Study: Neurohospitalists Benefit Academic Medical Centers

Article Type
Changed
Fri, 09/14/2018 - 12:21
Display Headline
Study: Neurohospitalists Benefit Academic Medical Centers

Bringing a neurohospitalist service into an academic medical center can reduce neurological patients' length of stay (LOS) at the facility, according to a study in Neurology.

The retrospective cohort study, "Effect of a Neurohospitalist Service on Outcomes at an Academic Medical Center," found that the mean LOS dropped to 4.6 days while the neurohospitalist service was in place, compared with 6.3 days during the pre-neurohospitalist period. However, adding the service didn't significantly reduce the median cost of care delivery ($6,758 vs. $7,241; P=0.25) or in-hospital mortality rate (1.6% vs. 1.2%; P=0.61), the study noted.

Lead author Vanja Douglas, MD, health sciences assistant clinical professor in the department of neurology at the University of California at San Francisco (UCSF) School of Medicine, says the study's impact is limited by its single-center universe of data. The study was conducted at a UCSF Medical Center in October 2006, but Dr. Douglas hopes similar studies at other academic or community centers will replicate the findings.

"If the current model people have in place is not necessarily focused on outcomes like LOS and cost, then making a change to a neurohospitalist model is likely to positively affect those outcomes," says Dr. Douglas, editor in chief of The Neurohospitalist.

Investigators tracked administrative data starting 21 months before UCSF added a neurohospitalist service and 27 months after. The service was comprised of one neurohospitalist focused solely on inpatients, which allowed other staff neurologists to focus on consultative cases throughout the hospital. Dr. Douglas says as HM groups look to improve their scope of practice and bottom line, studies such as his can lay the groundwork to make the investment.

"A lot of the groups that contract with hospitals are interested in partnering with subspecialty hospitalists," Dr. Douglas adds. "A neurohospitalist model has the potential to work, and the potential to improve outcomes."

 

Issue
The Hospitalist - 2012(10)
Publications
Topics
Sections

Bringing a neurohospitalist service into an academic medical center can reduce neurological patients' length of stay (LOS) at the facility, according to a study in Neurology.

The retrospective cohort study, "Effect of a Neurohospitalist Service on Outcomes at an Academic Medical Center," found that the mean LOS dropped to 4.6 days while the neurohospitalist service was in place, compared with 6.3 days during the pre-neurohospitalist period. However, adding the service didn't significantly reduce the median cost of care delivery ($6,758 vs. $7,241; P=0.25) or in-hospital mortality rate (1.6% vs. 1.2%; P=0.61), the study noted.

Lead author Vanja Douglas, MD, health sciences assistant clinical professor in the department of neurology at the University of California at San Francisco (UCSF) School of Medicine, says the study's impact is limited by its single-center universe of data. The study was conducted at a UCSF Medical Center in October 2006, but Dr. Douglas hopes similar studies at other academic or community centers will replicate the findings.

"If the current model people have in place is not necessarily focused on outcomes like LOS and cost, then making a change to a neurohospitalist model is likely to positively affect those outcomes," says Dr. Douglas, editor in chief of The Neurohospitalist.

Investigators tracked administrative data starting 21 months before UCSF added a neurohospitalist service and 27 months after. The service was comprised of one neurohospitalist focused solely on inpatients, which allowed other staff neurologists to focus on consultative cases throughout the hospital. Dr. Douglas says as HM groups look to improve their scope of practice and bottom line, studies such as his can lay the groundwork to make the investment.

"A lot of the groups that contract with hospitals are interested in partnering with subspecialty hospitalists," Dr. Douglas adds. "A neurohospitalist model has the potential to work, and the potential to improve outcomes."

 

Bringing a neurohospitalist service into an academic medical center can reduce neurological patients' length of stay (LOS) at the facility, according to a study in Neurology.

The retrospective cohort study, "Effect of a Neurohospitalist Service on Outcomes at an Academic Medical Center," found that the mean LOS dropped to 4.6 days while the neurohospitalist service was in place, compared with 6.3 days during the pre-neurohospitalist period. However, adding the service didn't significantly reduce the median cost of care delivery ($6,758 vs. $7,241; P=0.25) or in-hospital mortality rate (1.6% vs. 1.2%; P=0.61), the study noted.

Lead author Vanja Douglas, MD, health sciences assistant clinical professor in the department of neurology at the University of California at San Francisco (UCSF) School of Medicine, says the study's impact is limited by its single-center universe of data. The study was conducted at a UCSF Medical Center in October 2006, but Dr. Douglas hopes similar studies at other academic or community centers will replicate the findings.

"If the current model people have in place is not necessarily focused on outcomes like LOS and cost, then making a change to a neurohospitalist model is likely to positively affect those outcomes," says Dr. Douglas, editor in chief of The Neurohospitalist.

Investigators tracked administrative data starting 21 months before UCSF added a neurohospitalist service and 27 months after. The service was comprised of one neurohospitalist focused solely on inpatients, which allowed other staff neurologists to focus on consultative cases throughout the hospital. Dr. Douglas says as HM groups look to improve their scope of practice and bottom line, studies such as his can lay the groundwork to make the investment.

"A lot of the groups that contract with hospitals are interested in partnering with subspecialty hospitalists," Dr. Douglas adds. "A neurohospitalist model has the potential to work, and the potential to improve outcomes."

 

Issue
The Hospitalist - 2012(10)
Issue
The Hospitalist - 2012(10)
Publications
Publications
Topics
Article Type
Display Headline
Study: Neurohospitalists Benefit Academic Medical Centers
Display Headline
Study: Neurohospitalists Benefit Academic Medical Centers
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)

Seasonality

Article Type
Changed
Fri, 01/18/2019 - 12:16
Display Headline
Seasonality

Did you notice that your practice was slower than normal last February? In fact, if you plot your patient census over a few years, you will probably discover that it dips every February. And you will discover other slow periods, like December, and busy months during other parts of the year.

Seasonal fluctuations are a reality in every business, including private medical practices. Why are people more or less willing to spend money at certain times of the year? Analysts usually blame slow business during January and February on reluctance to buy products or services after the holiday season. They attribute summer peaks to everything from warm weather to an increased propensity to buy when students are on vacation. It is not always easy – or necessary – to explain seasonality. The point is that such behavior patterns do exist.

It would seem that this behavior would be easy to change through advertising or by sending out an e-mail blast, but, unfortunately, altering a seasonal pattern is not an option for a small private practice. It can be done, but it is a deep-pockets game requiring long, expensive campaigns that are only practical for a large, nationwide corporation.

Take soup, for example. For many years, canned soup was purchased and consumed almost exclusively during the winter months because it was universally perceived as a cold-weather product. After years of pervasive advertising extolling its nutritional virtues (remember Campbell’s slogan "Soup is good food"?), the soup industry succeeded in convincing the public to buy their product year round. Obviously, that kind of large-scale behavior modification is not practical for a local medical practice.

Does that mean that there is nothing we can do about our practices’ seasonal variations? Not at all, but we must work within the realities of our patients’ seasonal behavior, rather than attempting to change that behavior outright.

Plotting seasonality is easy: You can make a graph using Microsoft Excel in a few minutes. Ask your office manager or accountant for month-by-month billing figures for the last 2-3 years. (Make sure it’s the amount billed, not collected, since the latter lags the former by several weeks at least.) Plot those figures on the vertical arm and time (in months) on the horizontal. Alternatively, you can plot patient visits per month. I do both.

Once you know your seasonality, review your options, which could mean modifying your own habits when necessary. If you typically take a vacation in August, for example, you many want to reconsider if August is one of your busiest months. Consider vacationing during predictable slow periods instead.

Although I have said that you can’t change most seasonal behavior, it is possible to "retrain" some of your long-time, loyal patients to come in during slower periods for at least some of their care. Use insurance company rules as a financial incentive, where possible. Many of my patients are on Medicare, so I send a notice to all of them in early November, encouraging them to come in during December (one of my light months) before their deductible has to be paid again.

If you advertise your services, do the bulk of it during your busiest months. That might seem counterintuitive: Why not advertise during slow periods to fill the empty slots? Because you cannot change seasonal behavior with a low-budget, local advertising campaign; physicians who attempt it invariably get a poor response. Advertise during your busy periods, when seasonal patterns predict that potential patients are more willing to spend money and are more likely to respond to your message.

Then, try to flatten your seasonal dips by persuading as many existing patients as possible to return during slower seasons. You can then encourage new patients to make appointments when they are receptive to purchasing new services, which would be the seasonal peaks. Once in your practice, some of them can then be shifted into slower periods, especially for predictable, periodic care.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, N.J. To respond to this column, e-mail Dr. Eastern at our editorial offices at [email protected].

Author and Disclosure Information

Publications
Sections
Author and Disclosure Information

Author and Disclosure Information

Did you notice that your practice was slower than normal last February? In fact, if you plot your patient census over a few years, you will probably discover that it dips every February. And you will discover other slow periods, like December, and busy months during other parts of the year.

Seasonal fluctuations are a reality in every business, including private medical practices. Why are people more or less willing to spend money at certain times of the year? Analysts usually blame slow business during January and February on reluctance to buy products or services after the holiday season. They attribute summer peaks to everything from warm weather to an increased propensity to buy when students are on vacation. It is not always easy – or necessary – to explain seasonality. The point is that such behavior patterns do exist.

It would seem that this behavior would be easy to change through advertising or by sending out an e-mail blast, but, unfortunately, altering a seasonal pattern is not an option for a small private practice. It can be done, but it is a deep-pockets game requiring long, expensive campaigns that are only practical for a large, nationwide corporation.

Take soup, for example. For many years, canned soup was purchased and consumed almost exclusively during the winter months because it was universally perceived as a cold-weather product. After years of pervasive advertising extolling its nutritional virtues (remember Campbell’s slogan "Soup is good food"?), the soup industry succeeded in convincing the public to buy their product year round. Obviously, that kind of large-scale behavior modification is not practical for a local medical practice.

Does that mean that there is nothing we can do about our practices’ seasonal variations? Not at all, but we must work within the realities of our patients’ seasonal behavior, rather than attempting to change that behavior outright.

Plotting seasonality is easy: You can make a graph using Microsoft Excel in a few minutes. Ask your office manager or accountant for month-by-month billing figures for the last 2-3 years. (Make sure it’s the amount billed, not collected, since the latter lags the former by several weeks at least.) Plot those figures on the vertical arm and time (in months) on the horizontal. Alternatively, you can plot patient visits per month. I do both.

Once you know your seasonality, review your options, which could mean modifying your own habits when necessary. If you typically take a vacation in August, for example, you many want to reconsider if August is one of your busiest months. Consider vacationing during predictable slow periods instead.

Although I have said that you can’t change most seasonal behavior, it is possible to "retrain" some of your long-time, loyal patients to come in during slower periods for at least some of their care. Use insurance company rules as a financial incentive, where possible. Many of my patients are on Medicare, so I send a notice to all of them in early November, encouraging them to come in during December (one of my light months) before their deductible has to be paid again.

If you advertise your services, do the bulk of it during your busiest months. That might seem counterintuitive: Why not advertise during slow periods to fill the empty slots? Because you cannot change seasonal behavior with a low-budget, local advertising campaign; physicians who attempt it invariably get a poor response. Advertise during your busy periods, when seasonal patterns predict that potential patients are more willing to spend money and are more likely to respond to your message.

Then, try to flatten your seasonal dips by persuading as many existing patients as possible to return during slower seasons. You can then encourage new patients to make appointments when they are receptive to purchasing new services, which would be the seasonal peaks. Once in your practice, some of them can then be shifted into slower periods, especially for predictable, periodic care.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, N.J. To respond to this column, e-mail Dr. Eastern at our editorial offices at [email protected].

Did you notice that your practice was slower than normal last February? In fact, if you plot your patient census over a few years, you will probably discover that it dips every February. And you will discover other slow periods, like December, and busy months during other parts of the year.

Seasonal fluctuations are a reality in every business, including private medical practices. Why are people more or less willing to spend money at certain times of the year? Analysts usually blame slow business during January and February on reluctance to buy products or services after the holiday season. They attribute summer peaks to everything from warm weather to an increased propensity to buy when students are on vacation. It is not always easy – or necessary – to explain seasonality. The point is that such behavior patterns do exist.

It would seem that this behavior would be easy to change through advertising or by sending out an e-mail blast, but, unfortunately, altering a seasonal pattern is not an option for a small private practice. It can be done, but it is a deep-pockets game requiring long, expensive campaigns that are only practical for a large, nationwide corporation.

Take soup, for example. For many years, canned soup was purchased and consumed almost exclusively during the winter months because it was universally perceived as a cold-weather product. After years of pervasive advertising extolling its nutritional virtues (remember Campbell’s slogan "Soup is good food"?), the soup industry succeeded in convincing the public to buy their product year round. Obviously, that kind of large-scale behavior modification is not practical for a local medical practice.

Does that mean that there is nothing we can do about our practices’ seasonal variations? Not at all, but we must work within the realities of our patients’ seasonal behavior, rather than attempting to change that behavior outright.

Plotting seasonality is easy: You can make a graph using Microsoft Excel in a few minutes. Ask your office manager or accountant for month-by-month billing figures for the last 2-3 years. (Make sure it’s the amount billed, not collected, since the latter lags the former by several weeks at least.) Plot those figures on the vertical arm and time (in months) on the horizontal. Alternatively, you can plot patient visits per month. I do both.

Once you know your seasonality, review your options, which could mean modifying your own habits when necessary. If you typically take a vacation in August, for example, you many want to reconsider if August is one of your busiest months. Consider vacationing during predictable slow periods instead.

Although I have said that you can’t change most seasonal behavior, it is possible to "retrain" some of your long-time, loyal patients to come in during slower periods for at least some of their care. Use insurance company rules as a financial incentive, where possible. Many of my patients are on Medicare, so I send a notice to all of them in early November, encouraging them to come in during December (one of my light months) before their deductible has to be paid again.

If you advertise your services, do the bulk of it during your busiest months. That might seem counterintuitive: Why not advertise during slow periods to fill the empty slots? Because you cannot change seasonal behavior with a low-budget, local advertising campaign; physicians who attempt it invariably get a poor response. Advertise during your busy periods, when seasonal patterns predict that potential patients are more willing to spend money and are more likely to respond to your message.

Then, try to flatten your seasonal dips by persuading as many existing patients as possible to return during slower seasons. You can then encourage new patients to make appointments when they are receptive to purchasing new services, which would be the seasonal peaks. Once in your practice, some of them can then be shifted into slower periods, especially for predictable, periodic care.

Dr. Eastern practices dermatology and dermatologic surgery in Belleville, N.J. To respond to this column, e-mail Dr. Eastern at our editorial offices at [email protected].

Publications
Publications
Article Type
Display Headline
Seasonality
Display Headline
Seasonality
Sections
Article Source

PURLs Copyright

Inside the Article

VIP Quality Improvement Network

Article Type
Changed
Mon, 05/22/2017 - 18:08
Display Headline
Decreasing unnecessary utilization in acute bronchiolitis care: Results from the value in inpatient pediatrics network

Currently, 3%5% of infants under a year of age will be admitted to a hospital for acute viral bronchiolitis each year, making it the leading cause of hospitalization in children.15 The American Academy of Pediatrics guideline on the diagnosis and management of bronchiolitis advocates primarily supportive care for this self‐limited disease.6 Specifically, the routine use of therapies such as bronchodilators and corticosteroids are not recommended, nor is routine evaluation with diagnostic testing.6 Numerous studies have established the presence of unwarranted variation in most aspects of bronchiolitis care,713 and the current evidence does not support the routine usage of specific interventions in inpatients.1418

Acute bronchiolitis accounts for direct inpatient medical costs of over $500 million per year.19 Based on estimates from the Healthcare Utilization Project Kids' Inpatient Database, acute bronchiolitis is second only to respiratory distress syndrome as the most expensive disease of hospitalized children.1 Although charges may not correlate directly with costs or even the actual intensity of resource utilization, the national bill, based on charges, is approximately 1.4 billion dollars per year.1 Either way, the leading cause of hospitalization in children is expensive and suffers from dramatic variation in care characterized by overutilization of ineffective interventions.

Evidence‐based guidelines for bronchiolitis are readily available and their successful adoption within larger, academic children's hospitals has been demonstrated.2028 However, upwards of 70% of all children in this country are cared for outside of freestanding children's hospitals,1 and very little has been published about wide dissemination of evidence‐based guidelines in these settings.29 In 2008, the Value in Inpatient Pediatrics (VIP) network was created, as an inclusive pediatric inpatient quality improvement collaborative with a focus on linking academic and community‐based hospitalist groups, to disseminate evidence‐based management strategies for bronchiolitis. We hypothesized that group norming, through benchmarking and public goal setting at the level of the hospitalist group, would decrease overall utilization of nonevidence‐based therapies. Specifically, we were trying to decrease the utilization of bronchodilators, steroids, chest physiotherapy, chest radiography, and viral testing in hospitalized children diagnosed with uncomplicated bronchiolitis.

METHODS

Beginning in early 2008, we recruited pediatric hospitalists into a voluntary bronchiolitis quality improvement collaborative from within the community of hospitalists created by the American Academy of Pediatrics Section on Hospital Medicine. Participants were recruited through open calls at national conferences and mass e‐mails to the section membership through the listserve. The guiding principle for the collaborative was the idea that institutional adoption of evidence‐based disease‐management strategies would result in higher value of care, and that this process could be facilitated by benchmarking local performance against norms created within the larger community. We used group consensus to identify the therapies and tests to benchmark, although the chosen measures meshed with those addressed in the American Academy of Pediatrics (AAP) clinical practice guideline. Use of bronchodilators, corticosteroids, chest physiotherapy, chest radiography, and viral testing were all felt to be significantly overutilized in participating clinical sites. We were unaware of any published national targets for utilization of these therapies or tests, and none of the participating hospitalist groups was actively benchmarking their utilization against any peer group at the start of the project. Length of stay, rates of readmission within 72 hours of discharge, and variable direct costs were chosen as balancing measures for the project.

We collected data on hospitalizations for bronchiolitis for 4 calendar years, from 2007 through 2010, based on the following inclusion criteria: children under 24 months of age, hospitalized for the primary diagnosis of acute viral bronchiolitis as defined by International Classification of Diseases, Ninth Revision (ICD‐9) codes 466.11 and 466.19. We specifically included patients who were in observation status as well as those in inpatient status, and excluded all intensive care unit admissions. Other exclusions were specific ICD‐9 codes for: chronic lung diseases, asthma, chromosomal abnormalities, heart disease, and neurological diseases. We then tracked overall utilization of any bronchodilator (albuterol, levalbuterol, epinephrine, or ipratropium) during the hospitalization, including the emergency department; total number of bronchodilator doses per patient; utilization of any corticosteroids (inhaled or systemic); chest radiography; respiratory syncytial virus (RSV) testing; and chest physiotherapy; as well as variable direct costs per hospitalization for each center. A standardized toolkit was provided to participating centers to facilitate data collection. Data was sought from administrative sources, collected in aggregate form and not at the patient level, and no protected health information was collected as part of the project. The project was categorized as exempt by the University of Texas Health Science Center San Antonio Institutional Review Board, the location of the data repository.

The project began in 2008, though we requested that centers provide 2007 data to supplement our baseline. We held the first group meeting in July 2009 and began the facilitated sharing of resources to promote evidence‐based care, such as guidelines, protocols, respiratory scores, and patient handouts, across sites using data from 2007 and 2008 as our baseline for benchmarking and later assessing any improvement. Centers adopted guidelines at their own pace and we did not require guideline adoption for continued participation. We provided summaries of the available literature by topic, in the event that site leaders wished to give institutional grand rounds or other presentations. All dissemination of guidelines or protocols was done based on the request of the center, and no specific resource was created or sanctioned by the group, though the AAP Guideline for the Diagnosis and Management of Bronchiolitis6 remained a guiding document. Some of our centers participated in more extensive collaborative projects which involved small‐group goal setting, adoption of similar protocols, and conference calls, though this never encompassed more than 25% of the network.

The main product of the project was a yearly report benchmarking each hospital against the network average on each of our chosen utilization measures. The first report was disseminated in July 2009 and included data on calendar year 2007 and 2008, which we considered our group baseline. Most institutions began local Plan‐Do‐Study‐Act (PDSA) cycles by mid‐2009 using the data we provided as they benchmarked their performance against other members of the collaborative, and these continued through 2010. Hospitals were coded and remained anonymous. However, we publicly honored the high performers within the network at a yearly meeting, and urged these centers to share their tools and strategies, which was facilitated through a project Web site.30 All participation was voluntary, and all costs were borne by individuals or their respective centers.

In order to assess data quality, we undertook a validation project for calendar year 2009. We requested local direct chart review of a 10% sample, or a minimum of 10 charts, to confirm reported utilization rates for the therapies and tests we tracked. Any center with less than 80% accuracy was then asked to review data collection methods and make adjustments accordingly. One center identified and resolved a significant data discrepancy and 2 centers refused to participate in the validation project, citing their participation in a large national database for which there was already a very rigorous data validation process (Child Health Corporation of America's Pediatric Health Information System database). Given that we did not uncover major discrepancies in data quality within our network, we did not request further data validation but rather promoted year‐to‐year consistency of collection methods, seeking to collect the same type/quality of data that hospitals use in their own internal performance assessments.

Statistical analyses were performed using GraphPad InStat, version 3.0 (GraphPad Software, San Diego, CA). Descriptive statistics (including interquartile range ([IQR], the range from 25th to 75th percentile of the data) are provided. Analysis of process measures over the series of years was performed using repeated measures analysis of variance (ANOVA), as were intra‐hospital comparisons for all measures. Hospitals were not weighted by volume of admissions, ie, the unit of analysis was the hospital and not individual hospitalizations. Data were analyzed for normality using the method of Kolmogorov and Smirnoff, and in cases where normality was not satisfied (steroids and chest physiotherapy), the data were transformed and nonparametric methods were used. Post‐test adjustment for multiple comparisons was done using the TukeyKramer test in cases where ANOVA P values were <0.05. Fisher's exact test was used to analyze contingency tables for categorical variables such as presence or absence of a protocol.

RESULTS

Data encompassing 11,568 bronchiolitis hospitalizations in 17 centers, for calendar years 2007 to 2010, were analyzed for this report. A total of 31 centers ever participated in the project; however, this report is restricted to centers who participated for the entirety of the project from 2008 through 2010, and who consented to have their data reported. Specifically, 18 centers met inclusion criteria and 1 center opted out of the project, leaving the 17 centers described in Table 1. The overall network makeup shifted each year, but was always more than 80% non‐freestanding children's hospitals and approximately 30% urban, as defined as located in a population center of more than 1 million. A large majority of the participants did not have a local bronchiolitis protocol or guideline at the start of the project, although 88% of participants adopted some form of protocolized care by 2010. Calendar years 2007 and 2008 served as our network baseline, with most interventions (in institutions where they occurred) begun by calendar year 2009. The level of intervention varied greatly among institutions, with a few institutions doing nothing more than benchmarking their performance.

Characteristics of Participating Hospitals: VIP Bronchiolitis Project
Participating Centers (Alphabetically by State)Type of FacilityAverage Yearly Bronchiolitis AdmissionsApproximate Medicaid (%)Guideline Prior to Joining Project?Location
  • NOTE: Urban defined as location within a population center of 1 million. Abbreviations: CHWH, children's hospital within a hospital; FSCH, freestanding children's hospital; PEDS, pediatric unit within a larger hospital; VIP, Value in Inpatient Pediatrics network.

Scottsdale Healthcare Scottsdale, AZPEDS13326NoSuburban
Shands Hospital for Children at the University of Florida Gainesville, FLCHWH10759NoSuburban
Children's Hospital of Illinois Peoria, ILCHWH9715NoSuburban
Kentucky Children's Hospital Lexington, KYCHWH13560YesSuburban
Our Lady of the Lake Baton Rouge, LACHWH13870NoSuburban
The Barbara Bush Children's Hospital Portland, MECHWH3141YesSuburban
Franklin Square Hospital Center Baltimore, MDPEDS6640NoSuburban
Anne Arundel Medical Center Annapolis, MDCHWH5636NoSuburban
Children's Hospital at Montefiore Bronx, NYCHWH22065NoUrban
Mission Children's Hospital Asheville, NCCHWH11221YesSuburban
Cleveland Clinic Children's Hospital Cleveland, OHCHWH5824YesUrban
Palmetto Health Children's Hospital Columbia, SCCHWH18160NoSuburban
East Tennessee Children's Hospital Knoxville, TNFSCH37360NoSuburban
Texas Children's Hospital Houston, TXFSCH61960YesUrban
Christus Santa Rosa Children's Hospital San Antonio, TXCHWH39071NoUrban
Children's Hospital of The Kings' Daughters Norfolk, VAFSCH30360NoSuburban
Children's Hospital of Richmond Richmond, VACHWH4060NoUrban

Mean length of stay (LOS), readmission rates, and variable direct costs did not differ significantly during the project time period. Mean LOS for the network ranged from a low of 2.4 days (IQR, 2.22.8 days) to a high of 2.7 days (IQR, 2.43.1 days), and mean readmission rates ranged from 1.2% (IQR, 0.7%1.8%) to 1.7% (IQR, 0.7%2.5%) during the project. Mean variable direct costs ranged from $1639 (IQR, $1383$1864) to $1767 (IQR, $1365$2320).

Table 2 describes the mean overall utilization of bronchodilators, chest radiography, RSV testing, steroids, and chest physiotherapy among the group from 2007 to 2010. By 2010, we saw a 46% decline in the volume of bronchodilator used within the network, a 3.6 (95% confidence interval [CI] 1.45.8) dose per patient absolute decrease (P < 0.01). We also saw a 12% (95% CI 5%25%) absolute decline in the overall percentage of patients exposed to any bronchodilator (P < 0.01). Finally, there was a 10% (95% CI 3%18%) absolute decline in the overall utilization of any chest physiotherapy (P < 0.01). The project did not demonstrate a significant impact on utilization of corticosteroids, chest radiography, or viral testing, although several centers achieved significant decreases on a local level (data not shown).

Network Mean Utilization of Targeted Therapies
Utilization Measure2007200820092010
No. (IQR)No. (IQR)No. (IQR)No. (IQR)
  • Abbreviations: IQR, interquartile range; NS, not significant; RSV, respiratory syncytial virus.

