind-body connection has been well established by research.

“Thoughts, feelings, beliefs, and attitudes can affect how healthy your body is,” according to a summary from the CDC about the connection between diabetes and depression. “Untreated mental health issues can make diabetes worse, and problems with diabetes can make mental health issues worse. But fortunately if one gets better, the other tends to get better, too.”

This latest analysis included the drugs dulaglutide, exenatide, liraglutide, semaglutide, and tirzepatide. The medicines, used for weight loss or to manage diabetes, include the brand names Byetta, Ozempic, Mounjaro, Trulicity, Wegovy, and Zepbound. The researchers also looked for links between depression or anxiety diagnoses among people taking liraglutide (sold under brand names Saxenda and Victoza), but found that there was little to no change in the likelihood of being diagnosed with depression or anxiety after starting liraglutide.

The findings are timely as regulators in the U.S. and Europe are investigating reports of suicidal thoughts among people using the drugs. In January, the FDA announced that a preliminary investigation showed no increased risk of suicidal thoughts or actions, but the agency could not “definitively rule out that a small risk may exist; therefore, FDA is continuing to look into this issue.”

This latest analysis from Epic Research only looked at health records, was not published in a peer-reviewed journal, nor could it establish a definitive role the medications may have played in whether or not someone was diagnosed with depression or anxiety. It’s unknown whether people in the study had symptoms of depression or anxiety before starting the medications.

“These results show that these medications may serve a dual purpose for patients, but we do not understand them well enough yet to say these medications should be given as a treatment for anxiety or depression outside of diabetes or weight management,” Kersten Bartelt, a researcher employed by Epic, told ABC News.

A version of this article appeared on WebMD.com.

People taking a popular type of drug for weight loss or to manage diabetes have a lower likelihood of being newly diagnosed with depression or anxiety, according to an analysis of millions of people’s health records.

The findings were published this week by researchers from the electronic health record company Epic. Researchers looked for new diagnoses of depression or anxiety among people who started taking drugs from a class called GLP-1 agonists that can help manage blood sugar or treat obesity by mimicking hormone levels in the body that can affect appetite and blood sugar. Many people who take the drugs experience significant weight loss.

The researchers found that people with diabetes who started taking most versions of GLP-1 agonists were between 11% and 65% less likely to be newly diagnosed with depression than people with diabetes who didn’t take one of the drugs. The greatest reduction in likelihood of a new depression diagnosis was observed among people taking tirzepatide, which is sold under the brand names Mounjaro and Zepbound. 

A reduced likelihood of being diagnosed with anxiety was also observed among people with diabetes after they started taking a GLP-1 agonist, compared to people with diabetes who didn’t take one of the drugs. Again, tirzepatide showed the greatest reduction in odds, with people taking that drug experiencing a 60% reduced likelihood of being newly diagnosed with anxiety.

Similar reductions in the likelihood of new depression or anxiety diagnoses were observed among people who didn’t have diabetes but were taking GLP-1 agonists, such as for weight loss.

The mind-body connection has been well established by research.

“Thoughts, feelings, beliefs, and attitudes can affect how healthy your body is,” according to a summary from the CDC about the connection between diabetes and depression. “Untreated mental health issues can make diabetes worse, and problems with diabetes can make mental health issues worse. But fortunately if one gets better, the other tends to get better, too.”

This latest analysis included the drugs dulaglutide, exenatide, liraglutide, semaglutide, and tirzepatide. The medicines, used for weight loss or to manage diabetes, include the brand names Byetta, Ozempic, Mounjaro, Trulicity, Wegovy, and Zepbound. The researchers also looked for links between depression or anxiety diagnoses among people taking liraglutide (sold under brand names Saxenda and Victoza), but found that there was little to no change in the likelihood of being diagnosed with depression or anxiety after starting liraglutide.

The findings are timely as regulators in the U.S. and Europe are investigating reports of suicidal thoughts among people using the drugs. In January, the FDA announced that a preliminary investigation showed no increased risk of suicidal thoughts or actions, but the agency could not “definitively rule out that a small risk may exist; therefore, FDA is continuing to look into this issue.”

This latest analysis from Epic Research only looked at health records, was not published in a peer-reviewed journal, nor could it establish a definitive role the medications may have played in whether or not someone was diagnosed with depression or anxiety. It’s unknown whether people in the study had symptoms of depression or anxiety before starting the medications.

“These results show that these medications may serve a dual purpose for patients, but we do not understand them well enough yet to say these medications should be given as a treatment for anxiety or depression outside of diabetes or weight management,” Kersten Bartelt, a researcher employed by Epic, told ABC News.

A version of this article appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Guidelines: Brain Death Is Equal to Heart Death, Says Ethicist

Article Type
Changed
Mon, 02/12/2024 - 13:07

This transcript has been edited for clarity.

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at the New York University Grossman School of Medicine in New York City.

I think we had a breakthrough on a very controversial subject over the past month. Over and over again, debates have been breaking out, cases have been going to court, and fights have been coming to ethics committees about brain death. How do we know what brain death is, how do we diagnose it, and what rights do families have with respect to the diagnosis?

The American Academy of Neurology decided to form a task force, and they just issued guidelines on the definition, tests to use it, and the rights of families. Whether you›re a neurologist, someone involved in actually diagnosing brain death, or you›re dealing with very ill people whose families are trying to direct the kinds of things that you or the nurses can do, these guidelines, I think, are excellent. They did a wonderful job, in my view. They›ve achieved clarity.

First, they tried to handle both adults and children. Children are, if you will, more difficult — and that’s been known — to test for brain death. Their brains are smaller. You get more interference and false signals coming from muscle or nerve activity that might be going on elsewhere in their bodies.

The guidelines say we’re going to try to see whether a person can breathe without support. If it’s an adult, one test over a 24-hour period would be sufficient. If you had them off the ventilator and they can’t breathe and show no signs of being able to do that, that’s a very fundamental test for brain death. For children, you’re going to have to do it twice. The guidelines are saying to be cautious.

Second, they say it’s very important to know the cause of the suspected brain death condition. If someone has a massive head injury, that’s different from a situation in which someone overdoses from drugs or drowns. Those conditions can be a little deceptive. In the case of drowning, sometimes the brain has protective mechanisms to protect circulation to the brain naturally for a little bit of time. I’m talking about minutes, not hours.

You want to be careful to make sure that you know the cause of the massive brain injury or insult that makes someone believe that the patient is brain-dead, whether it’s a stroke, an embolism, a bleed, a gunshot wound, or trauma to the head. Those factors really drive the certainty with which brain death should be pronounced. I think that’s very, very important.

They also said that brain death means the permanent loss of brain function. You may get a few cells still firing or you may be in a situation, because the life support is still there, where the body looks pink and perhaps might appear to still be alive to someone. When you know that the damage to the brain is so severe that there’s nothing that can be done to bring back the support of heart function, breathing, and most likely any ability to sense or feel anything, that is death.

I believe it’s very important, when talking to families, to say there are two ways that we pronounce people dead, and they’re equal: One is to say their heart has stopped, their breathing has stopped, and there’s nothing we can do to resuscitate them, which is cardiac death. The other is to say their brain has permanently ceased to function in any kind of integrated way. That means no heartbeat, no breathing, and no mental sensations. That is death.

In approaching families, it is critical that doctors and nurses don’t say, “Your relative is brain-dead.” That gives the family a sense that maybe they’re only “partially dead” or maybe there’s one key organ that has stopped working but maybe you can bring it back. Death is death. The law recognizes both cardiac death and brain death as death.

When you approach a family, if you believe that death has occurred, you say, “I’m very sorry. With regret, I have to tell you, your loved one is dead.” If they ask how you know, you can say, “We’ve determined it through brain death or through cardiac death.” You don’t give them a sense that people could be kind of dead, sort of dead, or nearly dead. Those states are comas or permanent vegetative states; they’re not the same as death.

What if the family says, “I don’t want you to do any testing. I don’t want to find out whether my relative is dead”? The American Academy of Neurology looked at this carefully and said that any test for death can be done without the permission or consent of the family. They said that because doctors need to know what steps to take to treat someone.

If a person is dead, then treatment is going to stop. It may not stop immediately. There may be issues about organ donation. There may be issues about gathering the family to come to the bedside to say goodbye, because many people think that’s more humane than saying goodbye at the morgue or in another setting.

This is all well and good, but patients cannot protect against bad news when it comes to death. We don’t want to be doing things to the dead that cost money or are futile because of death and using resources that might go to others.

We’ve got much more clarity than we have ever had with respect to the issue of brain death and how it works in any hospital. We have certain tests, including being off the ventilator and some other tests, that the guidelines supply. We know we have to be more careful with children. We want to know the etiology of the cause of the brain trauma, the devastating brain injury, to be sure that this is something that really is permanent cessation of integrated brain function.

We know that if you believe the person has died, you don’t need the consent of the family in order to do a brain-death test. You have to do it because there is no point in continuing treatment in expensive ICU settings and denying resources to others who might want to use those resources. The family can’t hold the medical team hostage.

We do know that when we approach someone with the determination, whatever it is, we should lead by saying that the person has died and then explain how that was determined, whether it be by cardiac death pronouncement — where you tried to resuscitate and the heart’s not beating — or brain-death analysis.

I’m Art Caplan at the Division of Medical Ethics at the NYU Grossman School of Medicine. Thanks for watching.

Dr. Caplan has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for: Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); serves as a contributing author and adviser for this news organization.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This transcript has been edited for clarity.

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at the New York University Grossman School of Medicine in New York City.

I think we had a breakthrough on a very controversial subject over the past month. Over and over again, debates have been breaking out, cases have been going to court, and fights have been coming to ethics committees about brain death. How do we know what brain death is, how do we diagnose it, and what rights do families have with respect to the diagnosis?

The American Academy of Neurology decided to form a task force, and they just issued guidelines on the definition, tests to use it, and the rights of families. Whether you›re a neurologist, someone involved in actually diagnosing brain death, or you›re dealing with very ill people whose families are trying to direct the kinds of things that you or the nurses can do, these guidelines, I think, are excellent. They did a wonderful job, in my view. They›ve achieved clarity.

First, they tried to handle both adults and children. Children are, if you will, more difficult — and that’s been known — to test for brain death. Their brains are smaller. You get more interference and false signals coming from muscle or nerve activity that might be going on elsewhere in their bodies.

The guidelines say we’re going to try to see whether a person can breathe without support. If it’s an adult, one test over a 24-hour period would be sufficient. If you had them off the ventilator and they can’t breathe and show no signs of being able to do that, that’s a very fundamental test for brain death. For children, you’re going to have to do it twice. The guidelines are saying to be cautious.

Second, they say it’s very important to know the cause of the suspected brain death condition. If someone has a massive head injury, that’s different from a situation in which someone overdoses from drugs or drowns. Those conditions can be a little deceptive. In the case of drowning, sometimes the brain has protective mechanisms to protect circulation to the brain naturally for a little bit of time. I’m talking about minutes, not hours.

You want to be careful to make sure that you know the cause of the massive brain injury or insult that makes someone believe that the patient is brain-dead, whether it’s a stroke, an embolism, a bleed, a gunshot wound, or trauma to the head. Those factors really drive the certainty with which brain death should be pronounced. I think that’s very, very important.

They also said that brain death means the permanent loss of brain function. You may get a few cells still firing or you may be in a situation, because the life support is still there, where the body looks pink and perhaps might appear to still be alive to someone. When you know that the damage to the brain is so severe that there’s nothing that can be done to bring back the support of heart function, breathing, and most likely any ability to sense or feel anything, that is death.

I believe it’s very important, when talking to families, to say there are two ways that we pronounce people dead, and they’re equal: One is to say their heart has stopped, their breathing has stopped, and there’s nothing we can do to resuscitate them, which is cardiac death. The other is to say their brain has permanently ceased to function in any kind of integrated way. That means no heartbeat, no breathing, and no mental sensations. That is death.

In approaching families, it is critical that doctors and nurses don’t say, “Your relative is brain-dead.” That gives the family a sense that maybe they’re only “partially dead” or maybe there’s one key organ that has stopped working but maybe you can bring it back. Death is death. The law recognizes both cardiac death and brain death as death.

When you approach a family, if you believe that death has occurred, you say, “I’m very sorry. With regret, I have to tell you, your loved one is dead.” If they ask how you know, you can say, “We’ve determined it through brain death or through cardiac death.” You don’t give them a sense that people could be kind of dead, sort of dead, or nearly dead. Those states are comas or permanent vegetative states; they’re not the same as death.

What if the family says, “I don’t want you to do any testing. I don’t want to find out whether my relative is dead”? The American Academy of Neurology looked at this carefully and said that any test for death can be done without the permission or consent of the family. They said that because doctors need to know what steps to take to treat someone.

If a person is dead, then treatment is going to stop. It may not stop immediately. There may be issues about organ donation. There may be issues about gathering the family to come to the bedside to say goodbye, because many people think that’s more humane than saying goodbye at the morgue or in another setting.

This is all well and good, but patients cannot protect against bad news when it comes to death. We don’t want to be doing things to the dead that cost money or are futile because of death and using resources that might go to others.

We’ve got much more clarity than we have ever had with respect to the issue of brain death and how it works in any hospital. We have certain tests, including being off the ventilator and some other tests, that the guidelines supply. We know we have to be more careful with children. We want to know the etiology of the cause of the brain trauma, the devastating brain injury, to be sure that this is something that really is permanent cessation of integrated brain function.

We know that if you believe the person has died, you don’t need the consent of the family in order to do a brain-death test. You have to do it because there is no point in continuing treatment in expensive ICU settings and denying resources to others who might want to use those resources. The family can’t hold the medical team hostage.

We do know that when we approach someone with the determination, whatever it is, we should lead by saying that the person has died and then explain how that was determined, whether it be by cardiac death pronouncement — where you tried to resuscitate and the heart’s not beating — or brain-death analysis.

I’m Art Caplan at the Division of Medical Ethics at the NYU Grossman School of Medicine. Thanks for watching.

Dr. Caplan has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for: Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); serves as a contributing author and adviser for this news organization.

A version of this article appeared on Medscape.com.

This transcript has been edited for clarity.

Hi. I’m Art Caplan. I’m at the Division of Medical Ethics at the New York University Grossman School of Medicine in New York City.

I think we had a breakthrough on a very controversial subject over the past month. Over and over again, debates have been breaking out, cases have been going to court, and fights have been coming to ethics committees about brain death. How do we know what brain death is, how do we diagnose it, and what rights do families have with respect to the diagnosis?

The American Academy of Neurology decided to form a task force, and they just issued guidelines on the definition, tests to use it, and the rights of families. Whether you›re a neurologist, someone involved in actually diagnosing brain death, or you›re dealing with very ill people whose families are trying to direct the kinds of things that you or the nurses can do, these guidelines, I think, are excellent. They did a wonderful job, in my view. They›ve achieved clarity.

First, they tried to handle both adults and children. Children are, if you will, more difficult — and that’s been known — to test for brain death. Their brains are smaller. You get more interference and false signals coming from muscle or nerve activity that might be going on elsewhere in their bodies.

