User login
First-in-Class B-Cell Depleting Agent Promising for Myasthenia Gravis
SAVANNAH, GEORGIA — , new phase 3 data showed.
“Based on these results, we have demonstrated that targeting B cells, including the antibody-secreting cells, is beneficial, and there is likely a role for this kind of therapeutic strategy for patients with myasthenia gravis,” said senior investigator Richard Nowak, MD.
The findings were published and presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.
Largest Cohort of Muscle-Specific Kinase (MuSK) Antibody–Positive Disease
The Myasthenia Gravis INebilizumab Trial study enrolled 238 participants, 60.8% women, mean age 47.5 years, from 79 sites in 18 countries. The participants were divided into two cohorts: 190 acetylcholine receptor (AChR) autoantibody–positive patients and 48 MuSK autoantibody–positive patients.
“This is the largest enrolled cohort of MuSK antibody–positive disease in a placebo-controlled trial to date,” said Nowak, director of the Yale Myasthenia Gravis Clinic and associate professor of neurology at Yale School of Medicine, in New Haven, Connecticut.
Both groups had similar gMG duration (mean 6.7 and 5.2 years for AChR+ and MuSK+ patients, respectively) and disease severity based on Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) baseline score. In addition, more than 80% of participants were on a prednisone equivalent dose greater than 5 mg daily at study entry.
Participants were randomly assigned to receive intravenous (IV) inebilizumab or IV placebo for 52 weeks (AChR+ group) or 26 weeks (MuSK+ group). In addition, study participants who were taking corticosteroids were tapered down starting at week 4 to prednisone 5 mg per day by week 24.
The trial met its primary endpoint, with a statistically significant change from baseline in MG-ADL and with a reduction of 4.2 points for inebilizumab versus 2.2 for placebo (P < .0001) at week 26 for the combined study population.
“You can see that the trend is actually going toward separation of the two groups after week 8 in the combined population,” said Nowak. Key secondary endpoints also showed statistically significant and clinically meaningful change from baseline compared with placebo.
This included a statistically significant change in QMG score inebilizumab compared with placebo for the combined population, a reduction of 4.8 versus 2.3 points, respectively, at week 26 (P = .0002).
In addition, both MG-ADL and QMG scores in the AChR+ subgroup were superior for inebilizumab versus placebo at week 26, with reductions of 4.2 versus 2.4, and 4.4 versus 2.0; P = .0015 and P = .0011, respectively.
In the MuSK+ subgroup, inebilizumab-treated patients had better MG-ADL scores than placebo-treated patients, with reductions of 3.9 versus 1.7 points, respectively, at week 26, although this difference did not meet statistical significance.
“There were no increased safety incidents in the inebilizumab-treated patients versus placebo, and a similar percentage of safety incidents in the AChR–positive and MuSK–positive groups. There were three deaths reported, all likely related to myasthenic crisis,” he said.
Nowak said that inebilizumab is “unique from the other currently FDA-approved medications for myasthenia gravis in that it’s targeting the upstream immunopathogenic mechanism of disease, specifically B cells — and B cells that are actually antibody-secreting cells.”
“It is targeting the factories of autoantibody production, whereas an FcRn antagonist, for example, is not targeting those factories but rather targeting what’s being produced — the immunoglobulins, IgGs in general,” he added.
Nowak said that what is particularly exciting about the drug is that the schedule is not very frequent. It begins with an initial IV infusion, followed by a second infusion 2 weeks later and a third infusion 6 months after that, so that patients are treated approximately every 6 months. This is in contrast to some other targeted therapies, where failing to address the underlying factors driving immunopathogenesis necessitates more regular and frequent medication administration.
New, Novel, Exciting
Commenting on the research, Neelam Goyal, MD, who chaired the session, said, “It’s definitely new, novel, interesting, exciting.”
Goyal, clinical professor of neurology and neurological sciences at Stanford University School of Medicine in Palo Alto, California, also noted that while B-cell depletion has shown some previous success in MG, it was with rituximab, a CD20 B-cell depleting agent.
She noted that unlike rituximab, which targets CD20, inebilizumab targets CD19, although both medications lead to B-cell depletion. Rituximab has proven effective for MUSK–positive MG, which accounts for approximately 5% of cases.
However, Goyal noted that the results for AChR–positive MG have been mixed — “the BeatMG trial was negative and the RINOMAX trial was positive. So, I think this is really interesting. It is exciting, and this drug is already on the market.”
She added that although inebilizumab is already US Food and Drug Administration–approved for the treatment of neuromyelitis optica, it still faces approval and indication hurdles for MG.
The future of this drug in the management algorithm for MG remains uncertain. Goyal noted that it’s “quite costly,” and although its benefits are evident — particularly for FcRn and complement inhibitors — some early data from chimeric antigen receptor T-cell therapy studies appear significantly more impressive.
Nowak disclosed research support from the National Institutes of Health, Genentech, Alexion Pharmaceuticals, argenx, Annexon Biosciences, Ra Pharmaceuticals (now UCB S.A.), the Myasthenia Gravis Foundation of America, Momenta Pharmaceuticals (now Janssen), Immunovant, Grifols, S.A., and Viela Bio, Horizon Therapeutics (now Amgen). Served as a consultant and advisor for Alexion Pharmaceuticals, argenx, Cabaletta Bio, Cour Pharmaceuticals, Ra Pharmaceuticals (now UCB S.A.), Immunovant, Momenta Pharmaceuticals (now Janssen), and Viela Bio (Horizon Therapeutics, now Amgen).
Goyal disclosed consultant, advisory, or grant support from argenx, UCB, Alexion, and Janssen. The study was funded by Amgen.
A version of this article appeared on Medscape.com.
SAVANNAH, GEORGIA — , new phase 3 data showed.
“Based on these results, we have demonstrated that targeting B cells, including the antibody-secreting cells, is beneficial, and there is likely a role for this kind of therapeutic strategy for patients with myasthenia gravis,” said senior investigator Richard Nowak, MD.
The findings were published and presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.
Largest Cohort of Muscle-Specific Kinase (MuSK) Antibody–Positive Disease
The Myasthenia Gravis INebilizumab Trial study enrolled 238 participants, 60.8% women, mean age 47.5 years, from 79 sites in 18 countries. The participants were divided into two cohorts: 190 acetylcholine receptor (AChR) autoantibody–positive patients and 48 MuSK autoantibody–positive patients.
“This is the largest enrolled cohort of MuSK antibody–positive disease in a placebo-controlled trial to date,” said Nowak, director of the Yale Myasthenia Gravis Clinic and associate professor of neurology at Yale School of Medicine, in New Haven, Connecticut.
Both groups had similar gMG duration (mean 6.7 and 5.2 years for AChR+ and MuSK+ patients, respectively) and disease severity based on Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) baseline score. In addition, more than 80% of participants were on a prednisone equivalent dose greater than 5 mg daily at study entry.
Participants were randomly assigned to receive intravenous (IV) inebilizumab or IV placebo for 52 weeks (AChR+ group) or 26 weeks (MuSK+ group). In addition, study participants who were taking corticosteroids were tapered down starting at week 4 to prednisone 5 mg per day by week 24.
The trial met its primary endpoint, with a statistically significant change from baseline in MG-ADL and with a reduction of 4.2 points for inebilizumab versus 2.2 for placebo (P < .0001) at week 26 for the combined study population.
“You can see that the trend is actually going toward separation of the two groups after week 8 in the combined population,” said Nowak. Key secondary endpoints also showed statistically significant and clinically meaningful change from baseline compared with placebo.
This included a statistically significant change in QMG score inebilizumab compared with placebo for the combined population, a reduction of 4.8 versus 2.3 points, respectively, at week 26 (P = .0002).
In addition, both MG-ADL and QMG scores in the AChR+ subgroup were superior for inebilizumab versus placebo at week 26, with reductions of 4.2 versus 2.4, and 4.4 versus 2.0; P = .0015 and P = .0011, respectively.
In the MuSK+ subgroup, inebilizumab-treated patients had better MG-ADL scores than placebo-treated patients, with reductions of 3.9 versus 1.7 points, respectively, at week 26, although this difference did not meet statistical significance.
“There were no increased safety incidents in the inebilizumab-treated patients versus placebo, and a similar percentage of safety incidents in the AChR–positive and MuSK–positive groups. There were three deaths reported, all likely related to myasthenic crisis,” he said.
Nowak said that inebilizumab is “unique from the other currently FDA-approved medications for myasthenia gravis in that it’s targeting the upstream immunopathogenic mechanism of disease, specifically B cells — and B cells that are actually antibody-secreting cells.”
“It is targeting the factories of autoantibody production, whereas an FcRn antagonist, for example, is not targeting those factories but rather targeting what’s being produced — the immunoglobulins, IgGs in general,” he added.
Nowak said that what is particularly exciting about the drug is that the schedule is not very frequent. It begins with an initial IV infusion, followed by a second infusion 2 weeks later and a third infusion 6 months after that, so that patients are treated approximately every 6 months. This is in contrast to some other targeted therapies, where failing to address the underlying factors driving immunopathogenesis necessitates more regular and frequent medication administration.
New, Novel, Exciting
Commenting on the research, Neelam Goyal, MD, who chaired the session, said, “It’s definitely new, novel, interesting, exciting.”
Goyal, clinical professor of neurology and neurological sciences at Stanford University School of Medicine in Palo Alto, California, also noted that while B-cell depletion has shown some previous success in MG, it was with rituximab, a CD20 B-cell depleting agent.
She noted that unlike rituximab, which targets CD20, inebilizumab targets CD19, although both medications lead to B-cell depletion. Rituximab has proven effective for MUSK–positive MG, which accounts for approximately 5% of cases.