Bronchodilator doses per patient (P < 0.01)7.9 (4.69.8)6.4 (4.08.4)5.7 (3.67.6)4.3 (3.05.9)
Any bronchodilators (P < 0.01)70% (59%83%)67% (56%77%)68% (61%76%)58% (46%69%)
Chest physiotherapy (P < 0.01)14% (5%19%)10% (1%8%)7% (2%6%)4% (1%7%)
Chest radiography (P = NS)64% (54%81%)66% (55%79%)64% (60%73%)59% (50%73%)
Any steroids (P = NS)21% (14%26%)20% (15%28%)21% (14%22%)16% (13%25%)
RSV testing (P = NS)64% (52%84%)61% (49%78%)62% (50%78%)57% (44%75%)

We analyzed within‐hospital trends as well. Figure 1 describes intra‐hospital change over the course of the project for overall bronchodilator usage. In this analysis, 15 of 17 hospitals (88%) achieved a significant decrease in overall bronchodilator utilization by 2010. (Hospitals 27 and 29 were unable to provide 2007 baseline data.) For doses per patient, 15 of 17 institutions provided data on this measure, and 12 of 15 (80%) achieved significant decreases (Figure 2). Of note, the institutions failing to achieve significant decreases in bronchodilator utilization entered the project with utilization rates that were already significantly below network mean at the start of the project. (Institutions failing to improve are denoted with an asterisk in Figures 1 and 2.) Since most institutions made significant improvements in bronchodilator utilization over time, we looked for correlates of failure to decrease utilization. The strongest association for failure to improve during the project period was use of a protocol prior to joining the network (odds ratio [OR] = 11, 95% CI 261).

Figure 1
Intra‐hospital change in bronchodilator utilization. Asterisks indicate institutions failing to improve.
Figure 2
Intra‐hospital trends in volume of bronchodilator utilization. Asterisks indicate institutions failing to improve.

DISCUSSION

We demonstrated a significant decline in utilization of bronchodilators and chest physiotherapy in inpatient bronchiolitis within a voluntary quality collaborative focused on benchmarking without employing intensive interventions. This observation is important in that it demonstrates real‐world efficacy for our methods. Prior literature has clearly demonstrated that local bronchiolitis guidelines are effective; however, our data on over 11,000 hospitalizations from a broad array of inpatient settings continue to show a high rate of overutilization. We facilitated dissemination and sharing of guideline‐related tools primarily electronically, and capitalized on perceived peer‐group frustration with inefficient management of a high‐volume, high‐utilization disease. While the project leadership had varying degrees of advanced training in quality improvement methodology, the majority of the site leaders were self‐taught and trained while on the job. Our inclusive collaborative had some success using pragmatic and low‐resource methods which we believe is a novel approach to the issue of overutilization.

These considerations are highlighted given the pressing need to find more efficient and scalable means of bending the cost curve of healthcare in the United States. Learning collaboratives are a relatively new model for improvement, with some history in pediatrics,31, 32 and are attractive because of their potential to generate both widespread capacity for change as well as direct improvement. Both cystic fibrosis31 and neonatology collaboratives32 have been celebrated for their positive impacts on children's healthcare, and both are testaments to the power inherent in creating a community of like‐minded individuals. One of the most popular models for learning collaboratives remains the Institute for Healthcare Improvement's Breakthrough Series; however, this model is resource intensive in that it typically involves large teams and several yearly face‐to‐face meetings, with significant monetary investment on the part of hospitals. On the other hand, virtual collaboratives have produced mixed results with respect to quality improvement,33 so there is a continued need to maximize our learning about what works efficiently. Our collaborative was able to successfully disseminate tools developed in large academic institutions to be applied in smaller and more varied settings, where resources for quality improvement activities were limited.

One possible reason for any successes in this project was the existence of a well‐known guideline for the management of bronchiolitis published by the American Academy of Pediatrics in 2006. This guideline recommends primarily symptomatic care, and has a statement supporting the contention that routine use of our targeted therapies is unnecessary. It allows for a trial of bronchodilator, but specifically states that all trials should be accompanied by the use of an objective measure of improvement (typically interpreted to mean a respiratory distress score). A guideline sanctioned by an important national organization of pediatricians was invaluable, and we believe that it should serve as a basis for any nationally promoted inpatient quality measure for this very common pediatric illness. The existence of the AAP guideline also highlights the possibility that our results are merely representative of secular trends in utilization in bronchiolitis care, since we had no control group. The available literature on national guidelines has shown mixed and quite modest impacts in other countries.28, 34 Most of our group took active steps to operationalize the guidelines as part of their participation in this collaborative, though they might have done similar work anyway due to the increasing importance of quality improvement in hospitalist culture over the years of the project.

The project did not demonstrate any impact on steroid utilization, or on rates of obtaining chest radiography or viral testing, despite expressly targeting these widely overused interventions. These modalities are often employed in the emergency department and, as a collaborative of pediatric hospitalists, we did not have specific emergency department participation which we recognize as a major weakness and potential impediment to further progress. We hope to collaborate with our respective emergency departments in the future on these particular measures. We also noted that many institutions were inflexible about foregoing viral testing, due to infection control issues arising from the need to cohort patients in shared rooms based on RSV positivity during the busy winter months. A few institutions were able to alter their infection control policies using the strategy of assuming all children with bronchiolitis had RSV (ie, choosing to use both contact precautions and to wear a mask when entering rooms), though this was not universally popular. Finally, we recognize a missed opportunity in not collecting dose per patient level data for steroids, which might have allowed us to distinguish hospitals with ongoing inpatient utilization of steroids from those with only emergency department usage.

Another significant limitation of this project was the lack of annual assessments of data quality. However, we believe our findings are still useful and important, even with this obvious limitation. Most quality improvement work is done using hospital‐supplied data gleaned from administrative databases, exactly the sources used in this project. Key decisions are made in most hospitals in the country based on data of similar quality. Further limitations of the project relate to the issue of replicability. The disease process we addressed is a major source of frustration to pediatric hospitalists, and our sample likely consisted of the most highly motivated individuals, as they sought out and joined a group with the express purpose of decreasing unnecessary utilization in bronchiolitis. We believe this limitation highlights the likely need for quality measures to emerge organically out of a community of practice when resources are limited, ie, we do not believe we would have had significant success using our methods with an unpopular or externally imposed quality measure.

Although a detailed analysis of costs was beyond the scope of the current project, it is possible that decreased utilization resulted in overall cost savings, despite the fact that our data did not demonstrate a significant change in network‐level average variable direct costs related to bronchiolitis. It has been suggested that such savings may be particularly difficult to demonstrate objectively, especially when the principal costs targeted are labor‐based.35 LOS did not significantly vary during the project, whereas the use of labor‐intensive therapies like nebulized bronchodilators and chest physiotherapy declined. It is, however, quite possible that the decreased utilization we demonstrated was accompanied by a concomitant increase in utilization of other unmeasured therapies.

CONCLUSIONS

A volunteer, peer‐group collaborative focused on benchmarking decreased utilization of bronchodilators and chest physiotherapy in bronchiolitis, though had no impact on overuse of other unnecessary therapies and tests.

Acknowledgements

The following authors have participated in the production of this work by: Conception and design of project: Ralston, Garber, Narang, Shen, Pate; Acquisition of data: Ralston, Garber, Narang, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Analysis and interpretation of data: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Drafting the article: Ralston, Garber, Shen; Revising it critically for important intellectual content, and final approval of the version to be published: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan.

Disclosures: The VIP network receives financial/administrative support from the American Academy of Pediatrics through the Quality Improvement Innovations Network. Dr Ralston receives financial support from the American Academy of Pediatrics as editor of the AAP publication, Hospital Pediatrics. Drs Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, and Ryan report no conflicts.

Files
References
  1. HCUPnet. Kids Inpatient Database 2006. Available at: http://hcupnet.ahrq.gov/. Accessed February 6, 2011.
  2. Leader S, Kohlhase K. Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J Pediatr. 2003;143:S127S132.
  3. Yorita KL, Holman RC, Sejvar JJ, Steiner CA, Schonberger LB. Infectious disease hospitalizations among infants in the United States. Pediatrics. 2008;121:244252.
  4. Smyth RL, Openshaw PJ. Bronchiolitis. Lancet. 2006;368:312322.
  5. Boyce TG, Mellen BG, Mitchel EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in Medicaid. J Pediatr. 2000;137:865870.
  6. Subcommittee on the Diagnosis and Management of Bronchiolitis, 2004–2006. Clinical practice guideline: diagnosis and management of bronchiolitis. Pediatrics. 2006;118:17741793.
  7. Mansbach JM, Emond JA, Camargo CA. Bronchiolitis in US emergency departments 1992 to 2000: epidemiology and practice variation. Pediatr Emerg Care. 2005;21:242247.
  8. Plint AC, Johnson DW, Wiebe N, et al. Practice variation among pediatric emergency departments in the treatment of bronchiolitis. Acad Emerg Med. 2004;11:353360.
  9. Mallory MD, Shay DK, Garrett J, Bordley WC. Bronchiolitis management preferences and the influence of pulse oximetry and respiratory rate on the decision to admit. Pediatrics. 2003;111:e45e51.
  10. Conway PH, Edwards S, Stucky ER, Chiang VW, Ottolini MC, Landrigan CP. Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians. Pediatrics. 2006;118:441447.
  11. Landrigan CP, Conway PH, Stucky ER, Chiang VW, Ottolini MC. Variation in pediatric hospitalists' use of proven and unproven therapies: a study from the Pediatric Research in Inpatient Settings (PRIS) network. J Hosp Med. 2008;3:292298.
  12. Wang EE, Law BJ, Boucher FD, et al. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) study of admission and management variation in patients hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr. 1996;129:390395.
  13. Willson DF, Horn SD, Hendley JO, Smout R, Gassaway J. Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness. Pediatrics. 2001;108:851855.
  14. Gadomski AM, Brower M. Bronchodilators for bronchiolitis. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD001266.
  15. Perotta C, Ortiz Z, Roque M. Chest physiotherapy for acute bronchiolitis in pediatric patients between 0 and 24 months old. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD004873.
  16. Hartling L, Bialy LM, Vandermeer B, et al. Epinephrine for bronchiolitis. Cochrane Database Syst Rev. 2011 Jun 15;(6):CD003123.
  17. Fernandes RM, Bialy LM, Vandermeer B, et al. Glucocorticoids for acute bronchiolitis in infants and young children. Cochrane Database Syst Rev. 2010 Oct 6;(10):CD004878.
  18. Davison C, Ventre KM, Lucetti M, Randolph AG. Efficacy of interventions for bronchiolitis in critically ill infants: a systematic review and meta‐analysis. Pediatr Crit Care Med. 2004;5:482489.
  19. Pelletier AJ, Mansbach JM, Camargo CA. Direct medical costs of bronchiolitis hospitalizations in the United States. Pediatrics. 2006;118(6):24182423.
  20. Perlstein PH, Kotagal UR, Bolling C, et al. Evaluation of an evidence‐based guideline for bronchiolitis. Pediatrics. 1999;104(6):13341341.
  21. Adcock PM, Sanders CL, Marshall GS. Standardizing the care of bronchiolitis. Arch Pediatr Adolesc Med. 1998;152(8):739744.
  22. Muething S, Schoettker PJ, Gerhardt WE, Atherton HD, Britto MT, Kotagal UR. Decreasing overuse of therapies in the treatment of bronchiolitis by incorporating evidence at the point of care. J Pediatr. 2004;144:703710.
  23. King WJ, Le Saux N, Sampson M, Gaboury I, Norris M, Moher D. Effect of point of care information on inpatient management of bronchiolitis. BMC Pediatr. 2007;7:4.
  24. Cheney J, Barber S, Altamirano L, et al. A clinical pathway for bronchiolitis is effective in reducing readmission rates. J Pediatr. 2005;147:622626.
  25. Perlstein PH, Kotagal UR, Schoettker PJ, et al. Sustaining the implementation of an evidence‐based guideline for bronchiolitis. Arch Pediatr Adolesc Med. 2000;154:10011007.
  26. David M, Luc‐Vanuxem C, Loundou A, Bosdure E, Auquier P, Dubus JC. Assessment of the French Consensus Conference for Acute Viral Bronchiolitis on outpatient management: progress between 2003 and 2008 [in French]. Arch Pediatr. 2010;17:125131.
  27. Kotagal UR, Robbins JM, Kini NM, Schoettker PJ, Atherton HD, Kirschbaum MS. Impact of a bronchiolitis guideline: a multisite demonstration project. Chest. 2002;121:17891797.
  28. Barben J, Kuehni CE, Trachsel D, Hammer J. Management of acute bronchiolitis: can evidence based guidelines alter clinical practice? Thorax. 2008;63:11031109.
  29. Dougherty D, Conway PH. The “3 T's” roadmap to transform US health care: the “how” of high quality care. JAMA. 2008;299(19):23192321.
  30. The VIP Network. Available at: http://www.vipnetwork.webs.com. Accessed October 5, 2010.
  31. Quon BS, Goss CH. A story of success: continuous quality improvement in cystic fibrosis in the USA. Thorax. 2011;66:11061168.
  32. Payne NR, Finkelstein MJ, Liu M, Kaempf JW, Sharek PJ, Olsen S. NICU practices and outcomes associated with 9 years of quality improvement collaboratives. Pediatrics. 2010;125:437446.
  33. Speroff T, Ely EW, Greevey R, et al. Quality improvement projects target health care‐associated infections: comparing virtual collaborative and toolkit approaches. J Hosp Med. 2011;6:271278.
  34. Touzet S, Réfabert L, Letrilliart L, Ortolan B, Colin C. Impact of consensus development conference guidelines on primary care of bronchiolitis: are national guidelines being followed? J Eval Clin Pract. 2007;13:651656.
  35. Rauh SS, Wadsworth EB, Weeks WB, Weinstein JN. The savings illusion—why clinical quality improvement fails to deliver bottom‐line results. N Engl J Med. 2011;365:e48.
Article PDF
Issue
Journal of Hospital Medicine - 8(1)
Page Number
25-30
Sections
Files
Files
Article PDF
Article PDF

Currently, 3%5% of infants under a year of age will be admitted to a hospital for acute viral bronchiolitis each year, making it the leading cause of hospitalization in children.15 The American Academy of Pediatrics guideline on the diagnosis and management of bronchiolitis advocates primarily supportive care for this self‐limited disease.6 Specifically, the routine use of therapies such as bronchodilators and corticosteroids are not recommended, nor is routine evaluation with diagnostic testing.6 Numerous studies have established the presence of unwarranted variation in most aspects of bronchiolitis care,713 and the current evidence does not support the routine usage of specific interventions in inpatients.1418

Acute bronchiolitis accounts for direct inpatient medical costs of over $500 million per year.19 Based on estimates from the Healthcare Utilization Project Kids' Inpatient Database, acute bronchiolitis is second only to respiratory distress syndrome as the most expensive disease of hospitalized children.1 Although charges may not correlate directly with costs or even the actual intensity of resource utilization, the national bill, based on charges, is approximately 1.4 billion dollars per year.1 Either way, the leading cause of hospitalization in children is expensive and suffers from dramatic variation in care characterized by overutilization of ineffective interventions.

Evidence‐based guidelines for bronchiolitis are readily available and their successful adoption within larger, academic children's hospitals has been demonstrated.2028 However, upwards of 70% of all children in this country are cared for outside of freestanding children's hospitals,1 and very little has been published about wide dissemination of evidence‐based guidelines in these settings.29 In 2008, the Value in Inpatient Pediatrics (VIP) network was created, as an inclusive pediatric inpatient quality improvement collaborative with a focus on linking academic and community‐based hospitalist groups, to disseminate evidence‐based management strategies for bronchiolitis. We hypothesized that group norming, through benchmarking and public goal setting at the level of the hospitalist group, would decrease overall utilization of nonevidence‐based therapies. Specifically, we were trying to decrease the utilization of bronchodilators, steroids, chest physiotherapy, chest radiography, and viral testing in hospitalized children diagnosed with uncomplicated bronchiolitis.

METHODS

Beginning in early 2008, we recruited pediatric hospitalists into a voluntary bronchiolitis quality improvement collaborative from within the community of hospitalists created by the American Academy of Pediatrics Section on Hospital Medicine. Participants were recruited through open calls at national conferences and mass e‐mails to the section membership through the listserve. The guiding principle for the collaborative was the idea that institutional adoption of evidence‐based disease‐management strategies would result in higher value of care, and that this process could be facilitated by benchmarking local performance against norms created within the larger community. We used group consensus to identify the therapies and tests to benchmark, although the chosen measures meshed with those addressed in the American Academy of Pediatrics (AAP) clinical practice guideline. Use of bronchodilators, corticosteroids, chest physiotherapy, chest radiography, and viral testing were all felt to be significantly overutilized in participating clinical sites. We were unaware of any published national targets for utilization of these therapies or tests, and none of the participating hospitalist groups was actively benchmarking their utilization against any peer group at the start of the project. Length of stay, rates of readmission within 72 hours of discharge, and variable direct costs were chosen as balancing measures for the project.

We collected data on hospitalizations for bronchiolitis for 4 calendar years, from 2007 through 2010, based on the following inclusion criteria: children under 24 months of age, hospitalized for the primary diagnosis of acute viral bronchiolitis as defined by International Classification of Diseases, Ninth Revision (ICD‐9) codes 466.11 and 466.19. We specifically included patients who were in observation status as well as those in inpatient status, and excluded all intensive care unit admissions. Other exclusions were specific ICD‐9 codes for: chronic lung diseases, asthma, chromosomal abnormalities, heart disease, and neurological diseases. We then tracked overall utilization of any bronchodilator (albuterol, levalbuterol, epinephrine, or ipratropium) during the hospitalization, including the emergency department; total number of bronchodilator doses per patient; utilization of any corticosteroids (inhaled or systemic); chest radiography; respiratory syncytial virus (RSV) testing; and chest physiotherapy; as well as variable direct costs per hospitalization for each center. A standardized toolkit was provided to participating centers to facilitate data collection. Data was sought from administrative sources, collected in aggregate form and not at the patient level, and no protected health information was collected as part of the project. The project was categorized as exempt by the University of Texas Health Science Center San Antonio Institutional Review Board, the location of the data repository.

The project began in 2008, though we requested that centers provide 2007 data to supplement our baseline. We held the first group meeting in July 2009 and began the facilitated sharing of resources to promote evidence‐based care, such as guidelines, protocols, respiratory scores, and patient handouts, across sites using data from 2007 and 2008 as our baseline for benchmarking and later assessing any improvement. Centers adopted guidelines at their own pace and we did not require guideline adoption for continued participation. We provided summaries of the available literature by topic, in the event that site leaders wished to give institutional grand rounds or other presentations. All dissemination of guidelines or protocols was done based on the request of the center, and no specific resource was created or sanctioned by the group, though the AAP Guideline for the Diagnosis and Management of Bronchiolitis6 remained a guiding document. Some of our centers participated in more extensive collaborative projects which involved small‐group goal setting, adoption of similar protocols, and conference calls, though this never encompassed more than 25% of the network.

The main product of the project was a yearly report benchmarking each hospital against the network average on each of our chosen utilization measures. The first report was disseminated in July 2009 and included data on calendar year 2007 and 2008, which we considered our group baseline. Most institutions began local Plan‐Do‐Study‐Act (PDSA) cycles by mid‐2009 using the data we provided as they benchmarked their performance against other members of the collaborative, and these continued through 2010. Hospitals were coded and remained anonymous. However, we publicly honored the high performers within the network at a yearly meeting, and urged these centers to share their tools and strategies, which was facilitated through a project Web site.30 All participation was voluntary, and all costs were borne by individuals or their respective centers.

In order to assess data quality, we undertook a validation project for calendar year 2009. We requested local direct chart review of a 10% sample, or a minimum of 10 charts, to confirm reported utilization rates for the therapies and tests we tracked. Any center with less than 80% accuracy was then asked to review data collection methods and make adjustments accordingly. One center identified and resolved a significant data discrepancy and 2 centers refused to participate in the validation project, citing their participation in a large national database for which there was already a very rigorous data validation process (Child Health Corporation of America's Pediatric Health Information System database). Given that we did not uncover major discrepancies in data quality within our network, we did not request further data validation but rather promoted year‐to‐year consistency of collection methods, seeking to collect the same type/quality of data that hospitals use in their own internal performance assessments.

Statistical analyses were performed using GraphPad InStat, version 3.0 (GraphPad Software, San Diego, CA). Descriptive statistics (including interquartile range ([IQR], the range from 25th to 75th percentile of the data) are provided. Analysis of process measures over the series of years was performed using repeated measures analysis of variance (ANOVA), as were intra‐hospital comparisons for all measures. Hospitals were not weighted by volume of admissions, ie, the unit of analysis was the hospital and not individual hospitalizations. Data were analyzed for normality using the method of Kolmogorov and Smirnoff, and in cases where normality was not satisfied (steroids and chest physiotherapy), the data were transformed and nonparametric methods were used. Post‐test adjustment for multiple comparisons was done using the TukeyKramer test in cases where ANOVA P values were <0.05. Fisher's exact test was used to analyze contingency tables for categorical variables such as presence or absence of a protocol.

RESULTS

Data encompassing 11,568 bronchiolitis hospitalizations in 17 centers, for calendar years 2007 to 2010, were analyzed for this report. A total of 31 centers ever participated in the project; however, this report is restricted to centers who participated for the entirety of the project from 2008 through 2010, and who consented to have their data reported. Specifically, 18 centers met inclusion criteria and 1 center opted out of the project, leaving the 17 centers described in Table 1. The overall network makeup shifted each year, but was always more than 80% non‐freestanding children's hospitals and approximately 30% urban, as defined as located in a population center of more than 1 million. A large majority of the participants did not have a local bronchiolitis protocol or guideline at the start of the project, although 88% of participants adopted some form of protocolized care by 2010. Calendar years 2007 and 2008 served as our network baseline, with most interventions (in institutions where they occurred) begun by calendar year 2009. The level of intervention varied greatly among institutions, with a few institutions doing nothing more than benchmarking their performance.

Characteristics of Participating Hospitals: VIP Bronchiolitis Project
Participating Centers (Alphabetically by State)Type of FacilityAverage Yearly Bronchiolitis AdmissionsApproximate Medicaid (%)Guideline Prior to Joining Project?Location
  • NOTE: Urban defined as location within a population center of 1 million. Abbreviations: CHWH, children's hospital within a hospital; FSCH, freestanding children's hospital; PEDS, pediatric unit within a larger hospital; VIP, Value in Inpatient Pediatrics network.

Scottsdale Healthcare Scottsdale, AZPEDS13326NoSuburban
Shands Hospital for Children at the University of Florida Gainesville, FLCHWH10759NoSuburban
Children's Hospital of Illinois Peoria, ILCHWH9715NoSuburban
Kentucky Children's Hospital Lexington, KYCHWH13560YesSuburban
Our Lady of the Lake Baton Rouge, LACHWH13870NoSuburban
The Barbara Bush Children's Hospital Portland, MECHWH3141YesSuburban
Franklin Square Hospital Center Baltimore, MDPEDS6640NoSuburban
Anne Arundel Medical Center Annapolis, MDCHWH5636NoSuburban
Children's Hospital at Montefiore Bronx, NYCHWH22065NoUrban
Mission Children's Hospital Asheville, NCCHWH11221YesSuburban
Cleveland Clinic Children's Hospital Cleveland, OHCHWH5824YesUrban
Palmetto Health Children's Hospital Columbia, SCCHWH18160NoSuburban
East Tennessee Children's Hospital Knoxville, TNFSCH37360NoSuburban
Texas Children's Hospital Houston, TXFSCH61960YesUrban
Christus Santa Rosa Children's Hospital San Antonio, TXCHWH39071NoUrban
Children's Hospital of The Kings' Daughters Norfolk, VAFSCH30360NoSuburban
Children's Hospital of Richmond Richmond, VACHWH4060NoUrban

Mean length of stay (LOS), readmission rates, and variable direct costs did not differ significantly during the project time period. Mean LOS for the network ranged from a low of 2.4 days (IQR, 2.22.8 days) to a high of 2.7 days (IQR, 2.43.1 days), and mean readmission rates ranged from 1.2% (IQR, 0.7%1.8%) to 1.7% (IQR, 0.7%2.5%) during the project. Mean variable direct costs ranged from $1639 (IQR, $1383$1864) to $1767 (IQR, $1365$2320).

Table 2 describes the mean overall utilization of bronchodilators, chest radiography, RSV testing, steroids, and chest physiotherapy among the group from 2007 to 2010. By 2010, we saw a 46% decline in the volume of bronchodilator used within the network, a 3.6 (95% confidence interval [CI] 1.45.8) dose per patient absolute decrease (P < 0.01). We also saw a 12% (95% CI 5%25%) absolute decline in the overall percentage of patients exposed to any bronchodilator (P < 0.01). Finally, there was a 10% (95% CI 3%18%) absolute decline in the overall utilization of any chest physiotherapy (P < 0.01). The project did not demonstrate a significant impact on utilization of corticosteroids, chest radiography, or viral testing, although several centers achieved significant decreases on a local level (data not shown).

Network Mean Utilization of Targeted Therapies
Utilization Measure2007200820092010
No. (IQR)No. (IQR)No. (IQR)No. (IQR)
  • Abbreviations: IQR, interquartile range; NS, not significant; RSV, respiratory syncytial virus.

Bronchodilator doses per patient (P < 0.01)7.9 (4.69.8)6.4 (4.08.4)5.7 (3.67.6)4.3 (3.05.9)
Any bronchodilators (P < 0.01)70% (59%83%)67% (56%77%)68% (61%76%)58% (46%69%)
Chest physiotherapy (P < 0.01)14% (5%19%)10% (1%8%)7% (2%6%)4% (1%7%)
Chest radiography (P = NS)64% (54%81%)66% (55%79%)64% (60%73%)59% (50%73%)
Any steroids (P = NS)21% (14%26%)20% (15%28%)21% (14%22%)16% (13%25%)
RSV testing (P = NS)64% (52%84%)61% (49%78%)62% (50%78%)57% (44%75%)

We analyzed within‐hospital trends as well. Figure 1 describes intra‐hospital change over the course of the project for overall bronchodilator usage. In this analysis, 15 of 17 hospitals (88%) achieved a significant decrease in overall bronchodilator utilization by 2010. (Hospitals 27 and 29 were unable to provide 2007 baseline data.) For doses per patient, 15 of 17 institutions provided data on this measure, and 12 of 15 (80%) achieved significant decreases (Figure 2). Of note, the institutions failing to achieve significant decreases in bronchodilator utilization entered the project with utilization rates that were already significantly below network mean at the start of the project. (Institutions failing to improve are denoted with an asterisk in Figures 1 and 2.) Since most institutions made significant improvements in bronchodilator utilization over time, we looked for correlates of failure to decrease utilization. The strongest association for failure to improve during the project period was use of a protocol prior to joining the network (odds ratio [OR] = 11, 95% CI 261).

Figure 1
Intra‐hospital change in bronchodilator utilization. Asterisks indicate institutions failing to improve.
Figure 2
Intra‐hospital trends in volume of bronchodilator utilization. Asterisks indicate institutions failing to improve.

DISCUSSION

We demonstrated a significant decline in utilization of bronchodilators and chest physiotherapy in inpatient bronchiolitis within a voluntary quality collaborative focused on benchmarking without employing intensive interventions. This observation is important in that it demonstrates real‐world efficacy for our methods. Prior literature has clearly demonstrated that local bronchiolitis guidelines are effective; however, our data on over 11,000 hospitalizations from a broad array of inpatient settings continue to show a high rate of overutilization. We facilitated dissemination and sharing of guideline‐related tools primarily electronically, and capitalized on perceived peer‐group frustration with inefficient management of a high‐volume, high‐utilization disease. While the project leadership had varying degrees of advanced training in quality improvement methodology, the majority of the site leaders were self‐taught and trained while on the job. Our inclusive collaborative had some success using pragmatic and low‐resource methods which we believe is a novel approach to the issue of overutilization.