The guidelines say we’re going to try to see whether a person can breathe without support. If it’s an adult, one test over a 24-hour period would be sufficient. If you had them off the ventilator and they can’t breathe and show no signs of being able to do that, that’s a very fundamental test for brain death. For children, you’re going to have to do it twice. The guidelines are saying to be cautious.

Second, they say it’s very important to know the cause of the suspected brain death condition. If someone has a massive head injury, that’s different from a situation in which someone overdoses from drugs or drowns. Those conditions can be a little deceptive. In the case of drowning, sometimes the brain has protective mechanisms to protect circulation to the brain naturally for a little bit of time. I’m talking about minutes, not hours.

You want to be careful to make sure that you know the cause of the massive brain injury or insult that makes someone believe that the patient is brain-dead, whether it’s a stroke, an embolism, a bleed, a gunshot wound, or trauma to the head. Those factors really drive the certainty with which brain death should be pronounced. I think that’s very, very important.

They also said that brain death means the permanent loss of brain function. You may get a few cells still firing or you may be in a situation, because the life support is still there, where the body looks pink and perhaps might appear to still be alive to someone. When you know that the damage to the brain is so severe that there’s nothing that can be done to bring back the support of heart function, breathing, and most likely any ability to sense or feel anything, that is death.

I believe it’s very important, when talking to families, to say there are two ways that we pronounce people dead, and they’re equal: One is to say their heart has stopped, their breathing has stopped, and there’s nothing we can do to resuscitate them, which is cardiac death. The other is to say their brain has permanently ceased to function in any kind of integrated way. That means no heartbeat, no breathing, and no mental sensations. That is death.

In approaching families, it is critical that doctors and nurses don’t say, “Your relative is brain-dead.” That gives the family a sense that maybe they’re only “partially dead” or maybe there’s one key organ that has stopped working but maybe you can bring it back. Death is death. The law recognizes both cardiac death and brain death as death.

When you approach a family, if you believe that death has occurred, you say, “I’m very sorry. With regret, I have to tell you, your loved one is dead.” If they ask how you know, you can say, “We’ve determined it through brain death or through cardiac death.” You don’t give them a sense that people could be kind of dead, sort of dead, or nearly dead. Those states are comas or permanent vegetative states; they’re not the same as death.

What if the family says, “I don’t want you to do any testing. I don’t want to find out whether my relative is dead”? The American Academy of Neurology looked at this carefully and said that any test for death can be done without the permission or consent of the family. They said that because doctors need to know what steps to take to treat someone.

If a person is dead, then treatment is going to stop. It may not stop immediately. There may be issues about organ donation. There may be issues about gathering the family to come to the bedside to say goodbye, because many people think that’s more humane than saying goodbye at the morgue or in another setting.

This is all well and good, but patients cannot protect against bad news when it comes to death. We don’t want to be doing things to the dead that cost money or are futile because of death and using resources that might go to others.

We’ve got much more clarity than we have ever had with respect to the issue of brain death and how it works in any hospital. We have certain tests, including being off the ventilator and some other tests, that the guidelines supply. We know we have to be more careful with children. We want to know the etiology of the cause of the brain trauma, the devastating brain injury, to be sure that this is something that really is permanent cessation of integrated brain function.

We know that if you believe the person has died, you don’t need the consent of the family in order to do a brain-death test. You have to do it because there is no point in continuing treatment in expensive ICU settings and denying resources to others who might want to use those resources. The family can’t hold the medical team hostage.

We do know that when we approach someone with the determination, whatever it is, we should lead by saying that the person has died and then explain how that was determined, whether it be by cardiac death pronouncement — where you tried to resuscitate and the heart’s not beating — or brain-death analysis.

I’m Art Caplan at the Division of Medical Ethics at the NYU Grossman School of Medicine. Thanks for watching.

Dr. Caplan has disclosed the following relevant financial relationships: Served as a director, officer, partner, employee, advisor, consultant, or trustee for: Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position); serves as a contributing author and adviser for this news organization.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Long COVID: Another Great Pretender

Article Type
Changed
Tue, 02/13/2024 - 13:03

Has COVID replaced syphilis as the great imitator? At the turn of the 20th century, Sir William Osler was quoted as saying, “He who knows syphilis knows medicine.”

If you have any doubts about the “imitator” analogy, simply use any broad search engine or AI portal and enter “what is the differential diagnosis of primary syphilis, or secondary syphilis, or tertiary syphilis?” A plethora of diseases across many body systems appears.
 

Another Great Pretender?

Did you or do you now have long COVID? How do you know? Do you even know what long COVID is? How would you diagnosis it?

When asked about long COVID, this is what large language model source bard.google.com had to say:

Long COVID, also known as post-COVID conditions or PASC, is a complex condition that can occur in people who have had COVID-19, even if their initial illness was mild or even asymptomatic. It’s characterized by a wide range of symptoms that can last for weeks, months, or even years after the initial infection.

Symptoms of long COVID can include: fatigue, shortness of breath, brain fog (trouble thinking or concentrating), loss of smell or taste, sleep problems, muscle pain, joint pain, headache, dizziness, depression or anxiety, heart palpitations, gastrointestinal problems.

Duh!!! It reads much like a continuation of the symptoms of acute COVID. Bard continued:

The exact cause of long COVID is still unknown, but there are several theories. One possibility is that the virus itself can damage organs and tissues, leading to ongoing symptoms. Another possibility is that the immune system’s response to the virus can continue to cause inflammation even after the virus is gone.

Human intelligence source Wikipedia says this:

Long COVID or long-haul COVID is a group of health problems persisting or developing after an initial COVID-19 infection. Symptoms can last weeks, months or years and are often debilitating. The World Health Organization defines long COVID as starting three months after infection, but other definitions put the start of long COVID at four weeks.

Highly varied, including post-exertional malaise (symptoms made worse with effort), fatigue, muscle pain, shortness of breath, chest pain, and cognitive dysfunction (brain fog).
 

Acute COVID to Long COVID

The World Health Organization estimates that 36 million people in the European region have developed long COVID in the first 3 years of the pandemic. That›s a lot.

We all know that the common signs and symptoms of acute COVID-19 include fever or chills, a dry cough and shortness of breath, feeling very tired, muscle or body aches, headache, loss of taste or smell, sore throat, congestion, runny nose, nausea, vomiting, and diarrhea. Except for the taste and smell findings, every one of these symptoms or signs could indicate a different virus infection or even some type of allergy. My point is the nonspecificity in this list.

Uncommon signs and symptoms of acute COVID include a flat skin rash covered with small bumps, discolored swollen areas on the fingers and toes (COVID toes), and hives. The skin of hands, wrists, or ankles also can be affected. Blisters, itchiness, rough skin, or pus can be seen.

Severe confusion (delirium) might be the main or only symptom of COVID-19 in older people. This COVID-19 symptom is linked with a high risk for poor outcomes, including death. Pink eye (conjunctivitis) can be a COVID-19 symptom. Other eye problems linked to COVID-19 are light sensitivity, sore eyes, and itchy eyes. Acute myocarditis, tinnitus, vertigo, and hearing loss have been reported. And 1-4 weeks after the onset of COVID-19 infection, a patient may experience de novo reactive synovitis and arthritis of any joints.

So, take your pick. Myriad symptoms, signs, diseases, diagnoses, and organ systems — still present, recurring, just appearing, apparently de novo, or after asymptomatic infection. We have so much still to learn.

What big-time symptoms, signs, and major diseases are not on any of these lists? Obviously, cancer, atherosclerotic cardiovascular diseases, obesity, bone diseases, and competitive infections. But be patient; the lingering effects of direct tissue invasion by the virus as well as a wide range of immunologic reactions may just be getting started. Mitochondrial damage, especially in muscles, is increasingly a pathophysiologic suspect.

Human diseases can be physical or mental; and in COVID, that twain not only meet but mix and mingle freely, and may even merge into psychosoma. Don’t ever forget that. Consider “fatigue.” Who among us, COVID or NOVID, does not experience that from time to time?

Or consider brain fog as a common reported symptom of COVID. What on earth is that actually? How can a person know they have brain fog, or whether they had it and are over it?

We need one or more lab or other diagnostic tests that can objectively confirm the diagnosis of long COVID.
 

 

 

Useful Progress?

A recent research paper in Science reported intriguing chemical findings that seemed to point a finger at some form of complement dysregulation as a potential disease marker for long COVID. Unfortunately, some critics have pointed out that this entire study may be invalid or irrelevant because the New York cohort was recruited in 2020, before vaccines were available. The Zurich cohort was recruited up until April 2021, so some may have been vaccinated.

Then this news organization came along in early January 2024 with an article about COVID causing not only more than a million American deaths but also more than 5000 deaths from long COVID. We physicians don’t really know what long COVID even is, but we have to sign death certificates blaming thousands of deaths on it anyway? And rolling back the clock to 2020: Are patients dying from COVID or with COVID, according to death certificates?Now, armed with the knowledge that “documented serious post–COVID-19 conditions include cardiovascular, pulmonary, neurological, renal, endocrine, hematological, and gastrointestinal complications, as well as death,” CDC has published clear and fairly concise instructions on how to address post-acute COVID sequelae on death certificates.

In late January, this news organization painted a hopeful picture by naming four phenotypes of long COVID, suggesting that such divisions might further our understanding, including prognosis, and even therapy for this condition. Among the clinical phenotypes of (1) chronic fatigue–like syndrome, headache, and memory loss; (2) respiratory syndrome (which includes cough and difficulty breathing); (3) chronic pain; and (4) neurosensorial syndrome (which causes an altered sense of taste and smell), overlap is clearly possible but isn›t addressed.

I see these recent developments as needed and useful progress, but we are still left with…not much. So, when you tell me that you do or do not have long COVID, I will say to you, “How do you know?”

I also say: She/he/they who know COVID know medicine.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Has COVID replaced syphilis as the great imitator? At the turn of the 20th century, Sir William Osler was quoted as saying, “He who knows syphilis knows medicine.”

If you have any doubts about the “imitator” analogy, simply use any broad search engine or AI portal and enter “what is the differential diagnosis of primary syphilis, or secondary syphilis, or tertiary syphilis?” A plethora of diseases across many body systems appears.
 

Another Great Pretender?

Did you or do you now have long COVID? How do you know? Do you even know what long COVID is? How would you diagnosis it?

When asked about long COVID, this is what large language model source bard.google.com had to say:

Long COVID, also known as post-COVID conditions or PASC, is a complex condition that can occur in people who have had COVID-19, even if their initial illness was mild or even asymptomatic. It’s characterized by a wide range of symptoms that can last for weeks, months, or even years after the initial infection.

Symptoms of long COVID can include: fatigue, shortness of breath, brain fog (trouble thinking or concentrating), loss of smell or taste, sleep problems, muscle pain, joint pain, headache, dizziness, depression or anxiety, heart palpitations, gastrointestinal problems.

Duh!!! It reads much like a continuation of the symptoms of acute COVID. Bard continued:

The exact cause of long COVID is still unknown, but there are several theories. One possibility is that the virus itself can damage organs and tissues, leading to ongoing symptoms. Another possibility is that the immune system’s response to the virus can continue to cause inflammation even after the virus is gone.

Human intelligence source Wikipedia says this:

Long COVID or long-haul COVID is a group of health problems persisting or developing after an initial COVID-19 infection. Symptoms can last weeks, months or years and are often debilitating. The World Health Organization defines long COVID as starting three months after infection, but other definitions put the start of long COVID at four weeks.

Highly varied, including post-exertional malaise (symptoms made worse with effort), fatigue, muscle pain, shortness of breath, chest pain, and cognitive dysfunction (brain fog).
 

Acute COVID to Long COVID

The World Health Organization estimates that 36 million people in the European region have developed long COVID in the first 3 years of the pandemic. That›s a lot.

We all know that the common signs and symptoms of acute COVID-19 include fever or chills, a dry cough and shortness of breath, feeling very tired, muscle or body aches, headache, loss of taste or smell, sore throat, congestion, runny nose, nausea, vomiting, and diarrhea. Except for the taste and smell findings, every one of these symptoms or signs could indicate a different virus infection or even some type of allergy. My point is the nonspecificity in this list.

Uncommon signs and symptoms of acute COVID include a flat skin rash covered with small bumps, discolored swollen areas on the fingers and toes (COVID toes), and hives. The skin of hands, wrists, or ankles also can be affected. Blisters, itchiness, rough skin, or pus can be seen.

Severe confusion (delirium) might be the main or only symptom of COVID-19 in older people. This COVID-19 symptom is linked with a high risk for poor outcomes, including death. Pink eye (conjunctivitis) can be a COVID-19 symptom. Other eye problems linked to COVID-19 are light sensitivity, sore eyes, and itchy eyes. Acute myocarditis, tinnitus, vertigo, and hearing loss have been reported. And 1-4 weeks after the onset of COVID-19 infection, a patient may experience de novo reactive synovitis and arthritis of any joints.

So, take your pick. Myriad symptoms, signs, diseases, diagnoses, and organ systems — still present, recurring, just appearing, apparently de novo, or after asymptomatic infection. We have so much still to learn.

What big-time symptoms, signs, and major diseases are not on any of these lists? Obviously, cancer, atherosclerotic cardiovascular diseases, obesity, bone diseases, and competitive infections. But be patient; the lingering effects of direct tissue invasion by the virus as well as a wide range of immunologic reactions may just be getting started. Mitochondrial damage, especially in muscles, is increasingly a pathophysiologic suspect.

Human diseases can be physical or mental; and in COVID, that twain not only meet but mix and mingle freely, and may even merge into psychosoma. Don’t ever forget that. Consider “fatigue.” Who among us, COVID or NOVID, does not experience that from time to time?

Or consider brain fog as a common reported symptom of COVID. What on earth is that actually? How can a person know they have brain fog, or whether they had it and are over it?

We need one or more lab or other diagnostic tests that can objectively confirm the diagnosis of long COVID.
 

 

 

Useful Progress?

A recent research paper in Science reported intriguing chemical findings that seemed to point a finger at some form of complement dysregulation as a potential disease marker for long COVID. Unfortunately, some critics have pointed out that this entire study may be invalid or irrelevant because the New York cohort was recruited in 2020, before vaccines were available. The Zurich cohort was recruited up until April 2021, so some may have been vaccinated.

Then this news organization came along in early January 2024 with an article about COVID causing not only more than a million American deaths but also more than 5000 deaths from long COVID. We physicians don’t really know what long COVID even is, but we have to sign death certificates blaming thousands of deaths on it anyway? And rolling back the clock to 2020: Are patients dying from COVID or with COVID, according to death certificates?Now, armed with the knowledge that “documented serious post–COVID-19 conditions include cardiovascular, pulmonary, neurological, renal, endocrine, hematological, and gastrointestinal complications, as well as death,” CDC has published clear and fairly concise instructions on how to address post-acute COVID sequelae on death certificates.