However, Goyal noted that the results for AChR–positive MG have been mixed — “the BeatMG trial was negative and the RINOMAX trial was positive. So, I think this is really interesting. It is exciting, and this drug is already on the market.”
She added that although inebilizumab is already US Food and Drug Administration–approved for the treatment of neuromyelitis optica, it still faces approval and indication hurdles for MG.
The future of this drug in the management algorithm for MG remains uncertain. Goyal noted that it’s “quite costly,” and although its benefits are evident — particularly for FcRn and complement inhibitors — some early data from chimeric antigen receptor T-cell therapy studies appear significantly more impressive.
Nowak disclosed research support from the National Institutes of Health, Genentech, Alexion Pharmaceuticals, argenx, Annexon Biosciences, Ra Pharmaceuticals (now UCB S.A.), the Myasthenia Gravis Foundation of America, Momenta Pharmaceuticals (now Janssen), Immunovant, Grifols, S.A., and Viela Bio, Horizon Therapeutics (now Amgen). Served as a consultant and advisor for Alexion Pharmaceuticals, argenx, Cabaletta Bio, Cour Pharmaceuticals, Ra Pharmaceuticals (now UCB S.A.), Immunovant, Momenta Pharmaceuticals (now Janssen), and Viela Bio (Horizon Therapeutics, now Amgen).
Goyal disclosed consultant, advisory, or grant support from argenx, UCB, Alexion, and Janssen. The study was funded by Amgen.
A version of this article appeared on Medscape.com.
SAVANNAH, GEORGIA — , new phase 3 data showed.
“Based on these results, we have demonstrated that targeting B cells, including the antibody-secreting cells, is beneficial, and there is likely a role for this kind of therapeutic strategy for patients with myasthenia gravis,” said senior investigator Richard Nowak, MD.
The findings were published and presented at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.
Largest Cohort of Muscle-Specific Kinase (MuSK) Antibody–Positive Disease
The Myasthenia Gravis INebilizumab Trial study enrolled 238 participants, 60.8% women, mean age 47.5 years, from 79 sites in 18 countries. The participants were divided into two cohorts: 190 acetylcholine receptor (AChR) autoantibody–positive patients and 48 MuSK autoantibody–positive patients.
“This is the largest enrolled cohort of MuSK antibody–positive disease in a placebo-controlled trial to date,” said Nowak, director of the Yale Myasthenia Gravis Clinic and associate professor of neurology at Yale School of Medicine, in New Haven, Connecticut.
Both groups had similar gMG duration (mean 6.7 and 5.2 years for AChR+ and MuSK+ patients, respectively) and disease severity based on Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) baseline score. In addition, more than 80% of participants were on a prednisone equivalent dose greater than 5 mg daily at study entry.
Participants were randomly assigned to receive intravenous (IV) inebilizumab or IV placebo for 52 weeks (AChR+ group) or 26 weeks (MuSK+ group). In addition, study participants who were taking corticosteroids were tapered down starting at week 4 to prednisone 5 mg per day by week 24.
The trial met its primary endpoint, with a statistically significant change from baseline in MG-ADL and with a reduction of 4.2 points for inebilizumab versus 2.2 for placebo (P < .0001) at week 26 for the combined study population.
“You can see that the trend is actually going toward separation of the two groups after week 8 in the combined population,” said Nowak. Key secondary endpoints also showed statistically significant and clinically meaningful change from baseline compared with placebo.
This included a statistically significant change in QMG score inebilizumab compared with placebo for the combined population, a reduction of 4.8 versus 2.3 points, respectively, at week 26 (P = .0002).
In addition, both MG-ADL and QMG scores in the AChR+ subgroup were superior for inebilizumab versus placebo at week 26, with reductions of 4.2 versus 2.4, and 4.4 versus 2.0; P = .0015 and P = .0011, respectively.
In the MuSK+ subgroup, inebilizumab-treated patients had better MG-ADL scores than placebo-treated patients, with reductions of 3.9 versus 1.7 points, respectively, at week 26, although this difference did not meet statistical significance.
“There were no increased safety incidents in the inebilizumab-treated patients versus placebo, and a similar percentage of safety incidents in the AChR–positive and MuSK–positive groups. There were three deaths reported, all likely related to myasthenic crisis,” he said.
Nowak said that inebilizumab is “unique from the other currently FDA-approved medications for myasthenia gravis in that it’s targeting the upstream immunopathogenic mechanism of disease, specifically B cells — and B cells that are actually antibody-secreting cells.”
“It is targeting the factories of autoantibody production, whereas an FcRn antagonist, for example, is not targeting those factories but rather targeting what’s being produced — the immunoglobulins, IgGs in general,” he added.
Nowak said that what is particularly exciting about the drug is that the schedule is not very frequent. It begins with an initial IV infusion, followed by a second infusion 2 weeks later and a third infusion 6 months after that, so that patients are treated approximately every 6 months. This is in contrast to some other targeted therapies, where failing to address the underlying factors driving immunopathogenesis necessitates more regular and frequent medication administration.
New, Novel, Exciting
Commenting on the research, Neelam Goyal, MD, who chaired the session, said, “It’s definitely new, novel, interesting, exciting.”
Goyal, clinical professor of neurology and neurological sciences at Stanford University School of Medicine in Palo Alto, California, also noted that while B-cell depletion has shown some previous success in MG, it was with rituximab, a CD20 B-cell depleting agent.
She noted that unlike rituximab, which targets CD20, inebilizumab targets CD19, although both medications lead to B-cell depletion. Rituximab has proven effective for MUSK–positive MG, which accounts for approximately 5% of cases.
However, Goyal noted that the results for AChR–positive MG have been mixed — “the BeatMG trial was negative and the RINOMAX trial was positive. So, I think this is really interesting. It is exciting, and this drug is already on the market.”
She added that although inebilizumab is already US Food and Drug Administration–approved for the treatment of neuromyelitis optica, it still faces approval and indication hurdles for MG.
The future of this drug in the management algorithm for MG remains uncertain. Goyal noted that it’s “quite costly,” and although its benefits are evident — particularly for FcRn and complement inhibitors — some early data from chimeric antigen receptor T-cell therapy studies appear significantly more impressive.
Nowak disclosed research support from the National Institutes of Health, Genentech, Alexion Pharmaceuticals, argenx, Annexon Biosciences, Ra Pharmaceuticals (now UCB S.A.), the Myasthenia Gravis Foundation of America, Momenta Pharmaceuticals (now Janssen), Immunovant, Grifols, S.A., and Viela Bio, Horizon Therapeutics (now Amgen). Served as a consultant and advisor for Alexion Pharmaceuticals, argenx, Cabaletta Bio, Cour Pharmaceuticals, Ra Pharmaceuticals (now UCB S.A.), Immunovant, Momenta Pharmaceuticals (now Janssen), and Viela Bio (Horizon Therapeutics, now Amgen).
Goyal disclosed consultant, advisory, or grant support from argenx, UCB, Alexion, and Janssen. The study was funded by Amgen.
A version of this article appeared on Medscape.com.
FROM AANEM 2024
Overuse of Digital Devices in the Exam Room: A Teaching Opportunity
A 3-year-old presents to my clinic for evaluation of a possible autism spectrum disorder/difference. He has a history of severe emotional dysregulation, as well as reduced social skills and multiple sensory sensitivities. When I enter the exam room he is watching videos on his mom’s phone, and has some difficulty transitioning to play with toys when I encourage him to do so. He is eventually able to cooperate with my testing, though a bit reluctantly, and scores within the low average range for both language and pre-academic skills. His neurologic exam is within normal limits. He utilizes reasonably well-modulated eye contact paired with some typical use of gestures, and his affect is moderately directed and reactive. He displays typical intonation and prosody of speech, though engages in less spontaneous, imaginative, and reciprocal play than would be expected for his age. His mother reports decreased pretend play at home, minimal interest in toys, and difficulty playing cooperatively with other children.
Upon further history, it becomes apparent that the child spends a majority of his time on electronic devices, and has done so since early toddlerhood. Further dialogue suggests that the family became isolated during the COVID-19 pandemic, and has not yet re-engaged with the community in a meaningful way. The child has had rare opportunity for social interactions with other children, and minimal access to outdoor play. His most severe meltdowns generally involve transitions away from screens, and his overwhelmed parents often resort to use of additional screens to calm him once he is dysregulated.
At the end of the visit, through shared decision making, we agree that enrolling the child in a high-quality public preschool will help parents make a concerted effort towards a significant reduction in the hours per day in which the child utilizes electronic devices, while also providing him more exposure to peers. We plan for the child to return in 6 months for a re-evaluation around social-emotional skills, given his current limited exposure to peers and limited “unplugged” play-time.
Overutilization of Electronic Devices
As clinicians, we can all see how pervasive the use of electronic devices has become in the lives of the families we care for, as well as in our own lives, and how challenging some aspects of modern parenting have become. The developmental impact of early and excessive use of screens in young children is well documented,1 but as clinicians it can be tricky to help empower parents to find ways to limit screen time. When parents use screens to comfort and amuse their children during a clinic visit, this situation may serve as an excellent opportunity for a meaningful and respectful conversation around skill deficits which can result from overutilization of electronic devices in young children.
One scenario I often encounter during my patient evaluations as a developmental and behavioral pediatrician is children begging their parents for use of their phone throughout their visits with me. Not infrequently, a child is already on a screen when I enter the exam room, even when there has been a minimal wait time, which often leads to some resistance on behalf of the child as I explain to the family that a significant portion of the visit involves my interactions with the child, testing the child, and observing their child at play. I always provide ample amounts of age-appropriate art supplies, puzzles, fidgets, building toys, and imaginative play items to children during their 30 to 90 minute evaluations, but these are often not appealing to children when they have been very recently engaged with an electronic device. At times I also need to ask caretakers themselves to please disengage from their own electronic devices during the visit so that I can involve them in a detailed discussion about their child.