These considerations are highlighted given the pressing need to find more efficient and scalable means of bending the cost curve of healthcare in the United States. Learning collaboratives are a relatively new model for improvement, with some history in pediatrics,31, 32 and are attractive because of their potential to generate both widespread capacity for change as well as direct improvement. Both cystic fibrosis31 and neonatology collaboratives32 have been celebrated for their positive impacts on children's healthcare, and both are testaments to the power inherent in creating a community of like‐minded individuals. One of the most popular models for learning collaboratives remains the Institute for Healthcare Improvement's Breakthrough Series; however, this model is resource intensive in that it typically involves large teams and several yearly face‐to‐face meetings, with significant monetary investment on the part of hospitals. On the other hand, virtual collaboratives have produced mixed results with respect to quality improvement,33 so there is a continued need to maximize our learning about what works efficiently. Our collaborative was able to successfully disseminate tools developed in large academic institutions to be applied in smaller and more varied settings, where resources for quality improvement activities were limited.

One possible reason for any successes in this project was the existence of a well‐known guideline for the management of bronchiolitis published by the American Academy of Pediatrics in 2006. This guideline recommends primarily symptomatic care, and has a statement supporting the contention that routine use of our targeted therapies is unnecessary. It allows for a trial of bronchodilator, but specifically states that all trials should be accompanied by the use of an objective measure of improvement (typically interpreted to mean a respiratory distress score). A guideline sanctioned by an important national organization of pediatricians was invaluable, and we believe that it should serve as a basis for any nationally promoted inpatient quality measure for this very common pediatric illness. The existence of the AAP guideline also highlights the possibility that our results are merely representative of secular trends in utilization in bronchiolitis care, since we had no control group. The available literature on national guidelines has shown mixed and quite modest impacts in other countries.28, 34 Most of our group took active steps to operationalize the guidelines as part of their participation in this collaborative, though they might have done similar work anyway due to the increasing importance of quality improvement in hospitalist culture over the years of the project.

The project did not demonstrate any impact on steroid utilization, or on rates of obtaining chest radiography or viral testing, despite expressly targeting these widely overused interventions. These modalities are often employed in the emergency department and, as a collaborative of pediatric hospitalists, we did not have specific emergency department participation which we recognize as a major weakness and potential impediment to further progress. We hope to collaborate with our respective emergency departments in the future on these particular measures. We also noted that many institutions were inflexible about foregoing viral testing, due to infection control issues arising from the need to cohort patients in shared rooms based on RSV positivity during the busy winter months. A few institutions were able to alter their infection control policies using the strategy of assuming all children with bronchiolitis had RSV (ie, choosing to use both contact precautions and to wear a mask when entering rooms), though this was not universally popular. Finally, we recognize a missed opportunity in not collecting dose per patient level data for steroids, which might have allowed us to distinguish hospitals with ongoing inpatient utilization of steroids from those with only emergency department usage.

Another significant limitation of this project was the lack of annual assessments of data quality. However, we believe our findings are still useful and important, even with this obvious limitation. Most quality improvement work is done using hospital‐supplied data gleaned from administrative databases, exactly the sources used in this project. Key decisions are made in most hospitals in the country based on data of similar quality. Further limitations of the project relate to the issue of replicability. The disease process we addressed is a major source of frustration to pediatric hospitalists, and our sample likely consisted of the most highly motivated individuals, as they sought out and joined a group with the express purpose of decreasing unnecessary utilization in bronchiolitis. We believe this limitation highlights the likely need for quality measures to emerge organically out of a community of practice when resources are limited, ie, we do not believe we would have had significant success using our methods with an unpopular or externally imposed quality measure.

Although a detailed analysis of costs was beyond the scope of the current project, it is possible that decreased utilization resulted in overall cost savings, despite the fact that our data did not demonstrate a significant change in network‐level average variable direct costs related to bronchiolitis. It has been suggested that such savings may be particularly difficult to demonstrate objectively, especially when the principal costs targeted are labor‐based.35 LOS did not significantly vary during the project, whereas the use of labor‐intensive therapies like nebulized bronchodilators and chest physiotherapy declined. It is, however, quite possible that the decreased utilization we demonstrated was accompanied by a concomitant increase in utilization of other unmeasured therapies.

CONCLUSIONS

A volunteer, peer‐group collaborative focused on benchmarking decreased utilization of bronchodilators and chest physiotherapy in bronchiolitis, though had no impact on overuse of other unnecessary therapies and tests.

Acknowledgements

The following authors have participated in the production of this work by: Conception and design of project: Ralston, Garber, Narang, Shen, Pate; Acquisition of data: Ralston, Garber, Narang, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Analysis and interpretation of data: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Drafting the article: Ralston, Garber, Shen; Revising it critically for important intellectual content, and final approval of the version to be published: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan.

Disclosures: The VIP network receives financial/administrative support from the American Academy of Pediatrics through the Quality Improvement Innovations Network. Dr Ralston receives financial support from the American Academy of Pediatrics as editor of the AAP publication, Hospital Pediatrics. Drs Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, and Ryan report no conflicts.

Currently, 3%5% of infants under a year of age will be admitted to a hospital for acute viral bronchiolitis each year, making it the leading cause of hospitalization in children.15 The American Academy of Pediatrics guideline on the diagnosis and management of bronchiolitis advocates primarily supportive care for this self‐limited disease.6 Specifically, the routine use of therapies such as bronchodilators and corticosteroids are not recommended, nor is routine evaluation with diagnostic testing.6 Numerous studies have established the presence of unwarranted variation in most aspects of bronchiolitis care,713 and the current evidence does not support the routine usage of specific interventions in inpatients.1418

Acute bronchiolitis accounts for direct inpatient medical costs of over $500 million per year.19 Based on estimates from the Healthcare Utilization Project Kids' Inpatient Database, acute bronchiolitis is second only to respiratory distress syndrome as the most expensive disease of hospitalized children.1 Although charges may not correlate directly with costs or even the actual intensity of resource utilization, the national bill, based on charges, is approximately 1.4 billion dollars per year.1 Either way, the leading cause of hospitalization in children is expensive and suffers from dramatic variation in care characterized by overutilization of ineffective interventions.

Evidence‐based guidelines for bronchiolitis are readily available and their successful adoption within larger, academic children's hospitals has been demonstrated.2028 However, upwards of 70% of all children in this country are cared for outside of freestanding children's hospitals,1 and very little has been published about wide dissemination of evidence‐based guidelines in these settings.29 In 2008, the Value in Inpatient Pediatrics (VIP) network was created, as an inclusive pediatric inpatient quality improvement collaborative with a focus on linking academic and community‐based hospitalist groups, to disseminate evidence‐based management strategies for bronchiolitis. We hypothesized that group norming, through benchmarking and public goal setting at the level of the hospitalist group, would decrease overall utilization of nonevidence‐based therapies. Specifically, we were trying to decrease the utilization of bronchodilators, steroids, chest physiotherapy, chest radiography, and viral testing in hospitalized children diagnosed with uncomplicated bronchiolitis.

METHODS

Beginning in early 2008, we recruited pediatric hospitalists into a voluntary bronchiolitis quality improvement collaborative from within the community of hospitalists created by the American Academy of Pediatrics Section on Hospital Medicine. Participants were recruited through open calls at national conferences and mass e‐mails to the section membership through the listserve. The guiding principle for the collaborative was the idea that institutional adoption of evidence‐based disease‐management strategies would result in higher value of care, and that this process could be facilitated by benchmarking local performance against norms created within the larger community. We used group consensus to identify the therapies and tests to benchmark, although the chosen measures meshed with those addressed in the American Academy of Pediatrics (AAP) clinical practice guideline. Use of bronchodilators, corticosteroids, chest physiotherapy, chest radiography, and viral testing were all felt to be significantly overutilized in participating clinical sites. We were unaware of any published national targets for utilization of these therapies or tests, and none of the participating hospitalist groups was actively benchmarking their utilization against any peer group at the start of the project. Length of stay, rates of readmission within 72 hours of discharge, and variable direct costs were chosen as balancing measures for the project.

We collected data on hospitalizations for bronchiolitis for 4 calendar years, from 2007 through 2010, based on the following inclusion criteria: children under 24 months of age, hospitalized for the primary diagnosis of acute viral bronchiolitis as defined by International Classification of Diseases, Ninth Revision (ICD‐9) codes 466.11 and 466.19. We specifically included patients who were in observation status as well as those in inpatient status, and excluded all intensive care unit admissions. Other exclusions were specific ICD‐9 codes for: chronic lung diseases, asthma, chromosomal abnormalities, heart disease, and neurological diseases. We then tracked overall utilization of any bronchodilator (albuterol, levalbuterol, epinephrine, or ipratropium) during the hospitalization, including the emergency department; total number of bronchodilator doses per patient; utilization of any corticosteroids (inhaled or systemic); chest radiography; respiratory syncytial virus (RSV) testing; and chest physiotherapy; as well as variable direct costs per hospitalization for each center. A standardized toolkit was provided to participating centers to facilitate data collection. Data was sought from administrative sources, collected in aggregate form and not at the patient level, and no protected health information was collected as part of the project. The project was categorized as exempt by the University of Texas Health Science Center San Antonio Institutional Review Board, the location of the data repository.

The project began in 2008, though we requested that centers provide 2007 data to supplement our baseline. We held the first group meeting in July 2009 and began the facilitated sharing of resources to promote evidence‐based care, such as guidelines, protocols, respiratory scores, and patient handouts, across sites using data from 2007 and 2008 as our baseline for benchmarking and later assessing any improvement. Centers adopted guidelines at their own pace and we did not require guideline adoption for continued participation. We provided summaries of the available literature by topic, in the event that site leaders wished to give institutional grand rounds or other presentations. All dissemination of guidelines or protocols was done based on the request of the center, and no specific resource was created or sanctioned by the group, though the AAP Guideline for the Diagnosis and Management of Bronchiolitis6 remained a guiding document. Some of our centers participated in more extensive collaborative projects which involved small‐group goal setting, adoption of similar protocols, and conference calls, though this never encompassed more than 25% of the network.

The main product of the project was a yearly report benchmarking each hospital against the network average on each of our chosen utilization measures. The first report was disseminated in July 2009 and included data on calendar year 2007 and 2008, which we considered our group baseline. Most institutions began local Plan‐Do‐Study‐Act (PDSA) cycles by mid‐2009 using the data we provided as they benchmarked their performance against other members of the collaborative, and these continued through 2010. Hospitals were coded and remained anonymous. However, we publicly honored the high performers within the network at a yearly meeting, and urged these centers to share their tools and strategies, which was facilitated through a project Web site.30 All participation was voluntary, and all costs were borne by individuals or their respective centers.

In order to assess data quality, we undertook a validation project for calendar year 2009. We requested local direct chart review of a 10% sample, or a minimum of 10 charts, to confirm reported utilization rates for the therapies and tests we tracked. Any center with less than 80% accuracy was then asked to review data collection methods and make adjustments accordingly. One center identified and resolved a significant data discrepancy and 2 centers refused to participate in the validation project, citing their participation in a large national database for which there was already a very rigorous data validation process (Child Health Corporation of America's Pediatric Health Information System database). Given that we did not uncover major discrepancies in data quality within our network, we did not request further data validation but rather promoted year‐to‐year consistency of collection methods, seeking to collect the same type/quality of data that hospitals use in their own internal performance assessments.

Statistical analyses were performed using GraphPad InStat, version 3.0 (GraphPad Software, San Diego, CA). Descriptive statistics (including interquartile range ([IQR], the range from 25th to 75th percentile of the data) are provided. Analysis of process measures over the series of years was performed using repeated measures analysis of variance (ANOVA), as were intra‐hospital comparisons for all measures. Hospitals were not weighted by volume of admissions, ie, the unit of analysis was the hospital and not individual hospitalizations. Data were analyzed for normality using the method of Kolmogorov and Smirnoff, and in cases where normality was not satisfied (steroids and chest physiotherapy), the data were transformed and nonparametric methods were used. Post‐test adjustment for multiple comparisons was done using the TukeyKramer test in cases where ANOVA P values were <0.05. Fisher's exact test was used to analyze contingency tables for categorical variables such as presence or absence of a protocol.

RESULTS

Data encompassing 11,568 bronchiolitis hospitalizations in 17 centers, for calendar years 2007 to 2010, were analyzed for this report. A total of 31 centers ever participated in the project; however, this report is restricted to centers who participated for the entirety of the project from 2008 through 2010, and who consented to have their data reported. Specifically, 18 centers met inclusion criteria and 1 center opted out of the project, leaving the 17 centers described in Table 1. The overall network makeup shifted each year, but was always more than 80% non‐freestanding children's hospitals and approximately 30% urban, as defined as located in a population center of more than 1 million. A large majority of the participants did not have a local bronchiolitis protocol or guideline at the start of the project, although 88% of participants adopted some form of protocolized care by 2010. Calendar years 2007 and 2008 served as our network baseline, with most interventions (in institutions where they occurred) begun by calendar year 2009. The level of intervention varied greatly among institutions, with a few institutions doing nothing more than benchmarking their performance.

Characteristics of Participating Hospitals: VIP Bronchiolitis Project
Participating Centers (Alphabetically by State)Type of FacilityAverage Yearly Bronchiolitis AdmissionsApproximate Medicaid (%)Guideline Prior to Joining Project?Location
  • NOTE: Urban defined as location within a population center of 1 million. Abbreviations: CHWH, children's hospital within a hospital; FSCH, freestanding children's hospital; PEDS, pediatric unit within a larger hospital; VIP, Value in Inpatient Pediatrics network.

Scottsdale Healthcare Scottsdale, AZPEDS13326NoSuburban
Shands Hospital for Children at the University of Florida Gainesville, FLCHWH10759NoSuburban
Children's Hospital of Illinois Peoria, ILCHWH9715NoSuburban
Kentucky Children's Hospital Lexington, KYCHWH13560YesSuburban
Our Lady of the Lake Baton Rouge, LACHWH13870NoSuburban
The Barbara Bush Children's Hospital Portland, MECHWH3141YesSuburban
Franklin Square Hospital Center Baltimore, MDPEDS6640NoSuburban
Anne Arundel Medical Center Annapolis, MDCHWH5636NoSuburban
Children's Hospital at Montefiore Bronx, NYCHWH22065NoUrban
Mission Children's Hospital Asheville, NCCHWH11221YesSuburban
Cleveland Clinic Children's Hospital Cleveland, OHCHWH5824YesUrban
Palmetto Health Children's Hospital Columbia, SCCHWH18160NoSuburban
East Tennessee Children's Hospital Knoxville, TNFSCH37360NoSuburban
Texas Children's Hospital Houston, TXFSCH61960YesUrban
Christus Santa Rosa Children's Hospital San Antonio, TXCHWH39071NoUrban
Children's Hospital of The Kings' Daughters Norfolk, VAFSCH30360NoSuburban
Children's Hospital of Richmond Richmond, VACHWH4060NoUrban

Mean length of stay (LOS), readmission rates, and variable direct costs did not differ significantly during the project time period. Mean LOS for the network ranged from a low of 2.4 days (IQR, 2.22.8 days) to a high of 2.7 days (IQR, 2.43.1 days), and mean readmission rates ranged from 1.2% (IQR, 0.7%1.8%) to 1.7% (IQR, 0.7%2.5%) during the project. Mean variable direct costs ranged from $1639 (IQR, $1383$1864) to $1767 (IQR, $1365$2320).

Table 2 describes the mean overall utilization of bronchodilators, chest radiography, RSV testing, steroids, and chest physiotherapy among the group from 2007 to 2010. By 2010, we saw a 46% decline in the volume of bronchodilator used within the network, a 3.6 (95% confidence interval [CI] 1.45.8) dose per patient absolute decrease (P < 0.01). We also saw a 12% (95% CI 5%25%) absolute decline in the overall percentage of patients exposed to any bronchodilator (P < 0.01). Finally, there was a 10% (95% CI 3%18%) absolute decline in the overall utilization of any chest physiotherapy (P < 0.01). The project did not demonstrate a significant impact on utilization of corticosteroids, chest radiography, or viral testing, although several centers achieved significant decreases on a local level (data not shown).

Network Mean Utilization of Targeted Therapies
Utilization Measure2007200820092010
No. (IQR)No. (IQR)No. (IQR)No. (IQR)
  • Abbreviations: IQR, interquartile range; NS, not significant; RSV, respiratory syncytial virus.

Bronchodilator doses per patient (P < 0.01)7.9 (4.69.8)6.4 (4.08.4)5.7 (3.67.6)4.3 (3.05.9)
Any bronchodilators (P < 0.01)70% (59%83%)67% (56%77%)68% (61%76%)58% (46%69%)
Chest physiotherapy (P < 0.01)14% (5%19%)10% (1%8%)7% (2%6%)4% (1%7%)
Chest radiography (P = NS)64% (54%81%)66% (55%79%)64% (60%73%)59% (50%73%)
Any steroids (P = NS)21% (14%26%)20% (15%28%)21% (14%22%)16% (13%25%)
RSV testing (P = NS)64% (52%84%)61% (49%78%)62% (50%78%)57% (44%75%)

We analyzed within‐hospital trends as well. Figure 1 describes intra‐hospital change over the course of the project for overall bronchodilator usage. In this analysis, 15 of 17 hospitals (88%) achieved a significant decrease in overall bronchodilator utilization by 2010. (Hospitals 27 and 29 were unable to provide 2007 baseline data.) For doses per patient, 15 of 17 institutions provided data on this measure, and 12 of 15 (80%) achieved significant decreases (Figure 2). Of note, the institutions failing to achieve significant decreases in bronchodilator utilization entered the project with utilization rates that were already significantly below network mean at the start of the project. (Institutions failing to improve are denoted with an asterisk in Figures 1 and 2.) Since most institutions made significant improvements in bronchodilator utilization over time, we looked for correlates of failure to decrease utilization. The strongest association for failure to improve during the project period was use of a protocol prior to joining the network (odds ratio [OR] = 11, 95% CI 261).

Figure 1
Intra‐hospital change in bronchodilator utilization. Asterisks indicate institutions failing to improve.
Figure 2
Intra‐hospital trends in volume of bronchodilator utilization. Asterisks indicate institutions failing to improve.

DISCUSSION

We demonstrated a significant decline in utilization of bronchodilators and chest physiotherapy in inpatient bronchiolitis within a voluntary quality collaborative focused on benchmarking without employing intensive interventions. This observation is important in that it demonstrates real‐world efficacy for our methods. Prior literature has clearly demonstrated that local bronchiolitis guidelines are effective; however, our data on over 11,000 hospitalizations from a broad array of inpatient settings continue to show a high rate of overutilization. We facilitated dissemination and sharing of guideline‐related tools primarily electronically, and capitalized on perceived peer‐group frustration with inefficient management of a high‐volume, high‐utilization disease. While the project leadership had varying degrees of advanced training in quality improvement methodology, the majority of the site leaders were self‐taught and trained while on the job. Our inclusive collaborative had some success using pragmatic and low‐resource methods which we believe is a novel approach to the issue of overutilization.

These considerations are highlighted given the pressing need to find more efficient and scalable means of bending the cost curve of healthcare in the United States. Learning collaboratives are a relatively new model for improvement, with some history in pediatrics,31, 32 and are attractive because of their potential to generate both widespread capacity for change as well as direct improvement. Both cystic fibrosis31 and neonatology collaboratives32 have been celebrated for their positive impacts on children's healthcare, and both are testaments to the power inherent in creating a community of like‐minded individuals. One of the most popular models for learning collaboratives remains the Institute for Healthcare Improvement's Breakthrough Series; however, this model is resource intensive in that it typically involves large teams and several yearly face‐to‐face meetings, with significant monetary investment on the part of hospitals. On the other hand, virtual collaboratives have produced mixed results with respect to quality improvement,33 so there is a continued need to maximize our learning about what works efficiently. Our collaborative was able to successfully disseminate tools developed in large academic institutions to be applied in smaller and more varied settings, where resources for quality improvement activities were limited.

One possible reason for any successes in this project was the existence of a well‐known guideline for the management of bronchiolitis published by the American Academy of Pediatrics in 2006. This guideline recommends primarily symptomatic care, and has a statement supporting the contention that routine use of our targeted therapies is unnecessary. It allows for a trial of bronchodilator, but specifically states that all trials should be accompanied by the use of an objective measure of improvement (typically interpreted to mean a respiratory distress score). A guideline sanctioned by an important national organization of pediatricians was invaluable, and we believe that it should serve as a basis for any nationally promoted inpatient quality measure for this very common pediatric illness. The existence of the AAP guideline also highlights the possibility that our results are merely representative of secular trends in utilization in bronchiolitis care, since we had no control group. The available literature on national guidelines has shown mixed and quite modest impacts in other countries.28, 34 Most of our group took active steps to operationalize the guidelines as part of their participation in this collaborative, though they might have done similar work anyway due to the increasing importance of quality improvement in hospitalist culture over the years of the project.

The project did not demonstrate any impact on steroid utilization, or on rates of obtaining chest radiography or viral testing, despite expressly targeting these widely overused interventions. These modalities are often employed in the emergency department and, as a collaborative of pediatric hospitalists, we did not have specific emergency department participation which we recognize as a major weakness and potential impediment to further progress. We hope to collaborate with our respective emergency departments in the future on these particular measures. We also noted that many institutions were inflexible about foregoing viral testing, due to infection control issues arising from the need to cohort patients in shared rooms based on RSV positivity during the busy winter months. A few institutions were able to alter their infection control policies using the strategy of assuming all children with bronchiolitis had RSV (ie, choosing to use both contact precautions and to wear a mask when entering rooms), though this was not universally popular. Finally, we recognize a missed opportunity in not collecting dose per patient level data for steroids, which might have allowed us to distinguish hospitals with ongoing inpatient utilization of steroids from those with only emergency department usage.

Another significant limitation of this project was the lack of annual assessments of data quality. However, we believe our findings are still useful and important, even with this obvious limitation. Most quality improvement work is done using hospital‐supplied data gleaned from administrative databases, exactly the sources used in this project. Key decisions are made in most hospitals in the country based on data of similar quality. Further limitations of the project relate to the issue of replicability. The disease process we addressed is a major source of frustration to pediatric hospitalists, and our sample likely consisted of the most highly motivated individuals, as they sought out and joined a group with the express purpose of decreasing unnecessary utilization in bronchiolitis. We believe this limitation highlights the likely need for quality measures to emerge organically out of a community of practice when resources are limited, ie, we do not believe we would have had significant success using our methods with an unpopular or externally imposed quality measure.

Although a detailed analysis of costs was beyond the scope of the current project, it is possible that decreased utilization resulted in overall cost savings, despite the fact that our data did not demonstrate a significant change in network‐level average variable direct costs related to bronchiolitis. It has been suggested that such savings may be particularly difficult to demonstrate objectively, especially when the principal costs targeted are labor‐based.35 LOS did not significantly vary during the project, whereas the use of labor‐intensive therapies like nebulized bronchodilators and chest physiotherapy declined. It is, however, quite possible that the decreased utilization we demonstrated was accompanied by a concomitant increase in utilization of other unmeasured therapies.

CONCLUSIONS

A volunteer, peer‐group collaborative focused on benchmarking decreased utilization of bronchodilators and chest physiotherapy in bronchiolitis, though had no impact on overuse of other unnecessary therapies and tests.

Acknowledgements

The following authors have participated in the production of this work by: Conception and design of project: Ralston, Garber, Narang, Shen, Pate; Acquisition of data: Ralston, Garber, Narang, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Analysis and interpretation of data: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan; Drafting the article: Ralston, Garber, Shen; Revising it critically for important intellectual content, and final approval of the version to be published: Ralston, Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, Ryan.

Disclosures: The VIP network receives financial/administrative support from the American Academy of Pediatrics through the Quality Improvement Innovations Network. Dr Ralston receives financial support from the American Academy of Pediatrics as editor of the AAP publication, Hospital Pediatrics. Drs Garber, Narang, Shen, Pate, Pope, Lossius, Croland, Bennett, Jewell, Krugman, Robbins, Nazif, Liewehr, Miller, Marks, Pappas, Pardue, Quinonez, Fine, and Ryan report no conflicts.