In late January, this news organization painted a hopeful picture by naming four phenotypes of long COVID, suggesting that such divisions might further our understanding, including prognosis, and even therapy for this condition. Among the clinical phenotypes of (1) chronic fatigue–like syndrome, headache, and memory loss; (2) respiratory syndrome (which includes cough and difficulty breathing); (3) chronic pain; and (4) neurosensorial syndrome (which causes an altered sense of taste and smell), overlap is clearly possible but isn›t addressed.

I see these recent developments as needed and useful progress, but we are still left with…not much. So, when you tell me that you do or do not have long COVID, I will say to you, “How do you know?”

I also say: She/he/they who know COVID know medicine.

A version of this article first appeared on Medscape.com.

Has COVID replaced syphilis as the great imitator? At the turn of the 20th century, Sir William Osler was quoted as saying, “He who knows syphilis knows medicine.”

If you have any doubts about the “imitator” analogy, simply use any broad search engine or AI portal and enter “what is the differential diagnosis of primary syphilis, or secondary syphilis, or tertiary syphilis?” A plethora of diseases across many body systems appears.
 

Another Great Pretender?

Did you or do you now have long COVID? How do you know? Do you even know what long COVID is? How would you diagnosis it?

When asked about long COVID, this is what large language model source bard.google.com had to say:

Long COVID, also known as post-COVID conditions or PASC, is a complex condition that can occur in people who have had COVID-19, even if their initial illness was mild or even asymptomatic. It’s characterized by a wide range of symptoms that can last for weeks, months, or even years after the initial infection.

Symptoms of long COVID can include: fatigue, shortness of breath, brain fog (trouble thinking or concentrating), loss of smell or taste, sleep problems, muscle pain, joint pain, headache, dizziness, depression or anxiety, heart palpitations, gastrointestinal problems.

Duh!!! It reads much like a continuation of the symptoms of acute COVID. Bard continued:

The exact cause of long COVID is still unknown, but there are several theories. One possibility is that the virus itself can damage organs and tissues, leading to ongoing symptoms. Another possibility is that the immune system’s response to the virus can continue to cause inflammation even after the virus is gone.

Human intelligence source Wikipedia says this:

Long COVID or long-haul COVID is a group of health problems persisting or developing after an initial COVID-19 infection. Symptoms can last weeks, months or years and are often debilitating. The World Health Organization defines long COVID as starting three months after infection, but other definitions put the start of long COVID at four weeks.

Highly varied, including post-exertional malaise (symptoms made worse with effort), fatigue, muscle pain, shortness of breath, chest pain, and cognitive dysfunction (brain fog).
 

Acute COVID to Long COVID

The World Health Organization estimates that 36 million people in the European region have developed long COVID in the first 3 years of the pandemic. That›s a lot.

We all know that the common signs and symptoms of acute COVID-19 include fever or chills, a dry cough and shortness of breath, feeling very tired, muscle or body aches, headache, loss of taste or smell, sore throat, congestion, runny nose, nausea, vomiting, and diarrhea. Except for the taste and smell findings, every one of these symptoms or signs could indicate a different virus infection or even some type of allergy. My point is the nonspecificity in this list.

Uncommon signs and symptoms of acute COVID include a flat skin rash covered with small bumps, discolored swollen areas on the fingers and toes (COVID toes), and hives. The skin of hands, wrists, or ankles also can be affected. Blisters, itchiness, rough skin, or pus can be seen.

Severe confusion (delirium) might be the main or only symptom of COVID-19 in older people. This COVID-19 symptom is linked with a high risk for poor outcomes, including death. Pink eye (conjunctivitis) can be a COVID-19 symptom. Other eye problems linked to COVID-19 are light sensitivity, sore eyes, and itchy eyes. Acute myocarditis, tinnitus, vertigo, and hearing loss have been reported. And 1-4 weeks after the onset of COVID-19 infection, a patient may experience de novo reactive synovitis and arthritis of any joints.

So, take your pick. Myriad symptoms, signs, diseases, diagnoses, and organ systems — still present, recurring, just appearing, apparently de novo, or after asymptomatic infection. We have so much still to learn.

What big-time symptoms, signs, and major diseases are not on any of these lists? Obviously, cancer, atherosclerotic cardiovascular diseases, obesity, bone diseases, and competitive infections. But be patient; the lingering effects of direct tissue invasion by the virus as well as a wide range of immunologic reactions may just be getting started. Mitochondrial damage, especially in muscles, is increasingly a pathophysiologic suspect.

Human diseases can be physical or mental; and in COVID, that twain not only meet but mix and mingle freely, and may even merge into psychosoma. Don’t ever forget that. Consider “fatigue.” Who among us, COVID or NOVID, does not experience that from time to time?

Or consider brain fog as a common reported symptom of COVID. What on earth is that actually? How can a person know they have brain fog, or whether they had it and are over it?

We need one or more lab or other diagnostic tests that can objectively confirm the diagnosis of long COVID.
 

 

 

Useful Progress?

A recent research paper in Science reported intriguing chemical findings that seemed to point a finger at some form of complement dysregulation as a potential disease marker for long COVID. Unfortunately, some critics have pointed out that this entire study may be invalid or irrelevant because the New York cohort was recruited in 2020, before vaccines were available. The Zurich cohort was recruited up until April 2021, so some may have been vaccinated.

Then this news organization came along in early January 2024 with an article about COVID causing not only more than a million American deaths but also more than 5000 deaths from long COVID. We physicians don’t really know what long COVID even is, but we have to sign death certificates blaming thousands of deaths on it anyway? And rolling back the clock to 2020: Are patients dying from COVID or with COVID, according to death certificates?Now, armed with the knowledge that “documented serious post–COVID-19 conditions include cardiovascular, pulmonary, neurological, renal, endocrine, hematological, and gastrointestinal complications, as well as death,” CDC has published clear and fairly concise instructions on how to address post-acute COVID sequelae on death certificates.

In late January, this news organization painted a hopeful picture by naming four phenotypes of long COVID, suggesting that such divisions might further our understanding, including prognosis, and even therapy for this condition. Among the clinical phenotypes of (1) chronic fatigue–like syndrome, headache, and memory loss; (2) respiratory syndrome (which includes cough and difficulty breathing); (3) chronic pain; and (4) neurosensorial syndrome (which causes an altered sense of taste and smell), overlap is clearly possible but isn›t addressed.

I see these recent developments as needed and useful progress, but we are still left with…not much. So, when you tell me that you do or do not have long COVID, I will say to you, “How do you know?”

I also say: She/he/they who know COVID know medicine.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How to Prescribe Physical Activity in Patients With Obesity

Article Type
Changed
Mon, 02/12/2024 - 09:30

Exercise should no longer be a mere “complement” or a standard recommendation within healthy lifestyle guidelines, say experts. Recent evidence confirms its physiological importance and endorses its beneficial and therapeutic effects on overall health, particularly in the case of obesity and its comorbidities. These findings emphasized the reasons to include exercise prescription in addressing this condition. This conclusion emerged from discussions among experts in Physical Activity and Sports Sciences during the XIX Congress of the Spanish Society for Obesity, where the role of physical exercise as a therapeutic strategy was analyzed from various perspectives.

Javier Butragueño, PhD, coordinator of the Exercise Working Group at the Spanish Society of Obesity, emphasized the need to “reposition” the role of exercise and the message conveyed to the population. “We must move beyond the typical recommendation to ‘just walk’ and rethink this message. When working with patients with obesity, you realize that, for example, the guideline of 10,000 steps per day makes little sense for those who weigh 140 kg, have been sedentary for a long time, and have not reached 2000 daily steps. Clinically, it becomes evident that current recommendations may not align with the needs of these patients,” he said.
 

Precision Focus

Dr. Butragueño highlighted the necessity of shifting the central focus from weight-related variables alone. While weight is crucial, evidence suggests that it should be evaluated along with other strategies, such as nutrition and pharmacology.

“The approach must change to view exercise as a metabolism regulator,” said Dr. Butragueño. “For specialists, this means educating the population about the need to stay active for overall health. This is a disruptive message because the prevailing idea, almost obsessive, associates exercise primarily with weight loss, a completely incorrect approach that can even be detrimental in some cases.”

Dr. Butragueño emphasized the supportive role of physical exercise in interventions for these patients. “Data show that it is both an enhancer and a co-adjuvant in strategies that also include psychology and endocrinology. It should be part of the approach to obesity but individualized and phenotyped to give physical activity the necessary dimension in each specific case.”

As an example of this adaptability in therapeutic strategy, Dr. Butragueño referred to addressing binge eating disorder. “In this case, specialists must acknowledge that sports are a third-line option, always behind the psychologist, who plays a primary role. Exercise is used to enhance the emotions triggered through its practice, considering that many of these patients maintain a very negative relationship with their bodies.”
 

Spanish ‘Prescription Guide’

During his presentation, Dr. Butragueño introduced the positioning document from the Exercise Group of the Spanish Society of Obesity, which is aimed at designing physical activity programs for patients with obesity. He emphasized its importance as a much-needed effort at proposing intervention strategies to guide health professionals and establish a reference framework for collaboration across different approaches to obesity.

Among the noteworthy aspects of the guidelines outlined in this document, Dr. Butragueño highlighted the assessment and classification of physical activity into four levels based on each patient’s physical condition. “This aspect should be studied by the scientific community because ‘humanizing’ exercise prescription by understanding individuals’ needs beyond their BMI is crucial.”

He also discussed the strategy outlined in the document that he said is crucial for implementing an exercise program. “Essentially, it involves two guidelines: First, engage in physical activity for at least 30-60 minutes in what we call zone 2. This includes activities like walking, cycling, or rowing, where one can speak easily with another person or sing without getting out of breath. This is a fundamental part of addressing obesity, as it improves mitochondrial biogenesis, the correct utilization of fatty acids, which is a significant concern in the pathophysiology of obesity and other diseases like cancer.”

The second strategy involves strength training alone or combined with aerobic-cardiovascular exercise. “Studies show that just 20 minutes of strength training 1 day a week for 10 consecutive weeks significantly improves strength levels in sedentary individuals.”

Dr. Butragueño emphasized that to date, there is no doubt that the most effective approach is to combine strength exercises with cardiorespiratory exercises. “This is not only to address obesity but also because, beyond weight impact, this training has proven additional benefits, such as increased oxygenation and improved cognitive capacity.”

Finally, regarding the challenges this shift in focus poses for exercise specialists, Dr. Butragueño pointed out, “Synergies in obesity treatment require sports experts to receive training in other disciplines, elevating our knowledge level and communication with the medical community to emphasize that we are indeed talking about exercise physiology applied to a condition like obesity.”

“In addition, as scientists, we must challenge ourselves to disseminate information at the societal level, surpassing the typical and outdated message of ‘eat less and move more,’ which we know is incorrect. This simplistic formula doesn’t help many patients resolve their issues like fatty liver, diabetes, and other metabolic disorders,” he concluded.
 

 

 

Active Breaks

Other topics debated during the congress included the importance of making exercise prescription a de facto reality in clinical practice and the challenge of achieving therapeutic compliance.

According to experts, one of the well-positioned trends in this regard is the concept of “active breaks” or “exercise snacks.” These breaks involve engaging in short-duration, moderate- to high-intensity activities throughout the day or working hours.

César Bustos, a board member of the Spanish Society of Obesity, mentioned that several studies have demonstrated that simple activities like climbing three flights of stairs or engaging in 1-minute training sessions can increase the metabolic equivalent of cardiovascular capacity and cardiorespiratory fitness. This approach could help reduce cardiovascular disease risk and all-cause mortality by 13%-15%.

“Cardiorespiratory fitness is the ability to engage in physical activity. It has been proven to be a more powerful predictor of mortality risk than traditional risk factors such as hypertension, smoking, obesity, hyperlipidemia, and type 2 diabetes,” said Mr. Bustos.

The expert added that these findings on the benefits of exercise snacks are particularly relevant in the current context, where lack of time is the primary obstacle cited by individuals with obesity for not engaging in regular physical activity. In addition, exercise prescription is considered the primary preventive measure for obesity and its associated diseases.

“Exercise is an essential complement to various treatments and strategies aimed at managing obesity and maintaining long-term weight reductions. However, patient compliance with recommended measures to stay active remains low. This deficiency can be overcome with the adoption of exercise snacks or small doses of exercise, which have become the most effective tool for achieving this goal,” he emphasized.

Also, in line with other experts, Mr. Bustos emphasized the importance of combined strength and cardiovascular training within the same session. “Undoubtedly, this is the most effective modality, as recent meta-analyses reflect. There is also a second effective modality for improving cardiometabolic parameters in patients with obesity: Hybrid training, including games, skipping ropes, and various devices.”
 

Exerkines and Poly Pills

Antonio García-Hermoso, PhD, a specialist in physical activity and sports at Navarrabiomed, University Hospital of Navarra in Pamplona, Spain, provided an update on the latest evidence regarding exerkines, which are molecules released during exercise. Research into these molecules attempts to analyze and understand the complex network of interactions between various exercise response systems.

Dr. García-Hermoso said that in the case of obesity and type 2 diabetes, research focuses on how exercise can affect patients’ exerkine levels and how these molecules can affect cardiometabolic control.

“The results demonstrate that these molecules are associated with multiple benefits, including improved insulin sensitivity and glucose homeostasis,” said Dr. García-Hermoso. “Concerning obesity, regular exercise has been shown to reduce interleukin-6 levels, positively affecting inflammation in these patients, also being associated with increased lipolysis and fatty acid utilization.”

Dr. García-Hermoso considered that studying exerkines supports the importance of individualized exercise prescription, like prescription of diet or medications.

He emphasized the importance of intensity, “which is even more crucial than the type of physical activity. Intense exercise activates physiological mechanisms, such as increased blood lactate levels, favoring the inhibition of ghrelin signaling associated with appetite. Therefore, higher exercise intensity leads to more lactate and greater inhibition of post-training hunger.”

“It is essential to understand that exercise is a poly pill with many advantages, and one of them is that even in small amounts, if intensity is increased, health benefits increase considerably,” Dr. García-Hermoso concluded.

Dr. Butragueño, Mr. Bustos, and Dr. García-Hermoso declared no relevant economic conflicts of interest.

This article was translated from the Medscape Spanish edition. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Exercise should no longer be a mere “complement” or a standard recommendation within healthy lifestyle guidelines, say experts. Recent evidence confirms its physiological importance and endorses its beneficial and therapeutic effects on overall health, particularly in the case of obesity and its comorbidities. These findings emphasized the reasons to include exercise prescription in addressing this condition. This conclusion emerged from discussions among experts in Physical Activity and Sports Sciences during the XIX Congress of the Spanish Society for Obesity, where the role of physical exercise as a therapeutic strategy was analyzed from various perspectives.