One challenge with the practice of allowing children access to entertainment on their parent’s smartphones in particular, lies in the fact that these devices are almost always present, meaning there is no natural boundary to inhibit access, in contrast to a television set or stationary computer parked in the family living room. Not dissimilar to candy visible in a parent’s purse, a cell phone becomes a constant temptation for children accustomed to utilizing them at home and public venues, and the incessant begging can wear down already stressed parents.
Children can become conditioned to utilize the distraction of screens to avoid feelings of discomfort or stress, and so can be very persistent and emotional when asking for the use of screens in public settings. Out in the community, I very frequently see young children and toddlers quietly staring at their phones and tablets while at restaurants and stores. While I have empathy for exhausted parents desperate for a moment of quiet, if this type of screen use is the rule rather than the exception for a child, there is risk for missed opportunities for the development of self-regulation skills.
Additionally, I have seen very young children present to my clinic with poor posture and neck pain secondary to chronic smartphone use, and young children who are getting minimal exercise or outdoor time due to excessive screen use, leading to concerns around fine and gross motor skills as well.
While allowing a child to stay occupied with or be soothed by a highly interesting digital experience can create a more calm environment for all, if habitual, this use can come at a cost regarding opportunities for the growth of executive functioning skills, general coping skills, general situational awareness, and experiential learning. Reliance on screens to decrease uncomfortable experiences decreases the opportunity for building distress tolerance, patience, and coping skills.
Of course there are times of extreme distress where a lollipop or bit of screen time might be reasonable to help keep a child safe or further avoid emotional trauma, but in general, other methods of soothing can very often be utilized, and in the long run would serve to increase the child’s general adaptive functioning.
A Teachable Moment
When clinicians encounter screens being used by parents to entertain their kids in clinic, it provides a valuable teaching moment around the risks of using screens to keep kids regulated and occupied during life’s less interesting or more anxiety provoking experiences. Having a meaningful conversation about the use of electronic devices with caregivers by clinicians in the exam room can be a delicate dance between providing supportive education while avoiding judgmental tones or verbiage. Normalizing and sympathizing with the difficulty of managing challenging behaviors from children in public spaces can help parents feel less desperate to keep their child quiet at all costs, and thus allow for greater development of coping skills.
Some parents may benefit from learning simple ideas for keeping a child regulated and occupied during times of waiting such as silly songs and dances, verbal games like “I spy,” and clapping routines. For a child with additional sensory or developmental needs, a referral to an occupational therapist to work on emotional regulation by way of specific sensory tools can be helpful. Parent-Child Interaction Therapy for kids ages 2 to 7 can also help build some relational activities and skills that can be utilized during trying situations to help keep a child settled and occupied.
If a child has qualified for Developmental Disability Services (DDS), medical providers can also write “prescriptions’ for sensory calming items which are often covered financially by DDS, such as chewies, weighted vests, stuffed animals, and fidgets. Encouraging parents to schedule allowed screen time at home in a very predictable and controlled manner is one method to help limit excessive use, as well as it’s utilization as an emotional regulation tool.
For public outings with children with special needs, and in particular in situations where meltdowns are likely to occur, some families find it helpful to dress their children in clothing or accessories that increase community awareness about their child’s condition (such as an autism awareness t-shirt). This effort can also help deflect unhelpful attention or advice from the public. Some parents choose to carry small cards explaining the child’s developmental differences, which can then be easily handed to unsupportive strangers in community settings during trying moments.
Clinicians can work to utilize even quick visits with families as an opportunity to review the American Academy of Pediatrics screen time recommendations with families, and also direct them to the Family Media Plan creation resources. Parenting in the modern era presents many challenges regarding choices around the use of electronic devices with children, and using the exam room experience as a teaching opportunity may be a helpful way to decrease utilization of screens as emotional regulation tools for children, while also providing general education around healthy use of screens.
Dr. Roth is a developmental and behavioral pediatrician in Eugene, Oregon.
Reference
1. Takahashi I et al. Screen Time at Age 1 Year and Communication and Problem-Solving Developmental Delays at 2 and 4 years. JAMA Pediatr. 2023 Oct 1;177(10):1039-1046. doi: 10.1001/jamapediatrics.2023.3057.
A 3-year-old presents to my clinic for evaluation of a possible autism spectrum disorder/difference. He has a history of severe emotional dysregulation, as well as reduced social skills and multiple sensory sensitivities. When I enter the exam room he is watching videos on his mom’s phone, and has some difficulty transitioning to play with toys when I encourage him to do so. He is eventually able to cooperate with my testing, though a bit reluctantly, and scores within the low average range for both language and pre-academic skills. His neurologic exam is within normal limits. He utilizes reasonably well-modulated eye contact paired with some typical use of gestures, and his affect is moderately directed and reactive. He displays typical intonation and prosody of speech, though engages in less spontaneous, imaginative, and reciprocal play than would be expected for his age. His mother reports decreased pretend play at home, minimal interest in toys, and difficulty playing cooperatively with other children.
Upon further history, it becomes apparent that the child spends a majority of his time on electronic devices, and has done so since early toddlerhood. Further dialogue suggests that the family became isolated during the COVID-19 pandemic, and has not yet re-engaged with the community in a meaningful way. The child has had rare opportunity for social interactions with other children, and minimal access to outdoor play. His most severe meltdowns generally involve transitions away from screens, and his overwhelmed parents often resort to use of additional screens to calm him once he is dysregulated.
At the end of the visit, through shared decision making, we agree that enrolling the child in a high-quality public preschool will help parents make a concerted effort towards a significant reduction in the hours per day in which the child utilizes electronic devices, while also providing him more exposure to peers. We plan for the child to return in 6 months for a re-evaluation around social-emotional skills, given his current limited exposure to peers and limited “unplugged” play-time.
Overutilization of Electronic Devices
As clinicians, we can all see how pervasive the use of electronic devices has become in the lives of the families we care for, as well as in our own lives, and how challenging some aspects of modern parenting have become. The developmental impact of early and excessive use of screens in young children is well documented,1 but as clinicians it can be tricky to help empower parents to find ways to limit screen time. When parents use screens to comfort and amuse their children during a clinic visit, this situation may serve as an excellent opportunity for a meaningful and respectful conversation around skill deficits which can result from overutilization of electronic devices in young children.
One scenario I often encounter during my patient evaluations as a developmental and behavioral pediatrician is children begging their parents for use of their phone throughout their visits with me. Not infrequently, a child is already on a screen when I enter the exam room, even when there has been a minimal wait time, which often leads to some resistance on behalf of the child as I explain to the family that a significant portion of the visit involves my interactions with the child, testing the child, and observing their child at play. I always provide ample amounts of age-appropriate art supplies, puzzles, fidgets, building toys, and imaginative play items to children during their 30 to 90 minute evaluations, but these are often not appealing to children when they have been very recently engaged with an electronic device. At times I also need to ask caretakers themselves to please disengage from their own electronic devices during the visit so that I can involve them in a detailed discussion about their child.
One challenge with the practice of allowing children access to entertainment on their parent’s smartphones in particular, lies in the fact that these devices are almost always present, meaning there is no natural boundary to inhibit access, in contrast to a television set or stationary computer parked in the family living room. Not dissimilar to candy visible in a parent’s purse, a cell phone becomes a constant temptation for children accustomed to utilizing them at home and public venues, and the incessant begging can wear down already stressed parents.
Children can become conditioned to utilize the distraction of screens to avoid feelings of discomfort or stress, and so can be very persistent and emotional when asking for the use of screens in public settings. Out in the community, I very frequently see young children and toddlers quietly staring at their phones and tablets while at restaurants and stores. While I have empathy for exhausted parents desperate for a moment of quiet, if this type of screen use is the rule rather than the exception for a child, there is risk for missed opportunities for the development of self-regulation skills.
Additionally, I have seen very young children present to my clinic with poor posture and neck pain secondary to chronic smartphone use, and young children who are getting minimal exercise or outdoor time due to excessive screen use, leading to concerns around fine and gross motor skills as well.
While allowing a child to stay occupied with or be soothed by a highly interesting digital experience can create a more calm environment for all, if habitual, this use can come at a cost regarding opportunities for the growth of executive functioning skills, general coping skills, general situational awareness, and experiential learning. Reliance on screens to decrease uncomfortable experiences decreases the opportunity for building distress tolerance, patience, and coping skills.
Of course there are times of extreme distress where a lollipop or bit of screen time might be reasonable to help keep a child safe or further avoid emotional trauma, but in general, other methods of soothing can very often be utilized, and in the long run would serve to increase the child’s general adaptive functioning.
A Teachable Moment
When clinicians encounter screens being used by parents to entertain their kids in clinic, it provides a valuable teaching moment around the risks of using screens to keep kids regulated and occupied during life’s less interesting or more anxiety provoking experiences. Having a meaningful conversation about the use of electronic devices with caregivers by clinicians in the exam room can be a delicate dance between providing supportive education while avoiding judgmental tones or verbiage. Normalizing and sympathizing with the difficulty of managing challenging behaviors from children in public spaces can help parents feel less desperate to keep their child quiet at all costs, and thus allow for greater development of coping skills.
Some parents may benefit from learning simple ideas for keeping a child regulated and occupied during times of waiting such as silly songs and dances, verbal games like “I spy,” and clapping routines. For a child with additional sensory or developmental needs, a referral to an occupational therapist to work on emotional regulation by way of specific sensory tools can be helpful. Parent-Child Interaction Therapy for kids ages 2 to 7 can also help build some relational activities and skills that can be utilized during trying situations to help keep a child settled and occupied.