References
  1. HCUPnet. Kids Inpatient Database 2006. Available at: http://hcupnet.ahrq.gov/. Accessed February 6, 2011.
  2. Leader S, Kohlhase K. Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J Pediatr. 2003;143:S127S132.
  3. Yorita KL, Holman RC, Sejvar JJ, Steiner CA, Schonberger LB. Infectious disease hospitalizations among infants in the United States. Pediatrics. 2008;121:244252.
  4. Smyth RL, Openshaw PJ. Bronchiolitis. Lancet. 2006;368:312322.
  5. Boyce TG, Mellen BG, Mitchel EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in Medicaid. J Pediatr. 2000;137:865870.
  6. Subcommittee on the Diagnosis and Management of Bronchiolitis, 2004–2006. Clinical practice guideline: diagnosis and management of bronchiolitis. Pediatrics. 2006;118:17741793.
  7. Mansbach JM, Emond JA, Camargo CA. Bronchiolitis in US emergency departments 1992 to 2000: epidemiology and practice variation. Pediatr Emerg Care. 2005;21:242247.
  8. Plint AC, Johnson DW, Wiebe N, et al. Practice variation among pediatric emergency departments in the treatment of bronchiolitis. Acad Emerg Med. 2004;11:353360.
  9. Mallory MD, Shay DK, Garrett J, Bordley WC. Bronchiolitis management preferences and the influence of pulse oximetry and respiratory rate on the decision to admit. Pediatrics. 2003;111:e45e51.
  10. Conway PH, Edwards S, Stucky ER, Chiang VW, Ottolini MC, Landrigan CP. Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians. Pediatrics. 2006;118:441447.
  11. Landrigan CP, Conway PH, Stucky ER, Chiang VW, Ottolini MC. Variation in pediatric hospitalists' use of proven and unproven therapies: a study from the Pediatric Research in Inpatient Settings (PRIS) network. J Hosp Med. 2008;3:292298.
  12. Wang EE, Law BJ, Boucher FD, et al. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) study of admission and management variation in patients hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr. 1996;129:390395.
  13. Willson DF, Horn SD, Hendley JO, Smout R, Gassaway J. Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness. Pediatrics. 2001;108:851855.
  14. Gadomski AM, Brower M. Bronchodilators for bronchiolitis. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD001266.
  15. Perotta C, Ortiz Z, Roque M. Chest physiotherapy for acute bronchiolitis in pediatric patients between 0 and 24 months old. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD004873.
  16. Hartling L, Bialy LM, Vandermeer B, et al. Epinephrine for bronchiolitis. Cochrane Database Syst Rev. 2011 Jun 15;(6):CD003123.
  17. Fernandes RM, Bialy LM, Vandermeer B, et al. Glucocorticoids for acute bronchiolitis in infants and young children. Cochrane Database Syst Rev. 2010 Oct 6;(10):CD004878.
  18. Davison C, Ventre KM, Lucetti M, Randolph AG. Efficacy of interventions for bronchiolitis in critically ill infants: a systematic review and meta‐analysis. Pediatr Crit Care Med. 2004;5:482489.
  19. Pelletier AJ, Mansbach JM, Camargo CA. Direct medical costs of bronchiolitis hospitalizations in the United States. Pediatrics. 2006;118(6):24182423.
  20. Perlstein PH, Kotagal UR, Bolling C, et al. Evaluation of an evidence‐based guideline for bronchiolitis. Pediatrics. 1999;104(6):13341341.
  21. Adcock PM, Sanders CL, Marshall GS. Standardizing the care of bronchiolitis. Arch Pediatr Adolesc Med. 1998;152(8):739744.
  22. Muething S, Schoettker PJ, Gerhardt WE, Atherton HD, Britto MT, Kotagal UR. Decreasing overuse of therapies in the treatment of bronchiolitis by incorporating evidence at the point of care. J Pediatr. 2004;144:703710.
  23. King WJ, Le Saux N, Sampson M, Gaboury I, Norris M, Moher D. Effect of point of care information on inpatient management of bronchiolitis. BMC Pediatr. 2007;7:4.
  24. Cheney J, Barber S, Altamirano L, et al. A clinical pathway for bronchiolitis is effective in reducing readmission rates. J Pediatr. 2005;147:622626.
  25. Perlstein PH, Kotagal UR, Schoettker PJ, et al. Sustaining the implementation of an evidence‐based guideline for bronchiolitis. Arch Pediatr Adolesc Med. 2000;154:10011007.
  26. David M, Luc‐Vanuxem C, Loundou A, Bosdure E, Auquier P, Dubus JC. Assessment of the French Consensus Conference for Acute Viral Bronchiolitis on outpatient management: progress between 2003 and 2008 [in French]. Arch Pediatr. 2010;17:125131.
  27. Kotagal UR, Robbins JM, Kini NM, Schoettker PJ, Atherton HD, Kirschbaum MS. Impact of a bronchiolitis guideline: a multisite demonstration project. Chest. 2002;121:17891797.
  28. Barben J, Kuehni CE, Trachsel D, Hammer J. Management of acute bronchiolitis: can evidence based guidelines alter clinical practice? Thorax. 2008;63:11031109.
  29. Dougherty D, Conway PH. The “3 T's” roadmap to transform US health care: the “how” of high quality care. JAMA. 2008;299(19):23192321.
  30. The VIP Network. Available at: http://www.vipnetwork.webs.com. Accessed October 5, 2010.
  31. Quon BS, Goss CH. A story of success: continuous quality improvement in cystic fibrosis in the USA. Thorax. 2011;66:11061168.
  32. Payne NR, Finkelstein MJ, Liu M, Kaempf JW, Sharek PJ, Olsen S. NICU practices and outcomes associated with 9 years of quality improvement collaboratives. Pediatrics. 2010;125:437446.
  33. Speroff T, Ely EW, Greevey R, et al. Quality improvement projects target health care‐associated infections: comparing virtual collaborative and toolkit approaches. J Hosp Med. 2011;6:271278.
  34. Touzet S, Réfabert L, Letrilliart L, Ortolan B, Colin C. Impact of consensus development conference guidelines on primary care of bronchiolitis: are national guidelines being followed? J Eval Clin Pract. 2007;13:651656.
  35. Rauh SS, Wadsworth EB, Weeks WB, Weinstein JN. The savings illusion—why clinical quality improvement fails to deliver bottom‐line results. N Engl J Med. 2011;365:e48.
References
  1. HCUPnet. Kids Inpatient Database 2006. Available at: http://hcupnet.ahrq.gov/. Accessed February 6, 2011.
  2. Leader S, Kohlhase K. Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J Pediatr. 2003;143:S127S132.
  3. Yorita KL, Holman RC, Sejvar JJ, Steiner CA, Schonberger LB. Infectious disease hospitalizations among infants in the United States. Pediatrics. 2008;121:244252.
  4. Smyth RL, Openshaw PJ. Bronchiolitis. Lancet. 2006;368:312322.
  5. Boyce TG, Mellen BG, Mitchel EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in Medicaid. J Pediatr. 2000;137:865870.
  6. Subcommittee on the Diagnosis and Management of Bronchiolitis, 2004–2006. Clinical practice guideline: diagnosis and management of bronchiolitis. Pediatrics. 2006;118:17741793.
  7. Mansbach JM, Emond JA, Camargo CA. Bronchiolitis in US emergency departments 1992 to 2000: epidemiology and practice variation. Pediatr Emerg Care. 2005;21:242247.
  8. Plint AC, Johnson DW, Wiebe N, et al. Practice variation among pediatric emergency departments in the treatment of bronchiolitis. Acad Emerg Med. 2004;11:353360.
  9. Mallory MD, Shay DK, Garrett J, Bordley WC. Bronchiolitis management preferences and the influence of pulse oximetry and respiratory rate on the decision to admit. Pediatrics. 2003;111:e45e51.
  10. Conway PH, Edwards S, Stucky ER, Chiang VW, Ottolini MC, Landrigan CP. Variations in management of common inpatient pediatric illnesses: hospitalists and community pediatricians. Pediatrics. 2006;118:441447.
  11. Landrigan CP, Conway PH, Stucky ER, Chiang VW, Ottolini MC. Variation in pediatric hospitalists' use of proven and unproven therapies: a study from the Pediatric Research in Inpatient Settings (PRIS) network. J Hosp Med. 2008;3:292298.
  12. Wang EE, Law BJ, Boucher FD, et al. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) study of admission and management variation in patients hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr. 1996;129:390395.
  13. Willson DF, Horn SD, Hendley JO, Smout R, Gassaway J. Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness. Pediatrics. 2001;108:851855.
  14. Gadomski AM, Brower M. Bronchodilators for bronchiolitis. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD001266.
  15. Perotta C, Ortiz Z, Roque M. Chest physiotherapy for acute bronchiolitis in pediatric patients between 0 and 24 months old. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD004873.
  16. Hartling L, Bialy LM, Vandermeer B, et al. Epinephrine for bronchiolitis. Cochrane Database Syst Rev. 2011 Jun 15;(6):CD003123.
  17. Fernandes RM, Bialy LM, Vandermeer B, et al. Glucocorticoids for acute bronchiolitis in infants and young children. Cochrane Database Syst Rev. 2010 Oct 6;(10):CD004878.
  18. Davison C, Ventre KM, Lucetti M, Randolph AG. Efficacy of interventions for bronchiolitis in critically ill infants: a systematic review and meta‐analysis. Pediatr Crit Care Med. 2004;5:482489.
  19. Pelletier AJ, Mansbach JM, Camargo CA. Direct medical costs of bronchiolitis hospitalizations in the United States. Pediatrics. 2006;118(6):24182423.
  20. Perlstein PH, Kotagal UR, Bolling C, et al. Evaluation of an evidence‐based guideline for bronchiolitis. Pediatrics. 1999;104(6):13341341.
  21. Adcock PM, Sanders CL, Marshall GS. Standardizing the care of bronchiolitis. Arch Pediatr Adolesc Med. 1998;152(8):739744.
  22. Muething S, Schoettker PJ, Gerhardt WE, Atherton HD, Britto MT, Kotagal UR. Decreasing overuse of therapies in the treatment of bronchiolitis by incorporating evidence at the point of care. J Pediatr. 2004;144:703710.
  23. King WJ, Le Saux N, Sampson M, Gaboury I, Norris M, Moher D. Effect of point of care information on inpatient management of bronchiolitis. BMC Pediatr. 2007;7:4.
  24. Cheney J, Barber S, Altamirano L, et al. A clinical pathway for bronchiolitis is effective in reducing readmission rates. J Pediatr. 2005;147:622626.
  25. Perlstein PH, Kotagal UR, Schoettker PJ, et al. Sustaining the implementation of an evidence‐based guideline for bronchiolitis. Arch Pediatr Adolesc Med. 2000;154:10011007.
  26. David M, Luc‐Vanuxem C, Loundou A, Bosdure E, Auquier P, Dubus JC. Assessment of the French Consensus Conference for Acute Viral Bronchiolitis on outpatient management: progress between 2003 and 2008 [in French]. Arch Pediatr. 2010;17:125131.
  27. Kotagal UR, Robbins JM, Kini NM, Schoettker PJ, Atherton HD, Kirschbaum MS. Impact of a bronchiolitis guideline: a multisite demonstration project. Chest. 2002;121:17891797.
  28. Barben J, Kuehni CE, Trachsel D, Hammer J. Management of acute bronchiolitis: can evidence based guidelines alter clinical practice? Thorax. 2008;63:11031109.
  29. Dougherty D, Conway PH. The “3 T's” roadmap to transform US health care: the “how” of high quality care. JAMA. 2008;299(19):23192321.
  30. The VIP Network. Available at: http://www.vipnetwork.webs.com. Accessed October 5, 2010.
  31. Quon BS, Goss CH. A story of success: continuous quality improvement in cystic fibrosis in the USA. Thorax. 2011;66:11061168.
  32. Payne NR, Finkelstein MJ, Liu M, Kaempf JW, Sharek PJ, Olsen S. NICU practices and outcomes associated with 9 years of quality improvement collaboratives. Pediatrics. 2010;125:437446.
  33. Speroff T, Ely EW, Greevey R, et al. Quality improvement projects target health care‐associated infections: comparing virtual collaborative and toolkit approaches. J Hosp Med. 2011;6:271278.
  34. Touzet S, Réfabert L, Letrilliart L, Ortolan B, Colin C. Impact of consensus development conference guidelines on primary care of bronchiolitis: are national guidelines being followed? J Eval Clin Pract. 2007;13:651656.
  35. Rauh SS, Wadsworth EB, Weeks WB, Weinstein JN. The savings illusion—why clinical quality improvement fails to deliver bottom‐line results. N Engl J Med. 2011;365:e48.
Issue
Journal of Hospital Medicine - 8(1)
Issue
Journal of Hospital Medicine - 8(1)
Page Number
25-30
Page Number
25-30
Article Type
Display Headline
Decreasing unnecessary utilization in acute bronchiolitis care: Results from the value in inpatient pediatrics network
Display Headline
Decreasing unnecessary utilization in acute bronchiolitis care: Results from the value in inpatient pediatrics network
Sections
Article Source

Copyright © 2012 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Department of Pediatrics, Children's Hospital at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Robotic Surgery Beneficial in HPV-, Non-HPV-Related Oral Cancer

Article Type
Changed
Fri, 01/04/2019 - 12:02
Display Headline
Robotic Surgery Beneficial in HPV-, Non-HPV-Related Oral Cancer

WASHINGTON – Oropharyngeal squamous cell cancer patients who underwent transoral robotic surgery had an overall 2-year survival rate of 87%, with no significant differences between patients who were positive vs. negative for the human papillomavirus, based on data from 52 patients.

HPV is associated with 45%-70% of cases of oropharyngeal squamous cell carcinoma (OPSCCa), said Dr. Kiran Kakarala, who conducted the study at Ohio State University in Columbus.

Previous studies have shown a significant difference in survival rates for patients with HPV-positive tumors, compared with those with negative tumors, Dr. Kakarala said. However, other studies have suggested that the use of transoral robotic surgery (TORS) for OPSCCa patients could narrow the gap in survival based on HPV status.

Dr. Kakarala and his colleagues reviewed data from 52 patients who underwent TORS with neck dissection and postoperative adjuvant treatment for previously untreated OPSCCa. The patients were part of a prospective single-arm cohort study at a single academic medical center.

HPV status was available for 42 patients; 36 were positive and 6 were negative. Demographic characteristics were not significantly different between the HPV-positive and negative patients. The mean age of the HPV-positive patients was 59 years, and the mean age of the negative patients was 57 years. The tonsil was the primary tumor site in 89% of the positive patients and 83% of the negative patients; the base of the tongue was the primary site in 11% of the positive patients and 17% of the negative patients.

HPV-positive patients had significantly higher N classifications based on the TNM Classification of Malignant Tumors, compared with HPV-negative patients (P = .015), and a significantly higher stage (P = .017). No significant differences were found in the number of HPV-positive vs. negative patients who received postoperative radiation or chemotherapy.

The 2-year survival rate was 87% for all 52 patients, 92% for HPV-positive patients, and 75% for HPV-negative patients. Two-year disease-specific survival rates were 92%, 92%, and 75%, respectively. Two-year disease-free survival rates were 86%, 97%, and 50%, respectively.

"The 2-year overall survival and disease-specific survival were not statistically different between HPV-positive and negative patients treated with TORS followed by radiation with or without chemotherapy as indicated," Dr. Kakarala said.

The study was limited by its small size and retrospective design, but the findings suggest a role for minimally invasive TORS in OPSCCa patients, he said.

"Randomized trials incorporating minimally invasive transoral surgical procedures with radiation therapy and chemotherapy, and comparing survival, quality of life, and cost outcomes between these treatment modalities, are indicated," he added.

The findings were presented at the annual meeting of the American Academy of Otolaryngology–Head and Neck Surgery Foundation.

Dr. Kakarala had no financial conflicts to disclose.

Meeting/Event
Author and Disclosure Information

Publications
Topics
Legacy Keywords
robotic surgery, Oropharyngeal squamous cell cancer, transoral robotic surgery, human papillomavirus, Dr. Kiran Kakarala
Author and Disclosure Information

Author and Disclosure Information

Meeting/Event
Meeting/Event

WASHINGTON – Oropharyngeal squamous cell cancer patients who underwent transoral robotic surgery had an overall 2-year survival rate of 87%, with no significant differences between patients who were positive vs. negative for the human papillomavirus, based on data from 52 patients.

HPV is associated with 45%-70% of cases of oropharyngeal squamous cell carcinoma (OPSCCa), said Dr. Kiran Kakarala, who conducted the study at Ohio State University in Columbus.

Previous studies have shown a significant difference in survival rates for patients with HPV-positive tumors, compared with those with negative tumors, Dr. Kakarala said. However, other studies have suggested that the use of transoral robotic surgery (TORS) for OPSCCa patients could narrow the gap in survival based on HPV status.

Dr. Kakarala and his colleagues reviewed data from 52 patients who underwent TORS with neck dissection and postoperative adjuvant treatment for previously untreated OPSCCa. The patients were part of a prospective single-arm cohort study at a single academic medical center.

HPV status was available for 42 patients; 36 were positive and 6 were negative. Demographic characteristics were not significantly different between the HPV-positive and negative patients. The mean age of the HPV-positive patients was 59 years, and the mean age of the negative patients was 57 years. The tonsil was the primary tumor site in 89% of the positive patients and 83% of the negative patients; the base of the tongue was the primary site in 11% of the positive patients and 17% of the negative patients.

HPV-positive patients had significantly higher N classifications based on the TNM Classification of Malignant Tumors, compared with HPV-negative patients (P = .015), and a significantly higher stage (P = .017). No significant differences were found in the number of HPV-positive vs. negative patients who received postoperative radiation or chemotherapy.

The 2-year survival rate was 87% for all 52 patients, 92% for HPV-positive patients, and 75% for HPV-negative patients. Two-year disease-specific survival rates were 92%, 92%, and 75%, respectively. Two-year disease-free survival rates were 86%, 97%, and 50%, respectively.

"The 2-year overall survival and disease-specific survival were not statistically different between HPV-positive and negative patients treated with TORS followed by radiation with or without chemotherapy as indicated," Dr. Kakarala said.

The study was limited by its small size and retrospective design, but the findings suggest a role for minimally invasive TORS in OPSCCa patients, he said.

"Randomized trials incorporating minimally invasive transoral surgical procedures with radiation therapy and chemotherapy, and comparing survival, quality of life, and cost outcomes between these treatment modalities, are indicated," he added.

The findings were presented at the annual meeting of the American Academy of Otolaryngology–Head and Neck Surgery Foundation.

Dr. Kakarala had no financial conflicts to disclose.

WASHINGTON – Oropharyngeal squamous cell cancer patients who underwent transoral robotic surgery had an overall 2-year survival rate of 87%, with no significant differences between patients who were positive vs. negative for the human papillomavirus, based on data from 52 patients.

HPV is associated with 45%-70% of cases of oropharyngeal squamous cell carcinoma (OPSCCa), said Dr. Kiran Kakarala, who conducted the study at Ohio State University in Columbus.

Previous studies have shown a significant difference in survival rates for patients with HPV-positive tumors, compared with those with negative tumors, Dr. Kakarala said. However, other studies have suggested that the use of transoral robotic surgery (TORS) for OPSCCa patients could narrow the gap in survival based on HPV status.

Dr. Kakarala and his colleagues reviewed data from 52 patients who underwent TORS with neck dissection and postoperative adjuvant treatment for previously untreated OPSCCa. The patients were part of a prospective single-arm cohort study at a single academic medical center.

HPV status was available for 42 patients; 36 were positive and 6 were negative. Demographic characteristics were not significantly different between the HPV-positive and negative patients. The mean age of the HPV-positive patients was 59 years, and the mean age of the negative patients was 57 years. The tonsil was the primary tumor site in 89% of the positive patients and 83% of the negative patients; the base of the tongue was the primary site in 11% of the positive patients and 17% of the negative patients.

HPV-positive patients had significantly higher N classifications based on the TNM Classification of Malignant Tumors, compared with HPV-negative patients (P = .015), and a significantly higher stage (P = .017). No significant differences were found in the number of HPV-positive vs. negative patients who received postoperative radiation or chemotherapy.

The 2-year survival rate was 87% for all 52 patients, 92% for HPV-positive patients, and 75% for HPV-negative patients. Two-year disease-specific survival rates were 92%, 92%, and 75%, respectively. Two-year disease-free survival rates were 86%, 97%, and 50%, respectively.

"The 2-year overall survival and disease-specific survival were not statistically different between HPV-positive and negative patients treated with TORS followed by radiation with or without chemotherapy as indicated," Dr. Kakarala said.

The study was limited by its small size and retrospective design, but the findings suggest a role for minimally invasive TORS in OPSCCa patients, he said.

"Randomized trials incorporating minimally invasive transoral surgical procedures with radiation therapy and chemotherapy, and comparing survival, quality of life, and cost outcomes between these treatment modalities, are indicated," he added.

The findings were presented at the annual meeting of the American Academy of Otolaryngology–Head and Neck Surgery Foundation.

Dr. Kakarala had no financial conflicts to disclose.

Publications
Publications
Topics
Article Type
Display Headline
Robotic Surgery Beneficial in HPV-, Non-HPV-Related Oral Cancer
Display Headline
Robotic Surgery Beneficial in HPV-, Non-HPV-Related Oral Cancer
Legacy Keywords
robotic surgery, Oropharyngeal squamous cell cancer, transoral robotic surgery, human papillomavirus, Dr. Kiran Kakarala
Legacy Keywords
robotic surgery, Oropharyngeal squamous cell cancer, transoral robotic surgery, human papillomavirus, Dr. Kiran Kakarala
Article Source

AT THE ANNUAL MEETING OF THE AMERICAN ACADEMY OF OTOLARYNGOLOGY – HEAD AND NECK SURGERY FOUNDATION

PURLs Copyright

Inside the Article

Vitals

Major Finding: Oropharyngeal squamous cell carcinoma patients who underwent robotic surgery had a 2-year survival rate of 87%, with 92% survival for HPV-positive patients and 75% for HPV-negative patients.

Data Source: The data come from a review of 52 patients.

Disclosures: Dr. Kakarala had no financial conflicts to disclose.

Most Patients Need More Allopurinol to Quiet Gout

Article Type
Changed
Fri, 01/18/2019 - 12:16
Display Headline
Most Patients Need More Allopurinol to Quiet Gout

NEWPORT BEACH, CALIF. – Most gout patients need more than the standard and widely used dose of 300 mg/day of allopurinol to lower their serum urate level enough to prevent flares, according to gout expert Dr. Brian Mandell.

Probably more than half of people need more than 300 mg "if you are going to get to the target level of [6 mg/dL serum urate or lower]. Most people probably need closer to 400 mg," he said (Ann. Rheum. Dis. 1998;57:545-9).

A good target serum urate level is 6 mg/dL. "If you’re at 6, the urate is unlikely to precipitate, [and] you really do dramatically decrease the frequency of attacks," he said at Perspectives in Rheumatic Diseases 2012, held by Global Academy for Medical Education. GAME and this news organization are owned by Frontline Medical Communications.

In a bid to get physicians to use a treat-to-target approach in gout management, Dr. Mandell noted that "you can only treat urate successfully if you measure it after you start therapy," something not all clinicians do. "The correct dose is the dose that drops your urate," said Dr. Mandell, professor and chair of medicine at the Cleveland Clinic.

To avoid triggering a gout flare from too-abrupt urate lowering and to help avoid hypersensitivity reactions, "I always start low at 50 mg/dL" and titrate upward, he said.

"There’s no rush in trying to drop the level. It’s a lifelong disease." When counseling patients about hypersensitivity reactions, Dr. Mandell said that he advises them to stop the drug as soon as they notice a rash and then call him.

Pegylated uricase is "incredibly effective for lowering serum urate," as well, he said. When pegylated uricase is "given as an IV infusion, serum urate plummets to about 0.5 mg/dL and stays down for 2 weeks or longer," Dr. Mandell noted.

Patients should be warned, however, of the risk of flares with the quick urate drop. Also, if they don’t have such a robust response, it probably means they have antibodies to pegylated uricase, which also increases their risk of an infusion reaction. In that case, "stop the drug," he said.

For management of an acute gout attack, Dr. Mandell said he often chooses anakinra (Kineret) so long as patients are in the hospital and can be monitored for infections and other potential problems.

Indomethacin is another option. In fact, "any NSAID will work if you use high enough doses. You need to treat until the attack resolves and then for a couple days longer to really make sure the attack is gone," he advised.

Colchicine can work "if you catch the attack early, but it’s not a panacea. It’s a great drug for prophylaxis but not to treat acute attacks," he said.

Narcotics don’t work well on inflammatory pain and so are not a good choice for an acute attack, Dr. Mandell noted.

A normal serum urate level does not necessarily rule out a gout attack. "Stick a needle in the joint at some point in time to make sure gout is the diagnosis," he said.

Dr. Mandell is a consultant for Novartis, Pfizer, Takeda, and other companies.

SDEF and this news organization are owned by Frontline Medical Communications.

Meeting/Event
Author and Disclosure Information

Publications
Topics
Legacy Keywords
gout patients, allopurinol gout, serum urate level, flare prevention, Dr. Brian Mandell
Author and Disclosure Information

Author and Disclosure Information

Meeting/Event
Meeting/Event

NEWPORT BEACH, CALIF. – Most gout patients need more than the standard and widely used dose of 300 mg/day of allopurinol to lower their serum urate level enough to prevent flares, according to gout expert Dr. Brian Mandell.

Probably more than half of people need more than 300 mg "if you are going to get to the target level of [6 mg/dL serum urate or lower]. Most people probably need closer to 400 mg," he said (Ann. Rheum. Dis. 1998;57:545-9).

A good target serum urate level is 6 mg/dL. "If you’re at 6, the urate is unlikely to precipitate, [and] you really do dramatically decrease the frequency of attacks," he said at Perspectives in Rheumatic Diseases 2012, held by Global Academy for Medical Education. GAME and this news organization are owned by Frontline Medical Communications.

In a bid to get physicians to use a treat-to-target approach in gout management, Dr. Mandell noted that "you can only treat urate successfully if you measure it after you start therapy," something not all clinicians do. "The correct dose is the dose that drops your urate," said Dr. Mandell, professor and chair of medicine at the Cleveland Clinic.

To avoid triggering a gout flare from too-abrupt urate lowering and to help avoid hypersensitivity reactions, "I always start low at 50 mg/dL" and titrate upward, he said.

"There’s no rush in trying to drop the level. It’s a lifelong disease." When counseling patients about hypersensitivity reactions, Dr. Mandell said that he advises them to stop the drug as soon as they notice a rash and then call him.

Pegylated uricase is "incredibly effective for lowering serum urate," as well, he said. When pegylated uricase is "given as an IV infusion, serum urate plummets to about 0.5 mg/dL and stays down for 2 weeks or longer," Dr. Mandell noted.

Patients should be warned, however, of the risk of flares with the quick urate drop. Also, if they don’t have such a robust response, it probably means they have antibodies to pegylated uricase, which also increases their risk of an infusion reaction. In that case, "stop the drug," he said.

For management of an acute gout attack, Dr. Mandell said he often chooses anakinra (Kineret) so long as patients are in the hospital and can be monitored for infections and other potential problems.

Indomethacin is another option. In fact, "any NSAID will work if you use high enough doses. You need to treat until the attack resolves and then for a couple days longer to really make sure the attack is gone," he advised.

Colchicine can work "if you catch the attack early, but it’s not a panacea. It’s a great drug for prophylaxis but not to treat acute attacks," he said.

Narcotics don’t work well on inflammatory pain and so are not a good choice for an acute attack, Dr. Mandell noted.

A normal serum urate level does not necessarily rule out a gout attack. "Stick a needle in the joint at some point in time to make sure gout is the diagnosis," he said.

Dr. Mandell is a consultant for Novartis, Pfizer, Takeda, and other companies.

SDEF and this news organization are owned by Frontline Medical Communications.

NEWPORT BEACH, CALIF. – Most gout patients need more than the standard and widely used dose of 300 mg/day of allopurinol to lower their serum urate level enough to prevent flares, according to gout expert Dr. Brian Mandell.

Probably more than half of people need more than 300 mg "if you are going to get to the target level of [6 mg/dL serum urate or lower]. Most people probably need closer to 400 mg," he said (Ann. Rheum. Dis. 1998;57:545-9).

A good target serum urate level is 6 mg/dL. "If you’re at 6, the urate is unlikely to precipitate, [and] you really do dramatically decrease the frequency of attacks," he said at Perspectives in Rheumatic Diseases 2012, held by Global Academy for Medical Education. GAME and this news organization are owned by Frontline Medical Communications.

In a bid to get physicians to use a treat-to-target approach in gout management, Dr. Mandell noted that "you can only treat urate successfully if you measure it after you start therapy," something not all clinicians do. "The correct dose is the dose that drops your urate," said Dr. Mandell, professor and chair of medicine at the Cleveland Clinic.

To avoid triggering a gout flare from too-abrupt urate lowering and to help avoid hypersensitivity reactions, "I always start low at 50 mg/dL" and titrate upward, he said.

"There’s no rush in trying to drop the level. It’s a lifelong disease." When counseling patients about hypersensitivity reactions, Dr. Mandell said that he advises them to stop the drug as soon as they notice a rash and then call him.

Pegylated uricase is "incredibly effective for lowering serum urate," as well, he said. When pegylated uricase is "given as an IV infusion, serum urate plummets to about 0.5 mg/dL and stays down for 2 weeks or longer," Dr. Mandell noted.