Javier Butragueño, PhD, coordinator of the Exercise Working Group at the Spanish Society of Obesity, emphasized the need to “reposition” the role of exercise and the message conveyed to the population. “We must move beyond the typical recommendation to ‘just walk’ and rethink this message. When working with patients with obesity, you realize that, for example, the guideline of 10,000 steps per day makes little sense for those who weigh 140 kg, have been sedentary for a long time, and have not reached 2000 daily steps. Clinically, it becomes evident that current recommendations may not align with the needs of these patients,” he said.
 

Precision Focus

Dr. Butragueño highlighted the necessity of shifting the central focus from weight-related variables alone. While weight is crucial, evidence suggests that it should be evaluated along with other strategies, such as nutrition and pharmacology.

“The approach must change to view exercise as a metabolism regulator,” said Dr. Butragueño. “For specialists, this means educating the population about the need to stay active for overall health. This is a disruptive message because the prevailing idea, almost obsessive, associates exercise primarily with weight loss, a completely incorrect approach that can even be detrimental in some cases.”

Dr. Butragueño emphasized the supportive role of physical exercise in interventions for these patients. “Data show that it is both an enhancer and a co-adjuvant in strategies that also include psychology and endocrinology. It should be part of the approach to obesity but individualized and phenotyped to give physical activity the necessary dimension in each specific case.”

As an example of this adaptability in therapeutic strategy, Dr. Butragueño referred to addressing binge eating disorder. “In this case, specialists must acknowledge that sports are a third-line option, always behind the psychologist, who plays a primary role. Exercise is used to enhance the emotions triggered through its practice, considering that many of these patients maintain a very negative relationship with their bodies.”
 

Spanish ‘Prescription Guide’

During his presentation, Dr. Butragueño introduced the positioning document from the Exercise Group of the Spanish Society of Obesity, which is aimed at designing physical activity programs for patients with obesity. He emphasized its importance as a much-needed effort at proposing intervention strategies to guide health professionals and establish a reference framework for collaboration across different approaches to obesity.

Among the noteworthy aspects of the guidelines outlined in this document, Dr. Butragueño highlighted the assessment and classification of physical activity into four levels based on each patient’s physical condition. “This aspect should be studied by the scientific community because ‘humanizing’ exercise prescription by understanding individuals’ needs beyond their BMI is crucial.”

He also discussed the strategy outlined in the document that he said is crucial for implementing an exercise program. “Essentially, it involves two guidelines: First, engage in physical activity for at least 30-60 minutes in what we call zone 2. This includes activities like walking, cycling, or rowing, where one can speak easily with another person or sing without getting out of breath. This is a fundamental part of addressing obesity, as it improves mitochondrial biogenesis, the correct utilization of fatty acids, which is a significant concern in the pathophysiology of obesity and other diseases like cancer.”

The second strategy involves strength training alone or combined with aerobic-cardiovascular exercise. “Studies show that just 20 minutes of strength training 1 day a week for 10 consecutive weeks significantly improves strength levels in sedentary individuals.”

Dr. Butragueño emphasized that to date, there is no doubt that the most effective approach is to combine strength exercises with cardiorespiratory exercises. “This is not only to address obesity but also because, beyond weight impact, this training has proven additional benefits, such as increased oxygenation and improved cognitive capacity.”

Finally, regarding the challenges this shift in focus poses for exercise specialists, Dr. Butragueño pointed out, “Synergies in obesity treatment require sports experts to receive training in other disciplines, elevating our knowledge level and communication with the medical community to emphasize that we are indeed talking about exercise physiology applied to a condition like obesity.”

“In addition, as scientists, we must challenge ourselves to disseminate information at the societal level, surpassing the typical and outdated message of ‘eat less and move more,’ which we know is incorrect. This simplistic formula doesn’t help many patients resolve their issues like fatty liver, diabetes, and other metabolic disorders,” he concluded.
 

 

 

Active Breaks

Other topics debated during the congress included the importance of making exercise prescription a de facto reality in clinical practice and the challenge of achieving therapeutic compliance.

According to experts, one of the well-positioned trends in this regard is the concept of “active breaks” or “exercise snacks.” These breaks involve engaging in short-duration, moderate- to high-intensity activities throughout the day or working hours.

César Bustos, a board member of the Spanish Society of Obesity, mentioned that several studies have demonstrated that simple activities like climbing three flights of stairs or engaging in 1-minute training sessions can increase the metabolic equivalent of cardiovascular capacity and cardiorespiratory fitness. This approach could help reduce cardiovascular disease risk and all-cause mortality by 13%-15%.

“Cardiorespiratory fitness is the ability to engage in physical activity. It has been proven to be a more powerful predictor of mortality risk than traditional risk factors such as hypertension, smoking, obesity, hyperlipidemia, and type 2 diabetes,” said Mr. Bustos.

The expert added that these findings on the benefits of exercise snacks are particularly relevant in the current context, where lack of time is the primary obstacle cited by individuals with obesity for not engaging in regular physical activity. In addition, exercise prescription is considered the primary preventive measure for obesity and its associated diseases.

“Exercise is an essential complement to various treatments and strategies aimed at managing obesity and maintaining long-term weight reductions. However, patient compliance with recommended measures to stay active remains low. This deficiency can be overcome with the adoption of exercise snacks or small doses of exercise, which have become the most effective tool for achieving this goal,” he emphasized.

Also, in line with other experts, Mr. Bustos emphasized the importance of combined strength and cardiovascular training within the same session. “Undoubtedly, this is the most effective modality, as recent meta-analyses reflect. There is also a second effective modality for improving cardiometabolic parameters in patients with obesity: Hybrid training, including games, skipping ropes, and various devices.”
 

Exerkines and Poly Pills

Antonio García-Hermoso, PhD, a specialist in physical activity and sports at Navarrabiomed, University Hospital of Navarra in Pamplona, Spain, provided an update on the latest evidence regarding exerkines, which are molecules released during exercise. Research into these molecules attempts to analyze and understand the complex network of interactions between various exercise response systems.

Dr. García-Hermoso said that in the case of obesity and type 2 diabetes, research focuses on how exercise can affect patients’ exerkine levels and how these molecules can affect cardiometabolic control.

“The results demonstrate that these molecules are associated with multiple benefits, including improved insulin sensitivity and glucose homeostasis,” said Dr. García-Hermoso. “Concerning obesity, regular exercise has been shown to reduce interleukin-6 levels, positively affecting inflammation in these patients, also being associated with increased lipolysis and fatty acid utilization.”

Dr. García-Hermoso considered that studying exerkines supports the importance of individualized exercise prescription, like prescription of diet or medications.

He emphasized the importance of intensity, “which is even more crucial than the type of physical activity. Intense exercise activates physiological mechanisms, such as increased blood lactate levels, favoring the inhibition of ghrelin signaling associated with appetite. Therefore, higher exercise intensity leads to more lactate and greater inhibition of post-training hunger.”

“It is essential to understand that exercise is a poly pill with many advantages, and one of them is that even in small amounts, if intensity is increased, health benefits increase considerably,” Dr. García-Hermoso concluded.

Dr. Butragueño, Mr. Bustos, and Dr. García-Hermoso declared no relevant economic conflicts of interest.

This article was translated from the Medscape Spanish edition. A version of this article appeared on Medscape.com.

Exercise should no longer be a mere “complement” or a standard recommendation within healthy lifestyle guidelines, say experts. Recent evidence confirms its physiological importance and endorses its beneficial and therapeutic effects on overall health, particularly in the case of obesity and its comorbidities. These findings emphasized the reasons to include exercise prescription in addressing this condition. This conclusion emerged from discussions among experts in Physical Activity and Sports Sciences during the XIX Congress of the Spanish Society for Obesity, where the role of physical exercise as a therapeutic strategy was analyzed from various perspectives.

Javier Butragueño, PhD, coordinator of the Exercise Working Group at the Spanish Society of Obesity, emphasized the need to “reposition” the role of exercise and the message conveyed to the population. “We must move beyond the typical recommendation to ‘just walk’ and rethink this message. When working with patients with obesity, you realize that, for example, the guideline of 10,000 steps per day makes little sense for those who weigh 140 kg, have been sedentary for a long time, and have not reached 2000 daily steps. Clinically, it becomes evident that current recommendations may not align with the needs of these patients,” he said.
 

Precision Focus

Dr. Butragueño highlighted the necessity of shifting the central focus from weight-related variables alone. While weight is crucial, evidence suggests that it should be evaluated along with other strategies, such as nutrition and pharmacology.

“The approach must change to view exercise as a metabolism regulator,” said Dr. Butragueño. “For specialists, this means educating the population about the need to stay active for overall health. This is a disruptive message because the prevailing idea, almost obsessive, associates exercise primarily with weight loss, a completely incorrect approach that can even be detrimental in some cases.”

Dr. Butragueño emphasized the supportive role of physical exercise in interventions for these patients. “Data show that it is both an enhancer and a co-adjuvant in strategies that also include psychology and endocrinology. It should be part of the approach to obesity but individualized and phenotyped to give physical activity the necessary dimension in each specific case.”

As an example of this adaptability in therapeutic strategy, Dr. Butragueño referred to addressing binge eating disorder. “In this case, specialists must acknowledge that sports are a third-line option, always behind the psychologist, who plays a primary role. Exercise is used to enhance the emotions triggered through its practice, considering that many of these patients maintain a very negative relationship with their bodies.”
 

Spanish ‘Prescription Guide’

During his presentation, Dr. Butragueño introduced the positioning document from the Exercise Group of the Spanish Society of Obesity, which is aimed at designing physical activity programs for patients with obesity. He emphasized its importance as a much-needed effort at proposing intervention strategies to guide health professionals and establish a reference framework for collaboration across different approaches to obesity.

Among the noteworthy aspects of the guidelines outlined in this document, Dr. Butragueño highlighted the assessment and classification of physical activity into four levels based on each patient’s physical condition. “This aspect should be studied by the scientific community because ‘humanizing’ exercise prescription by understanding individuals’ needs beyond their BMI is crucial.”

He also discussed the strategy outlined in the document that he said is crucial for implementing an exercise program. “Essentially, it involves two guidelines: First, engage in physical activity for at least 30-60 minutes in what we call zone 2. This includes activities like walking, cycling, or rowing, where one can speak easily with another person or sing without getting out of breath. This is a fundamental part of addressing obesity, as it improves mitochondrial biogenesis, the correct utilization of fatty acids, which is a significant concern in the pathophysiology of obesity and other diseases like cancer.”

The second strategy involves strength training alone or combined with aerobic-cardiovascular exercise. “Studies show that just 20 minutes of strength training 1 day a week for 10 consecutive weeks significantly improves strength levels in sedentary individuals.”

Dr. Butragueño emphasized that to date, there is no doubt that the most effective approach is to combine strength exercises with cardiorespiratory exercises. “This is not only to address obesity but also because, beyond weight impact, this training has proven additional benefits, such as increased oxygenation and improved cognitive capacity.”

Finally, regarding the challenges this shift in focus poses for exercise specialists, Dr. Butragueño pointed out, “Synergies in obesity treatment require sports experts to receive training in other disciplines, elevating our knowledge level and communication with the medical community to emphasize that we are indeed talking about exercise physiology applied to a condition like obesity.”

“In addition, as scientists, we must challenge ourselves to disseminate information at the societal level, surpassing the typical and outdated message of ‘eat less and move more,’ which we know is incorrect. This simplistic formula doesn’t help many patients resolve their issues like fatty liver, diabetes, and other metabolic disorders,” he concluded.
 

 

 

Active Breaks

Other topics debated during the congress included the importance of making exercise prescription a de facto reality in clinical practice and the challenge of achieving therapeutic compliance.

According to experts, one of the well-positioned trends in this regard is the concept of “active breaks” or “exercise snacks.” These breaks involve engaging in short-duration, moderate- to high-intensity activities throughout the day or working hours.

César Bustos, a board member of the Spanish Society of Obesity, mentioned that several studies have demonstrated that simple activities like climbing three flights of stairs or engaging in 1-minute training sessions can increase the metabolic equivalent of cardiovascular capacity and cardiorespiratory fitness. This approach could help reduce cardiovascular disease risk and all-cause mortality by 13%-15%.

“Cardiorespiratory fitness is the ability to engage in physical activity. It has been proven to be a more powerful predictor of mortality risk than traditional risk factors such as hypertension, smoking, obesity, hyperlipidemia, and type 2 diabetes,” said Mr. Bustos.

The expert added that these findings on the benefits of exercise snacks are particularly relevant in the current context, where lack of time is the primary obstacle cited by individuals with obesity for not engaging in regular physical activity. In addition, exercise prescription is considered the primary preventive measure for obesity and its associated diseases.

“Exercise is an essential complement to various treatments and strategies aimed at managing obesity and maintaining long-term weight reductions. However, patient compliance with recommended measures to stay active remains low. This deficiency can be overcome with the adoption of exercise snacks or small doses of exercise, which have become the most effective tool for achieving this goal,” he emphasized.

Also, in line with other experts, Mr. Bustos emphasized the importance of combined strength and cardiovascular training within the same session. “Undoubtedly, this is the most effective modality, as recent meta-analyses reflect. There is also a second effective modality for improving cardiometabolic parameters in patients with obesity: Hybrid training, including games, skipping ropes, and various devices.”
 

Exerkines and Poly Pills

Antonio García-Hermoso, PhD, a specialist in physical activity and sports at Navarrabiomed, University Hospital of Navarra in Pamplona, Spain, provided an update on the latest evidence regarding exerkines, which are molecules released during exercise. Research into these molecules attempts to analyze and understand the complex network of interactions between various exercise response systems.

Dr. García-Hermoso said that in the case of obesity and type 2 diabetes, research focuses on how exercise can affect patients’ exerkine levels and how these molecules can affect cardiometabolic control.

“The results demonstrate that these molecules are associated with multiple benefits, including improved insulin sensitivity and glucose homeostasis,” said Dr. García-Hermoso. “Concerning obesity, regular exercise has been shown to reduce interleukin-6 levels, positively affecting inflammation in these patients, also being associated with increased lipolysis and fatty acid utilization.”

Dr. García-Hermoso considered that studying exerkines supports the importance of individualized exercise prescription, like prescription of diet or medications.

He emphasized the importance of intensity, “which is even more crucial than the type of physical activity. Intense exercise activates physiological mechanisms, such as increased blood lactate levels, favoring the inhibition of ghrelin signaling associated with appetite. Therefore, higher exercise intensity leads to more lactate and greater inhibition of post-training hunger.”

“It is essential to understand that exercise is a poly pill with many advantages, and one of them is that even in small amounts, if intensity is increased, health benefits increase considerably,” Dr. García-Hermoso concluded.

Dr. Butragueño, Mr. Bustos, and Dr. García-Hermoso declared no relevant economic conflicts of interest.

This article was translated from the Medscape Spanish edition. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Dupilumab Improves AD Affecting the Hands, Feet

Article Type
Changed
Mon, 02/12/2024 - 06:48

 

TOPLINE:

Dupilumab improved the signs and symptoms and quality of life in adults and adolescents with moderate to severe atopic hand and foot dermatitis compared with placebo.