If a child has qualified for Developmental Disability Services (DDS), medical providers can also write “prescriptions’ for sensory calming items which are often covered financially by DDS, such as chewies, weighted vests, stuffed animals, and fidgets. Encouraging parents to schedule allowed screen time at home in a very predictable and controlled manner is one method to help limit excessive use, as well as it’s utilization as an emotional regulation tool.
For public outings with children with special needs, and in particular in situations where meltdowns are likely to occur, some families find it helpful to dress their children in clothing or accessories that increase community awareness about their child’s condition (such as an autism awareness t-shirt). This effort can also help deflect unhelpful attention or advice from the public. Some parents choose to carry small cards explaining the child’s developmental differences, which can then be easily handed to unsupportive strangers in community settings during trying moments.
Clinicians can work to utilize even quick visits with families as an opportunity to review the American Academy of Pediatrics screen time recommendations with families, and also direct them to the Family Media Plan creation resources. Parenting in the modern era presents many challenges regarding choices around the use of electronic devices with children, and using the exam room experience as a teaching opportunity may be a helpful way to decrease utilization of screens as emotional regulation tools for children, while also providing general education around healthy use of screens.
Dr. Roth is a developmental and behavioral pediatrician in Eugene, Oregon.
Reference
1. Takahashi I et al. Screen Time at Age 1 Year and Communication and Problem-Solving Developmental Delays at 2 and 4 years. JAMA Pediatr. 2023 Oct 1;177(10):1039-1046. doi: 10.1001/jamapediatrics.2023.3057.
A 3-year-old presents to my clinic for evaluation of a possible autism spectrum disorder/difference. He has a history of severe emotional dysregulation, as well as reduced social skills and multiple sensory sensitivities. When I enter the exam room he is watching videos on his mom’s phone, and has some difficulty transitioning to play with toys when I encourage him to do so. He is eventually able to cooperate with my testing, though a bit reluctantly, and scores within the low average range for both language and pre-academic skills. His neurologic exam is within normal limits. He utilizes reasonably well-modulated eye contact paired with some typical use of gestures, and his affect is moderately directed and reactive. He displays typical intonation and prosody of speech, though engages in less spontaneous, imaginative, and reciprocal play than would be expected for his age. His mother reports decreased pretend play at home, minimal interest in toys, and difficulty playing cooperatively with other children.
Upon further history, it becomes apparent that the child spends a majority of his time on electronic devices, and has done so since early toddlerhood. Further dialogue suggests that the family became isolated during the COVID-19 pandemic, and has not yet re-engaged with the community in a meaningful way. The child has had rare opportunity for social interactions with other children, and minimal access to outdoor play. His most severe meltdowns generally involve transitions away from screens, and his overwhelmed parents often resort to use of additional screens to calm him once he is dysregulated.
At the end of the visit, through shared decision making, we agree that enrolling the child in a high-quality public preschool will help parents make a concerted effort towards a significant reduction in the hours per day in which the child utilizes electronic devices, while also providing him more exposure to peers. We plan for the child to return in 6 months for a re-evaluation around social-emotional skills, given his current limited exposure to peers and limited “unplugged” play-time.
Overutilization of Electronic Devices
As clinicians, we can all see how pervasive the use of electronic devices has become in the lives of the families we care for, as well as in our own lives, and how challenging some aspects of modern parenting have become. The developmental impact of early and excessive use of screens in young children is well documented,1 but as clinicians it can be tricky to help empower parents to find ways to limit screen time. When parents use screens to comfort and amuse their children during a clinic visit, this situation may serve as an excellent opportunity for a meaningful and respectful conversation around skill deficits which can result from overutilization of electronic devices in young children.
One scenario I often encounter during my patient evaluations as a developmental and behavioral pediatrician is children begging their parents for use of their phone throughout their visits with me. Not infrequently, a child is already on a screen when I enter the exam room, even when there has been a minimal wait time, which often leads to some resistance on behalf of the child as I explain to the family that a significant portion of the visit involves my interactions with the child, testing the child, and observing their child at play. I always provide ample amounts of age-appropriate art supplies, puzzles, fidgets, building toys, and imaginative play items to children during their 30 to 90 minute evaluations, but these are often not appealing to children when they have been very recently engaged with an electronic device. At times I also need to ask caretakers themselves to please disengage from their own electronic devices during the visit so that I can involve them in a detailed discussion about their child.
One challenge with the practice of allowing children access to entertainment on their parent’s smartphones in particular, lies in the fact that these devices are almost always present, meaning there is no natural boundary to inhibit access, in contrast to a television set or stationary computer parked in the family living room. Not dissimilar to candy visible in a parent’s purse, a cell phone becomes a constant temptation for children accustomed to utilizing them at home and public venues, and the incessant begging can wear down already stressed parents.
Children can become conditioned to utilize the distraction of screens to avoid feelings of discomfort or stress, and so can be very persistent and emotional when asking for the use of screens in public settings. Out in the community, I very frequently see young children and toddlers quietly staring at their phones and tablets while at restaurants and stores. While I have empathy for exhausted parents desperate for a moment of quiet, if this type of screen use is the rule rather than the exception for a child, there is risk for missed opportunities for the development of self-regulation skills.
Additionally, I have seen very young children present to my clinic with poor posture and neck pain secondary to chronic smartphone use, and young children who are getting minimal exercise or outdoor time due to excessive screen use, leading to concerns around fine and gross motor skills as well.
While allowing a child to stay occupied with or be soothed by a highly interesting digital experience can create a more calm environment for all, if habitual, this use can come at a cost regarding opportunities for the growth of executive functioning skills, general coping skills, general situational awareness, and experiential learning. Reliance on screens to decrease uncomfortable experiences decreases the opportunity for building distress tolerance, patience, and coping skills.
Of course there are times of extreme distress where a lollipop or bit of screen time might be reasonable to help keep a child safe or further avoid emotional trauma, but in general, other methods of soothing can very often be utilized, and in the long run would serve to increase the child’s general adaptive functioning.
A Teachable Moment
When clinicians encounter screens being used by parents to entertain their kids in clinic, it provides a valuable teaching moment around the risks of using screens to keep kids regulated and occupied during life’s less interesting or more anxiety provoking experiences. Having a meaningful conversation about the use of electronic devices with caregivers by clinicians in the exam room can be a delicate dance between providing supportive education while avoiding judgmental tones or verbiage. Normalizing and sympathizing with the difficulty of managing challenging behaviors from children in public spaces can help parents feel less desperate to keep their child quiet at all costs, and thus allow for greater development of coping skills.
Some parents may benefit from learning simple ideas for keeping a child regulated and occupied during times of waiting such as silly songs and dances, verbal games like “I spy,” and clapping routines. For a child with additional sensory or developmental needs, a referral to an occupational therapist to work on emotional regulation by way of specific sensory tools can be helpful. Parent-Child Interaction Therapy for kids ages 2 to 7 can also help build some relational activities and skills that can be utilized during trying situations to help keep a child settled and occupied.
If a child has qualified for Developmental Disability Services (DDS), medical providers can also write “prescriptions’ for sensory calming items which are often covered financially by DDS, such as chewies, weighted vests, stuffed animals, and fidgets. Encouraging parents to schedule allowed screen time at home in a very predictable and controlled manner is one method to help limit excessive use, as well as it’s utilization as an emotional regulation tool.
For public outings with children with special needs, and in particular in situations where meltdowns are likely to occur, some families find it helpful to dress their children in clothing or accessories that increase community awareness about their child’s condition (such as an autism awareness t-shirt). This effort can also help deflect unhelpful attention or advice from the public. Some parents choose to carry small cards explaining the child’s developmental differences, which can then be easily handed to unsupportive strangers in community settings during trying moments.
Clinicians can work to utilize even quick visits with families as an opportunity to review the American Academy of Pediatrics screen time recommendations with families, and also direct them to the Family Media Plan creation resources. Parenting in the modern era presents many challenges regarding choices around the use of electronic devices with children, and using the exam room experience as a teaching opportunity may be a helpful way to decrease utilization of screens as emotional regulation tools for children, while also providing general education around healthy use of screens.
Dr. Roth is a developmental and behavioral pediatrician in Eugene, Oregon.
Reference
1. Takahashi I et al. Screen Time at Age 1 Year and Communication and Problem-Solving Developmental Delays at 2 and 4 years. JAMA Pediatr. 2023 Oct 1;177(10):1039-1046. doi: 10.1001/jamapediatrics.2023.3057.
Is BMI Underestimating Breast Cancer Risk in Postmenopausal Women?
TOPLINE:
Accurate body fat measures are crucial for effective cancer prevention.
METHODOLOGY:
- Researchers conducted a case-control study including 1033 breast cancer cases and 1143 postmenopausal population controls from the MCC-Spain study.
- Participants were aged 20-85 years. BMI was calculated as the ratio of weight to height squared and categorized using World Health Organization standards: < 25, 25-29.9, 30-34.9, and ≥ 35.
- CUN-BAE was calculated using a specific equation and categorized according to the estimated percentage of body fat: < 35%, 35%-39.9%, 40%-44.9%, and ≥ 45%.
- Odds ratios (ORs) were estimated with 95% CIs for both measures (BMI and CUN-BAE) for breast cancer cases using unconditional logistic regression.
TAKEAWAY:
- Excess body weight attributable to the risk for breast cancer was 23% when assessed using a BMI value > 30 and 38% when assessed using a CUN-BAE value > 40% body fat.
- Hormone receptor stratification showed that these differences in population-attributable fractions were only observed in hormone receptor–positive cases, with an estimated burden of 19.9% for BMI and 41.9% for CUN-BAE.