Patients should be warned, however, of the risk of flares with the quick urate drop. Also, if they don’t have such a robust response, it probably means they have antibodies to pegylated uricase, which also increases their risk of an infusion reaction. In that case, "stop the drug," he said.

For management of an acute gout attack, Dr. Mandell said he often chooses anakinra (Kineret) so long as patients are in the hospital and can be monitored for infections and other potential problems.

Indomethacin is another option. In fact, "any NSAID will work if you use high enough doses. You need to treat until the attack resolves and then for a couple days longer to really make sure the attack is gone," he advised.

Colchicine can work "if you catch the attack early, but it’s not a panacea. It’s a great drug for prophylaxis but not to treat acute attacks," he said.

Narcotics don’t work well on inflammatory pain and so are not a good choice for an acute attack, Dr. Mandell noted.

A normal serum urate level does not necessarily rule out a gout attack. "Stick a needle in the joint at some point in time to make sure gout is the diagnosis," he said.

Dr. Mandell is a consultant for Novartis, Pfizer, Takeda, and other companies.

SDEF and this news organization are owned by Frontline Medical Communications.

Publications
Publications
Topics
Article Type
Display Headline
Most Patients Need More Allopurinol to Quiet Gout
Display Headline
Most Patients Need More Allopurinol to Quiet Gout
Legacy Keywords
gout patients, allopurinol gout, serum urate level, flare prevention, Dr. Brian Mandell
Legacy Keywords
gout patients, allopurinol gout, serum urate level, flare prevention, Dr. Brian Mandell
Article Source

EXPERT ANALYSIS FROM PERSPECTIVES IN RHEUMATIC DISEASES 2012

PURLs Copyright

Inside the Article

Mentor vs. Educator: Common Ground/Subtle Difference

Article Type
Changed
Tue, 12/13/2016 - 12:08
Display Headline
Mentor vs. Educator: Common Ground/Subtle Difference

There is a recent and needed interest in fostering the maturation of surgical trainees, both in the scientific literature and the lay press. Much of this focus has been on the mentorship and educational development of the surgeon in training. As a point of reference, there were 56 citations in PubMed for the calendar year 2012 (January through September) with mentorship or educator and surgery as keywords. This spans the spectrum from conveying technical skills in the operating room and on the wards, to transferring knowledge, to navigating the intricate dynamics of starting a practice.

While there is a great deal of commonality between a mentor and educator, there are subtle differences. Merriam-Webster has a definition of a mentor as "a trusted counselor or guide." An educator is defined as "one skilled in teaching." As what I believe to be a demonstration of the understanding that there are nuances of becoming a skilled educator, the Joint Council on Thoracic Surgery Education (JCTSE) and The Society of Thoracic Surgeons (STS) jointly sponsor the Educate the Educators (EtE) program. The EtE program’s purpose is to enhance the teaching skills of cardiothoracic surgery faculty.

Dr. Bryan Whitson

I recently had the fortunate opportunity to attend and participate in this year’s EtE course held this July 27-29 at The William and Ida Friday Center for Continuing Education at the University of North Carolina, Chapel Hill. This informative course was directed by Dr. Edward Verrier (University of Washington), Dr. Ara Vaporciyan (The University of Texas M.D. Anderson Cancer Center) and Dr. Stephen Yang (The Johns Hopkins University). The EtE program, which had 37 attendees, was run concurrently with this year’s Thoracic Surgery Directors Association 5th Annual Cardiothoracic Surgery Boot Camp.

The course focused on developing a framework for an effective educational environment – one where the trainee is able to learn, retain, and utilize the knowledge or skills. The need to engage learners at all the levels was especially poignant to cardiothoracic surgery education where the team and students span from medical students to general surgery residents to thoracic residents and fellows. Developing a deeper understanding of the level of pre-knowledge will become even more critical as integrated training programs expand.

Understanding the needs of the learner – especially as it relates to the development of curriculum – was a focus of Dr. Vaporciyan’s discussions. The field of curriculum development and assessment is beyond the scope of this article, but hinges on understanding curriculum as a process. The process begins with assessing the needs of the learner. It is followed by a thorough understanding of the goals and objectives of the educational experience. Finally, the materials, methods, and instructors are molded to best utilize their strengths. This approach ultimately makes the learning relevant to the trainee and optimally engages them. The ongoing engagement allows feedback to be best used to measure a trainee’s strengths and weaknesses. The educator then facilitates the process.

A large amount of time was dedicated to understanding the learner of today. This was spearheaded by a luncheon lecture and subsequent direct discussions with Dr. Mark Taylor, M.S.W., Ed.D on the generational changes of learners. What was most interesting, to this attendee, was the influence of intergenerational, cultural, and technological factors on the trainee of today and how those stereotypes (justified and unjustified) are carried through to the current training paradigm. Dr. Taylor’s talks were nicely augmented by those of Dr. Yang on utilizing deliberate teaching. This process focuses on setting objectives for a particular encounter (e.g., surgical case, bedside rounds, lecture) and providing feedback immediately.

The approach to deliberate teaching was especially relevant to today’s thoracic residency paradigm where work-hours are limited. To this end, an approach to maximally optimize learning, placing detailed background preparation with the trainee so that when they participate they are up to speed. That is to say, the majority of the content would be delivered off-line. The trainees are then held responsible for this information so that the learning encounter can be productive and focused on deeper understanding eliminating confusion.

Then the educational encounter would not be a regurgitation of information available elsewhere, but a conversation. This would enable the adult learner of the 21st century to utilize the study method and approach that is most effective for them and their lifestyle.

The commitment of the JTSCE and STS to improving thoracic resident education through the EtE program is outstanding. The EtE program is a very valuable resource for those with an interest in thoracic surgical education to expand their knowledge base.

References

Author and Disclosure Information

Publications
Sections
Author and Disclosure Information

Author and Disclosure Information

There is a recent and needed interest in fostering the maturation of surgical trainees, both in the scientific literature and the lay press. Much of this focus has been on the mentorship and educational development of the surgeon in training. As a point of reference, there were 56 citations in PubMed for the calendar year 2012 (January through September) with mentorship or educator and surgery as keywords. This spans the spectrum from conveying technical skills in the operating room and on the wards, to transferring knowledge, to navigating the intricate dynamics of starting a practice.

While there is a great deal of commonality between a mentor and educator, there are subtle differences. Merriam-Webster has a definition of a mentor as "a trusted counselor or guide." An educator is defined as "one skilled in teaching." As what I believe to be a demonstration of the understanding that there are nuances of becoming a skilled educator, the Joint Council on Thoracic Surgery Education (JCTSE) and The Society of Thoracic Surgeons (STS) jointly sponsor the Educate the Educators (EtE) program. The EtE program’s purpose is to enhance the teaching skills of cardiothoracic surgery faculty.

Dr. Bryan Whitson

I recently had the fortunate opportunity to attend and participate in this year’s EtE course held this July 27-29 at The William and Ida Friday Center for Continuing Education at the University of North Carolina, Chapel Hill. This informative course was directed by Dr. Edward Verrier (University of Washington), Dr. Ara Vaporciyan (The University of Texas M.D. Anderson Cancer Center) and Dr. Stephen Yang (The Johns Hopkins University). The EtE program, which had 37 attendees, was run concurrently with this year’s Thoracic Surgery Directors Association 5th Annual Cardiothoracic Surgery Boot Camp.

The course focused on developing a framework for an effective educational environment – one where the trainee is able to learn, retain, and utilize the knowledge or skills. The need to engage learners at all the levels was especially poignant to cardiothoracic surgery education where the team and students span from medical students to general surgery residents to thoracic residents and fellows. Developing a deeper understanding of the level of pre-knowledge will become even more critical as integrated training programs expand.

Understanding the needs of the learner – especially as it relates to the development of curriculum – was a focus of Dr. Vaporciyan’s discussions. The field of curriculum development and assessment is beyond the scope of this article, but hinges on understanding curriculum as a process. The process begins with assessing the needs of the learner. It is followed by a thorough understanding of the goals and objectives of the educational experience. Finally, the materials, methods, and instructors are molded to best utilize their strengths. This approach ultimately makes the learning relevant to the trainee and optimally engages them. The ongoing engagement allows feedback to be best used to measure a trainee’s strengths and weaknesses. The educator then facilitates the process.

A large amount of time was dedicated to understanding the learner of today. This was spearheaded by a luncheon lecture and subsequent direct discussions with Dr. Mark Taylor, M.S.W., Ed.D on the generational changes of learners. What was most interesting, to this attendee, was the influence of intergenerational, cultural, and technological factors on the trainee of today and how those stereotypes (justified and unjustified) are carried through to the current training paradigm. Dr. Taylor’s talks were nicely augmented by those of Dr. Yang on utilizing deliberate teaching. This process focuses on setting objectives for a particular encounter (e.g., surgical case, bedside rounds, lecture) and providing feedback immediately.

The approach to deliberate teaching was especially relevant to today’s thoracic residency paradigm where work-hours are limited. To this end, an approach to maximally optimize learning, placing detailed background preparation with the trainee so that when they participate they are up to speed. That is to say, the majority of the content would be delivered off-line. The trainees are then held responsible for this information so that the learning encounter can be productive and focused on deeper understanding eliminating confusion.

Then the educational encounter would not be a regurgitation of information available elsewhere, but a conversation. This would enable the adult learner of the 21st century to utilize the study method and approach that is most effective for them and their lifestyle.

The commitment of the JTSCE and STS to improving thoracic resident education through the EtE program is outstanding. The EtE program is a very valuable resource for those with an interest in thoracic surgical education to expand their knowledge base.

There is a recent and needed interest in fostering the maturation of surgical trainees, both in the scientific literature and the lay press. Much of this focus has been on the mentorship and educational development of the surgeon in training. As a point of reference, there were 56 citations in PubMed for the calendar year 2012 (January through September) with mentorship or educator and surgery as keywords. This spans the spectrum from conveying technical skills in the operating room and on the wards, to transferring knowledge, to navigating the intricate dynamics of starting a practice.

While there is a great deal of commonality between a mentor and educator, there are subtle differences. Merriam-Webster has a definition of a mentor as "a trusted counselor or guide." An educator is defined as "one skilled in teaching." As what I believe to be a demonstration of the understanding that there are nuances of becoming a skilled educator, the Joint Council on Thoracic Surgery Education (JCTSE) and The Society of Thoracic Surgeons (STS) jointly sponsor the Educate the Educators (EtE) program. The EtE program’s purpose is to enhance the teaching skills of cardiothoracic surgery faculty.

Dr. Bryan Whitson

I recently had the fortunate opportunity to attend and participate in this year’s EtE course held this July 27-29 at The William and Ida Friday Center for Continuing Education at the University of North Carolina, Chapel Hill. This informative course was directed by Dr. Edward Verrier (University of Washington), Dr. Ara Vaporciyan (The University of Texas M.D. Anderson Cancer Center) and Dr. Stephen Yang (The Johns Hopkins University). The EtE program, which had 37 attendees, was run concurrently with this year’s Thoracic Surgery Directors Association 5th Annual Cardiothoracic Surgery Boot Camp.

The course focused on developing a framework for an effective educational environment – one where the trainee is able to learn, retain, and utilize the knowledge or skills. The need to engage learners at all the levels was especially poignant to cardiothoracic surgery education where the team and students span from medical students to general surgery residents to thoracic residents and fellows. Developing a deeper understanding of the level of pre-knowledge will become even more critical as integrated training programs expand.

Understanding the needs of the learner – especially as it relates to the development of curriculum – was a focus of Dr. Vaporciyan’s discussions. The field of curriculum development and assessment is beyond the scope of this article, but hinges on understanding curriculum as a process. The process begins with assessing the needs of the learner. It is followed by a thorough understanding of the goals and objectives of the educational experience. Finally, the materials, methods, and instructors are molded to best utilize their strengths. This approach ultimately makes the learning relevant to the trainee and optimally engages them. The ongoing engagement allows feedback to be best used to measure a trainee’s strengths and weaknesses. The educator then facilitates the process.

A large amount of time was dedicated to understanding the learner of today. This was spearheaded by a luncheon lecture and subsequent direct discussions with Dr. Mark Taylor, M.S.W., Ed.D on the generational changes of learners. What was most interesting, to this attendee, was the influence of intergenerational, cultural, and technological factors on the trainee of today and how those stereotypes (justified and unjustified) are carried through to the current training paradigm. Dr. Taylor’s talks were nicely augmented by those of Dr. Yang on utilizing deliberate teaching. This process focuses on setting objectives for a particular encounter (e.g., surgical case, bedside rounds, lecture) and providing feedback immediately.

The approach to deliberate teaching was especially relevant to today’s thoracic residency paradigm where work-hours are limited. To this end, an approach to maximally optimize learning, placing detailed background preparation with the trainee so that when they participate they are up to speed. That is to say, the majority of the content would be delivered off-line. The trainees are then held responsible for this information so that the learning encounter can be productive and focused on deeper understanding eliminating confusion.

Then the educational encounter would not be a regurgitation of information available elsewhere, but a conversation. This would enable the adult learner of the 21st century to utilize the study method and approach that is most effective for them and their lifestyle.

The commitment of the JTSCE and STS to improving thoracic resident education through the EtE program is outstanding. The EtE program is a very valuable resource for those with an interest in thoracic surgical education to expand their knowledge base.

References

References

Publications
Publications
Article Type
Display Headline
Mentor vs. Educator: Common Ground/Subtle Difference
Display Headline
Mentor vs. Educator: Common Ground/Subtle Difference
Sections
Article Source

PURLs Copyright

Inside the Article

Venous Thromboembolism After TKA

Article Type
Changed
Mon, 05/22/2017 - 18:27
Display Headline
Mechanical and suboptimal pharmacologic prophylaxis and delayed mobilization but not morbid obesity are associated with venous thromboembolism after total knee arthroplasty: A case‐control study

Symptomatic venous thromboembolism (VTE) is a common complication following total knee arthroplasty (TKA).17 In fact, the high incidence of thrombosis after TKA has made this operation the principal condition used to study the efficacy of new anticoagulants, and it is a principal target of quality improvement oversight and measurement.8 The Agency for Healthcare Research and Quality (AHRQ) has developed a Patient Safety Indicator (PSI‐12) to assist hospitals, payers, and other stakeholders identify patients who experienced VTE after major surgery. The Centers for Medicare * Medicaid Services has deemed that because a VTE that develops after TKA is potentially preventable, it withholds the additional payment for this complication.9

Prior the introduction of new oral anticoagulants, most guidelines from North America recommended the use of postoperative low‐molecular‐weight heparin (LMWH), fondaparinux, or warfarin for at least 10 days after TKA.2, 10 However, there is some ongoing controversy about whether pharmacological prophylaxis is necessary after total joint replacement surgery, and whether it is effective in preventing pulmonary embolism.1114 In addition, there is controversy regarding the effectiveness of mechanical prophylaxis alone as a means of preventing VTE.2, 4, 14, 15

Pharmacological thromboprophylaxis using LMWH or fondaparinux calls for using a fixed‐dose that does not depend on the patient's weight or body mass index (BMI). This stands in sharp contrast to the consistent recommendation to use weight‐based dosing of LMWH/fondaparinux in patients who have acute VTE.16 The absence of any adjustment in the dose of thromboprophylaxis based on weight may be particularly important after TKA because the majority of these patients are obese or extremely obese,1719 making the dose of LMWH/fondaparinux potentially insufficient. It is noteworthy that surgeons who perform bariatric surgery currently recommend a higher dose of LMWH, usually 40 mg of enoxaparin every 12 hours.20, 21

We conducted this case‐control study to address 3 hypotheses. First, we hypothesized that use of standard pharmacologic thromboprophylaxis drugs is associated with a lower risk of acute VTE compared with mechanical prophylaxis alone. Second, we hypothesized that among patients given LMWH/fondaparinux, excessive obesity (BMI >35) is associated with a higher risk of developing VTE. Third, based on prior studies that identified immobilization as a risk factor for VTE, we hypothesized that delayed ambulation after TKA is associated with higher risk for VTE.

METHODS

Study Design

The University of California Davis, in partnership with the University HealthSystem Consortium (UHC), conducted a retrospective case‐control study of risk factors for acute symptomatic VTE within 90 days following TKA. Fifteen volunteer hospitals nationwide agreed to abstract medical records of up to 40 sampled cases or controls. Inclusion criteria were admission between October 1, 2008 and March 31, 2010; presence of a principal International Classification of Diseases, 9th Revision, Clinical Modification (ICD‐9‐CM) procedure code of 81.54 or 81.55; and age 40 years or more. Patients with a pregnancy‐related principal diagnosis (Major Diagnostic Category 14) or inferior vena cava interruption on or before the date of the first operating room procedure were excluded.

Cases were defined as having: a) one or more secondary diagnosis codes for acute VTE, as defined by AHRQ PSI‐12, version 4.1 (415.11, 415.19, 451.11, 451.19, 451.2, 451.81, 451.9, 453.40453.42, 453.8, 453.9), coupled with a present‐on‐admission flag of no (POA = N); or b) were readmitted with a principal diagnosis of VTE (same codes) within 90 days of the date of surgery. A probability sample of VTE cases (up to a maximum of 20), and 20 eligible TKA patients who did not develop acute VTE during the index hospitalization or within 90 days of surgery, were randomly selected for abstraction. Only 1 case flagged by the PSI algorithm was excluded because VTE could not be confirmed by abstraction.

Chart Abstraction

A chart abstraction tool was constructed and personnel at each site were taught how to obtain the desired information. Data elements included age, gender, height and weight, and type of TKA (unilateral, bilateral, or revision). BMI was calculated and categorized as severely obese (World Health Organization [WHO] class II or more, BMI 35) versus not severely obese (BMI <35), and as morbidly obese (WHO class III, BMI >40) or not morbidly obese (<40). Information about use of pharmacologic (LMWH, fondaparinux, or warfarin) and mechanical thromboprophylaxis was collected and classified as follows. First, the type of prophylaxis was categorized as: (1) LMWH (enoxaparin, dalteparin)/fondaparinux with or without mechanical prophylaxis (pneumatic compression devices, graduated compression stockings, or foot pump); (2) warfarin alone, with or without mechanical prophylaxis; (3) LMWH/fondaparinux and warfarin with or without mechanical pharmacologic prophylaxis; (4) mechanical prophylaxis alone (without any pharmacological prophylaxis but with or without aspirin); and (5) aspirin only, without any other pharmacologic or mechanical prophylaxis. Second, patients who received LMWH, fondaparinux, or warfarin pharmacologic prophylaxis were further classified as receiving FDA‐approved pharmacologic prophylaxis or other prophylaxis. The criteria for FDA‐approved pharmacologic prophylaxis were receipt of the recommended dose at the recommended starting time (per package insert), either before or after surgery, and continued administration until at least the day of hospital discharge, consistent with the 2008 American College of Chest Physicians (ACCP) guidelines for prevention of VTE in orthopedic patients.2 For warfarin, FDA‐approved dosing required a starting dose of 210 mg per day beginning either preoperatively or on the evening after surgery, and given daily thereafter, targeting an international normalized ratio (INR) of 2.03.0. No patient received aspirin alone for prophylaxis. In the analysis of risk factors for VTE, the effect of FDA‐approved pharmacologic prophylaxis was compared against other pharmacologic prophylaxis or mechanical prophylaxis alone. Time of ambulation was defined as early if it occurred on or before the second postoperative day, late if it occurred after the second postoperative day, or none if the patient did not ambulate before discharge.

Outcomes

The principal outcome was validated symptomatic objectively confirmed VTE, manifested as either pulmonary embolism (PE) or lower extremity deep vein thrombosis (DVT) or both. Patients who were diagnosed with VTE on the day of surgery or the day after surgery were not included in the principal analysis, reasoning that postoperative prophylaxis started 1224 hours after surgery is unlikely to prevent early VTE events. In a secondary sensitivity analysis, the effect of including these early postoperative VTE events on the estimated risk was determined.

Statistical Analysis

For continuous variables, bivariate comparisons were made with the use of Student t test. For categorical variables, we applied the chi‐square test and estimated unadjusted odds ratios (ORs) and Cornfield's 95% confidence intervals (CIs). We specifically analyzed whether gender, age, type of TKA, race/ethnicity, primary payer, severe or morbid obesity, postoperative ambulation, personal or family history of VTE, and comorbid conditions were associated with the development of any VTE, DVT, or PE.

Multivariable models were developed using logistic regression. In addition to age and gender, other terms included receipt of FDA‐approved pharmacologic prophylaxis, degree of obesity (severe if BMI >35, morbid if BMI >40), type of TKA (unilateral vs bilateral) and early versus late versus no ambulation. A patient was considered receiving FDA‐approved pharmacologic prophylaxis if the first postoperative dose and the last postoperative dose before discharge of LMWH, fondaparinux, or warfarin were given based on the recommended time and dose. Two‐way interactions between FDA‐approved pharmacologic prophylaxis and extent of obesity were tested, as well as interactions between LMWH/fondaparinux prophylaxis and extent of obesity. We adjusted all of the point estimates and confidence intervals for the correlation of data within each hospital by using the STRATA option in SAS; statistical analyses were performed using the SAS‐PC program, SAS 9.2 (SAS Institute, Inc, Cary, NC).

RESULTS

A total of 593 TKA records were abstracted by the 15 participating hospitals. All patients underwent TKA on the day of admission or the day after admission. A total of 16 cases (12 PE and 4 DVT) were diagnosed with VTE on the day of surgery, or the day after surgery, and were deemed nonpreventable in the multivariable analysis. There were 114 additional cases with VTE (44 PE, 68 DVT, 2 both) diagnosed 2 or more days after surgery, and 463 controls that had no VTE diagnosed by the index hospital within 90 days after surgery.

In bivariate analyses (Table 1), the mean age of cases was significantly greater for controls (65.5 10.4 vs 63.5 10.4, P < 0.05). More cases underwent bilateral simultaneous TKA compared with controls (23% vs 7%, P < 0.001). The mean BMI was marginally higher among VTE cases than among controls (34.6 8.0 vs 33.3 7.1, P = 0.07). Among cases with PE, a significantly greater percentage were morbidly obese than among controls (30% vs 16%, P value = 0.01), whereas there was not a difference for the DVT cases.

Results of Bivariate Analysis of Clinical and Demographic Variables in Relation to Case (VTE) or Control (no VTE) Status After TKA
VariableVTE n = 130 (%)No VTE n = 463 (%)Total N = 593 (%)
  • Abbreviations: BMI, body mass index; CVA, cerebrovascular accident; DVT, deep vein thrombosis; LOS, length of stay; PE, pulmonary embolism; TKA, total knee arthroplasty; TKR, total knee replacement; VTE, venous thromboembolism.

  • P value between VTE and no VTE, <0.05. P value between VTE and no VTE groups, <0.001.

GenderMale45 (34)175 (38)220 (37)
Female85288373
Age (y)*Mean65.563.563.9
Standard deviation10.410.410.5
LOS (d)*Mean6.13.44.0
Standard deviation4.71.52.8
Type of TKRPrimary TKR‐unilateral100 (76)425 (92)525 (89)
Primary TKR‐bilateral29 (23)35 (7)64 (11)
Revision for mechanical problem1 (1)3 (1)4 (1)
RaceAfrican American25 (19)80 (17)105 (18)
Asian4 (3)8 (2)12 (2)
White91 (70)337 (73)428 (72)
Hispanic7 (5)28 (6)35 (6)
Unknown/others5 (4)18 (4)23 (4)
Primary payerUninsured/self‐pay2 (1)2 (<1)4 (1)
Medicaid/managed care11 (8)40 (7)51 (9)
Medicare/managed care66 (52)220 (47)286 (48)
Private44 (34)156 (34)200 (34)
US/state/local government1 (1)5 (1)6 (1)
Others/unknown6 (4)40 (8)46 (8)
BMIMean34.633.333.6
 Standard deviation8.07.17.3
ObesityBMI 3051 (38)172 (37)223 (38)
30 to 3529 (22)122 (26)151 (25)
35 to 4021 (18)95 (20)116 (20)
>4029 (22)74 (16)103 (17)
AmbulationTaking steps with or without walker (day 1 or 2 after surgery)62 (47)340 (73)402 (77)
Taking steps with or without walker (day 3 or more after surgery)58 (45)106 (23)164 (28)
Weight bearing only or no ambulation predischarge10 (8)17 (4)27 (5)
No. of days from surgery to taking stepsMean2.01.31.45
Standard deviation2.30.71.4
Comorbidities/risk factorsDiabetes30 (22)99 (22)129 (22)
Hypertension90 (70)313 (67)403 (68)
History of malignancy9 (8)54 (11)63 (11)
Current neoplasm4 (3)9 (2)13 (2)
Documented history/risk of bleeding or hematoma3 (2)7 (2)10 (2)
History of any other surgery1 (1)1 (<1)2 (<1)
Baseline inability to ambulate without assistance from staff03 (1)3 (<1)
Trauma, head trauma, new fractures000
Current use of oral contraceptive or system estrogen08 (2)8 (1)
Past stroke/CVA with residual weakness1 (1)7 (2)8 (1)
Prior history of DVT6 (5)20 (4)26 (4)
Prior history of PE2 (2)11 (2)13 (2)
Family history of VTE05 (1)5 (1)
Known thrombophilia01 (<1)1 (<1)
None of the above33 (25)96 (21)129 (22)

Fewer VTE cases began ambulation on or before the second postoperative day compared with controls (47% vs 73%, P < 0.001). There was no difference in the number or types of comorbidities between cases and controls. All patients received at least 1 type of pharmacologic or mechanical prophylaxis within the first 24 hours after TKA. Although the difference was not statistically significant, controls had marginally higher odds of receiving FDA‐approved pharmacologic prophylaxis than cases (P = 0.07; Table 2). Table 3 presents the criterion that led to 242 cases not meeting the definition of FDA‐approved pharmacologic prophylaxis definition. Administering a suboptimal dose was the most common reason. Also, about half of the patients received only mechanical prophylaxis.

Pharmacological and Nonpharmacological Prophylaxis, and FDA‐Approved Pharmacologic vs All Other Prophylaxis, in TKA Cases With Thromboembolism and TKA Controls Without Thromboembolism
ThromboprophylaxisThromboembolism
VTE = Yes n = 130 (%)VTE = No n = 463 (%)
  • NOTE: Numbers are mutually exclusive within each column. Abbreviations: FDA, US Food and Drug Administration; LWMH, low‐molecular‐weight heparin; TKA, total knee arthroplasty; VTE, venous thromboembolism.

  • There was no case of aspirin alone in our sample.

Pharmacologic prophylaxis
LMWH/fondaparinux61 (46)223 (48)
Warfarin alone (no LMWH)*44 (33)145 (31)
None25 (19)95 (20)
Nonpharmacologic prophylaxis
Intermittent pneumatic compression or graduated compression stockings/foot pump27 (21)93 (20)
FDA‐approved pharmacologic prophylaxis
LWMH/fondaparinux/warfarin prophylaxis67 (48)284 (61)
No FDA‐approved pharmacologic prophylaxis
Suboptimal pharmacologic or mechanical prophylaxis63 (52)179 (39)
Patients Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis Based on the FDA‐Approved Labeling for Proper Dose, Timing, and Duration
Prophylaxis StatusCases and Controls Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis (N = 242)
  • Abbreviations: FDA, US Food and Drug Administration.