METHODOLOGY:

  • The multinational phase 3 LIBERTY-AD-HAFT trial of adults and adolescents with moderate to severe chronic atopic dermatitis (AD) of the hands, feet, or both included 67 participants at 48 sites randomized to dupilumab monotherapy and 66 to placebo.
  • The primary endpoint was the proportion of patients scoring 0 or 1 on Hand and Foot Investigator’s Global Assessment (HF-IGA) at week 16.
  • Secondary endpoints were severity and extent of signs, symptom intensity (itch and pain), sleep, and quality of life.

TAKEAWAY:

  • At week 16, 27 patients receiving dupilumab vs 11 receiving placebo achieved an HF-IGA score of 0 or 1 (40.3% vs 16.7%; P = .003).
  • At week 16, 35 participants receiving dupilumab vs nine receiving placebo improved at least four points in the weekly average of daily HF-Peak Pruritus Numeric Rating Scale (52.2% vs 13.6%; P < .0001).
  • At week 16, Quality of Life Hand Eczema Questionnaire results improved in the dupilumab group compared with controls (P < .0001), and weekly average of daily Sleep Numeric Rating Scale results improved in the dupilumab group compared with controls (P < .05).
  • The safety profile was similar to the known profile in adults and adolescents with moderate to severe AD.

IN PRACTICE:

The results of the study “support dupilumab” as an “efficacious systemic therapy for moderate to severe H/F AD,” the authors wrote.

SOURCE:

The study, led by Eric L. Simpson, MD, MCR, professor of dermatology at the Oregon Health & Science University in Portland, was published on January 29, 2024, in the Journal of the American Academy of Dermatology.

LIMITATIONS:

The short duration of the study and the large proportion of patients with positive patch tests (31 of 133) suggested that some participants may have had concurrent AD and allergic contact dermatitis, so the effect of dupilumab on those patients needs further evaluation.

DISCLOSURES:

The study was sponsored by Sanofi and Regeneron. All but one author had financial relationships with Sanofi, Regeneron, or both. Several authors were employees of, and may hold stocks or stock options in, Sanofi or Regeneron.

Publications
Topics
Sections

 

TOPLINE:

Dupilumab improved the signs and symptoms and quality of life in adults and adolescents with moderate to severe atopic hand and foot dermatitis compared with placebo.

METHODOLOGY:

  • The multinational phase 3 LIBERTY-AD-HAFT trial of adults and adolescents with moderate to severe chronic atopic dermatitis (AD) of the hands, feet, or both included 67 participants at 48 sites randomized to dupilumab monotherapy and 66 to placebo.
  • The primary endpoint was the proportion of patients scoring 0 or 1 on Hand and Foot Investigator’s Global Assessment (HF-IGA) at week 16.
  • Secondary endpoints were severity and extent of signs, symptom intensity (itch and pain), sleep, and quality of life.

TAKEAWAY:

  • At week 16, 27 patients receiving dupilumab vs 11 receiving placebo achieved an HF-IGA score of 0 or 1 (40.3% vs 16.7%; P = .003).
  • At week 16, 35 participants receiving dupilumab vs nine receiving placebo improved at least four points in the weekly average of daily HF-Peak Pruritus Numeric Rating Scale (52.2% vs 13.6%; P < .0001).
  • At week 16, Quality of Life Hand Eczema Questionnaire results improved in the dupilumab group compared with controls (P < .0001), and weekly average of daily Sleep Numeric Rating Scale results improved in the dupilumab group compared with controls (P < .05).
  • The safety profile was similar to the known profile in adults and adolescents with moderate to severe AD.

IN PRACTICE:

The results of the study “support dupilumab” as an “efficacious systemic therapy for moderate to severe H/F AD,” the authors wrote.

SOURCE:

The study, led by Eric L. Simpson, MD, MCR, professor of dermatology at the Oregon Health & Science University in Portland, was published on January 29, 2024, in the Journal of the American Academy of Dermatology.

LIMITATIONS:

The short duration of the study and the large proportion of patients with positive patch tests (31 of 133) suggested that some participants may have had concurrent AD and allergic contact dermatitis, so the effect of dupilumab on those patients needs further evaluation.

DISCLOSURES:

The study was sponsored by Sanofi and Regeneron. All but one author had financial relationships with Sanofi, Regeneron, or both. Several authors were employees of, and may hold stocks or stock options in, Sanofi or Regeneron.

 

TOPLINE:

Dupilumab improved the signs and symptoms and quality of life in adults and adolescents with moderate to severe atopic hand and foot dermatitis compared with placebo.

METHODOLOGY:

  • The multinational phase 3 LIBERTY-AD-HAFT trial of adults and adolescents with moderate to severe chronic atopic dermatitis (AD) of the hands, feet, or both included 67 participants at 48 sites randomized to dupilumab monotherapy and 66 to placebo.
  • The primary endpoint was the proportion of patients scoring 0 or 1 on Hand and Foot Investigator’s Global Assessment (HF-IGA) at week 16.
  • Secondary endpoints were severity and extent of signs, symptom intensity (itch and pain), sleep, and quality of life.

TAKEAWAY:

  • At week 16, 27 patients receiving dupilumab vs 11 receiving placebo achieved an HF-IGA score of 0 or 1 (40.3% vs 16.7%; P = .003).
  • At week 16, 35 participants receiving dupilumab vs nine receiving placebo improved at least four points in the weekly average of daily HF-Peak Pruritus Numeric Rating Scale (52.2% vs 13.6%; P < .0001).
  • At week 16, Quality of Life Hand Eczema Questionnaire results improved in the dupilumab group compared with controls (P < .0001), and weekly average of daily Sleep Numeric Rating Scale results improved in the dupilumab group compared with controls (P < .05).
  • The safety profile was similar to the known profile in adults and adolescents with moderate to severe AD.

IN PRACTICE:

The results of the study “support dupilumab” as an “efficacious systemic therapy for moderate to severe H/F AD,” the authors wrote.

SOURCE:

The study, led by Eric L. Simpson, MD, MCR, professor of dermatology at the Oregon Health & Science University in Portland, was published on January 29, 2024, in the Journal of the American Academy of Dermatology.

LIMITATIONS:

The short duration of the study and the large proportion of patients with positive patch tests (31 of 133) suggested that some participants may have had concurrent AD and allergic contact dermatitis, so the effect of dupilumab on those patients needs further evaluation.

DISCLOSURES:

The study was sponsored by Sanofi and Regeneron. All but one author had financial relationships with Sanofi, Regeneron, or both. Several authors were employees of, and may hold stocks or stock options in, Sanofi or Regeneron.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Testosterone Replacement Shows No Benefit in Diabetes Prevention

Article Type
Changed
Fri, 02/09/2024 - 13:58

Testosterone replacement therapy in the treatment of hypogonadism showed no benefit in slowing the progression of prediabetes or diabetes, contrary to previous evidence that suggested potential improvements in insulin sensitivity and metabolism.

“The findings of this study suggest that testosterone replacement therapy alone should not be used as a therapeutic intervention to prevent or treat diabetes in men with hypogonadism,” reported the authors of research published this month in JAMA Internal Medicine.

The suggestion that testosterone replacement could prevent or slow diabetes stems from numerous studies linking testosterone deficiency to a host of adverse effects that include increases in insulin resistance and an increased risk for prediabetes and type 2 diabetes.

Furthermore, one recent uncontrolled study showed a lower rate of progression from prediabetes to diabetes in testosterone-treated vs untreated men with hypogonadism.

But with no known randomized clinical trials evaluating the effects of testosterone on diabetes in the absence of a concurrent lifestyle intervention, Shalender Bhasin, MB, of the Research Program in Men’s Health: Aging and Metabolism, at Brigham and Women’s Hospital, Harvard Medical School, Boston, and colleagues conducted a substudy of the randomized TRAVERSE trial, which was conducted at 316 sites in the United States.

“We hypothesized that testosterone replacement therapy for men with hypogonadism and prediabetes would be associated with a significantly lower rate of progression to diabetes,” they wrote.

In the study, named the TRAVERSE Diabetes Study, 5204 participants aged between 40 and 85 years with hypogonadism as well as prediabetes (n = 1175) or diabetes (n = 3880) were randomized 1:1 to receive treatment either with 1.62% testosterone gel or placebo gel.

The participants had a mean age of 63.2 years, and the mean A1c among those with prediabetes was 5.8%.

For the primary outcome, the risk for progression to diabetes did not differ significantly between the testosterone-treated and placebo groups at 6 months (0.7% vs 1.4%), 12 months (7.8% vs 10.7%), 24 months (10.1% vs 14.6%), 36 months (12.8% vs 15.8%), or 48 months (13.4% vs 15.7%; omnibus test P = .49).

There were also no significant differences in terms of glycemic remission and the changes in glucose and A1c levels between the testosterone- and placebo-treated men with prediabetes or diabetes, consistent with findings from previous smaller trials.

The authors pointed out that the participants in the TRAVERSE trial had mild to moderate testosterone deficiency, and “it is possible that greater improvements in insulin sensitivity may be observed in men with severe testosterone deficiency.”

However, they noted that most men with hypogonadism who are treated with testosterone replacement therapy have only mild testosterone deficiency.

The parent TRAVERSE study did show testosterone replacement therapy to be associated with higher incidences of venous thromboembolismatrial fibrillation, and acute kidney injury; however, no additional between-group differences were observed based on diabetes or prediabetes status.

“The findings of this study do not support the use of testosterone replacement therapy alone to prevent or to treat diabetes in men with hypogonadism,” the authors concluded.
 

Study ‘Overcomes Limitations of Prior Studies’

In an editorial published concurrently with the study, Lona Mody, MD, of the Division of Geriatric and Palliative Care Medicine, University of Michigan Medical School, in Ann Arbor, and colleagues underscored that “the results of this study suggest that testosterone replacement therapy will not benefit glycemic control in men without hypogonadism despite the inappropriately high rates of use in this group.”

Further commenting, Dr. Mody elaborated on the high rates of use, noting that data have shown androgen use among men over 40 years increased more than threefold from 0.81% in 2001 to 2.91% in 2011.

“Based on sales data, testosterone prescribing has increased 100-fold from $18 million in the late 1980s to $1.8 billion over three decades,” Dr. Mody said.

She noted that while some previous research has shown a similar lack of benefits, “the current study overcomes some limitations of prior studies.”

Ultimately, the evidence indicated that “the only major indication for testosterone replacement therapy remains to treat bothersome symptoms of hypogonadism,” Dr. Mody said. “It does not appear to have metabolic benefits.”

This trial was funded by a consortium of testosterone manufacturers led by AbbVie Inc., with additional financial support provided by Endo Pharmaceuticals, Acerus Pharmaceuticals Corporation, and Upsher-Smith Laboratories, LLC.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Testosterone replacement therapy in the treatment of hypogonadism showed no benefit in slowing the progression of prediabetes or diabetes, contrary to previous evidence that suggested potential improvements in insulin sensitivity and metabolism.

“The findings of this study suggest that testosterone replacement therapy alone should not be used as a therapeutic intervention to prevent or treat diabetes in men with hypogonadism,” reported the authors of research published this month in JAMA Internal Medicine.

The suggestion that testosterone replacement could prevent or slow diabetes stems from numerous studies linking testosterone deficiency to a host of adverse effects that include increases in insulin resistance and an increased risk for prediabetes and type 2 diabetes.

Furthermore, one recent uncontrolled study showed a lower rate of progression from prediabetes to diabetes in testosterone-treated vs untreated men with hypogonadism.

But with no known randomized clinical trials evaluating the effects of testosterone on diabetes in the absence of a concurrent lifestyle intervention, Shalender Bhasin, MB, of the Research Program in Men’s Health: Aging and Metabolism, at Brigham and Women’s Hospital, Harvard Medical School, Boston, and colleagues conducted a substudy of the randomized TRAVERSE trial, which was conducted at 316 sites in the United States.

“We hypothesized that testosterone replacement therapy for men with hypogonadism and prediabetes would be associated with a significantly lower rate of progression to diabetes,” they wrote.

In the study, named the TRAVERSE Diabetes Study, 5204 participants aged between 40 and 85 years with hypogonadism as well as prediabetes (n = 1175) or diabetes (n = 3880) were randomized 1:1 to receive treatment either with 1.62% testosterone gel or placebo gel.

The participants had a mean age of 63.2 years, and the mean A1c among those with prediabetes was 5.8%.

For the primary outcome, the risk for progression to diabetes did not differ significantly between the testosterone-treated and placebo groups at 6 months (0.7% vs 1.4%), 12 months (7.8% vs 10.7%), 24 months (10.1% vs 14.6%), 36 months (12.8% vs 15.8%), or 48 months (13.4% vs 15.7%; omnibus test P = .49).

There were also no significant differences in terms of glycemic remission and the changes in glucose and A1c levels between the testosterone- and placebo-treated men with prediabetes or diabetes, consistent with findings from previous smaller trials.

The authors pointed out that the participants in the TRAVERSE trial had mild to moderate testosterone deficiency, and “it is possible that greater improvements in insulin sensitivity may be observed in men with severe testosterone deficiency.”

However, they noted that most men with hypogonadism who are treated with testosterone replacement therapy have only mild testosterone deficiency.

The parent TRAVERSE study did show testosterone replacement therapy to be associated with higher incidences of venous thromboembolismatrial fibrillation, and acute kidney injury; however, no additional between-group differences were observed based on diabetes or prediabetes status.

“The findings of this study do not support the use of testosterone replacement therapy alone to prevent or to treat diabetes in men with hypogonadism,” the authors concluded.
 

Study ‘Overcomes Limitations of Prior Studies’

In an editorial published concurrently with the study, Lona Mody, MD, of the Division of Geriatric and Palliative Care Medicine, University of Michigan Medical School, in Ann Arbor, and colleagues underscored that “the results of this study suggest that testosterone replacement therapy will not benefit glycemic control in men without hypogonadism despite the inappropriately high rates of use in this group.”

Further commenting, Dr. Mody elaborated on the high rates of use, noting that data have shown androgen use among men over 40 years increased more than threefold from 0.81% in 2001 to 2.91% in 2011.

“Based on sales data, testosterone prescribing has increased 100-fold from $18 million in the late 1980s to $1.8 billion over three decades,” Dr. Mody said.

She noted that while some previous research has shown a similar lack of benefits, “the current study overcomes some limitations of prior studies.”

Ultimately, the evidence indicated that “the only major indication for testosterone replacement therapy remains to treat bothersome symptoms of hypogonadism,” Dr. Mody said. “It does not appear to have metabolic benefits.”

This trial was funded by a consortium of testosterone manufacturers led by AbbVie Inc., with additional financial support provided by Endo Pharmaceuticals, Acerus Pharmaceuticals Corporation, and Upsher-Smith Laboratories, LLC.
 

A version of this article appeared on Medscape.com.

Testosterone replacement therapy in the treatment of hypogonadism showed no benefit in slowing the progression of prediabetes or diabetes, contrary to previous evidence that suggested potential improvements in insulin sensitivity and metabolism.