- The highest categories of CUN-BAE showed an increase in the risk for postmenopausal breast cancer (OR, 2.13 for body fat ≥ 45% compared with the reference category < 35%).
- No similar trend was observed for BMI, as the gradient declined after a BMI ≥ 35.
IN PRACTICE:
“The results of our study indicate that excess body fat is a significant risk factor for hormone receptor–positive breast cancer in postmenopausal women. Our findings suggest that the population impact could be underestimated when using traditional BMI estimates, and that more accurate measures of body fat, such as CUN-BAE, should be considered,” the authors of the study wrote.
SOURCE:
This study was led by Verónica Dávila-Batista, University of Las Palmas de Gran Canaria in Las Palmas de Gran Canaria, Spain. It was published online in Journal of Epidemiology and Community Health.
LIMITATIONS:
The case-control design of the study may have limited the ability to establish causal relationships. BMI was self-reported at the time of the interview for controls and 1 year before diagnosis for cancer cases, which may have introduced recall bias. The formula for CUN-BAE was calculated from a sedentary convenience sample, which may not have been representative of the general population. The small sample size of cases that did not express hormone receptors was another limitation. The study’s findings may not be generalizable to non-White populations as non-White participants were excluded.
DISCLOSURES:
Dávila-Batista disclosed receiving grants from the Carlos III Health Institute. Additional disclosures are noted in the original article.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
Accurate body fat measures are crucial for effective cancer prevention.
METHODOLOGY:
- Researchers conducted a case-control study including 1033 breast cancer cases and 1143 postmenopausal population controls from the MCC-Spain study.
- Participants were aged 20-85 years. BMI was calculated as the ratio of weight to height squared and categorized using World Health Organization standards: < 25, 25-29.9, 30-34.9, and ≥ 35.
- CUN-BAE was calculated using a specific equation and categorized according to the estimated percentage of body fat: < 35%, 35%-39.9%, 40%-44.9%, and ≥ 45%.
- Odds ratios (ORs) were estimated with 95% CIs for both measures (BMI and CUN-BAE) for breast cancer cases using unconditional logistic regression.
TAKEAWAY:
- Excess body weight attributable to the risk for breast cancer was 23% when assessed using a BMI value > 30 and 38% when assessed using a CUN-BAE value > 40% body fat.
- Hormone receptor stratification showed that these differences in population-attributable fractions were only observed in hormone receptor–positive cases, with an estimated burden of 19.9% for BMI and 41.9% for CUN-BAE.
- The highest categories of CUN-BAE showed an increase in the risk for postmenopausal breast cancer (OR, 2.13 for body fat ≥ 45% compared with the reference category < 35%).
- No similar trend was observed for BMI, as the gradient declined after a BMI ≥ 35.
IN PRACTICE:
“The results of our study indicate that excess body fat is a significant risk factor for hormone receptor–positive breast cancer in postmenopausal women. Our findings suggest that the population impact could be underestimated when using traditional BMI estimates, and that more accurate measures of body fat, such as CUN-BAE, should be considered,” the authors of the study wrote.
SOURCE:
This study was led by Verónica Dávila-Batista, University of Las Palmas de Gran Canaria in Las Palmas de Gran Canaria, Spain. It was published online in Journal of Epidemiology and Community Health.
LIMITATIONS:
The case-control design of the study may have limited the ability to establish causal relationships. BMI was self-reported at the time of the interview for controls and 1 year before diagnosis for cancer cases, which may have introduced recall bias. The formula for CUN-BAE was calculated from a sedentary convenience sample, which may not have been representative of the general population. The small sample size of cases that did not express hormone receptors was another limitation. The study’s findings may not be generalizable to non-White populations as non-White participants were excluded.
DISCLOSURES:
Dávila-Batista disclosed receiving grants from the Carlos III Health Institute. Additional disclosures are noted in the original article.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
TOPLINE:
Accurate body fat measures are crucial for effective cancer prevention.
METHODOLOGY:
- Researchers conducted a case-control study including 1033 breast cancer cases and 1143 postmenopausal population controls from the MCC-Spain study.
- Participants were aged 20-85 years. BMI was calculated as the ratio of weight to height squared and categorized using World Health Organization standards: < 25, 25-29.9, 30-34.9, and ≥ 35.
- CUN-BAE was calculated using a specific equation and categorized according to the estimated percentage of body fat: < 35%, 35%-39.9%, 40%-44.9%, and ≥ 45%.
- Odds ratios (ORs) were estimated with 95% CIs for both measures (BMI and CUN-BAE) for breast cancer cases using unconditional logistic regression.
TAKEAWAY:
- Excess body weight attributable to the risk for breast cancer was 23% when assessed using a BMI value > 30 and 38% when assessed using a CUN-BAE value > 40% body fat.
- Hormone receptor stratification showed that these differences in population-attributable fractions were only observed in hormone receptor–positive cases, with an estimated burden of 19.9% for BMI and 41.9% for CUN-BAE.
- The highest categories of CUN-BAE showed an increase in the risk for postmenopausal breast cancer (OR, 2.13 for body fat ≥ 45% compared with the reference category < 35%).
- No similar trend was observed for BMI, as the gradient declined after a BMI ≥ 35.
IN PRACTICE:
“The results of our study indicate that excess body fat is a significant risk factor for hormone receptor–positive breast cancer in postmenopausal women. Our findings suggest that the population impact could be underestimated when using traditional BMI estimates, and that more accurate measures of body fat, such as CUN-BAE, should be considered,” the authors of the study wrote.
SOURCE:
This study was led by Verónica Dávila-Batista, University of Las Palmas de Gran Canaria in Las Palmas de Gran Canaria, Spain. It was published online in Journal of Epidemiology and Community Health.
LIMITATIONS:
The case-control design of the study may have limited the ability to establish causal relationships. BMI was self-reported at the time of the interview for controls and 1 year before diagnosis for cancer cases, which may have introduced recall bias. The formula for CUN-BAE was calculated from a sedentary convenience sample, which may not have been representative of the general population. The small sample size of cases that did not express hormone receptors was another limitation. The study’s findings may not be generalizable to non-White populations as non-White participants were excluded.
DISCLOSURES:
Dávila-Batista disclosed receiving grants from the Carlos III Health Institute. Additional disclosures are noted in the original article.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
The New Cancer Stats Might Look Like a Death Sentence. They Aren’t.
Cancer is becoming more common in younger generations. Data show that people under 50 are experiencing higher rates of cancer than any generation before them. As a genetic counselor, I hoped these upward trends in early-onset malignancies would slow with a better understanding of risk factors and prevention strategies. Unfortunately, the opposite is happening. Recent findings from the American Cancer Society reveal that the incidence of at least 17 of 34 cancer types is rising among GenX and Millennials.
These statistics are alarming. I appreciate how easy it is for patients to get lost in the headlines about cancer, which may shape how they approach their healthcare. Each year, millions of Americans miss critical cancer screenings, with many citing fear of a positive test result as a leading reason. Others believe, despite the statistics, that cancer is not something they need to worry about until they are older. And then, of course, getting screened is not as easy as it should be.
In my work, I meet with people from both younger and older generations who have either faced cancer themselves or witnessed a loved one experience the disease. One of the most common sentiments I hear from these patients is the desire to catch cancer earlier. My answer is always this: The first and most important step everyone can take is understanding their risk.
For some, knowing they are at increased risk for cancer means starting screenings earlier — sometimes as early as age 25 — or getting screened with a more sensitive test.
This proactive approach is the right one. It also significantly reduces the burden of total and cancer-specific healthcare costs. While screening may carry some potential risks, clinicians can minimize these risks by adhering to evidence-based guidelines, such as those from the American Cancer Society, and ensuring there is appropriate discussion of treatment options when a diagnosis is made.
Normalizing Cancer Risk Assessment and Screening
A detailed cancer risk assessment and education about signs and symptoms should be part of every preventive care visit, regardless of someone’s age. Further, that cancer risk assessment should lead to clear recommendations and support for taking the next steps.
This is where care advocacy and patient navigation come in. Care advocacy can improve outcomes at every stage of the cancer journey, from increasing screening rates to improving quality of life for survivors. I’ve seen first-hand how care advocates help patients overcome hurdles like long wait times for appointments they need, making both screening and diagnostic care easier to access.
Now, with the finalization of a new rule from the Centers for Medicare & Medicaid Services, providers can bill for oncology navigation services that occur under their supervision. This formal recognition of care navigation affirms the value of these services not just clinically but financially as well. It will be through methods like care navigation, targeted outreach, and engaging educational resources — built into and covered by health plans — that patients will feel more in control over their health and have tools to help minimize the effects of cancer on the rest of their lives.
These services benefit healthcare providers as well. Care navigation supports clinical care teams, from primary care providers to oncologists, by ensuring patients are seen before their cancer progresses to a more advanced stage. And even if patients follow screening recommendations for the rest of their lives and never get a positive result, they’ve still gained something invaluable: peace of mind, knowing they’ve taken an active role in their health.
Fighting Fear With Routine
Treating cancer as a normal part of young people’s healthcare means helping them envision the disease as a condition that can be treated, much like a diagnosis of diabetes or high cholesterol. This mindset shift means quickly following up on a concerning symptom or screening result and reducing the time to start treatment if needed. And with treatment options and success rates for some cancers being better than ever, survivorship support must be built into every treatment plan from the start. Before treatment begins, healthcare providers should make time to talk about sometimes-overlooked key topics, such as reproductive options for people whose fertility may be affected by their cancer treatment, about plans for returning to work during or after treatment, and finding the right mental health support.