  • Numbers are not mutually exclusive. Wrong dose if did not meet FDA‐recommended dose: First post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours, or 40 mg per day; or first post‐op dose of fondaparinux was 2.5 mg per day; or first post‐op dose of warfarin was 210 mg per day; or first post‐op dose of dalteparin was 2500 mg per 12 hours. Wrong time window if did not meet FDA‐recommended timing: First post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery; or first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery; or first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery; or first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery

Received FDA‐approved pharmacologic prophylaxis but did not meet FDA‐approved proper dose, timing, and duration Variablen*
118 (49%)Wrong dose87
Dose not within the recommended time window17
Not continued at discharge50
Received no pharmacologic prophylaxis (only mechanical)124 (51%)

In the primary multivariable analysis (Table 4), neither age, gender, nor obesity (defined as BMI >30, BMI >35, or BMI >40) was a significant predictor of VTE. Undergoing bilateral simultaneous TKA versus unilateral TKA was associated with higher risk of VTE (OR = 4.2; 95% CI: 1.909.10), whereas early ambulation on or before the second postoperative day versus later (OR = 0.30; 95% CI: 0.100.90). Receiving FDA‐approved pharmacologic prophylaxis (right dose and time described in Table 4) versus any other prophylaxis regimen was adversely associated with VTE (OR = 0.50; 95% CI: 0.300.80, P = 0.01). There was no significant effect of receipt of FDA‐approved pharmacologic prophylaxis on being diagnosed with VTE among the cases that were severely or morbidly obese (P for interaction = 0.92). In a secondary analysis, the adjusted odds of being diagnosed with VTE were not significantly different for severely (OR = 0.9; CI 0.531.5) or morbidly obese (OR = 1.5; CI 0.802.80) patients.

Results of Multivariable (Conditional Logit) Analysis of Factors Associated With Thromboembolism After TKA
VariableOdds RatioP Value
  • Abbreviations: BMI, body mass index; FDA, US Food and Drug Administration; TKA, total knee arthroplasty.

  • If the first post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery, or the first post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours or 40 mg per day; or the first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery, or the first post‐op dose of fondaparinux was 2.5 mg per day; or the first post‐op dose of dalteparin was 2500 mg per 12 hours, or the first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery; or the first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery, or the first post‐op dose of warfarin was 210 mg per day.

Older age1.02 (0.991.05)0.20
Female gender1.70 (0.92.9)0.90
BMI over 35 (vs 35 or less)0.9 (0.51.6)0.66
Bilateral TKA (vs unilateral TKA)4.2 (1.99.1)0.0004
Receiving FDA‐approved pharmacologic prophylaxis* vs mechanical0.5 (0.30.8)0.01
Ambulation on or before second postoperative day0.3 (0.10.9)0.005

In a sensitivity analysis, we did not find any significant changes in the results when the 12 cases that developed VTE on the day of, or day after, TKA were included.

DISCUSSION

Venous thromboembolism is a frequent and potentially serious complication following TKA. In population‐based studies that report the number of patients who develop symptomatic acute VTE, the incidence is approximately 2.0%2.5%.3, 2224 Thromboprophylaxis reduces the risk of developing asymptomatic VTE by more than 60%, and pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin alone is recommended by the ACCP and other organizations, with use of mechanical pneumatic compression, low‐dose unfractionated heparin, or aspirin as alternative options.25 Nevertheless, because extremely obese patients are not commonly enrolled in clinical trials and because current guidelines do not recommend any adjustment in the dose of LMWH or fondaparinux based on weight, we hypothesized that LMWH/fondaparinux would be significantly less effective in severely or morbidly obese patients. We also hypothesized that pharmacologic prophylaxis would be superior to mechanical prophylaxis alone,26 and that delayed ambulation after TKA would be associated with a higher risk of developing VTE.

Two widely cited clinical guidelines that pertain to prophylaxis of venous thromboembolism after total knee arthroplasty are the ACCP guidelines2 and the American Academy of Orthopedic Surgeons (AAOS) guidelines.27 Although we acknowledge that there are differences in these and other guidelines, recommendations and quality measures,13, 28, 29 the aim of the current study was not to evaluate or compare specific guidelines. We simply classified the thromboprophylaxis regimens into logical groups, the 2 most frequent being use of LMWH/fondaparinux (mechanical) and mechanical prophylaxis alone, and then performed the case‐control analysis. We followed FDA‐approved labeling to assess whether pharmacologic therapy was provided at the proper dose in the proper time period.

A principal finding of this study was that FDA‐approved pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin, was associated with significantly lower odds of developing VTE compared to all other prophylaxis regimens.

When the effect of FDA‐approved pharmacologic prophylaxis was analyzed in severely or morbidly obese patients versus less obese patients, there was no significant difference in the risk of VTE across the BMI levels that were compared. Further, among the patients whose pharmacologic prophylaxis was LMWH or fondaparinux, severe or morbid obesity was not associated with significantly higher odds of developing VTE. Although it is logical to think that heavier patients require a larger dose of LMWH or fondaparinux, the findings of this study suggest that current FDA‐approved doses of these drugs are adequate even in morbidly obese patients.

Two other findings were noteworthy. First, early mobilization with active ambulation in the first 2 days after TKA was strongly associated with lower odds of developing VTE. This finding is similar to the report by Chandrasekaran et al that sitting out of bed or walking for at least 1530 minutes twice a day on the first postoperative day after TKA significantly reduced the incidence of thromboembolic complications (OR = 0.35; 95% CI: 0.11, 1.03, P = 0.03) compared those confined to bed.22, 30 In our study, the beneficial effect of mobilization disappeared if ambulation commenced on day 3 or later after surgery. This finding emphasizes the importance of early mobilization in prevention of VTE, as has been reported after total hip arthroplasty.31

The other important finding was that bilateral simultaneous TKA was strongly associated with VTE, with over 4‐fold greater odds of developing VTE compared with unilateral TKA. This effect did not disappear when we adjusted for obesity or the time to mobilization. This finding was not unexpected and is consistent with other reports in the literature showing a higher incidence of VTE after bilateral TKA compared with unilateral TKA.3235

This study has several limitations. We were unable to ascertain postdischarge VTE unless a patient was readmitted to the same hospital. It has been reported that between 35% to 45% of postoperative VTEs occur after hospital discharge,22, 23 and some of these complications are treated at other institutions or in the outpatient arena.36 Second, it has been shown that hospital volume and hospital specialization are associated with the incidence of VTE after TKA procedures.37, 38 To minimize the risk of confounding by hospital characteristics, we conditioned our analysis on hospital and adjusted for the clustering effect of hospitals. Third, all data were collected by individuals employed by and working at the participating hospitals, with no mechanism for duplicate abstraction to ensure reliability. Fourth, only teaching hospitals participated in this study. Adherence to guidelines and use of prophylaxis may be higher at teaching hospitals than at nonteaching hospitals.39 As a result, our sample may have less variation than the general population of TKA patients, limiting our power to detect associations between thromboprophylaxis and VTE. Finally, the case‐control design has inherent limitations in detecting causal associations, largely due to its susceptibility to unmeasured confounders and incorrect ascertainment of pre‐outcome exposures. To avoid the latter problem, we excluded VTEs that were diagnosed on the date of surgery, before prophylaxis is routinely started.

Despite these limitations, our findings suggest that there may be opportunities to prevent postoperative VTE, even among high‐risk patients at teaching hospitals that have achieved 100% compliance with The Joint Commission's Surgical Care Improvement Project process measures.40, 41 Specifically, delivery of FDA‐approved pharmacologic prophylaxis (vs mechanical prophylaxis alone) and early ambulation (vs later) may further decrease the risk of postoperative VTE. These hypotheses merit further testing in randomized controlled trials or cluster‐randomized quality improvement trials. Patients should be informed of the increased risk of VTE after bilateral TKA, although this additional risk may be outweighed by a reduction in the cumulative recovery time and a lower cumulative risk of developing a prosthetic joint infection.42, 43 Finally, AHRQ's PSI‐12 appears to be a useful tool for ascertaining VTE cases and identifying potential opportunities for improvement, when the present‐on‐admission status is also available.

Files
References
  1. Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous thromboembolism after major joint surgery. J Bone Joint Surg Br. 2006;88(3):386391.
  2. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):381S453S.
  3. Howie C, Hughes H, Watts AC. Venous thromboembolism associated with hip and knee replacement over a ten‐year period: a population‐based study. J Bone Joint Surg Br. 2005;87(12):16751680.
  4. Pellegrini VD, Sharrock NE, Paiement GD, Morris R, Warwick DJ. Venous thromboembolic disease after total hip and knee arthroplasty: current perspectives in a regulated environment. Instr Course Lect. 2008;57:637661.
  5. Watanabe H, Sekiya H, Kariya Y, Hoshino Y, Sugimoto H, Hayasaka S. The incidence of venous thromboembolism before and after total knee arthroplasty using 16‐row multidetector computed tomography. J Arthroplasty. 2011;26(8):14881493.
  6. White RH, Romano PS, Zhou H, Rodrigo J, Bargar W. Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty. Arch Intern Med. 1998;158(14):15251531.
  7. Milbrink J, Bergqvist D. The incidence of symptomatic venous thromboembolic events in orthopaedic surgery when using routine thromboprophylaxis. Vasa. 2008;37(4):353357.
  8. White RH, Sadeghi B, Tancredi DJ, et al. How valid is the ICD‐9‐CM based AHRQ patient safety indicator for postoperative venous thromboembolism? Med Care. 2009;47(12):12371243.
  9. Department of Health and Human Services, Centers for Medicare 17(4):359365.
  10. Eikelboom J, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ. What are the implications for clinicians and patients? Chest. 2009;135(2):15121520.
  11. Jämsen E, Varonen M, Huhtala H, et al. Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty. 2010;25(1):8792.
  12. Lachiewicz PF. Comparison of ACCP and AAOS guidelines for VTE prophylaxis after total hip and total knee arthroplasty. Orthopedics. 2009;32(12 suppl):7478.
  13. Sobieraj‐Teague M, Eikelboom JW, Hirsh J. How can we reduce disagreement among guidelines for venous thromboembolism prevention? J Thromb Haemost. 2010;8(4):675677.
  14. Limpus A, Chaboyer W, McDonald E, Thalib L. Mechanical thromboprophylaxis in critically ill patients: a systematic review and meta‐analysis. Am J Crit Care. 2006;15(4):402410; quiz/discussion, 411–412.
  15. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):454S545S.
  16. Altintaş F, Gürbüz H, Erdemli B, et al. Venous thromboembolism prophylaxis in major orthopaedic surgery: a multicenter, prospective, observational study. Acta Orthop Traumatol Turc. 2008;42(5):322327.
  17. Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplasty. 2005;20(suppl 3):4650.
  18. White RH, Henderson MC. Risk factors for venous thromboembolism after total hip and knee replacement surgery. Curr Opin Pulm Med. 2002;8(5):365371.
  19. Simone E, Madan A, Tichansky D, Kuhl D, Lee M. Comparison of two low‐molecular‐weight heparin dosing regimens for patients undergoing laparoscopic bariatric surgery. Surg Endosc. 2008;22(11):23922395.
  20. Rowan B, Kuhl D, Lee M, Tichansky D, Madan A. Anti‐Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes Surg. 2008;18(2):162166.
  21. Samama CM, Ravaud P, Parent F, Barre J, Mertl P, Mismetti P. Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study. J Thromb Haemost. 2007;5(12):23602367.
  22. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost. 2003;90(3):446455.
  23. White RH. The epidemiology of venous thromboembolism. Circulation.2003;107(23 suppl 1):I4I8.
  24. Falck‐Ytter Y, Francis CW, Johanson NA, et al. Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines. Chest. 2012;141(2 suppl):e278Se325S.
  25. Blanchard J, Meuwly J‐Y, Leyvraz P‐F, et al. Prevention of deep‐vein thrombosis after total knee replacement: randomised comparison between a low‐molecular‐weight heparin and mechanical prophylaxis with a foot‐pump system. J Bone Joint Surg Br. 1999;81‐B(4):654659.
  26. AAOS. Pulmonary Embolism After Knee Arthroscopy: Rare but Serious. American Academy of Orthopaedic Surgeons/American Association of Orthopaedic Surgeons Web site. Available at: http://www6aaosorg/news/pemr/releases/releasecfm?releasenum=9692011.
  27. Eikelboom JW, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ: what are the implications for clinicians and patients? Chest. 2009;135(2):513520.
  28. Premier—A supporting partnership organization of the Surgical Care Improvement Project (SCIP). Premier Inc Web site. Available at: http://www.premierinc.com/safety/topics/scip/. Accessed April 10, 2012.
  29. Chandrasekaran S, Ariaretnam SK, Tsung J, Dickison D. Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. Aust N Z J Surg. 2009;79(7–8):526529.
  30. White RH, Gettner S, Newman JM, Trauner KB, Romano PS. Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. N Engl J Med. 2000;343(24):17581764.
  31. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am. 2006;88(10):21462151.
  32. Kim YH, Kim JS. Incidence and natural history of deep‐vein thrombosis after total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 2002;84(4):566570.
  33. Memtsoudis SG, Gonzalez Della Valle A, Besculides MC, Gaber L, Sculco TP. In‐hospital complications and mortality of unilateral, bilateral, and revision TKA: based on an estimate of 4,159,661 discharges. Clin Orthop Relat Res. 2008;466(11):26172627.
  34. Restrepo C, Parvizi J, Dietrich T, Einhorn TA. Safety of simultaneous bilateral total knee arthroplasty. A meta‐analysis. J Bone Joint Surg Am. 2007;89(6):12201226.
  35. Dushey CH, Bornstein LJ, Alexiades MM, Westrich GH. Short‐term coagulation complications following total knee arthroplasty: a comparison of patient‐reported and surgeon‐verified complication rates. J Arthroplasty. 2011 Jan 20.
  36. Baser O, Supina D, Sengupta N, Wang L, Kwong L. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. Curr Med Res Opin. 2011;27(2):423429.
  37. Hagen TP, Vaughan‐Sarrazin MS, Cram P. Relation between hospital orthopaedic specialisation and outcomes in patients aged 65 and older: retrospective analysis of US Medicare data. BMJ. 2010;340:c165.
  38. Amin A, Stemkowski S, Lin J, Yang G. Thromboprophylaxis rates in US medical centers: success or failure? J Thromb Haemost. 2007;5(8):16101616.
  39. Knapp RM. Quality and safety performance in teaching hospitals. Am Surg. 2006;72(11):10511054; discussion 1061–1059, 1133–1048.
  40. Pardini‐Kiely K, Greenlee E, Hopkins J, Szaflarski NL, Tabb K. Improving and sustaining core measure performance through effective accountability of clinical microsystems in an academic medical center. Jt Comm J Qual Patient Saf. 2010;36(9):387398.
  41. Fabi DW, Mohan V, Goldstein WM, Dunn JH, Murphy BP. Unilateral vs bilateral total knee arthroplasty risk factors increasing morbidity. J Arthroplasty. 2011;26(5):668673.
  42. Powell RS, Pulido P, Tuason MS, Colwell CW, Ezzet KA. Bilateral vs unilateral total knee arthroplasty: a patient‐based comparison of pain levels and recovery of ambulatory skills. J Arthroplasty. 2006;21(5):642649.
Article PDF
Issue
Journal of Hospital Medicine - 7(9)
Page Number
665-671
Sections
Files
Files
Article PDF
Article PDF

Symptomatic venous thromboembolism (VTE) is a common complication following total knee arthroplasty (TKA).17 In fact, the high incidence of thrombosis after TKA has made this operation the principal condition used to study the efficacy of new anticoagulants, and it is a principal target of quality improvement oversight and measurement.8 The Agency for Healthcare Research and Quality (AHRQ) has developed a Patient Safety Indicator (PSI‐12) to assist hospitals, payers, and other stakeholders identify patients who experienced VTE after major surgery. The Centers for Medicare * Medicaid Services has deemed that because a VTE that develops after TKA is potentially preventable, it withholds the additional payment for this complication.9

Prior the introduction of new oral anticoagulants, most guidelines from North America recommended the use of postoperative low‐molecular‐weight heparin (LMWH), fondaparinux, or warfarin for at least 10 days after TKA.2, 10 However, there is some ongoing controversy about whether pharmacological prophylaxis is necessary after total joint replacement surgery, and whether it is effective in preventing pulmonary embolism.1114 In addition, there is controversy regarding the effectiveness of mechanical prophylaxis alone as a means of preventing VTE.2, 4, 14, 15

Pharmacological thromboprophylaxis using LMWH or fondaparinux calls for using a fixed‐dose that does not depend on the patient's weight or body mass index (BMI). This stands in sharp contrast to the consistent recommendation to use weight‐based dosing of LMWH/fondaparinux in patients who have acute VTE.16 The absence of any adjustment in the dose of thromboprophylaxis based on weight may be particularly important after TKA because the majority of these patients are obese or extremely obese,1719 making the dose of LMWH/fondaparinux potentially insufficient. It is noteworthy that surgeons who perform bariatric surgery currently recommend a higher dose of LMWH, usually 40 mg of enoxaparin every 12 hours.20, 21

We conducted this case‐control study to address 3 hypotheses. First, we hypothesized that use of standard pharmacologic thromboprophylaxis drugs is associated with a lower risk of acute VTE compared with mechanical prophylaxis alone. Second, we hypothesized that among patients given LMWH/fondaparinux, excessive obesity (BMI >35) is associated with a higher risk of developing VTE. Third, based on prior studies that identified immobilization as a risk factor for VTE, we hypothesized that delayed ambulation after TKA is associated with higher risk for VTE.

METHODS

Study Design

The University of California Davis, in partnership with the University HealthSystem Consortium (UHC), conducted a retrospective case‐control study of risk factors for acute symptomatic VTE within 90 days following TKA. Fifteen volunteer hospitals nationwide agreed to abstract medical records of up to 40 sampled cases or controls. Inclusion criteria were admission between October 1, 2008 and March 31, 2010; presence of a principal International Classification of Diseases, 9th Revision, Clinical Modification (ICD‐9‐CM) procedure code of 81.54 or 81.55; and age 40 years or more. Patients with a pregnancy‐related principal diagnosis (Major Diagnostic Category 14) or inferior vena cava interruption on or before the date of the first operating room procedure were excluded.

Cases were defined as having: a) one or more secondary diagnosis codes for acute VTE, as defined by AHRQ PSI‐12, version 4.1 (415.11, 415.19, 451.11, 451.19, 451.2, 451.81, 451.9, 453.40453.42, 453.8, 453.9), coupled with a present‐on‐admission flag of no (POA = N); or b) were readmitted with a principal diagnosis of VTE (same codes) within 90 days of the date of surgery. A probability sample of VTE cases (up to a maximum of 20), and 20 eligible TKA patients who did not develop acute VTE during the index hospitalization or within 90 days of surgery, were randomly selected for abstraction. Only 1 case flagged by the PSI algorithm was excluded because VTE could not be confirmed by abstraction.

Chart Abstraction

A chart abstraction tool was constructed and personnel at each site were taught how to obtain the desired information. Data elements included age, gender, height and weight, and type of TKA (unilateral, bilateral, or revision). BMI was calculated and categorized as severely obese (World Health Organization [WHO] class II or more, BMI 35) versus not severely obese (BMI <35), and as morbidly obese (WHO class III, BMI >40) or not morbidly obese (<40). Information about use of pharmacologic (LMWH, fondaparinux, or warfarin) and mechanical thromboprophylaxis was collected and classified as follows. First, the type of prophylaxis was categorized as: (1) LMWH (enoxaparin, dalteparin)/fondaparinux with or without mechanical prophylaxis (pneumatic compression devices, graduated compression stockings, or foot pump); (2) warfarin alone, with or without mechanical prophylaxis; (3) LMWH/fondaparinux and warfarin with or without mechanical pharmacologic prophylaxis; (4) mechanical prophylaxis alone (without any pharmacological prophylaxis but with or without aspirin); and (5) aspirin only, without any other pharmacologic or mechanical prophylaxis. Second, patients who received LMWH, fondaparinux, or warfarin pharmacologic prophylaxis were further classified as receiving FDA‐approved pharmacologic prophylaxis or other prophylaxis. The criteria for FDA‐approved pharmacologic prophylaxis were receipt of the recommended dose at the recommended starting time (per package insert), either before or after surgery, and continued administration until at least the day of hospital discharge, consistent with the 2008 American College of Chest Physicians (ACCP) guidelines for prevention of VTE in orthopedic patients.2 For warfarin, FDA‐approved dosing required a starting dose of 210 mg per day beginning either preoperatively or on the evening after surgery, and given daily thereafter, targeting an international normalized ratio (INR) of 2.03.0. No patient received aspirin alone for prophylaxis. In the analysis of risk factors for VTE, the effect of FDA‐approved pharmacologic prophylaxis was compared against other pharmacologic prophylaxis or mechanical prophylaxis alone. Time of ambulation was defined as early if it occurred on or before the second postoperative day, late if it occurred after the second postoperative day, or none if the patient did not ambulate before discharge.

Outcomes

The principal outcome was validated symptomatic objectively confirmed VTE, manifested as either pulmonary embolism (PE) or lower extremity deep vein thrombosis (DVT) or both. Patients who were diagnosed with VTE on the day of surgery or the day after surgery were not included in the principal analysis, reasoning that postoperative prophylaxis started 1224 hours after surgery is unlikely to prevent early VTE events. In a secondary sensitivity analysis, the effect of including these early postoperative VTE events on the estimated risk was determined.

Statistical Analysis

For continuous variables, bivariate comparisons were made with the use of Student t test. For categorical variables, we applied the chi‐square test and estimated unadjusted odds ratios (ORs) and Cornfield's 95% confidence intervals (CIs). We specifically analyzed whether gender, age, type of TKA, race/ethnicity, primary payer, severe or morbid obesity, postoperative ambulation, personal or family history of VTE, and comorbid conditions were associated with the development of any VTE, DVT, or PE.

Multivariable models were developed using logistic regression. In addition to age and gender, other terms included receipt of FDA‐approved pharmacologic prophylaxis, degree of obesity (severe if BMI >35, morbid if BMI >40), type of TKA (unilateral vs bilateral) and early versus late versus no ambulation. A patient was considered receiving FDA‐approved pharmacologic prophylaxis if the first postoperative dose and the last postoperative dose before discharge of LMWH, fondaparinux, or warfarin were given based on the recommended time and dose. Two‐way interactions between FDA‐approved pharmacologic prophylaxis and extent of obesity were tested, as well as interactions between LMWH/fondaparinux prophylaxis and extent of obesity. We adjusted all of the point estimates and confidence intervals for the correlation of data within each hospital by using the STRATA option in SAS; statistical analyses were performed using the SAS‐PC program, SAS 9.2 (SAS Institute, Inc, Cary, NC).

RESULTS

A total of 593 TKA records were abstracted by the 15 participating hospitals. All patients underwent TKA on the day of admission or the day after admission. A total of 16 cases (12 PE and 4 DVT) were diagnosed with VTE on the day of surgery, or the day after surgery, and were deemed nonpreventable in the multivariable analysis. There were 114 additional cases with VTE (44 PE, 68 DVT, 2 both) diagnosed 2 or more days after surgery, and 463 controls that had no VTE diagnosed by the index hospital within 90 days after surgery.

In bivariate analyses (Table 1), the mean age of cases was significantly greater for controls (65.5 10.4 vs 63.5 10.4, P < 0.05). More cases underwent bilateral simultaneous TKA compared with controls (23% vs 7%, P < 0.001). The mean BMI was marginally higher among VTE cases than among controls (34.6 8.0 vs 33.3 7.1, P = 0.07). Among cases with PE, a significantly greater percentage were morbidly obese than among controls (30% vs 16%, P value = 0.01), whereas there was not a difference for the DVT cases.

Results of Bivariate Analysis of Clinical and Demographic Variables in Relation to Case (VTE) or Control (no VTE) Status After TKA
VariableVTE n = 130 (%)No VTE n = 463 (%)Total N = 593 (%)
  • Abbreviations: BMI, body mass index; CVA, cerebrovascular accident; DVT, deep vein thrombosis; LOS, length of stay; PE, pulmonary embolism; TKA, total knee arthroplasty; TKR, total knee replacement; VTE, venous thromboembolism.

  • P value between VTE and no VTE, <0.05. P value between VTE and no VTE groups, <0.001.

GenderMale45 (34)175 (38)220 (37)
Female85288373
Age (y)*Mean65.563.563.9
Standard deviation10.410.410.5
LOS (d)*Mean6.13.44.0
Standard deviation4.71.52.8
Type of TKRPrimary TKR‐unilateral100 (76)425 (92)525 (89)
Primary TKR‐bilateral29 (23)35 (7)64 (11)
Revision for mechanical problem1 (1)3 (1)4 (1)
RaceAfrican American25 (19)80 (17)105 (18)
Asian4 (3)8 (2)12 (2)
White91 (70)337 (73)428 (72)
Hispanic7 (5)28 (6)35 (6)
Unknown/others5 (4)18 (4)23 (4)
Primary payerUninsured/self‐pay2 (1)2 (<1)4 (1)
Medicaid/managed care11 (8)40 (7)51 (9)
Medicare/managed care66 (52)220 (47)286 (48)
Private44 (34)156 (34)200 (34)
US/state/local government1 (1)5 (1)6 (1)
Others/unknown6 (4)40 (8)46 (8)
BMIMean34.633.333.6
 Standard deviation8.07.17.3
ObesityBMI 3051 (38)172 (37)223 (38)
30 to 3529 (22)122 (26)151 (25)
35 to 4021 (18)95 (20)116 (20)
>4029 (22)74 (16)103 (17)
AmbulationTaking steps with or without walker (day 1 or 2 after surgery)62 (47)340 (73)402 (77)
Taking steps with or without walker (day 3 or more after surgery)58 (45)106 (23)164 (28)
Weight bearing only or no ambulation predischarge10 (8)17 (4)27 (5)
No. of days from surgery to taking stepsMean2.01.31.45
Standard deviation2.30.71.4
Comorbidities/risk factorsDiabetes30 (22)99 (22)129 (22)
Hypertension90 (70)313 (67)403 (68)
History of malignancy9 (8)54 (11)63 (11)
Current neoplasm4 (3)9 (2)13 (2)
Documented history/risk of bleeding or hematoma3 (2)7 (2)10 (2)
History of any other surgery1 (1)1 (<1)2 (<1)
Baseline inability to ambulate without assistance from staff03 (1)3 (<1)
Trauma, head trauma, new fractures000
Current use of oral contraceptive or system estrogen08 (2)8 (1)
Past stroke/CVA with residual weakness1 (1)7 (2)8 (1)
Prior history of DVT6 (5)20 (4)26 (4)
Prior history of PE2 (2)11 (2)13 (2)
Family history of VTE05 (1)5 (1)
Known thrombophilia01 (<1)1 (<1)
None of the above33 (25)96 (21)129 (22)

Fewer VTE cases began ambulation on or before the second postoperative day compared with controls (47% vs 73%, P < 0.001). There was no difference in the number or types of comorbidities between cases and controls. All patients received at least 1 type of pharmacologic or mechanical prophylaxis within the first 24 hours after TKA. Although the difference was not statistically significant, controls had marginally higher odds of receiving FDA‐approved pharmacologic prophylaxis than cases (P = 0.07; Table 2). Table 3 presents the criterion that led to 242 cases not meeting the definition of FDA‐approved pharmacologic prophylaxis definition. Administering a suboptimal dose was the most common reason. Also, about half of the patients received only mechanical prophylaxis.