“The findings of this study suggest that testosterone replacement therapy alone should not be used as a therapeutic intervention to prevent or treat diabetes in men with hypogonadism,” reported the authors of research published this month in JAMA Internal Medicine.

The suggestion that testosterone replacement could prevent or slow diabetes stems from numerous studies linking testosterone deficiency to a host of adverse effects that include increases in insulin resistance and an increased risk for prediabetes and type 2 diabetes.

Furthermore, one recent uncontrolled study showed a lower rate of progression from prediabetes to diabetes in testosterone-treated vs untreated men with hypogonadism.

But with no known randomized clinical trials evaluating the effects of testosterone on diabetes in the absence of a concurrent lifestyle intervention, Shalender Bhasin, MB, of the Research Program in Men’s Health: Aging and Metabolism, at Brigham and Women’s Hospital, Harvard Medical School, Boston, and colleagues conducted a substudy of the randomized TRAVERSE trial, which was conducted at 316 sites in the United States.

“We hypothesized that testosterone replacement therapy for men with hypogonadism and prediabetes would be associated with a significantly lower rate of progression to diabetes,” they wrote.

In the study, named the TRAVERSE Diabetes Study, 5204 participants aged between 40 and 85 years with hypogonadism as well as prediabetes (n = 1175) or diabetes (n = 3880) were randomized 1:1 to receive treatment either with 1.62% testosterone gel or placebo gel.

The participants had a mean age of 63.2 years, and the mean A1c among those with prediabetes was 5.8%.

For the primary outcome, the risk for progression to diabetes did not differ significantly between the testosterone-treated and placebo groups at 6 months (0.7% vs 1.4%), 12 months (7.8% vs 10.7%), 24 months (10.1% vs 14.6%), 36 months (12.8% vs 15.8%), or 48 months (13.4% vs 15.7%; omnibus test P = .49).

There were also no significant differences in terms of glycemic remission and the changes in glucose and A1c levels between the testosterone- and placebo-treated men with prediabetes or diabetes, consistent with findings from previous smaller trials.

The authors pointed out that the participants in the TRAVERSE trial had mild to moderate testosterone deficiency, and “it is possible that greater improvements in insulin sensitivity may be observed in men with severe testosterone deficiency.”

However, they noted that most men with hypogonadism who are treated with testosterone replacement therapy have only mild testosterone deficiency.

The parent TRAVERSE study did show testosterone replacement therapy to be associated with higher incidences of venous thromboembolismatrial fibrillation, and acute kidney injury; however, no additional between-group differences were observed based on diabetes or prediabetes status.

“The findings of this study do not support the use of testosterone replacement therapy alone to prevent or to treat diabetes in men with hypogonadism,” the authors concluded.
 

Study ‘Overcomes Limitations of Prior Studies’

In an editorial published concurrently with the study, Lona Mody, MD, of the Division of Geriatric and Palliative Care Medicine, University of Michigan Medical School, in Ann Arbor, and colleagues underscored that “the results of this study suggest that testosterone replacement therapy will not benefit glycemic control in men without hypogonadism despite the inappropriately high rates of use in this group.”

Further commenting, Dr. Mody elaborated on the high rates of use, noting that data have shown androgen use among men over 40 years increased more than threefold from 0.81% in 2001 to 2.91% in 2011.

“Based on sales data, testosterone prescribing has increased 100-fold from $18 million in the late 1980s to $1.8 billion over three decades,” Dr. Mody said.

She noted that while some previous research has shown a similar lack of benefits, “the current study overcomes some limitations of prior studies.”

Ultimately, the evidence indicated that “the only major indication for testosterone replacement therapy remains to treat bothersome symptoms of hypogonadism,” Dr. Mody said. “It does not appear to have metabolic benefits.”

This trial was funded by a consortium of testosterone manufacturers led by AbbVie Inc., with additional financial support provided by Endo Pharmaceuticals, Acerus Pharmaceuticals Corporation, and Upsher-Smith Laboratories, LLC.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Milk May Lower T2D Risk in Patients With Lactose Intolerance

Article Type
Changed
Wed, 02/14/2024 - 09:18

Patients with lactose intolerance are usually advised to avoid milk. However, many still consume dairy products despite experiencing gastrointestinal symptoms. Surprisingly, this "unreasonable" strategy may have the benefit of reducing the risk for type 2 diabetes, as shown in a recent American study.

“At first glance, the statement of the study seems counterintuitive,” said Robert Wagner, MD, head of the Clinical Studies Center at the German Diabetes Center-Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany. “However, lactose intolerance has different manifestations.” Less severely affected individuals often consume milk and tolerate discomfort such as bloating or abdominal pain. “It is precisely these individuals that the study clearly shows have a lower incidence of diabetes associated with milk consumption,” said Dr. Wagner.
 

Milk’s Heterogeneous Effect

The effect of milk consumption on diabetes, among other factors, has been repeatedly studied in nutritional studies, with sometimes heterogeneous results in different countries. The reason for this is presumed to be that in Asia, most people — 60%-100% — are lactose intolerant, whereas in Europe, only as much as 40% of the population has lactose intolerance.

The authors, led by Kai Luo, PhD, research fellow in the Department of Epidemiology and Population Health at Albert Einstein College of Medicine in Bronx, New York, did not mention lactose tolerance and intolerance in their paper in Nature Metabolism. Instead, they divided the study population into lactase-persistent and non-lactase-persistent participants.

“Not being lactase-persistent does not necessarily exclude the ability to consume a certain amount of lactose,” said Lonneke Janssen Duijghuijsen, PhD, a nutrition scientist at Wageningen University, Wageningen, the Netherlands. “Studies have shown that many individuals who lack lactase can still consume up to 12 g of lactose per day — equivalent to the amount in a large glass of milk — without experiencing intolerance symptoms.”
 

Gut Microbiome and Metabolites

Dr. Luo and his colleagues analyzed data from 12,653 participants in the Hispanic Community Health Study/Study of Latinos, an ongoing prospective cohort study involving adults with Hispanic backgrounds. It collects detailed information on nutrition and the occurrence of diseases.

The authors examined whether the study participants were lactase-persistent or non-lactase-persistent and how frequently they consumed milk. They also analyzed the gut microbiome and various metabolites in the blood over a median follow-up period of 6 years.

The data analysis showed that higher milk consumption in non-lactase-persistent participants — but not in lactase-persistent participants — is associated with about a 30% reduced risk for type 2 diabetes when socioeconomic, demographic, and behavioral factors are accounted for. Comparable results were obtained by Dr. Luo and his colleagues with data from the UK Biobank, which served as validation.

A higher milk consumption was associated not only with a lower diabetes risk in non-lactase-persistent individuals but also with a lower body mass index. “This could be one of the factors behind the diabetes protection,” said Dr. Wagner. “However, no formal mediation analyses were conducted in the study.”

Dr. Luo’s team primarily attributed the cause of the observed association between milk consumption and diabetes risk to the gut. Increased milk intake was also associated with changes in the gut microbiome. For example, there was an enrichment of Bifidobacterium, while Prevotella decreased. Changes were also observed in the circulating metabolites in the blood, such as an increase in indole-3-propionate and a decrease in branched-chain amino acids.

These metabolites, speculated the authors, could be more intensely produced by milk-associated bacteria and might be causally related to the association between milk consumption and reduced risk for type 2 diabetes in non-lactase-persistent individuals. “The authors have not been able to provide precise evidence of these mediators, but one possible mediator of these effects could be short-chain fatty acids, which can directly or indirectly influence appetite, insulin action, or liver fat beneficially,” said Dr. Wagner.
 

 

 

Bacteria in the Colon

For Dr. Janssen Duijghuijsen, the conclusion that milk consumption can influence the composition of the microbiome and thus the metabolic profile, especially in individuals without lactase persistence, is plausible.

“Individuals with lactase persistence efficiently digest lactose and absorb the resulting galactose and glucose molecules in the small intestine. In contrast, in non-lactase-persistent individuals, lactase is not expressed in the brush border of the small intestine. As a result, lactose remains undigested in the colon and can serve as an energy source for gut bacteria. This can influence the composition of the microbiome, which in turn can alter the concentration of circulating metabolites,” she said.

Dr. Janssen Duijghuijsen has investigated the effect of lactose intake on the microbiome. In a recently published study, she also showed that increasing lactose intake by non-lactase-persistent individuals leads to changes in the microbiome, including an increase in Bifidobacteria.

“In line with the current study, we also found a significant increase in fecal beta-galactosidase activity. Given the close relationship between the composition of the gut microbiome and the metabolite profile, it is likely that changes in one can affect the other,” said Dr. Janssen Duijghuijsen.
 

Nutritional Recommendations

The nutrition scientist warned against concluding that milk consumption can protect against type 2 diabetes in non-lactase-persistent individuals, however. “The study suggests a statistical association between milk consumption, certain metabolites, and the frequency of type 2 diabetes. These associations do not provide definitive evidence of a causal relationship,” she said. Any dietary recommendations cannot be derived from the study; much more research is needed for that.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Patients with lactose intolerance are usually advised to avoid milk. However, many still consume dairy products despite experiencing gastrointestinal symptoms. Surprisingly, this "unreasonable" strategy may have the benefit of reducing the risk for type 2 diabetes, as shown in a recent American study.

“At first glance, the statement of the study seems counterintuitive,” said Robert Wagner, MD, head of the Clinical Studies Center at the German Diabetes Center-Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany. “However, lactose intolerance has different manifestations.” Less severely affected individuals often consume milk and tolerate discomfort such as bloating or abdominal pain. “It is precisely these individuals that the study clearly shows have a lower incidence of diabetes associated with milk consumption,” said Dr. Wagner.
 

Milk’s Heterogeneous Effect

The effect of milk consumption on diabetes, among other factors, has been repeatedly studied in nutritional studies, with sometimes heterogeneous results in different countries. The reason for this is presumed to be that in Asia, most people — 60%-100% — are lactose intolerant, whereas in Europe, only as much as 40% of the population has lactose intolerance.

The authors, led by Kai Luo, PhD, research fellow in the Department of Epidemiology and Population Health at Albert Einstein College of Medicine in Bronx, New York, did not mention lactose tolerance and intolerance in their paper in Nature Metabolism. Instead, they divided the study population into lactase-persistent and non-lactase-persistent participants.

“Not being lactase-persistent does not necessarily exclude the ability to consume a certain amount of lactose,” said Lonneke Janssen Duijghuijsen, PhD, a nutrition scientist at Wageningen University, Wageningen, the Netherlands. “Studies have shown that many individuals who lack lactase can still consume up to 12 g of lactose per day — equivalent to the amount in a large glass of milk — without experiencing intolerance symptoms.”
 

Gut Microbiome and Metabolites

Dr. Luo and his colleagues analyzed data from 12,653 participants in the Hispanic Community Health Study/Study of Latinos, an ongoing prospective cohort study involving adults with Hispanic backgrounds. It collects detailed information on nutrition and the occurrence of diseases.

The authors examined whether the study participants were lactase-persistent or non-lactase-persistent and how frequently they consumed milk. They also analyzed the gut microbiome and various metabolites in the blood over a median follow-up period of 6 years.

The data analysis showed that higher milk consumption in non-lactase-persistent participants — but not in lactase-persistent participants — is associated with about a 30% reduced risk for type 2 diabetes when socioeconomic, demographic, and behavioral factors are accounted for. Comparable results were obtained by Dr. Luo and his colleagues with data from the UK Biobank, which served as validation.

A higher milk consumption was associated not only with a lower diabetes risk in non-lactase-persistent individuals but also with a lower body mass index. “This could be one of the factors behind the diabetes protection,” said Dr. Wagner. “However, no formal mediation analyses were conducted in the study.”

Dr. Luo’s team primarily attributed the cause of the observed association between milk consumption and diabetes risk to the gut. Increased milk intake was also associated with changes in the gut microbiome. For example, there was an enrichment of Bifidobacterium, while Prevotella decreased. Changes were also observed in the circulating metabolites in the blood, such as an increase in indole-3-propionate and a decrease in branched-chain amino acids.

These metabolites, speculated the authors, could be more intensely produced by milk-associated bacteria and might be causally related to the association between milk consumption and reduced risk for type 2 diabetes in non-lactase-persistent individuals. “The authors have not been able to provide precise evidence of these mediators, but one possible mediator of these effects could be short-chain fatty acids, which can directly or indirectly influence appetite, insulin action, or liver fat beneficially,” said Dr. Wagner.
 

 

 

Bacteria in the Colon

For Dr. Janssen Duijghuijsen, the conclusion that milk consumption can influence the composition of the microbiome and thus the metabolic profile, especially in individuals without lactase persistence, is plausible.

“Individuals with lactase persistence efficiently digest lactose and absorb the resulting galactose and glucose molecules in the small intestine. In contrast, in non-lactase-persistent individuals, lactase is not expressed in the brush border of the small intestine. As a result, lactose remains undigested in the colon and can serve as an energy source for gut bacteria. This can influence the composition of the microbiome, which in turn can alter the concentration of circulating metabolites,” she said.

Dr. Janssen Duijghuijsen has investigated the effect of lactose intake on the microbiome. In a recently published study, she also showed that increasing lactose intake by non-lactase-persistent individuals leads to changes in the microbiome, including an increase in Bifidobacteria.

“In line with the current study, we also found a significant increase in fecal beta-galactosidase activity. Given the close relationship between the composition of the gut microbiome and the metabolite profile, it is likely that changes in one can affect the other,” said Dr. Janssen Duijghuijsen.
 

Nutritional Recommendations

The nutrition scientist warned against concluding that milk consumption can protect against type 2 diabetes in non-lactase-persistent individuals, however. “The study suggests a statistical association between milk consumption, certain metabolites, and the frequency of type 2 diabetes. These associations do not provide definitive evidence of a causal relationship,” she said. Any dietary recommendations cannot be derived from the study; much more research is needed for that.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Patients with lactose intolerance are usually advised to avoid milk. However, many still consume dairy products despite experiencing gastrointestinal symptoms. Surprisingly, this "unreasonable" strategy may have the benefit of reducing the risk for type 2 diabetes, as shown in a recent American study.

“At first glance, the statement of the study seems counterintuitive,” said Robert Wagner, MD, head of the Clinical Studies Center at the German Diabetes Center-Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany. “However, lactose intolerance has different manifestations.” Less severely affected individuals often consume milk and tolerate discomfort such as bloating or abdominal pain. “It is precisely these individuals that the study clearly shows have a lower incidence of diabetes associated with milk consumption,” said Dr. Wagner.
 

Milk’s Heterogeneous Effect

The effect of milk consumption on diabetes, among other factors, has been repeatedly studied in nutritional studies, with sometimes heterogeneous results in different countries. The reason for this is presumed to be that in Asia, most people — 60%-100% — are lactose intolerant, whereas in Europe, only as much as 40% of the population has lactose intolerance.

The authors, led by Kai Luo, PhD, research fellow in the Department of Epidemiology and Population Health at Albert Einstein College of Medicine in Bronx, New York, did not mention lactose tolerance and intolerance in their paper in Nature Metabolism. Instead, they divided the study population into lactase-persistent and non-lactase-persistent participants.