Where we can’t prevent cancer, both primary care providers and oncologists can work together to help patients receive the right diagnosis and treatment as quickly as possible. Knowing insurance coverage has a direct effect on how early cancer is caught, for example, younger people need support in understanding and accessing benefits and resources that may be available through their existing healthcare channels, like some employer-sponsored health plans. Even if getting treated for cancer is inevitable for some, taking immediate action to get screened when it’s appropriate is the best thing we can do to lessen the impact of these rising cancer incidences across the country. At the end of the day, being afraid of cancer doesn’t decrease the chances of getting sick or dying from it. Proactive screening and early detection do.
Brockman, Genetic Counselor, Color Health, Buffalo, New York, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Cancer is becoming more common in younger generations. Data show that people under 50 are experiencing higher rates of cancer than any generation before them. As a genetic counselor, I hoped these upward trends in early-onset malignancies would slow with a better understanding of risk factors and prevention strategies. Unfortunately, the opposite is happening. Recent findings from the American Cancer Society reveal that the incidence of at least 17 of 34 cancer types is rising among GenX and Millennials.
These statistics are alarming. I appreciate how easy it is for patients to get lost in the headlines about cancer, which may shape how they approach their healthcare. Each year, millions of Americans miss critical cancer screenings, with many citing fear of a positive test result as a leading reason. Others believe, despite the statistics, that cancer is not something they need to worry about until they are older. And then, of course, getting screened is not as easy as it should be.
In my work, I meet with people from both younger and older generations who have either faced cancer themselves or witnessed a loved one experience the disease. One of the most common sentiments I hear from these patients is the desire to catch cancer earlier. My answer is always this: The first and most important step everyone can take is understanding their risk.
For some, knowing they are at increased risk for cancer means starting screenings earlier — sometimes as early as age 25 — or getting screened with a more sensitive test.
This proactive approach is the right one. It also significantly reduces the burden of total and cancer-specific healthcare costs. While screening may carry some potential risks, clinicians can minimize these risks by adhering to evidence-based guidelines, such as those from the American Cancer Society, and ensuring there is appropriate discussion of treatment options when a diagnosis is made.
Normalizing Cancer Risk Assessment and Screening
A detailed cancer risk assessment and education about signs and symptoms should be part of every preventive care visit, regardless of someone’s age. Further, that cancer risk assessment should lead to clear recommendations and support for taking the next steps.
This is where care advocacy and patient navigation come in. Care advocacy can improve outcomes at every stage of the cancer journey, from increasing screening rates to improving quality of life for survivors. I’ve seen first-hand how care advocates help patients overcome hurdles like long wait times for appointments they need, making both screening and diagnostic care easier to access.
Now, with the finalization of a new rule from the Centers for Medicare & Medicaid Services, providers can bill for oncology navigation services that occur under their supervision. This formal recognition of care navigation affirms the value of these services not just clinically but financially as well. It will be through methods like care navigation, targeted outreach, and engaging educational resources — built into and covered by health plans — that patients will feel more in control over their health and have tools to help minimize the effects of cancer on the rest of their lives.
These services benefit healthcare providers as well. Care navigation supports clinical care teams, from primary care providers to oncologists, by ensuring patients are seen before their cancer progresses to a more advanced stage. And even if patients follow screening recommendations for the rest of their lives and never get a positive result, they’ve still gained something invaluable: peace of mind, knowing they’ve taken an active role in their health.
Fighting Fear With Routine
Treating cancer as a normal part of young people’s healthcare means helping them envision the disease as a condition that can be treated, much like a diagnosis of diabetes or high cholesterol. This mindset shift means quickly following up on a concerning symptom or screening result and reducing the time to start treatment if needed. And with treatment options and success rates for some cancers being better than ever, survivorship support must be built into every treatment plan from the start. Before treatment begins, healthcare providers should make time to talk about sometimes-overlooked key topics, such as reproductive options for people whose fertility may be affected by their cancer treatment, about plans for returning to work during or after treatment, and finding the right mental health support.
Where we can’t prevent cancer, both primary care providers and oncologists can work together to help patients receive the right diagnosis and treatment as quickly as possible. Knowing insurance coverage has a direct effect on how early cancer is caught, for example, younger people need support in understanding and accessing benefits and resources that may be available through their existing healthcare channels, like some employer-sponsored health plans. Even if getting treated for cancer is inevitable for some, taking immediate action to get screened when it’s appropriate is the best thing we can do to lessen the impact of these rising cancer incidences across the country. At the end of the day, being afraid of cancer doesn’t decrease the chances of getting sick or dying from it. Proactive screening and early detection do.
Brockman, Genetic Counselor, Color Health, Buffalo, New York, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Cancer is becoming more common in younger generations. Data show that people under 50 are experiencing higher rates of cancer than any generation before them. As a genetic counselor, I hoped these upward trends in early-onset malignancies would slow with a better understanding of risk factors and prevention strategies. Unfortunately, the opposite is happening. Recent findings from the American Cancer Society reveal that the incidence of at least 17 of 34 cancer types is rising among GenX and Millennials.
These statistics are alarming. I appreciate how easy it is for patients to get lost in the headlines about cancer, which may shape how they approach their healthcare. Each year, millions of Americans miss critical cancer screenings, with many citing fear of a positive test result as a leading reason. Others believe, despite the statistics, that cancer is not something they need to worry about until they are older. And then, of course, getting screened is not as easy as it should be.
In my work, I meet with people from both younger and older generations who have either faced cancer themselves or witnessed a loved one experience the disease. One of the most common sentiments I hear from these patients is the desire to catch cancer earlier. My answer is always this: The first and most important step everyone can take is understanding their risk.
For some, knowing they are at increased risk for cancer means starting screenings earlier — sometimes as early as age 25 — or getting screened with a more sensitive test.
This proactive approach is the right one. It also significantly reduces the burden of total and cancer-specific healthcare costs. While screening may carry some potential risks, clinicians can minimize these risks by adhering to evidence-based guidelines, such as those from the American Cancer Society, and ensuring there is appropriate discussion of treatment options when a diagnosis is made.
Normalizing Cancer Risk Assessment and Screening
A detailed cancer risk assessment and education about signs and symptoms should be part of every preventive care visit, regardless of someone’s age. Further, that cancer risk assessment should lead to clear recommendations and support for taking the next steps.
This is where care advocacy and patient navigation come in. Care advocacy can improve outcomes at every stage of the cancer journey, from increasing screening rates to improving quality of life for survivors. I’ve seen first-hand how care advocates help patients overcome hurdles like long wait times for appointments they need, making both screening and diagnostic care easier to access.
Now, with the finalization of a new rule from the Centers for Medicare & Medicaid Services, providers can bill for oncology navigation services that occur under their supervision. This formal recognition of care navigation affirms the value of these services not just clinically but financially as well. It will be through methods like care navigation, targeted outreach, and engaging educational resources — built into and covered by health plans — that patients will feel more in control over their health and have tools to help minimize the effects of cancer on the rest of their lives.
These services benefit healthcare providers as well. Care navigation supports clinical care teams, from primary care providers to oncologists, by ensuring patients are seen before their cancer progresses to a more advanced stage. And even if patients follow screening recommendations for the rest of their lives and never get a positive result, they’ve still gained something invaluable: peace of mind, knowing they’ve taken an active role in their health.
Fighting Fear With Routine
Treating cancer as a normal part of young people’s healthcare means helping them envision the disease as a condition that can be treated, much like a diagnosis of diabetes or high cholesterol. This mindset shift means quickly following up on a concerning symptom or screening result and reducing the time to start treatment if needed. And with treatment options and success rates for some cancers being better than ever, survivorship support must be built into every treatment plan from the start. Before treatment begins, healthcare providers should make time to talk about sometimes-overlooked key topics, such as reproductive options for people whose fertility may be affected by their cancer treatment, about plans for returning to work during or after treatment, and finding the right mental health support.
Where we can’t prevent cancer, both primary care providers and oncologists can work together to help patients receive the right diagnosis and treatment as quickly as possible. Knowing insurance coverage has a direct effect on how early cancer is caught, for example, younger people need support in understanding and accessing benefits and resources that may be available through their existing healthcare channels, like some employer-sponsored health plans. Even if getting treated for cancer is inevitable for some, taking immediate action to get screened when it’s appropriate is the best thing we can do to lessen the impact of these rising cancer incidences across the country. At the end of the day, being afraid of cancer doesn’t decrease the chances of getting sick or dying from it. Proactive screening and early detection do.
Brockman, Genetic Counselor, Color Health, Buffalo, New York, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Diabetes and Migraine May Have a Bidirectional Link
Key clinical point: Diabetes may have a bidirectional association with migraine risk. Type 1 diabetes (T1D) reduced the risk for migraine, whereas migraine without aura increased the risk for diabetes.
Major findings: Diabetes did not significantly affect the overall risk for migraine (odds ratio [OR], 0.85; P = .13). However, individuals with T1D had a lower risk for migraine (OR, 0.48; P = .002) than those without diabetes. Conversely, migraine did not significantly increase the risk for diabetes (OR, 1.00, P = .99), but individuals with migraine without aura had a higher risk for diabetes (OR, 1.19; P = .03) than those without migraine.
Study details: This meta-analysis included eight cross-sectional studies (131,361 patients with diabetes and 1,005,604 patients with migraine) and four cohort studies (103,205 patients with diabetes and 32,197 patients with migraine).
Disclosure: The study was funded by the Ministry of Health & Welfare, Republic of Korea, and the National Research Foundation of Korea. One author is a junior editor at The Journal of Headache and Pain, and another serves on its board and has received grants from the Korea Health Industry Development Institute.
Source: Ha WS, Nguyen VK, Chu MK. Epidemiological linkage between migraine and diabetes mellitus: A systematic review and meta-analysis. J Headache Pain. 2024;25:158. Source
Key clinical point: Diabetes may have a bidirectional association with migraine risk. Type 1 diabetes (T1D) reduced the risk for migraine, whereas migraine without aura increased the risk for diabetes.