Pharmacological and Nonpharmacological Prophylaxis, and FDA‐Approved Pharmacologic vs All Other Prophylaxis, in TKA Cases With Thromboembolism and TKA Controls Without Thromboembolism
ThromboprophylaxisThromboembolism
VTE = Yes n = 130 (%)VTE = No n = 463 (%)
  • NOTE: Numbers are mutually exclusive within each column. Abbreviations: FDA, US Food and Drug Administration; LWMH, low‐molecular‐weight heparin; TKA, total knee arthroplasty; VTE, venous thromboembolism.

  • There was no case of aspirin alone in our sample.

Pharmacologic prophylaxis
LMWH/fondaparinux61 (46)223 (48)
Warfarin alone (no LMWH)*44 (33)145 (31)
None25 (19)95 (20)
Nonpharmacologic prophylaxis
Intermittent pneumatic compression or graduated compression stockings/foot pump27 (21)93 (20)
FDA‐approved pharmacologic prophylaxis
LWMH/fondaparinux/warfarin prophylaxis67 (48)284 (61)
No FDA‐approved pharmacologic prophylaxis
Suboptimal pharmacologic or mechanical prophylaxis63 (52)179 (39)
Patients Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis Based on the FDA‐Approved Labeling for Proper Dose, Timing, and Duration
Prophylaxis StatusCases and Controls Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis (N = 242)
  • Abbreviations: FDA, US Food and Drug Administration.

  • Numbers are not mutually exclusive. Wrong dose if did not meet FDA‐recommended dose: First post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours, or 40 mg per day; or first post‐op dose of fondaparinux was 2.5 mg per day; or first post‐op dose of warfarin was 210 mg per day; or first post‐op dose of dalteparin was 2500 mg per 12 hours. Wrong time window if did not meet FDA‐recommended timing: First post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery; or first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery; or first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery; or first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery

Received FDA‐approved pharmacologic prophylaxis but did not meet FDA‐approved proper dose, timing, and duration Variablen*
118 (49%)Wrong dose87
Dose not within the recommended time window17
Not continued at discharge50
Received no pharmacologic prophylaxis (only mechanical)124 (51%)

In the primary multivariable analysis (Table 4), neither age, gender, nor obesity (defined as BMI >30, BMI >35, or BMI >40) was a significant predictor of VTE. Undergoing bilateral simultaneous TKA versus unilateral TKA was associated with higher risk of VTE (OR = 4.2; 95% CI: 1.909.10), whereas early ambulation on or before the second postoperative day versus later (OR = 0.30; 95% CI: 0.100.90). Receiving FDA‐approved pharmacologic prophylaxis (right dose and time described in Table 4) versus any other prophylaxis regimen was adversely associated with VTE (OR = 0.50; 95% CI: 0.300.80, P = 0.01). There was no significant effect of receipt of FDA‐approved pharmacologic prophylaxis on being diagnosed with VTE among the cases that were severely or morbidly obese (P for interaction = 0.92). In a secondary analysis, the adjusted odds of being diagnosed with VTE were not significantly different for severely (OR = 0.9; CI 0.531.5) or morbidly obese (OR = 1.5; CI 0.802.80) patients.

Results of Multivariable (Conditional Logit) Analysis of Factors Associated With Thromboembolism After TKA
VariableOdds RatioP Value
  • Abbreviations: BMI, body mass index; FDA, US Food and Drug Administration; TKA, total knee arthroplasty.

  • If the first post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery, or the first post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours or 40 mg per day; or the first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery, or the first post‐op dose of fondaparinux was 2.5 mg per day; or the first post‐op dose of dalteparin was 2500 mg per 12 hours, or the first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery; or the first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery, or the first post‐op dose of warfarin was 210 mg per day.

Older age1.02 (0.991.05)0.20
Female gender1.70 (0.92.9)0.90
BMI over 35 (vs 35 or less)0.9 (0.51.6)0.66
Bilateral TKA (vs unilateral TKA)4.2 (1.99.1)0.0004
Receiving FDA‐approved pharmacologic prophylaxis* vs mechanical0.5 (0.30.8)0.01
Ambulation on or before second postoperative day0.3 (0.10.9)0.005

In a sensitivity analysis, we did not find any significant changes in the results when the 12 cases that developed VTE on the day of, or day after, TKA were included.

DISCUSSION

Venous thromboembolism is a frequent and potentially serious complication following TKA. In population‐based studies that report the number of patients who develop symptomatic acute VTE, the incidence is approximately 2.0%2.5%.3, 2224 Thromboprophylaxis reduces the risk of developing asymptomatic VTE by more than 60%, and pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin alone is recommended by the ACCP and other organizations, with use of mechanical pneumatic compression, low‐dose unfractionated heparin, or aspirin as alternative options.25 Nevertheless, because extremely obese patients are not commonly enrolled in clinical trials and because current guidelines do not recommend any adjustment in the dose of LMWH or fondaparinux based on weight, we hypothesized that LMWH/fondaparinux would be significantly less effective in severely or morbidly obese patients. We also hypothesized that pharmacologic prophylaxis would be superior to mechanical prophylaxis alone,26 and that delayed ambulation after TKA would be associated with a higher risk of developing VTE.

Two widely cited clinical guidelines that pertain to prophylaxis of venous thromboembolism after total knee arthroplasty are the ACCP guidelines2 and the American Academy of Orthopedic Surgeons (AAOS) guidelines.27 Although we acknowledge that there are differences in these and other guidelines, recommendations and quality measures,13, 28, 29 the aim of the current study was not to evaluate or compare specific guidelines. We simply classified the thromboprophylaxis regimens into logical groups, the 2 most frequent being use of LMWH/fondaparinux (mechanical) and mechanical prophylaxis alone, and then performed the case‐control analysis. We followed FDA‐approved labeling to assess whether pharmacologic therapy was provided at the proper dose in the proper time period.

A principal finding of this study was that FDA‐approved pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin, was associated with significantly lower odds of developing VTE compared to all other prophylaxis regimens.

When the effect of FDA‐approved pharmacologic prophylaxis was analyzed in severely or morbidly obese patients versus less obese patients, there was no significant difference in the risk of VTE across the BMI levels that were compared. Further, among the patients whose pharmacologic prophylaxis was LMWH or fondaparinux, severe or morbid obesity was not associated with significantly higher odds of developing VTE. Although it is logical to think that heavier patients require a larger dose of LMWH or fondaparinux, the findings of this study suggest that current FDA‐approved doses of these drugs are adequate even in morbidly obese patients.

Two other findings were noteworthy. First, early mobilization with active ambulation in the first 2 days after TKA was strongly associated with lower odds of developing VTE. This finding is similar to the report by Chandrasekaran et al that sitting out of bed or walking for at least 1530 minutes twice a day on the first postoperative day after TKA significantly reduced the incidence of thromboembolic complications (OR = 0.35; 95% CI: 0.11, 1.03, P = 0.03) compared those confined to bed.22, 30 In our study, the beneficial effect of mobilization disappeared if ambulation commenced on day 3 or later after surgery. This finding emphasizes the importance of early mobilization in prevention of VTE, as has been reported after total hip arthroplasty.31

The other important finding was that bilateral simultaneous TKA was strongly associated with VTE, with over 4‐fold greater odds of developing VTE compared with unilateral TKA. This effect did not disappear when we adjusted for obesity or the time to mobilization. This finding was not unexpected and is consistent with other reports in the literature showing a higher incidence of VTE after bilateral TKA compared with unilateral TKA.3235

This study has several limitations. We were unable to ascertain postdischarge VTE unless a patient was readmitted to the same hospital. It has been reported that between 35% to 45% of postoperative VTEs occur after hospital discharge,22, 23 and some of these complications are treated at other institutions or in the outpatient arena.36 Second, it has been shown that hospital volume and hospital specialization are associated with the incidence of VTE after TKA procedures.37, 38 To minimize the risk of confounding by hospital characteristics, we conditioned our analysis on hospital and adjusted for the clustering effect of hospitals. Third, all data were collected by individuals employed by and working at the participating hospitals, with no mechanism for duplicate abstraction to ensure reliability. Fourth, only teaching hospitals participated in this study. Adherence to guidelines and use of prophylaxis may be higher at teaching hospitals than at nonteaching hospitals.39 As a result, our sample may have less variation than the general population of TKA patients, limiting our power to detect associations between thromboprophylaxis and VTE. Finally, the case‐control design has inherent limitations in detecting causal associations, largely due to its susceptibility to unmeasured confounders and incorrect ascertainment of pre‐outcome exposures. To avoid the latter problem, we excluded VTEs that were diagnosed on the date of surgery, before prophylaxis is routinely started.

Despite these limitations, our findings suggest that there may be opportunities to prevent postoperative VTE, even among high‐risk patients at teaching hospitals that have achieved 100% compliance with The Joint Commission's Surgical Care Improvement Project process measures.40, 41 Specifically, delivery of FDA‐approved pharmacologic prophylaxis (vs mechanical prophylaxis alone) and early ambulation (vs later) may further decrease the risk of postoperative VTE. These hypotheses merit further testing in randomized controlled trials or cluster‐randomized quality improvement trials. Patients should be informed of the increased risk of VTE after bilateral TKA, although this additional risk may be outweighed by a reduction in the cumulative recovery time and a lower cumulative risk of developing a prosthetic joint infection.42, 43 Finally, AHRQ's PSI‐12 appears to be a useful tool for ascertaining VTE cases and identifying potential opportunities for improvement, when the present‐on‐admission status is also available.

Symptomatic venous thromboembolism (VTE) is a common complication following total knee arthroplasty (TKA).17 In fact, the high incidence of thrombosis after TKA has made this operation the principal condition used to study the efficacy of new anticoagulants, and it is a principal target of quality improvement oversight and measurement.8 The Agency for Healthcare Research and Quality (AHRQ) has developed a Patient Safety Indicator (PSI‐12) to assist hospitals, payers, and other stakeholders identify patients who experienced VTE after major surgery. The Centers for Medicare * Medicaid Services has deemed that because a VTE that develops after TKA is potentially preventable, it withholds the additional payment for this complication.9

Prior the introduction of new oral anticoagulants, most guidelines from North America recommended the use of postoperative low‐molecular‐weight heparin (LMWH), fondaparinux, or warfarin for at least 10 days after TKA.2, 10 However, there is some ongoing controversy about whether pharmacological prophylaxis is necessary after total joint replacement surgery, and whether it is effective in preventing pulmonary embolism.1114 In addition, there is controversy regarding the effectiveness of mechanical prophylaxis alone as a means of preventing VTE.2, 4, 14, 15

Pharmacological thromboprophylaxis using LMWH or fondaparinux calls for using a fixed‐dose that does not depend on the patient's weight or body mass index (BMI). This stands in sharp contrast to the consistent recommendation to use weight‐based dosing of LMWH/fondaparinux in patients who have acute VTE.16 The absence of any adjustment in the dose of thromboprophylaxis based on weight may be particularly important after TKA because the majority of these patients are obese or extremely obese,1719 making the dose of LMWH/fondaparinux potentially insufficient. It is noteworthy that surgeons who perform bariatric surgery currently recommend a higher dose of LMWH, usually 40 mg of enoxaparin every 12 hours.20, 21

We conducted this case‐control study to address 3 hypotheses. First, we hypothesized that use of standard pharmacologic thromboprophylaxis drugs is associated with a lower risk of acute VTE compared with mechanical prophylaxis alone. Second, we hypothesized that among patients given LMWH/fondaparinux, excessive obesity (BMI >35) is associated with a higher risk of developing VTE. Third, based on prior studies that identified immobilization as a risk factor for VTE, we hypothesized that delayed ambulation after TKA is associated with higher risk for VTE.

METHODS

Study Design

The University of California Davis, in partnership with the University HealthSystem Consortium (UHC), conducted a retrospective case‐control study of risk factors for acute symptomatic VTE within 90 days following TKA. Fifteen volunteer hospitals nationwide agreed to abstract medical records of up to 40 sampled cases or controls. Inclusion criteria were admission between October 1, 2008 and March 31, 2010; presence of a principal International Classification of Diseases, 9th Revision, Clinical Modification (ICD‐9‐CM) procedure code of 81.54 or 81.55; and age 40 years or more. Patients with a pregnancy‐related principal diagnosis (Major Diagnostic Category 14) or inferior vena cava interruption on or before the date of the first operating room procedure were excluded.

Cases were defined as having: a) one or more secondary diagnosis codes for acute VTE, as defined by AHRQ PSI‐12, version 4.1 (415.11, 415.19, 451.11, 451.19, 451.2, 451.81, 451.9, 453.40453.42, 453.8, 453.9), coupled with a present‐on‐admission flag of no (POA = N); or b) were readmitted with a principal diagnosis of VTE (same codes) within 90 days of the date of surgery. A probability sample of VTE cases (up to a maximum of 20), and 20 eligible TKA patients who did not develop acute VTE during the index hospitalization or within 90 days of surgery, were randomly selected for abstraction. Only 1 case flagged by the PSI algorithm was excluded because VTE could not be confirmed by abstraction.

Chart Abstraction

A chart abstraction tool was constructed and personnel at each site were taught how to obtain the desired information. Data elements included age, gender, height and weight, and type of TKA (unilateral, bilateral, or revision). BMI was calculated and categorized as severely obese (World Health Organization [WHO] class II or more, BMI 35) versus not severely obese (BMI <35), and as morbidly obese (WHO class III, BMI >40) or not morbidly obese (<40). Information about use of pharmacologic (LMWH, fondaparinux, or warfarin) and mechanical thromboprophylaxis was collected and classified as follows. First, the type of prophylaxis was categorized as: (1) LMWH (enoxaparin, dalteparin)/fondaparinux with or without mechanical prophylaxis (pneumatic compression devices, graduated compression stockings, or foot pump); (2) warfarin alone, with or without mechanical prophylaxis; (3) LMWH/fondaparinux and warfarin with or without mechanical pharmacologic prophylaxis; (4) mechanical prophylaxis alone (without any pharmacological prophylaxis but with or without aspirin); and (5) aspirin only, without any other pharmacologic or mechanical prophylaxis. Second, patients who received LMWH, fondaparinux, or warfarin pharmacologic prophylaxis were further classified as receiving FDA‐approved pharmacologic prophylaxis or other prophylaxis. The criteria for FDA‐approved pharmacologic prophylaxis were receipt of the recommended dose at the recommended starting time (per package insert), either before or after surgery, and continued administration until at least the day of hospital discharge, consistent with the 2008 American College of Chest Physicians (ACCP) guidelines for prevention of VTE in orthopedic patients.2 For warfarin, FDA‐approved dosing required a starting dose of 210 mg per day beginning either preoperatively or on the evening after surgery, and given daily thereafter, targeting an international normalized ratio (INR) of 2.03.0. No patient received aspirin alone for prophylaxis. In the analysis of risk factors for VTE, the effect of FDA‐approved pharmacologic prophylaxis was compared against other pharmacologic prophylaxis or mechanical prophylaxis alone. Time of ambulation was defined as early if it occurred on or before the second postoperative day, late if it occurred after the second postoperative day, or none if the patient did not ambulate before discharge.

Outcomes

The principal outcome was validated symptomatic objectively confirmed VTE, manifested as either pulmonary embolism (PE) or lower extremity deep vein thrombosis (DVT) or both. Patients who were diagnosed with VTE on the day of surgery or the day after surgery were not included in the principal analysis, reasoning that postoperative prophylaxis started 1224 hours after surgery is unlikely to prevent early VTE events. In a secondary sensitivity analysis, the effect of including these early postoperative VTE events on the estimated risk was determined.

Statistical Analysis

For continuous variables, bivariate comparisons were made with the use of Student t test. For categorical variables, we applied the chi‐square test and estimated unadjusted odds ratios (ORs) and Cornfield's 95% confidence intervals (CIs). We specifically analyzed whether gender, age, type of TKA, race/ethnicity, primary payer, severe or morbid obesity, postoperative ambulation, personal or family history of VTE, and comorbid conditions were associated with the development of any VTE, DVT, or PE.

Multivariable models were developed using logistic regression. In addition to age and gender, other terms included receipt of FDA‐approved pharmacologic prophylaxis, degree of obesity (severe if BMI >35, morbid if BMI >40), type of TKA (unilateral vs bilateral) and early versus late versus no ambulation. A patient was considered receiving FDA‐approved pharmacologic prophylaxis if the first postoperative dose and the last postoperative dose before discharge of LMWH, fondaparinux, or warfarin were given based on the recommended time and dose. Two‐way interactions between FDA‐approved pharmacologic prophylaxis and extent of obesity were tested, as well as interactions between LMWH/fondaparinux prophylaxis and extent of obesity. We adjusted all of the point estimates and confidence intervals for the correlation of data within each hospital by using the STRATA option in SAS; statistical analyses were performed using the SAS‐PC program, SAS 9.2 (SAS Institute, Inc, Cary, NC).

RESULTS

A total of 593 TKA records were abstracted by the 15 participating hospitals. All patients underwent TKA on the day of admission or the day after admission. A total of 16 cases (12 PE and 4 DVT) were diagnosed with VTE on the day of surgery, or the day after surgery, and were deemed nonpreventable in the multivariable analysis. There were 114 additional cases with VTE (44 PE, 68 DVT, 2 both) diagnosed 2 or more days after surgery, and 463 controls that had no VTE diagnosed by the index hospital within 90 days after surgery.

In bivariate analyses (Table 1), the mean age of cases was significantly greater for controls (65.5 10.4 vs 63.5 10.4, P < 0.05). More cases underwent bilateral simultaneous TKA compared with controls (23% vs 7%, P < 0.001). The mean BMI was marginally higher among VTE cases than among controls (34.6 8.0 vs 33.3 7.1, P = 0.07). Among cases with PE, a significantly greater percentage were morbidly obese than among controls (30% vs 16%, P value = 0.01), whereas there was not a difference for the DVT cases.

Results of Bivariate Analysis of Clinical and Demographic Variables in Relation to Case (VTE) or Control (no VTE) Status After TKA
VariableVTE n = 130 (%)No VTE n = 463 (%)Total N = 593 (%)
  • Abbreviations: BMI, body mass index; CVA, cerebrovascular accident; DVT, deep vein thrombosis; LOS, length of stay; PE, pulmonary embolism; TKA, total knee arthroplasty; TKR, total knee replacement; VTE, venous thromboembolism.

  • P value between VTE and no VTE, <0.05. P value between VTE and no VTE groups, <0.001.

GenderMale45 (34)175 (38)220 (37)
Female85288373
Age (y)*Mean65.563.563.9
Standard deviation10.410.410.5
LOS (d)*Mean6.13.44.0
Standard deviation4.71.52.8
Type of TKRPrimary TKR‐unilateral100 (76)425 (92)525 (89)
Primary TKR‐bilateral29 (23)35 (7)64 (11)
Revision for mechanical problem1 (1)3 (1)4 (1)
RaceAfrican American25 (19)80 (17)105 (18)
Asian4 (3)8 (2)12 (2)
White91 (70)337 (73)428 (72)
Hispanic7 (5)28 (6)35 (6)
Unknown/others5 (4)18 (4)23 (4)
Primary payerUninsured/self‐pay2 (1)2 (<1)4 (1)
Medicaid/managed care11 (8)40 (7)51 (9)
Medicare/managed care66 (52)220 (47)286 (48)
Private44 (34)156 (34)200 (34)
US/state/local government1 (1)5 (1)6 (1)
Others/unknown6 (4)40 (8)46 (8)
BMIMean34.633.333.6
 Standard deviation8.07.17.3
ObesityBMI 3051 (38)172 (37)223 (38)
30 to 3529 (22)122 (26)151 (25)
35 to 4021 (18)95 (20)116 (20)
>4029 (22)74 (16)103 (17)
AmbulationTaking steps with or without walker (day 1 or 2 after surgery)62 (47)340 (73)402 (77)
Taking steps with or without walker (day 3 or more after surgery)58 (45)106 (23)164 (28)
Weight bearing only or no ambulation predischarge10 (8)17 (4)27 (5)
No. of days from surgery to taking stepsMean2.01.31.45
Standard deviation2.30.71.4
Comorbidities/risk factorsDiabetes30 (22)99 (22)129 (22)
Hypertension90 (70)313 (67)403 (68)
History of malignancy9 (8)54 (11)63 (11)
Current neoplasm4 (3)9 (2)13 (2)
Documented history/risk of bleeding or hematoma3 (2)7 (2)10 (2)
History of any other surgery1 (1)1 (<1)2 (<1)
Baseline inability to ambulate without assistance from staff03 (1)3 (<1)
Trauma, head trauma, new fractures000
Current use of oral contraceptive or system estrogen08 (2)8 (1)
Past stroke/CVA with residual weakness1 (1)7 (2)8 (1)
Prior history of DVT6 (5)20 (4)26 (4)
Prior history of PE2 (2)11 (2)13 (2)
Family history of VTE05 (1)5 (1)
Known thrombophilia01 (<1)1 (<1)
None of the above33 (25)96 (21)129 (22)

Fewer VTE cases began ambulation on or before the second postoperative day compared with controls (47% vs 73%, P < 0.001). There was no difference in the number or types of comorbidities between cases and controls. All patients received at least 1 type of pharmacologic or mechanical prophylaxis within the first 24 hours after TKA. Although the difference was not statistically significant, controls had marginally higher odds of receiving FDA‐approved pharmacologic prophylaxis than cases (P = 0.07; Table 2). Table 3 presents the criterion that led to 242 cases not meeting the definition of FDA‐approved pharmacologic prophylaxis definition. Administering a suboptimal dose was the most common reason. Also, about half of the patients received only mechanical prophylaxis.

Pharmacological and Nonpharmacological Prophylaxis, and FDA‐Approved Pharmacologic vs All Other Prophylaxis, in TKA Cases With Thromboembolism and TKA Controls Without Thromboembolism
ThromboprophylaxisThromboembolism
VTE = Yes n = 130 (%)VTE = No n = 463 (%)
  • NOTE: Numbers are mutually exclusive within each column. Abbreviations: FDA, US Food and Drug Administration; LWMH, low‐molecular‐weight heparin; TKA, total knee arthroplasty; VTE, venous thromboembolism.

  • There was no case of aspirin alone in our sample.

Pharmacologic prophylaxis
LMWH/fondaparinux61 (46)223 (48)
Warfarin alone (no LMWH)*44 (33)145 (31)
None25 (19)95 (20)
Nonpharmacologic prophylaxis
Intermittent pneumatic compression or graduated compression stockings/foot pump27 (21)93 (20)
FDA‐approved pharmacologic prophylaxis
LWMH/fondaparinux/warfarin prophylaxis67 (48)284 (61)
No FDA‐approved pharmacologic prophylaxis
Suboptimal pharmacologic or mechanical prophylaxis63 (52)179 (39)
Patients Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis Based on the FDA‐Approved Labeling for Proper Dose, Timing, and Duration
Prophylaxis StatusCases and Controls Who Did Not Receive FDA‐Approved Pharmacologic Prophylaxis (N = 242)
  • Abbreviations: FDA, US Food and Drug Administration.

  • Numbers are not mutually exclusive. Wrong dose if did not meet FDA‐recommended dose: First post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours, or 40 mg per day; or first post‐op dose of fondaparinux was 2.5 mg per day; or first post‐op dose of warfarin was 210 mg per day; or first post‐op dose of dalteparin was 2500 mg per 12 hours. Wrong time window if did not meet FDA‐recommended timing: First post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery; or first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery; or first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery; or first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery

Received FDA‐approved pharmacologic prophylaxis but did not meet FDA‐approved proper dose, timing, and duration Variablen*
118 (49%)Wrong dose87
Dose not within the recommended time window17
Not continued at discharge50
Received no pharmacologic prophylaxis (only mechanical)124 (51%)

In the primary multivariable analysis (Table 4), neither age, gender, nor obesity (defined as BMI >30, BMI >35, or BMI >40) was a significant predictor of VTE. Undergoing bilateral simultaneous TKA versus unilateral TKA was associated with higher risk of VTE (OR = 4.2; 95% CI: 1.909.10), whereas early ambulation on or before the second postoperative day versus later (OR = 0.30; 95% CI: 0.100.90). Receiving FDA‐approved pharmacologic prophylaxis (right dose and time described in Table 4) versus any other prophylaxis regimen was adversely associated with VTE (OR = 0.50; 95% CI: 0.300.80, P = 0.01). There was no significant effect of receipt of FDA‐approved pharmacologic prophylaxis on being diagnosed with VTE among the cases that were severely or morbidly obese (P for interaction = 0.92). In a secondary analysis, the adjusted odds of being diagnosed with VTE were not significantly different for severely (OR = 0.9; CI 0.531.5) or morbidly obese (OR = 1.5; CI 0.802.80) patients.

Results of Multivariable (Conditional Logit) Analysis of Factors Associated With Thromboembolism After TKA
VariableOdds RatioP Value
  • Abbreviations: BMI, body mass index; FDA, US Food and Drug Administration; TKA, total knee arthroplasty.

  • If the first post‐op dose of enoxaparin was given between 720 and 1440 minutes postsurgery, or the first post‐op dose of enoxaparin was 30 mg per 12 hours, or last post‐op dose before discharge was 30 mg per 12 hours or 40 mg per day; or the first post‐op dose of fondaparinux was given less than or equal to 480 minutes postsurgery, or the first post‐op dose of fondaparinux was 2.5 mg per day; or the first post‐op dose of dalteparin was 2500 mg per 12 hours, or the first post‐op dose of dalteparin was given between 240 and 360 minutes postsurgery; or the first post‐op dose of warfarin was given between 0 and 720 minutes postsurgery, or the first post‐op dose of warfarin was 210 mg per day.

Older age1.02 (0.991.05)0.20
Female gender1.70 (0.92.9)0.90
BMI over 35 (vs 35 or less)0.9 (0.51.6)0.66
Bilateral TKA (vs unilateral TKA)4.2 (1.99.1)0.0004
Receiving FDA‐approved pharmacologic prophylaxis* vs mechanical0.5 (0.30.8)0.01
Ambulation on or before second postoperative day0.3 (0.10.9)0.005

In a sensitivity analysis, we did not find any significant changes in the results when the 12 cases that developed VTE on the day of, or day after, TKA were included.