“Not being lactase-persistent does not necessarily exclude the ability to consume a certain amount of lactose,” said Lonneke Janssen Duijghuijsen, PhD, a nutrition scientist at Wageningen University, Wageningen, the Netherlands. “Studies have shown that many individuals who lack lactase can still consume up to 12 g of lactose per day — equivalent to the amount in a large glass of milk — without experiencing intolerance symptoms.”
 

Gut Microbiome and Metabolites

Dr. Luo and his colleagues analyzed data from 12,653 participants in the Hispanic Community Health Study/Study of Latinos, an ongoing prospective cohort study involving adults with Hispanic backgrounds. It collects detailed information on nutrition and the occurrence of diseases.

The authors examined whether the study participants were lactase-persistent or non-lactase-persistent and how frequently they consumed milk. They also analyzed the gut microbiome and various metabolites in the blood over a median follow-up period of 6 years.

The data analysis showed that higher milk consumption in non-lactase-persistent participants — but not in lactase-persistent participants — is associated with about a 30% reduced risk for type 2 diabetes when socioeconomic, demographic, and behavioral factors are accounted for. Comparable results were obtained by Dr. Luo and his colleagues with data from the UK Biobank, which served as validation.

A higher milk consumption was associated not only with a lower diabetes risk in non-lactase-persistent individuals but also with a lower body mass index. “This could be one of the factors behind the diabetes protection,” said Dr. Wagner. “However, no formal mediation analyses were conducted in the study.”

Dr. Luo’s team primarily attributed the cause of the observed association between milk consumption and diabetes risk to the gut. Increased milk intake was also associated with changes in the gut microbiome. For example, there was an enrichment of Bifidobacterium, while Prevotella decreased. Changes were also observed in the circulating metabolites in the blood, such as an increase in indole-3-propionate and a decrease in branched-chain amino acids.

These metabolites, speculated the authors, could be more intensely produced by milk-associated bacteria and might be causally related to the association between milk consumption and reduced risk for type 2 diabetes in non-lactase-persistent individuals. “The authors have not been able to provide precise evidence of these mediators, but one possible mediator of these effects could be short-chain fatty acids, which can directly or indirectly influence appetite, insulin action, or liver fat beneficially,” said Dr. Wagner.
 

 

 

Bacteria in the Colon

For Dr. Janssen Duijghuijsen, the conclusion that milk consumption can influence the composition of the microbiome and thus the metabolic profile, especially in individuals without lactase persistence, is plausible.

“Individuals with lactase persistence efficiently digest lactose and absorb the resulting galactose and glucose molecules in the small intestine. In contrast, in non-lactase-persistent individuals, lactase is not expressed in the brush border of the small intestine. As a result, lactose remains undigested in the colon and can serve as an energy source for gut bacteria. This can influence the composition of the microbiome, which in turn can alter the concentration of circulating metabolites,” she said.

Dr. Janssen Duijghuijsen has investigated the effect of lactose intake on the microbiome. In a recently published study, she also showed that increasing lactose intake by non-lactase-persistent individuals leads to changes in the microbiome, including an increase in Bifidobacteria.

“In line with the current study, we also found a significant increase in fecal beta-galactosidase activity. Given the close relationship between the composition of the gut microbiome and the metabolite profile, it is likely that changes in one can affect the other,” said Dr. Janssen Duijghuijsen.
 

Nutritional Recommendations

The nutrition scientist warned against concluding that milk consumption can protect against type 2 diabetes in non-lactase-persistent individuals, however. “The study suggests a statistical association between milk consumption, certain metabolites, and the frequency of type 2 diabetes. These associations do not provide definitive evidence of a causal relationship,” she said. Any dietary recommendations cannot be derived from the study; much more research is needed for that.

This story was translated from the Medscape German edition using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Evidence Suggests Long COVID Could Be a Brain Injury

Article Type
Changed
Fri, 02/09/2024 - 12:40

Brain fog is one of the most common, persistent complaints in patients with long COVID. It affects as many as 46% of patients who also deal with other cognitive concerns like memory loss and difficulty concentrating. 

Now, researchers believe they know why. A new study has found that these symptoms may be the result of a viral-borne brain injury that may cause cognitive and mental health issues that persist for years.

Researchers found that 351 patients hospitalized with severe COVID-19 had evidence of a long-term brain injury a year after contracting the SARS-CoV-2 virus. The findings were based on a series of cognitive tests, self-reported symptoms, brain scans, and biomarkers.
 

Brain Deficits Equal to 20 Years of Brain Aging

As part of the preprint study, participants took a cognition test with their scores age-matched to those who had not suffered a serious bout of COVID-19. Then a blood sample was taken to look for specific biomarkers, showing that elevated levels of certain biomarkers were consistent with a brain injury. Using brain scans, researchers also found that certain regions of the brain associated with attention were reduced in volume.

Patients who participated in the study were “less accurate and slower” in their cognition, and suffered from at least one mental health condition, such as depression, anxiety, or posttraumatic stress disorder, according to researchers.

The brain deficits found in COVID-19 patients were equivalent to 20 years of brain aging and provided proof of what doctors have feared: that this virus can damage the brain and result in ongoing mental health issues.

“We found global deficits across cognition,” said lead study author Benedict Michael, PhD, director of the Infection Neuroscience Lab at the University of Liverpool in Liverpool, England. “The cognitive and memory problems that patients complained of were associated with neuroanatomical changes to the brain.”
 

Proof That Symptoms Aren’t ‘Figment’ of Patients’ Imaginations

Cognitive deficits were common among all patients, but the researchers said they don’t yet know whether the brain damage causes permanent cognitive decline. But the research provides patients who have been overlooked by some clinicians with proof that their conditions aren’t a figment of their imaginations, said Karla L. Thompson, PhD, lead neuropsychologist at the University of North Carolina School of Medicine’s COVID Recovery Clinic. 

“Even though we’re several years into this pandemic, there are still a lot of providers who don’t believe that their patients are experiencing these residual symptoms,” said Dr. Thompson, “That’s why the use of biomarkers is important, because it provides an objective indication that the brain has been compromised in some way.”

Some patients with long COVID have said that getting their doctors to believe they have a physical ailment has been a persistent problem throughout the pandemic and especially as it relates to the sometimes-vague collection of symptoms associated with brain fog. One study found that as many as 79% of study respondents reported negative interactions with their healthcare providers when they sought treatment for their long-COVID symptoms.
 

How Do COVID-Related Brain Injuries Happen?

Researchers are unsure what’s causing these brain injuries, though they have identified some clues. Previous research has suggested that such injuries might be the result of a lack of oxygen to the brain, especially in patients who were hospitalized, like those in this study, and were put on ventilators.

Brain scans have previously shown atrophy to the brain›s gray matter in COVID-19 patients, likely caused by inflammation from a heightened immune response rather than the virus itself. This inflammatory response seems to affect the central nervous system. As part of the new study, researchers found some neuroprotective effects of using steroids during hospitalization to reduce brain inflammation.

The results suggest that clinicians should overcome their skepticism and consider the possibility that their patients have suffered a brain injury and should be treated appropriately, said James C. Jackson, PsyD, a neuropsychiatrist at Vanderbilt University School of Medicine. “The old saying is that if it walks like a duck and talks like a duck, it’s a duck,” said Dr. Jackson. 

He contends that treatments used for patients who have brain injuries have also been shown to be effective in treating long COVID–related brain fog symptoms. These may include speech, cognitive, and occupational therapy as well as meeting with a neuropsychiatrist for the treatment of related mental health concerns.
 

A New Path Forward

Treating long-COVID brain fog like a brain injury can help patients get back to some semblance of normalcy, researchers said. “What we’re seeing in terms of brain injury biomarkers and differences in brain scans correlates to real-life problems that these patients are dealing with on a daily basis,” said Dr. Jackson. These include problems at work and in life with multitasking, remembering details, meeting deadlines, synthesizing large amounts of information, and maintaining focus on the task at hand, he said.

There’s also a fear that even with treatment, the aging of the brain caused by the virus might have long-term repercussions and that this enduring injury may cause the early onset of dementia and Alzheimer’s disease in those who were already vulnerable to it. One study, from the National Institute of Neurological Disorders and Stroke (NINDS), found that in those infected with COVID-19 who already had dementia, the virus “rapidly accelerated structural and functional brain deterioration.” 

“We already know the role that neuroinflammation plays in the brains of patients with Alzheimer’s disease,” said Dr. Thompson. “If long COVID is involved in prolonged inflammation of the brain, it goes a long way in explaining the mechanism underlying [the study’s reported] brain aging.”
 

Still More to Learn

In some ways, this study raises nearly as many questions as it does answers. While it provides concrete evidence around the damage the virus is doing to the brains of patients who contracted severe COVID-19, researchers don’t know about the impact on those who had less serious cases of the virus. 

For Ziyad Al-Aly, MD, chief of research and development at the Veterans Affairs St. Louis Health Care System, the concern is that some long-COVID patients may be suffering from cognitive deficits that are more subtle but still impacting their daily lives, and that they’re not getting the help they need. 

What’s more, said Dr. Al-Aly, it’s unclear whether the impacts of the brain damage are permanent or how to stop them from worsening. Researchers and clinicians need a better understanding of the mechanism that allows this virus to enter the brain and do structural damage. If it’s inflammation, will anti-inflammatory or antiviral medications work at preventing it? Will steroids help to offset the damage? “It’s critical we find some answers,” he said.

“SARS-CoV-2 isn’t going anywhere. It will continue to infect the population, so if this is indeed a virus that damages the brain in the long term or permanently, we need to figure out what can be done to stop it,” said Dr. Al-Aly.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Brain fog is one of the most common, persistent complaints in patients with long COVID. It affects as many as 46% of patients who also deal with other cognitive concerns like memory loss and difficulty concentrating. 

Now, researchers believe they know why. A new study has found that these symptoms may be the result of a viral-borne brain injury that may cause cognitive and mental health issues that persist for years.

Researchers found that 351 patients hospitalized with severe COVID-19 had evidence of a long-term brain injury a year after contracting the SARS-CoV-2 virus. The findings were based on a series of cognitive tests, self-reported symptoms, brain scans, and biomarkers.
 

Brain Deficits Equal to 20 Years of Brain Aging

As part of the preprint study, participants took a cognition test with their scores age-matched to those who had not suffered a serious bout of COVID-19. Then a blood sample was taken to look for specific biomarkers, showing that elevated levels of certain biomarkers were consistent with a brain injury. Using brain scans, researchers also found that certain regions of the brain associated with attention were reduced in volume.

Patients who participated in the study were “less accurate and slower” in their cognition, and suffered from at least one mental health condition, such as depression, anxiety, or posttraumatic stress disorder, according to researchers.

The brain deficits found in COVID-19 patients were equivalent to 20 years of brain aging and provided proof of what doctors have feared: that this virus can damage the brain and result in ongoing mental health issues.

“We found global deficits across cognition,” said lead study author Benedict Michael, PhD, director of the Infection Neuroscience Lab at the University of Liverpool in Liverpool, England. “The cognitive and memory problems that patients complained of were associated with neuroanatomical changes to the brain.”
 

Proof That Symptoms Aren’t ‘Figment’ of Patients’ Imaginations

Cognitive deficits were common among all patients, but the researchers said they don’t yet know whether the brain damage causes permanent cognitive decline. But the research provides patients who have been overlooked by some clinicians with proof that their conditions aren’t a figment of their imaginations, said Karla L. Thompson, PhD, lead neuropsychologist at the University of North Carolina School of Medicine’s COVID Recovery Clinic. 

“Even though we’re several years into this pandemic, there are still a lot of providers who don’t believe that their patients are experiencing these residual symptoms,” said Dr. Thompson, “That’s why the use of biomarkers is important, because it provides an objective indication that the brain has been compromised in some way.”

Some patients with long COVID have said that getting their doctors to believe they have a physical ailment has been a persistent problem throughout the pandemic and especially as it relates to the sometimes-vague collection of symptoms associated with brain fog. One study found that as many as 79% of study respondents reported negative interactions with their healthcare providers when they sought treatment for their long-COVID symptoms.
 

How Do COVID-Related Brain Injuries Happen?

Researchers are unsure what’s causing these brain injuries, though they have identified some clues. Previous research has suggested that such injuries might be the result of a lack of oxygen to the brain, especially in patients who were hospitalized, like those in this study, and were put on ventilators.

Brain scans have previously shown atrophy to the brain›s gray matter in COVID-19 patients, likely caused by inflammation from a heightened immune response rather than the virus itself. This inflammatory response seems to affect the central nervous system. As part of the new study, researchers found some neuroprotective effects of using steroids during hospitalization to reduce brain inflammation.

The results suggest that clinicians should overcome their skepticism and consider the possibility that their patients have suffered a brain injury and should be treated appropriately, said James C. Jackson, PsyD, a neuropsychiatrist at Vanderbilt University School of Medicine. “The old saying is that if it walks like a duck and talks like a duck, it’s a duck,” said Dr. Jackson. 

He contends that treatments used for patients who have brain injuries have also been shown to be effective in treating long COVID–related brain fog symptoms. These may include speech, cognitive, and occupational therapy as well as meeting with a neuropsychiatrist for the treatment of related mental health concerns.
 

A New Path Forward

Treating long-COVID brain fog like a brain injury can help patients get back to some semblance of normalcy, researchers said. “What we’re seeing in terms of brain injury biomarkers and differences in brain scans correlates to real-life problems that these patients are dealing with on a daily basis,” said Dr. Jackson. These include problems at work and in life with multitasking, remembering details, meeting deadlines, synthesizing large amounts of information, and maintaining focus on the task at hand, he said.

There’s also a fear that even with treatment, the aging of the brain caused by the virus might have long-term repercussions and that this enduring injury may cause the early onset of dementia and Alzheimer’s disease in those who were already vulnerable to it. One study, from the National Institute of Neurological Disorders and Stroke (NINDS), found that in those infected with COVID-19 who already had dementia, the virus “rapidly accelerated structural and functional brain deterioration.” 

“We already know the role that neuroinflammation plays in the brains of patients with Alzheimer’s disease,” said Dr. Thompson. “If long COVID is involved in prolonged inflammation of the brain, it goes a long way in explaining the mechanism underlying [the study’s reported] brain aging.”
 

Still More to Learn

In some ways, this study raises nearly as many questions as it does answers. While it provides concrete evidence around the damage the virus is doing to the brains of patients who contracted severe COVID-19, researchers don’t know about the impact on those who had less serious cases of the virus. 

For Ziyad Al-Aly, MD, chief of research and development at the Veterans Affairs St. Louis Health Care System, the concern is that some long-COVID patients may be suffering from cognitive deficits that are more subtle but still impacting their daily lives, and that they’re not getting the help they need. 