Major findings: Diabetes did not significantly affect the overall risk for migraine (odds ratio [OR], 0.85; P = .13). However, individuals with T1D had a lower risk for migraine (OR, 0.48; P = .002) than those without diabetes. Conversely, migraine did not significantly increase the risk for diabetes (OR, 1.00, P = .99), but individuals with migraine without aura had a higher risk for diabetes (OR, 1.19; P = .03) than those without migraine.
Study details: This meta-analysis included eight cross-sectional studies (131,361 patients with diabetes and 1,005,604 patients with migraine) and four cohort studies (103,205 patients with diabetes and 32,197 patients with migraine).
Disclosure: The study was funded by the Ministry of Health & Welfare, Republic of Korea, and the National Research Foundation of Korea. One author is a junior editor at The Journal of Headache and Pain, and another serves on its board and has received grants from the Korea Health Industry Development Institute.
Source: Ha WS, Nguyen VK, Chu MK. Epidemiological linkage between migraine and diabetes mellitus: A systematic review and meta-analysis. J Headache Pain. 2024;25:158. Source
Key clinical point: Diabetes may have a bidirectional association with migraine risk. Type 1 diabetes (T1D) reduced the risk for migraine, whereas migraine without aura increased the risk for diabetes.
Major findings: Diabetes did not significantly affect the overall risk for migraine (odds ratio [OR], 0.85; P = .13). However, individuals with T1D had a lower risk for migraine (OR, 0.48; P = .002) than those without diabetes. Conversely, migraine did not significantly increase the risk for diabetes (OR, 1.00, P = .99), but individuals with migraine without aura had a higher risk for diabetes (OR, 1.19; P = .03) than those without migraine.
Study details: This meta-analysis included eight cross-sectional studies (131,361 patients with diabetes and 1,005,604 patients with migraine) and four cohort studies (103,205 patients with diabetes and 32,197 patients with migraine).
Disclosure: The study was funded by the Ministry of Health & Welfare, Republic of Korea, and the National Research Foundation of Korea. One author is a junior editor at The Journal of Headache and Pain, and another serves on its board and has received grants from the Korea Health Industry Development Institute.
Source: Ha WS, Nguyen VK, Chu MK. Epidemiological linkage between migraine and diabetes mellitus: A systematic review and meta-analysis. J Headache Pain. 2024;25:158. Source
Long-Term Safety of Dihydroergotamine Nasal Powder for Acute Treatment of Migraine
Key clinical point: Dihydroergotamine (DHE) nasal powder was well tolerated over the long term for the acute treatment of migraine.
Major findings: Treatment-emergent adverse events were reported in 48.5% of the participants, with nasal discomfort being the most common (11.3%). No deaths were reported. A serious adverse event related to treatment occurred in only one participant who did not disclose contraindications to DHE, and 4.4% of the participants discontinued the use of DHE. There were no new safety concerns.
Study details: The ASCEND trial involved 344 adults aged 18-65 years with a history of 4-12 migraine attacks per month for at least 1 year. Participants self-administered DHE (5.2 mg) as needed, with a maximum of 12 doses per month, for 1 year.
Disclosure: This study was funded by Satsuma Pharmaceuticals, Inc. Two authors declared being employees and stockholders of Satsuma, and others declared having ties with various sources, including Satsuma.
Sources: Tepper SJ, Albrecht D, Ailani J. Kirby L, Strom S, Rapoport AM. Long-term (12-Month) safety and tolerability of STS101 (dihydroergotamine nasal powder) in the acute treatment of migraine: Data from the phase 3 open-label ASCEND study. CNS Drugs. Published online October 7, 2024. Source
Key clinical point: Dihydroergotamine (DHE) nasal powder was well tolerated over the long term for the acute treatment of migraine.
Major findings: Treatment-emergent adverse events were reported in 48.5% of the participants, with nasal discomfort being the most common (11.3%). No deaths were reported. A serious adverse event related to treatment occurred in only one participant who did not disclose contraindications to DHE, and 4.4% of the participants discontinued the use of DHE. There were no new safety concerns.
Study details: The ASCEND trial involved 344 adults aged 18-65 years with a history of 4-12 migraine attacks per month for at least 1 year. Participants self-administered DHE (5.2 mg) as needed, with a maximum of 12 doses per month, for 1 year.
Disclosure: This study was funded by Satsuma Pharmaceuticals, Inc. Two authors declared being employees and stockholders of Satsuma, and others declared having ties with various sources, including Satsuma.
Sources: Tepper SJ, Albrecht D, Ailani J. Kirby L, Strom S, Rapoport AM. Long-term (12-Month) safety and tolerability of STS101 (dihydroergotamine nasal powder) in the acute treatment of migraine: Data from the phase 3 open-label ASCEND study. CNS Drugs. Published online October 7, 2024. Source
Key clinical point: Dihydroergotamine (DHE) nasal powder was well tolerated over the long term for the acute treatment of migraine.
Major findings: Treatment-emergent adverse events were reported in 48.5% of the participants, with nasal discomfort being the most common (11.3%). No deaths were reported. A serious adverse event related to treatment occurred in only one participant who did not disclose contraindications to DHE, and 4.4% of the participants discontinued the use of DHE. There were no new safety concerns.
Study details: The ASCEND trial involved 344 adults aged 18-65 years with a history of 4-12 migraine attacks per month for at least 1 year. Participants self-administered DHE (5.2 mg) as needed, with a maximum of 12 doses per month, for 1 year.
Disclosure: This study was funded by Satsuma Pharmaceuticals, Inc. Two authors declared being employees and stockholders of Satsuma, and others declared having ties with various sources, including Satsuma.
Sources: Tepper SJ, Albrecht D, Ailani J. Kirby L, Strom S, Rapoport AM. Long-term (12-Month) safety and tolerability of STS101 (dihydroergotamine nasal powder) in the acute treatment of migraine: Data from the phase 3 open-label ASCEND study. CNS Drugs. Published online October 7, 2024. Source
CGRP Inhibitors Outperform Other Migraine-Preventive Medications
Key clinical point: Patients with migraine who received calcitonin gene-related peptide inhibitors (CGRPi) showed improved pain reduction compared with those on other preventative medications.
Major findings: Patients who received only CGRPi or switched to CGRPi had significant reductions in mean pain scores (−2.0 and −2.7, respectively; both P < .001), whereas those on other migraine-preventative medications did not. Patients adhering to CGRPi, including those who received only CGRPi (−3.1; P = .005) and those who switched from other medications to CGRPi (−3.7; P = .002), had significantly reduced pain scores; however, no reduction in pain scores was noted in patients not adhering to CGRPi.
Study details: This retrospective study analyzed Patient Reported Outcomes Measurement Information System data for adults with migraine over 12 months, including 1245 patients on other preventive medications (antiseizures, antidepressants, or beta-blockers), 148 receiving only CGRPi, and 112 switching to CGRPi.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Peasah SK, Soh YH, Huang Y, Nguyen J, Hanmer J, Good C. Patient reported outcomes and the real-world use of calcitonin gene–related peptide medications in migraine. Headache. Published online September 30, 2024. Source
Key clinical point: Patients with migraine who received calcitonin gene-related peptide inhibitors (CGRPi) showed improved pain reduction compared with those on other preventative medications.
Major findings: Patients who received only CGRPi or switched to CGRPi had significant reductions in mean pain scores (−2.0 and −2.7, respectively; both P < .001), whereas those on other migraine-preventative medications did not. Patients adhering to CGRPi, including those who received only CGRPi (−3.1; P = .005) and those who switched from other medications to CGRPi (−3.7; P = .002), had significantly reduced pain scores; however, no reduction in pain scores was noted in patients not adhering to CGRPi.
Study details: This retrospective study analyzed Patient Reported Outcomes Measurement Information System data for adults with migraine over 12 months, including 1245 patients on other preventive medications (antiseizures, antidepressants, or beta-blockers), 148 receiving only CGRPi, and 112 switching to CGRPi.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Peasah SK, Soh YH, Huang Y, Nguyen J, Hanmer J, Good C. Patient reported outcomes and the real-world use of calcitonin gene–related peptide medications in migraine. Headache. Published online September 30, 2024. Source
Key clinical point: Patients with migraine who received calcitonin gene-related peptide inhibitors (CGRPi) showed improved pain reduction compared with those on other preventative medications.
Major findings: Patients who received only CGRPi or switched to CGRPi had significant reductions in mean pain scores (−2.0 and −2.7, respectively; both P < .001), whereas those on other migraine-preventative medications did not. Patients adhering to CGRPi, including those who received only CGRPi (−3.1; P = .005) and those who switched from other medications to CGRPi (−3.7; P = .002), had significantly reduced pain scores; however, no reduction in pain scores was noted in patients not adhering to CGRPi.
Study details: This retrospective study analyzed Patient Reported Outcomes Measurement Information System data for adults with migraine over 12 months, including 1245 patients on other preventive medications (antiseizures, antidepressants, or beta-blockers), 148 receiving only CGRPi, and 112 switching to CGRPi.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Peasah SK, Soh YH, Huang Y, Nguyen J, Hanmer J, Good C. Patient reported outcomes and the real-world use of calcitonin gene–related peptide medications in migraine. Headache. Published online September 30, 2024. Source
Ubrogepant Offers Relief From Acute Migraine
Key clinical point: Ubrogepant showed real-world effectiveness for the acute treatment of migraine, with increased treatment satisfaction and a strong intention to continue using the medication.