What’s more, said Dr. Al-Aly, it’s unclear whether the impacts of the brain damage are permanent or how to stop them from worsening. Researchers and clinicians need a better understanding of the mechanism that allows this virus to enter the brain and do structural damage. If it’s inflammation, will anti-inflammatory or antiviral medications work at preventing it? Will steroids help to offset the damage? “It’s critical we find some answers,” he said.

“SARS-CoV-2 isn’t going anywhere. It will continue to infect the population, so if this is indeed a virus that damages the brain in the long term or permanently, we need to figure out what can be done to stop it,” said Dr. Al-Aly.

A version of this article appeared on Medscape.com.

Brain fog is one of the most common, persistent complaints in patients with long COVID. It affects as many as 46% of patients who also deal with other cognitive concerns like memory loss and difficulty concentrating. 

Now, researchers believe they know why. A new study has found that these symptoms may be the result of a viral-borne brain injury that may cause cognitive and mental health issues that persist for years.

Researchers found that 351 patients hospitalized with severe COVID-19 had evidence of a long-term brain injury a year after contracting the SARS-CoV-2 virus. The findings were based on a series of cognitive tests, self-reported symptoms, brain scans, and biomarkers.
 

Brain Deficits Equal to 20 Years of Brain Aging

As part of the preprint study, participants took a cognition test with their scores age-matched to those who had not suffered a serious bout of COVID-19. Then a blood sample was taken to look for specific biomarkers, showing that elevated levels of certain biomarkers were consistent with a brain injury. Using brain scans, researchers also found that certain regions of the brain associated with attention were reduced in volume.

Patients who participated in the study were “less accurate and slower” in their cognition, and suffered from at least one mental health condition, such as depression, anxiety, or posttraumatic stress disorder, according to researchers.

The brain deficits found in COVID-19 patients were equivalent to 20 years of brain aging and provided proof of what doctors have feared: that this virus can damage the brain and result in ongoing mental health issues.

“We found global deficits across cognition,” said lead study author Benedict Michael, PhD, director of the Infection Neuroscience Lab at the University of Liverpool in Liverpool, England. “The cognitive and memory problems that patients complained of were associated with neuroanatomical changes to the brain.”
 

Proof That Symptoms Aren’t ‘Figment’ of Patients’ Imaginations

Cognitive deficits were common among all patients, but the researchers said they don’t yet know whether the brain damage causes permanent cognitive decline. But the research provides patients who have been overlooked by some clinicians with proof that their conditions aren’t a figment of their imaginations, said Karla L. Thompson, PhD, lead neuropsychologist at the University of North Carolina School of Medicine’s COVID Recovery Clinic. 

“Even though we’re several years into this pandemic, there are still a lot of providers who don’t believe that their patients are experiencing these residual symptoms,” said Dr. Thompson, “That’s why the use of biomarkers is important, because it provides an objective indication that the brain has been compromised in some way.”

Some patients with long COVID have said that getting their doctors to believe they have a physical ailment has been a persistent problem throughout the pandemic and especially as it relates to the sometimes-vague collection of symptoms associated with brain fog. One study found that as many as 79% of study respondents reported negative interactions with their healthcare providers when they sought treatment for their long-COVID symptoms.
 

How Do COVID-Related Brain Injuries Happen?

Researchers are unsure what’s causing these brain injuries, though they have identified some clues. Previous research has suggested that such injuries might be the result of a lack of oxygen to the brain, especially in patients who were hospitalized, like those in this study, and were put on ventilators.

Brain scans have previously shown atrophy to the brain›s gray matter in COVID-19 patients, likely caused by inflammation from a heightened immune response rather than the virus itself. This inflammatory response seems to affect the central nervous system. As part of the new study, researchers found some neuroprotective effects of using steroids during hospitalization to reduce brain inflammation.

The results suggest that clinicians should overcome their skepticism and consider the possibility that their patients have suffered a brain injury and should be treated appropriately, said James C. Jackson, PsyD, a neuropsychiatrist at Vanderbilt University School of Medicine. “The old saying is that if it walks like a duck and talks like a duck, it’s a duck,” said Dr. Jackson. 

He contends that treatments used for patients who have brain injuries have also been shown to be effective in treating long COVID–related brain fog symptoms. These may include speech, cognitive, and occupational therapy as well as meeting with a neuropsychiatrist for the treatment of related mental health concerns.
 

A New Path Forward

Treating long-COVID brain fog like a brain injury can help patients get back to some semblance of normalcy, researchers said. “What we’re seeing in terms of brain injury biomarkers and differences in brain scans correlates to real-life problems that these patients are dealing with on a daily basis,” said Dr. Jackson. These include problems at work and in life with multitasking, remembering details, meeting deadlines, synthesizing large amounts of information, and maintaining focus on the task at hand, he said.

There’s also a fear that even with treatment, the aging of the brain caused by the virus might have long-term repercussions and that this enduring injury may cause the early onset of dementia and Alzheimer’s disease in those who were already vulnerable to it. One study, from the National Institute of Neurological Disorders and Stroke (NINDS), found that in those infected with COVID-19 who already had dementia, the virus “rapidly accelerated structural and functional brain deterioration.” 

“We already know the role that neuroinflammation plays in the brains of patients with Alzheimer’s disease,” said Dr. Thompson. “If long COVID is involved in prolonged inflammation of the brain, it goes a long way in explaining the mechanism underlying [the study’s reported] brain aging.”
 

Still More to Learn

In some ways, this study raises nearly as many questions as it does answers. While it provides concrete evidence around the damage the virus is doing to the brains of patients who contracted severe COVID-19, researchers don’t know about the impact on those who had less serious cases of the virus. 

For Ziyad Al-Aly, MD, chief of research and development at the Veterans Affairs St. Louis Health Care System, the concern is that some long-COVID patients may be suffering from cognitive deficits that are more subtle but still impacting their daily lives, and that they’re not getting the help they need. 

What’s more, said Dr. Al-Aly, it’s unclear whether the impacts of the brain damage are permanent or how to stop them from worsening. Researchers and clinicians need a better understanding of the mechanism that allows this virus to enter the brain and do structural damage. If it’s inflammation, will anti-inflammatory or antiviral medications work at preventing it? Will steroids help to offset the damage? “It’s critical we find some answers,” he said.

“SARS-CoV-2 isn’t going anywhere. It will continue to infect the population, so if this is indeed a virus that damages the brain in the long term or permanently, we need to figure out what can be done to stop it,” said Dr. Al-Aly.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Younger Age at Diabetes Onset Raises Cancer Risk

Article Type
Changed
Fri, 02/09/2024 - 13:10

 

TOPLINE:

A diagnosis of type 2 diabetes (T2D) at a younger age is associated with an increased cancer risk, while the risk drops for T2D diagnosed at age 75 and older.

METHODOLOGY:

  • A T2D diagnosis at a younger age is associated with a greater risk for complications and comorbidities, such as cardiovascular and kidney diseases, retinopathy, and dementia than that occurring at an older age.
  • The study evaluated the association between the age at T2D diagnosis and subsequent risk for overall and 14 site-specific cancers in a Shanghai, China, cohort of 428,568 patients newly diagnosed with T2D (about half women) from 2011 to 2018.
  • New cases of cancer from the T2D diagnosis to 2018 were identified through a tumor registry.
  • Patients were categorized into six groups based on their age at T2D diagnosis: 20-54, 55-59, 60-64, 65-69, 70-74, and ≥ 75 years.
  • The incidence rates of overall and 14 site-specific cancers were compared between patients with T2D and the general Shanghai population (older than 20 years).

TAKEAWAY:

  • Compared to the general population, T2D increased the relative risk for all-cause cancer by 10% (standardized incidence ratios [SIRs], 1.10; 95% CI, 1.09-1.12).
  • Compared with the general population, the overall cancer incidence risk (SIR) was higher among those diagnosed with T2D at a younger age:
  • 20-54 years: 1.48 (95% CI, 1.41-1.54)
  • 55-59 years: 1.30 (95% CI, 1.25-1.35)
  • 60-64 years: 1.19 (95% CI, 1.15-1.23)
  • 65-69 years: 1.16 (95% CI, 1.12-1.20)
  • 70-74 years: 1.06 (95% CI, 1.02-1.10)
  • The overall cancer incidence risk in patients diagnosed with T2D at age ≥ 75 years was even lower than that in the general population (SIR, 0.86; 95% CI, 0.84-0.89).
  • The risk (SIR) for most site-specific cancers (including respiratory, colorectal, stomach, liver, pancreatic, bladder, central nervous system, kidney, and gallbladder cancers and lymphoma) decreased with increasing age at T2D diagnosis.

IN PRACTICE:

“Our findings suggest that the carcinogenicity of T2D differs markedly by age at diagnosis and highlights the necessity of stratifying patients according to diagnosis age in management, screening, and preventative strategies,” wrote the authors.

SOURCE:

The study, led by Yanyun Li, Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China, was published online in Diabetes Care.

LIMITATIONS:

Data on smoking history, alcohol consumption, and physical activity were available for nearly 60% of patients with T2D. The findings might only apply to patients with T2D who survive longer than the average and are therefore less applicable to the general population with diabetes. Patients with young-onset T2D had not reached the age where cancers are more prevalent despite as many as 8 years of follow-up.

DISCLOSURES:

This work was supported by the Foundation of National Facility for Translational Medicine, National Natural Science Foundation of China, Shanghai Municipal Health Commission, and Three-Year Action Plan of Shanghai Public Health. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A diagnosis of type 2 diabetes (T2D) at a younger age is associated with an increased cancer risk, while the risk drops for T2D diagnosed at age 75 and older.

METHODOLOGY:

  • A T2D diagnosis at a younger age is associated with a greater risk for complications and comorbidities, such as cardiovascular and kidney diseases, retinopathy, and dementia than that occurring at an older age.
  • The study evaluated the association between the age at T2D diagnosis and subsequent risk for overall and 14 site-specific cancers in a Shanghai, China, cohort of 428,568 patients newly diagnosed with T2D (about half women) from 2011 to 2018.
  • New cases of cancer from the T2D diagnosis to 2018 were identified through a tumor registry.
  • Patients were categorized into six groups based on their age at T2D diagnosis: 20-54, 55-59, 60-64, 65-69, 70-74, and ≥ 75 years.
  • The incidence rates of overall and 14 site-specific cancers were compared between patients with T2D and the general Shanghai population (older than 20 years).

TAKEAWAY:

  • Compared to the general population, T2D increased the relative risk for all-cause cancer by 10% (standardized incidence ratios [SIRs], 1.10; 95% CI, 1.09-1.12).
  • Compared with the general population, the overall cancer incidence risk (SIR) was higher among those diagnosed with T2D at a younger age:
  • 20-54 years: 1.48 (95% CI, 1.41-1.54)
  • 55-59 years: 1.30 (95% CI, 1.25-1.35)
  • 60-64 years: 1.19 (95% CI, 1.15-1.23)
  • 65-69 years: 1.16 (95% CI, 1.12-1.20)
  • 70-74 years: 1.06 (95% CI, 1.02-1.10)
  • The overall cancer incidence risk in patients diagnosed with T2D at age ≥ 75 years was even lower than that in the general population (SIR, 0.86; 95% CI, 0.84-0.89).
  • The risk (SIR) for most site-specific cancers (including respiratory, colorectal, stomach, liver, pancreatic, bladder, central nervous system, kidney, and gallbladder cancers and lymphoma) decreased with increasing age at T2D diagnosis.

IN PRACTICE:

“Our findings suggest that the carcinogenicity of T2D differs markedly by age at diagnosis and highlights the necessity of stratifying patients according to diagnosis age in management, screening, and preventative strategies,” wrote the authors.

SOURCE:

The study, led by Yanyun Li, Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China, was published online in Diabetes Care.

LIMITATIONS:

Data on smoking history, alcohol consumption, and physical activity were available for nearly 60% of patients with T2D. The findings might only apply to patients with T2D who survive longer than the average and are therefore less applicable to the general population with diabetes. Patients with young-onset T2D had not reached the age where cancers are more prevalent despite as many as 8 years of follow-up.

DISCLOSURES:

This work was supported by the Foundation of National Facility for Translational Medicine, National Natural Science Foundation of China, Shanghai Municipal Health Commission, and Three-Year Action Plan of Shanghai Public Health. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

 

TOPLINE:

A diagnosis of type 2 diabetes (T2D) at a younger age is associated with an increased cancer risk, while the risk drops for T2D diagnosed at age 75 and older.

METHODOLOGY:

  • A T2D diagnosis at a younger age is associated with a greater risk for complications and comorbidities, such as cardiovascular and kidney diseases, retinopathy, and dementia than that occurring at an older age.
  • The study evaluated the association between the age at T2D diagnosis and subsequent risk for overall and 14 site-specific cancers in a Shanghai, China, cohort of 428,568 patients newly diagnosed with T2D (about half women) from 2011 to 2018.
  • New cases of cancer from the T2D diagnosis to 2018 were identified through a tumor registry.
  • Patients were categorized into six groups based on their age at T2D diagnosis: 20-54, 55-59, 60-64, 65-69, 70-74, and ≥ 75 years.
  • The incidence rates of overall and 14 site-specific cancers were compared between patients with T2D and the general Shanghai population (older than 20 years).

TAKEAWAY:

  • Compared to the general population, T2D increased the relative risk for all-cause cancer by 10% (standardized incidence ratios [SIRs], 1.10; 95% CI, 1.09-1.12).
  • Compared with the general population, the overall cancer incidence risk (SIR) was higher among those diagnosed with T2D at a younger age:
  • 20-54 years: 1.48 (95% CI, 1.41-1.54)
  • 55-59 years: 1.30 (95% CI, 1.25-1.35)
  • 60-64 years: 1.19 (95% CI, 1.15-1.23)
  • 65-69 years: 1.16 (95% CI, 1.12-1.20)
  • 70-74 years: 1.06 (95% CI, 1.02-1.10)
  • The overall cancer incidence risk in patients diagnosed with T2D at age ≥ 75 years was even lower than that in the general population (SIR, 0.86; 95% CI, 0.84-0.89).
  • The risk (SIR) for most site-specific cancers (including respiratory, colorectal, stomach, liver, pancreatic, bladder, central nervous system, kidney, and gallbladder cancers and lymphoma) decreased with increasing age at T2D diagnosis.

IN PRACTICE:

“Our findings suggest that the carcinogenicity of T2D differs markedly by age at diagnosis and highlights the necessity of stratifying patients according to diagnosis age in management, screening, and preventative strategies,” wrote the authors.

SOURCE:

The study, led by Yanyun Li, Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China, was published online in Diabetes Care.

LIMITATIONS:

Data on smoking history, alcohol consumption, and physical activity were available for nearly 60% of patients with T2D. The findings might only apply to patients with T2D who survive longer than the average and are therefore less applicable to the general population with diabetes. Patients with young-onset T2D had not reached the age where cancers are more prevalent despite as many as 8 years of follow-up.

DISCLOSURES:

This work was supported by the Foundation of National Facility for Translational Medicine, National Natural Science Foundation of China, Shanghai Municipal Health Commission, and Three-Year Action Plan of Shanghai Public Health. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article