Major findings: A high proportion of patients reported using ubrogepant for relief from migraine, with satisfaction rates of 75.8% at 2 hours, 83.4% at 4 hours, and 78.5% at 24 hours. Additionally, 85.1% were satisfied with their ability to think clearly and 83.8% were satisfied with returning to normal function. Overall, 90.7% participants intended to continue using ubrogepant and 87.4% reported switching to ubrogepant due to inadequate response to previous migraine treatments.
Study details: This observational cross-sectional study included 302 adults who had received ubrogepant for the acute treatment of migraine within the preceding 14 days; 120 participants reported taking 50 mg ubrogepant and 182 reported taking 100 mg ubrogepant.
Disclosure: The study was funded by AbbVie. Four authors declared being current or former employees of AbbVie and may hold stock in the company. Several authors reported having ties with various sources.
Source: Shewale AR, Poh W, Reed ML, et al. Ubrogepant users' real-world experience: Patients on ubrogepant, characteristics, and outcomes (UNIVERSE) study. Headache. Published online September 26, 2024. Source
Key clinical point: Ubrogepant showed real-world effectiveness for the acute treatment of migraine, with increased treatment satisfaction and a strong intention to continue using the medication.
Major findings: A high proportion of patients reported using ubrogepant for relief from migraine, with satisfaction rates of 75.8% at 2 hours, 83.4% at 4 hours, and 78.5% at 24 hours. Additionally, 85.1% were satisfied with their ability to think clearly and 83.8% were satisfied with returning to normal function. Overall, 90.7% participants intended to continue using ubrogepant and 87.4% reported switching to ubrogepant due to inadequate response to previous migraine treatments.
Study details: This observational cross-sectional study included 302 adults who had received ubrogepant for the acute treatment of migraine within the preceding 14 days; 120 participants reported taking 50 mg ubrogepant and 182 reported taking 100 mg ubrogepant.
Disclosure: The study was funded by AbbVie. Four authors declared being current or former employees of AbbVie and may hold stock in the company. Several authors reported having ties with various sources.
Source: Shewale AR, Poh W, Reed ML, et al. Ubrogepant users' real-world experience: Patients on ubrogepant, characteristics, and outcomes (UNIVERSE) study. Headache. Published online September 26, 2024. Source
Key clinical point: Ubrogepant showed real-world effectiveness for the acute treatment of migraine, with increased treatment satisfaction and a strong intention to continue using the medication.
Major findings: A high proportion of patients reported using ubrogepant for relief from migraine, with satisfaction rates of 75.8% at 2 hours, 83.4% at 4 hours, and 78.5% at 24 hours. Additionally, 85.1% were satisfied with their ability to think clearly and 83.8% were satisfied with returning to normal function. Overall, 90.7% participants intended to continue using ubrogepant and 87.4% reported switching to ubrogepant due to inadequate response to previous migraine treatments.
Study details: This observational cross-sectional study included 302 adults who had received ubrogepant for the acute treatment of migraine within the preceding 14 days; 120 participants reported taking 50 mg ubrogepant and 182 reported taking 100 mg ubrogepant.
Disclosure: The study was funded by AbbVie. Four authors declared being current or former employees of AbbVie and may hold stock in the company. Several authors reported having ties with various sources.
Source: Shewale AR, Poh W, Reed ML, et al. Ubrogepant users' real-world experience: Patients on ubrogepant, characteristics, and outcomes (UNIVERSE) study. Headache. Published online September 26, 2024. Source
Serostatus and Increased Migraine Risk in Patients With Rheumatoid Arthritis
Key clinical point: Patients with rheumatoid arthritis (RA) had a higher risk for migraine than those without RA, irrespective of the RA serologic status.
Major findings: Patients with vs without RA had a 1.2-fold higher risk for migraine (adjusted hazard ratio (aHR), 1.21; 95% CI, 1.17-1.26). Both seropositive RA (aHR 1.20; 95% CI, 1.15-1.24) and seronegative RA (aHR, 1.26; 95% CI, 1.20-1.34) were associated with an increased risk for migraine. However, the risk was not significantly different between patients with seropositive RA and those with seronegative RA.
Study details: This longitudinal retrospective cohort study included 42,674 patients with RA (29,774 with seropositive RA and 12,900 with seronegative RA) and 213,370 age- and sex-matched control individuals without RA. Overall, 22,294 new migraine cases were reported during a mean follow-up of 4.4 years, following a 1-year lag period.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Kang S, Eun Y, Han K, et al. Heightened migraine risk in patients with rheumatoid arthritis: A national retrospective cohort study. Headache. Published online September 13, 2024. Source
Key clinical point: Patients with rheumatoid arthritis (RA) had a higher risk for migraine than those without RA, irrespective of the RA serologic status.
Major findings: Patients with vs without RA had a 1.2-fold higher risk for migraine (adjusted hazard ratio (aHR), 1.21; 95% CI, 1.17-1.26). Both seropositive RA (aHR 1.20; 95% CI, 1.15-1.24) and seronegative RA (aHR, 1.26; 95% CI, 1.20-1.34) were associated with an increased risk for migraine. However, the risk was not significantly different between patients with seropositive RA and those with seronegative RA.
Study details: This longitudinal retrospective cohort study included 42,674 patients with RA (29,774 with seropositive RA and 12,900 with seronegative RA) and 213,370 age- and sex-matched control individuals without RA. Overall, 22,294 new migraine cases were reported during a mean follow-up of 4.4 years, following a 1-year lag period.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Kang S, Eun Y, Han K, et al. Heightened migraine risk in patients with rheumatoid arthritis: A national retrospective cohort study. Headache. Published online September 13, 2024. Source
Key clinical point: Patients with rheumatoid arthritis (RA) had a higher risk for migraine than those without RA, irrespective of the RA serologic status.
Major findings: Patients with vs without RA had a 1.2-fold higher risk for migraine (adjusted hazard ratio (aHR), 1.21; 95% CI, 1.17-1.26). Both seropositive RA (aHR 1.20; 95% CI, 1.15-1.24) and seronegative RA (aHR, 1.26; 95% CI, 1.20-1.34) were associated with an increased risk for migraine. However, the risk was not significantly different between patients with seropositive RA and those with seronegative RA.
Study details: This longitudinal retrospective cohort study included 42,674 patients with RA (29,774 with seropositive RA and 12,900 with seronegative RA) and 213,370 age- and sex-matched control individuals without RA. Overall, 22,294 new migraine cases were reported during a mean follow-up of 4.4 years, following a 1-year lag period.
Disclosure: The study did not receive any funding. The authors declared no conflicts of interest.
Source: Kang S, Eun Y, Han K, et al. Heightened migraine risk in patients with rheumatoid arthritis: A national retrospective cohort study. Headache. Published online September 13, 2024. Source
Epilepsy May Not Increase Migraine Risk but May Worsen Severity
Key clinical point: Patients with epilepsy showed no significant increase in the overall prevalence of migraine or non-migraine headaches, but those with epilepsy and migraine had an increased frequency of headaches.
Major findings: Compared with individuals without epilepsy, patients with epilepsy had no significant increase in the overall prevalence of migraine (odds ratio [OR], 0.95; P = .78) or non-migraine headaches (OR, 1.18; P = .17). However, among patients with migraine, those with epilepsy were more likely to experience highly frequent headaches than those without epilepsy (OR, 1.73; P = .024).
Study details: This population-based case-control study included 63,622 participants (age, ≥ 20 years); 364 had epilepsy, including 210 without headaches, 46 with migraine, and 108 with non-migraine headaches.
Disclosure: The study was funded by the Norwegian Research Council. The authors declared no conflicts of interest.
Source: Engstrand H, Revdal E, Argren MB, et al. Relationship between migraine and epilepsy in a large population-based cohort: The HUNT Study. Eur J Neurol. Published online September 27, 2024. Source
Key clinical point: Patients with epilepsy showed no significant increase in the overall prevalence of migraine or non-migraine headaches, but those with epilepsy and migraine had an increased frequency of headaches.
Major findings: Compared with individuals without epilepsy, patients with epilepsy had no significant increase in the overall prevalence of migraine (odds ratio [OR], 0.95; P = .78) or non-migraine headaches (OR, 1.18; P = .17). However, among patients with migraine, those with epilepsy were more likely to experience highly frequent headaches than those without epilepsy (OR, 1.73; P = .024).
Study details: This population-based case-control study included 63,622 participants (age, ≥ 20 years); 364 had epilepsy, including 210 without headaches, 46 with migraine, and 108 with non-migraine headaches.
Disclosure: The study was funded by the Norwegian Research Council. The authors declared no conflicts of interest.
Source: Engstrand H, Revdal E, Argren MB, et al. Relationship between migraine and epilepsy in a large population-based cohort: The HUNT Study. Eur J Neurol. Published online September 27, 2024. Source
Key clinical point: Patients with epilepsy showed no significant increase in the overall prevalence of migraine or non-migraine headaches, but those with epilepsy and migraine had an increased frequency of headaches.
Major findings: Compared with individuals without epilepsy, patients with epilepsy had no significant increase in the overall prevalence of migraine (odds ratio [OR], 0.95; P = .78) or non-migraine headaches (OR, 1.18; P = .17). However, among patients with migraine, those with epilepsy were more likely to experience highly frequent headaches than those without epilepsy (OR, 1.73; P = .024).
Study details: This population-based case-control study included 63,622 participants (age, ≥ 20 years); 364 had epilepsy, including 210 without headaches, 46 with migraine, and 108 with non-migraine headaches.
Disclosure: The study was funded by the Norwegian Research Council. The authors declared no conflicts of interest.
Source: Engstrand H, Revdal E, Argren MB, et al. Relationship between migraine and epilepsy in a large population-based cohort: The HUNT Study. Eur J Neurol. Published online September 27, 2024. Source