DISCUSSION

Venous thromboembolism is a frequent and potentially serious complication following TKA. In population‐based studies that report the number of patients who develop symptomatic acute VTE, the incidence is approximately 2.0%2.5%.3, 2224 Thromboprophylaxis reduces the risk of developing asymptomatic VTE by more than 60%, and pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin alone is recommended by the ACCP and other organizations, with use of mechanical pneumatic compression, low‐dose unfractionated heparin, or aspirin as alternative options.25 Nevertheless, because extremely obese patients are not commonly enrolled in clinical trials and because current guidelines do not recommend any adjustment in the dose of LMWH or fondaparinux based on weight, we hypothesized that LMWH/fondaparinux would be significantly less effective in severely or morbidly obese patients. We also hypothesized that pharmacologic prophylaxis would be superior to mechanical prophylaxis alone,26 and that delayed ambulation after TKA would be associated with a higher risk of developing VTE.

Two widely cited clinical guidelines that pertain to prophylaxis of venous thromboembolism after total knee arthroplasty are the ACCP guidelines2 and the American Academy of Orthopedic Surgeons (AAOS) guidelines.27 Although we acknowledge that there are differences in these and other guidelines, recommendations and quality measures,13, 28, 29 the aim of the current study was not to evaluate or compare specific guidelines. We simply classified the thromboprophylaxis regimens into logical groups, the 2 most frequent being use of LMWH/fondaparinux (mechanical) and mechanical prophylaxis alone, and then performed the case‐control analysis. We followed FDA‐approved labeling to assess whether pharmacologic therapy was provided at the proper dose in the proper time period.

A principal finding of this study was that FDA‐approved pharmacologic prophylaxis using LMWH, fondaparinux, or warfarin, was associated with significantly lower odds of developing VTE compared to all other prophylaxis regimens.

When the effect of FDA‐approved pharmacologic prophylaxis was analyzed in severely or morbidly obese patients versus less obese patients, there was no significant difference in the risk of VTE across the BMI levels that were compared. Further, among the patients whose pharmacologic prophylaxis was LMWH or fondaparinux, severe or morbid obesity was not associated with significantly higher odds of developing VTE. Although it is logical to think that heavier patients require a larger dose of LMWH or fondaparinux, the findings of this study suggest that current FDA‐approved doses of these drugs are adequate even in morbidly obese patients.

Two other findings were noteworthy. First, early mobilization with active ambulation in the first 2 days after TKA was strongly associated with lower odds of developing VTE. This finding is similar to the report by Chandrasekaran et al that sitting out of bed or walking for at least 1530 minutes twice a day on the first postoperative day after TKA significantly reduced the incidence of thromboembolic complications (OR = 0.35; 95% CI: 0.11, 1.03, P = 0.03) compared those confined to bed.22, 30 In our study, the beneficial effect of mobilization disappeared if ambulation commenced on day 3 or later after surgery. This finding emphasizes the importance of early mobilization in prevention of VTE, as has been reported after total hip arthroplasty.31

The other important finding was that bilateral simultaneous TKA was strongly associated with VTE, with over 4‐fold greater odds of developing VTE compared with unilateral TKA. This effect did not disappear when we adjusted for obesity or the time to mobilization. This finding was not unexpected and is consistent with other reports in the literature showing a higher incidence of VTE after bilateral TKA compared with unilateral TKA.3235

This study has several limitations. We were unable to ascertain postdischarge VTE unless a patient was readmitted to the same hospital. It has been reported that between 35% to 45% of postoperative VTEs occur after hospital discharge,22, 23 and some of these complications are treated at other institutions or in the outpatient arena.36 Second, it has been shown that hospital volume and hospital specialization are associated with the incidence of VTE after TKA procedures.37, 38 To minimize the risk of confounding by hospital characteristics, we conditioned our analysis on hospital and adjusted for the clustering effect of hospitals. Third, all data were collected by individuals employed by and working at the participating hospitals, with no mechanism for duplicate abstraction to ensure reliability. Fourth, only teaching hospitals participated in this study. Adherence to guidelines and use of prophylaxis may be higher at teaching hospitals than at nonteaching hospitals.39 As a result, our sample may have less variation than the general population of TKA patients, limiting our power to detect associations between thromboprophylaxis and VTE. Finally, the case‐control design has inherent limitations in detecting causal associations, largely due to its susceptibility to unmeasured confounders and incorrect ascertainment of pre‐outcome exposures. To avoid the latter problem, we excluded VTEs that were diagnosed on the date of surgery, before prophylaxis is routinely started.

Despite these limitations, our findings suggest that there may be opportunities to prevent postoperative VTE, even among high‐risk patients at teaching hospitals that have achieved 100% compliance with The Joint Commission's Surgical Care Improvement Project process measures.40, 41 Specifically, delivery of FDA‐approved pharmacologic prophylaxis (vs mechanical prophylaxis alone) and early ambulation (vs later) may further decrease the risk of postoperative VTE. These hypotheses merit further testing in randomized controlled trials or cluster‐randomized quality improvement trials. Patients should be informed of the increased risk of VTE after bilateral TKA, although this additional risk may be outweighed by a reduction in the cumulative recovery time and a lower cumulative risk of developing a prosthetic joint infection.42, 43 Finally, AHRQ's PSI‐12 appears to be a useful tool for ascertaining VTE cases and identifying potential opportunities for improvement, when the present‐on‐admission status is also available.

References
  1. Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous thromboembolism after major joint surgery. J Bone Joint Surg Br. 2006;88(3):386391.
  2. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):381S453S.
  3. Howie C, Hughes H, Watts AC. Venous thromboembolism associated with hip and knee replacement over a ten‐year period: a population‐based study. J Bone Joint Surg Br. 2005;87(12):16751680.
  4. Pellegrini VD, Sharrock NE, Paiement GD, Morris R, Warwick DJ. Venous thromboembolic disease after total hip and knee arthroplasty: current perspectives in a regulated environment. Instr Course Lect. 2008;57:637661.
  5. Watanabe H, Sekiya H, Kariya Y, Hoshino Y, Sugimoto H, Hayasaka S. The incidence of venous thromboembolism before and after total knee arthroplasty using 16‐row multidetector computed tomography. J Arthroplasty. 2011;26(8):14881493.
  6. White RH, Romano PS, Zhou H, Rodrigo J, Bargar W. Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty. Arch Intern Med. 1998;158(14):15251531.
  7. Milbrink J, Bergqvist D. The incidence of symptomatic venous thromboembolic events in orthopaedic surgery when using routine thromboprophylaxis. Vasa. 2008;37(4):353357.
  8. White RH, Sadeghi B, Tancredi DJ, et al. How valid is the ICD‐9‐CM based AHRQ patient safety indicator for postoperative venous thromboembolism? Med Care. 2009;47(12):12371243.
  9. Department of Health and Human Services, Centers for Medicare 17(4):359365.
  10. Eikelboom J, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ. What are the implications for clinicians and patients? Chest. 2009;135(2):15121520.
  11. Jämsen E, Varonen M, Huhtala H, et al. Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty. 2010;25(1):8792.
  12. Lachiewicz PF. Comparison of ACCP and AAOS guidelines for VTE prophylaxis after total hip and total knee arthroplasty. Orthopedics. 2009;32(12 suppl):7478.
  13. Sobieraj‐Teague M, Eikelboom JW, Hirsh J. How can we reduce disagreement among guidelines for venous thromboembolism prevention? J Thromb Haemost. 2010;8(4):675677.
  14. Limpus A, Chaboyer W, McDonald E, Thalib L. Mechanical thromboprophylaxis in critically ill patients: a systematic review and meta‐analysis. Am J Crit Care. 2006;15(4):402410; quiz/discussion, 411–412.
  15. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):454S545S.
  16. Altintaş F, Gürbüz H, Erdemli B, et al. Venous thromboembolism prophylaxis in major orthopaedic surgery: a multicenter, prospective, observational study. Acta Orthop Traumatol Turc. 2008;42(5):322327.
  17. Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplasty. 2005;20(suppl 3):4650.
  18. White RH, Henderson MC. Risk factors for venous thromboembolism after total hip and knee replacement surgery. Curr Opin Pulm Med. 2002;8(5):365371.
  19. Simone E, Madan A, Tichansky D, Kuhl D, Lee M. Comparison of two low‐molecular‐weight heparin dosing regimens for patients undergoing laparoscopic bariatric surgery. Surg Endosc. 2008;22(11):23922395.
  20. Rowan B, Kuhl D, Lee M, Tichansky D, Madan A. Anti‐Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes Surg. 2008;18(2):162166.
  21. Samama CM, Ravaud P, Parent F, Barre J, Mertl P, Mismetti P. Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study. J Thromb Haemost. 2007;5(12):23602367.
  22. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost. 2003;90(3):446455.
  23. White RH. The epidemiology of venous thromboembolism. Circulation.2003;107(23 suppl 1):I4I8.
  24. Falck‐Ytter Y, Francis CW, Johanson NA, et al. Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines. Chest. 2012;141(2 suppl):e278Se325S.
  25. Blanchard J, Meuwly J‐Y, Leyvraz P‐F, et al. Prevention of deep‐vein thrombosis after total knee replacement: randomised comparison between a low‐molecular‐weight heparin and mechanical prophylaxis with a foot‐pump system. J Bone Joint Surg Br. 1999;81‐B(4):654659.
  26. AAOS. Pulmonary Embolism After Knee Arthroscopy: Rare but Serious. American Academy of Orthopaedic Surgeons/American Association of Orthopaedic Surgeons Web site. Available at: http://www6aaosorg/news/pemr/releases/releasecfm?releasenum=9692011.
  27. Eikelboom JW, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ: what are the implications for clinicians and patients? Chest. 2009;135(2):513520.
  28. Premier—A supporting partnership organization of the Surgical Care Improvement Project (SCIP). Premier Inc Web site. Available at: http://www.premierinc.com/safety/topics/scip/. Accessed April 10, 2012.
  29. Chandrasekaran S, Ariaretnam SK, Tsung J, Dickison D. Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. Aust N Z J Surg. 2009;79(7–8):526529.
  30. White RH, Gettner S, Newman JM, Trauner KB, Romano PS. Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. N Engl J Med. 2000;343(24):17581764.
  31. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am. 2006;88(10):21462151.
  32. Kim YH, Kim JS. Incidence and natural history of deep‐vein thrombosis after total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 2002;84(4):566570.
  33. Memtsoudis SG, Gonzalez Della Valle A, Besculides MC, Gaber L, Sculco TP. In‐hospital complications and mortality of unilateral, bilateral, and revision TKA: based on an estimate of 4,159,661 discharges. Clin Orthop Relat Res. 2008;466(11):26172627.
  34. Restrepo C, Parvizi J, Dietrich T, Einhorn TA. Safety of simultaneous bilateral total knee arthroplasty. A meta‐analysis. J Bone Joint Surg Am. 2007;89(6):12201226.
  35. Dushey CH, Bornstein LJ, Alexiades MM, Westrich GH. Short‐term coagulation complications following total knee arthroplasty: a comparison of patient‐reported and surgeon‐verified complication rates. J Arthroplasty. 2011 Jan 20.
  36. Baser O, Supina D, Sengupta N, Wang L, Kwong L. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. Curr Med Res Opin. 2011;27(2):423429.
  37. Hagen TP, Vaughan‐Sarrazin MS, Cram P. Relation between hospital orthopaedic specialisation and outcomes in patients aged 65 and older: retrospective analysis of US Medicare data. BMJ. 2010;340:c165.
  38. Amin A, Stemkowski S, Lin J, Yang G. Thromboprophylaxis rates in US medical centers: success or failure? J Thromb Haemost. 2007;5(8):16101616.
  39. Knapp RM. Quality and safety performance in teaching hospitals. Am Surg. 2006;72(11):10511054; discussion 1061–1059, 1133–1048.
  40. Pardini‐Kiely K, Greenlee E, Hopkins J, Szaflarski NL, Tabb K. Improving and sustaining core measure performance through effective accountability of clinical microsystems in an academic medical center. Jt Comm J Qual Patient Saf. 2010;36(9):387398.
  41. Fabi DW, Mohan V, Goldstein WM, Dunn JH, Murphy BP. Unilateral vs bilateral total knee arthroplasty risk factors increasing morbidity. J Arthroplasty. 2011;26(5):668673.
  42. Powell RS, Pulido P, Tuason MS, Colwell CW, Ezzet KA. Bilateral vs unilateral total knee arthroplasty: a patient‐based comparison of pain levels and recovery of ambulatory skills. J Arthroplasty. 2006;21(5):642649.
References
  1. Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous thromboembolism after major joint surgery. J Bone Joint Surg Br. 2006;88(3):386391.
  2. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):381S453S.
  3. Howie C, Hughes H, Watts AC. Venous thromboembolism associated with hip and knee replacement over a ten‐year period: a population‐based study. J Bone Joint Surg Br. 2005;87(12):16751680.
  4. Pellegrini VD, Sharrock NE, Paiement GD, Morris R, Warwick DJ. Venous thromboembolic disease after total hip and knee arthroplasty: current perspectives in a regulated environment. Instr Course Lect. 2008;57:637661.
  5. Watanabe H, Sekiya H, Kariya Y, Hoshino Y, Sugimoto H, Hayasaka S. The incidence of venous thromboembolism before and after total knee arthroplasty using 16‐row multidetector computed tomography. J Arthroplasty. 2011;26(8):14881493.
  6. White RH, Romano PS, Zhou H, Rodrigo J, Bargar W. Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty. Arch Intern Med. 1998;158(14):15251531.
  7. Milbrink J, Bergqvist D. The incidence of symptomatic venous thromboembolic events in orthopaedic surgery when using routine thromboprophylaxis. Vasa. 2008;37(4):353357.
  8. White RH, Sadeghi B, Tancredi DJ, et al. How valid is the ICD‐9‐CM based AHRQ patient safety indicator for postoperative venous thromboembolism? Med Care. 2009;47(12):12371243.
  9. Department of Health and Human Services, Centers for Medicare 17(4):359365.
  10. Eikelboom J, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ. What are the implications for clinicians and patients? Chest. 2009;135(2):15121520.
  11. Jämsen E, Varonen M, Huhtala H, et al. Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty. 2010;25(1):8792.
  12. Lachiewicz PF. Comparison of ACCP and AAOS guidelines for VTE prophylaxis after total hip and total knee arthroplasty. Orthopedics. 2009;32(12 suppl):7478.
  13. Sobieraj‐Teague M, Eikelboom JW, Hirsh J. How can we reduce disagreement among guidelines for venous thromboembolism prevention? J Thromb Haemost. 2010;8(4):675677.
  14. Limpus A, Chaboyer W, McDonald E, Thalib L. Mechanical thromboprophylaxis in critically ill patients: a systematic review and meta‐analysis. Am J Crit Care. 2006;15(4):402410; quiz/discussion, 411–412.
  15. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th ed). Chest. 2008;133(6 suppl):454S545S.
  16. Altintaş F, Gürbüz H, Erdemli B, et al. Venous thromboembolism prophylaxis in major orthopaedic surgery: a multicenter, prospective, observational study. Acta Orthop Traumatol Turc. 2008;42(5):322327.
  17. Namba RS, Paxton L, Fithian DC, Stone ML. Obesity and perioperative morbidity in total hip and total knee arthroplasty patients. J Arthroplasty. 2005;20(suppl 3):4650.
  18. White RH, Henderson MC. Risk factors for venous thromboembolism after total hip and knee replacement surgery. Curr Opin Pulm Med. 2002;8(5):365371.
  19. Simone E, Madan A, Tichansky D, Kuhl D, Lee M. Comparison of two low‐molecular‐weight heparin dosing regimens for patients undergoing laparoscopic bariatric surgery. Surg Endosc. 2008;22(11):23922395.
  20. Rowan B, Kuhl D, Lee M, Tichansky D, Madan A. Anti‐Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes Surg. 2008;18(2):162166.
  21. Samama CM, Ravaud P, Parent F, Barre J, Mertl P, Mismetti P. Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study. J Thromb Haemost. 2007;5(12):23602367.
  22. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost. 2003;90(3):446455.
  23. White RH. The epidemiology of venous thromboembolism. Circulation.2003;107(23 suppl 1):I4I8.
  24. Falck‐Ytter Y, Francis CW, Johanson NA, et al. Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines. Chest. 2012;141(2 suppl):e278Se325S.
  25. Blanchard J, Meuwly J‐Y, Leyvraz P‐F, et al. Prevention of deep‐vein thrombosis after total knee replacement: randomised comparison between a low‐molecular‐weight heparin and mechanical prophylaxis with a foot‐pump system. J Bone Joint Surg Br. 1999;81‐B(4):654659.
  26. AAOS. Pulmonary Embolism After Knee Arthroscopy: Rare but Serious. American Academy of Orthopaedic Surgeons/American Association of Orthopaedic Surgeons Web site. Available at: http://www6aaosorg/news/pemr/releases/releasecfm?releasenum=9692011.
  27. Eikelboom JW, Karthikeyan G, Fagel N, Hirsh J. American Association of Orthopedic Surgeons and American College of Chest Physicians guidelines for venous thromboembolism prevention in hip and knee arthroplasty differ: what are the implications for clinicians and patients? Chest. 2009;135(2):513520.
  28. Premier—A supporting partnership organization of the Surgical Care Improvement Project (SCIP). Premier Inc Web site. Available at: http://www.premierinc.com/safety/topics/scip/. Accessed April 10, 2012.
  29. Chandrasekaran S, Ariaretnam SK, Tsung J, Dickison D. Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. Aust N Z J Surg. 2009;79(7–8):526529.
  30. White RH, Gettner S, Newman JM, Trauner KB, Romano PS. Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. N Engl J Med. 2000;343(24):17581764.
  31. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am. 2006;88(10):21462151.
  32. Kim YH, Kim JS. Incidence and natural history of deep‐vein thrombosis after total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 2002;84(4):566570.
  33. Memtsoudis SG, Gonzalez Della Valle A, Besculides MC, Gaber L, Sculco TP. In‐hospital complications and mortality of unilateral, bilateral, and revision TKA: based on an estimate of 4,159,661 discharges. Clin Orthop Relat Res. 2008;466(11):26172627.
  34. Restrepo C, Parvizi J, Dietrich T, Einhorn TA. Safety of simultaneous bilateral total knee arthroplasty. A meta‐analysis. J Bone Joint Surg Am. 2007;89(6):12201226.
  35. Dushey CH, Bornstein LJ, Alexiades MM, Westrich GH. Short‐term coagulation complications following total knee arthroplasty: a comparison of patient‐reported and surgeon‐verified complication rates. J Arthroplasty. 2011 Jan 20.
  36. Baser O, Supina D, Sengupta N, Wang L, Kwong L. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. Curr Med Res Opin. 2011;27(2):423429.
  37. Hagen TP, Vaughan‐Sarrazin MS, Cram P. Relation between hospital orthopaedic specialisation and outcomes in patients aged 65 and older: retrospective analysis of US Medicare data. BMJ. 2010;340:c165.
  38. Amin A, Stemkowski S, Lin J, Yang G. Thromboprophylaxis rates in US medical centers: success or failure? J Thromb Haemost. 2007;5(8):16101616.
  39. Knapp RM. Quality and safety performance in teaching hospitals. Am Surg. 2006;72(11):10511054; discussion 1061–1059, 1133–1048.
  40. Pardini‐Kiely K, Greenlee E, Hopkins J, Szaflarski NL, Tabb K. Improving and sustaining core measure performance through effective accountability of clinical microsystems in an academic medical center. Jt Comm J Qual Patient Saf. 2010;36(9):387398.
  41. Fabi DW, Mohan V, Goldstein WM, Dunn JH, Murphy BP. Unilateral vs bilateral total knee arthroplasty risk factors increasing morbidity. J Arthroplasty. 2011;26(5):668673.
  42. Powell RS, Pulido P, Tuason MS, Colwell CW, Ezzet KA. Bilateral vs unilateral total knee arthroplasty: a patient‐based comparison of pain levels and recovery of ambulatory skills. J Arthroplasty. 2006;21(5):642649.
Issue
Journal of Hospital Medicine - 7(9)
Issue
Journal of Hospital Medicine - 7(9)
Page Number
665-671
Page Number
665-671
Article Type
Display Headline
Mechanical and suboptimal pharmacologic prophylaxis and delayed mobilization but not morbid obesity are associated with venous thromboembolism after total knee arthroplasty: A case‐control study
Display Headline
Mechanical and suboptimal pharmacologic prophylaxis and delayed mobilization but not morbid obesity are associated with venous thromboembolism after total knee arthroplasty: A case‐control study
Sections
Article Source

Copyright © 2012 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Department of Internal Medicine, University of California Davis, 4150 V St, PSSB Suite 2400, Sacramento, CA 95817
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files

Careful Use of Gout Drugs Can End Acute Attacks

Article Type
Changed
Fri, 01/18/2019 - 12:15
Display Headline
Careful Use of Gout Drugs Can End Acute Attacks

General internists often continue to treat gout the way they were taught to as medical students, and the result of that approach has been that patients continue to have gout attacks and joint damage. Physicians can do much better than that by using available medications to lower the patient’s serum urate level below 6 mg/dL, according to Dr. Brian Mandell, Professor and Chairman of Medicine at the Cleveland Clinic. This interview was conducted at the 5th Annual Perspectives in Rheumatic Diseases Seminar. 

Author and Disclosure Information

Publications
Topics
Author and Disclosure Information

Author and Disclosure Information

General internists often continue to treat gout the way they were taught to as medical students, and the result of that approach has been that patients continue to have gout attacks and joint damage. Physicians can do much better than that by using available medications to lower the patient’s serum urate level below 6 mg/dL, according to Dr. Brian Mandell, Professor and Chairman of Medicine at the Cleveland Clinic. This interview was conducted at the 5th Annual Perspectives in Rheumatic Diseases Seminar. 

General internists often continue to treat gout the way they were taught to as medical students, and the result of that approach has been that patients continue to have gout attacks and joint damage. Physicians can do much better than that by using available medications to lower the patient’s serum urate level below 6 mg/dL, according to Dr. Brian Mandell, Professor and Chairman of Medicine at the Cleveland Clinic. This interview was conducted at the 5th Annual Perspectives in Rheumatic Diseases Seminar. 

Publications
Publications
Topics
Article Type
Display Headline
Careful Use of Gout Drugs Can End Acute Attacks
Display Headline
Careful Use of Gout Drugs Can End Acute Attacks
Article Source

PURLs Copyright

Inside the Article

Adenotonsillectomy Dries Up Some Bed-Wetting

Article Type
Changed
Tue, 02/14/2023 - 13:10
Display Headline
Adenotonsillectomy Dries Up Some Bed-Wetting

WASHINGTON – Adenotonsillectomy reduced obstructive sleep apnea and bed-wetting in half of 35 children diagnosed with both conditions.

The study was limited by its small size, but the findings suggest that children with severe obstructive sleep apnea and nocturnal enuresis might benefit on both counts with adenotonsillectomy, said Dr. Prasad Thottam of Children’s Hospital of Michigan, Detroit.

The average age of the children studied was 8 years, 60% were male, and their average body mass index was 24 kg/m2. Proper bladder function was documented in all of the children, and none had chronic conditions such as cerebral palsy, severe asthma, or morbid obesity. All experienced bed-wetting more than 3 nights per week. Any medications taken for nocturnal enuresis were discontinued for 1 month prior to surgery.

Four children had adenoidectomies, two had tonsillectomies, and 29 had adenotonsillectomies. After an average of 10 weeks post surgery, 51% of the children had reductions in bed-wetting, said Dr. Thottam. The reductions were most notable in children with a higher BMI and worse apnea characteristics on polysomnography.

Girls were five times more likely than were boys to have bed-wetting resolve after surgery. Children with prolonged stage 2 sleep were eight times more likely than were those with a normal duration of stage 2 sleep to have bed-wetting resolve.

In addition, when comparing the sleep architecture of the patients to established normal levels, an apnea-hypopnea index greater than 10 was associated with a higher rate of resolution of bed-wetting compared with the rest of the population.

The findings were presented at the annual meeting of the American Academy for Otolaryngology – Head and Neck Surgery Foundation. Dr. Thottam had no financial conflicts to disclose.

Meeting/Event
Author and Disclosure Information

Publications
Topics
Legacy Keywords
adenotonsillectomy, obstructive sleep apnea, bed wetting children, nocturnal enuresis, Dr. Prasad Thottam
Sections
Author and Disclosure Information

Author and Disclosure Information

Meeting/Event
Meeting/Event

WASHINGTON – Adenotonsillectomy reduced obstructive sleep apnea and bed-wetting in half of 35 children diagnosed with both conditions.

The study was limited by its small size, but the findings suggest that children with severe obstructive sleep apnea and nocturnal enuresis might benefit on both counts with adenotonsillectomy, said Dr. Prasad Thottam of Children’s Hospital of Michigan, Detroit.

The average age of the children studied was 8 years, 60% were male, and their average body mass index was 24 kg/m2. Proper bladder function was documented in all of the children, and none had chronic conditions such as cerebral palsy, severe asthma, or morbid obesity. All experienced bed-wetting more than 3 nights per week. Any medications taken for nocturnal enuresis were discontinued for 1 month prior to surgery.

Four children had adenoidectomies, two had tonsillectomies, and 29 had adenotonsillectomies. After an average of 10 weeks post surgery, 51% of the children had reductions in bed-wetting, said Dr. Thottam. The reductions were most notable in children with a higher BMI and worse apnea characteristics on polysomnography.

Girls were five times more likely than were boys to have bed-wetting resolve after surgery. Children with prolonged stage 2 sleep were eight times more likely than were those with a normal duration of stage 2 sleep to have bed-wetting resolve.

In addition, when comparing the sleep architecture of the patients to established normal levels, an apnea-hypopnea index greater than 10 was associated with a higher rate of resolution of bed-wetting compared with the rest of the population.

The findings were presented at the annual meeting of the American Academy for Otolaryngology – Head and Neck Surgery Foundation. Dr. Thottam had no financial conflicts to disclose.

WASHINGTON – Adenotonsillectomy reduced obstructive sleep apnea and bed-wetting in half of 35 children diagnosed with both conditions.

The study was limited by its small size, but the findings suggest that children with severe obstructive sleep apnea and nocturnal enuresis might benefit on both counts with adenotonsillectomy, said Dr. Prasad Thottam of Children’s Hospital of Michigan, Detroit.

The average age of the children studied was 8 years, 60% were male, and their average body mass index was 24 kg/m2. Proper bladder function was documented in all of the children, and none had chronic conditions such as cerebral palsy, severe asthma, or morbid obesity. All experienced bed-wetting more than 3 nights per week. Any medications taken for nocturnal enuresis were discontinued for 1 month prior to surgery.

Four children had adenoidectomies, two had tonsillectomies, and 29 had adenotonsillectomies. After an average of 10 weeks post surgery, 51% of the children had reductions in bed-wetting, said Dr. Thottam. The reductions were most notable in children with a higher BMI and worse apnea characteristics on polysomnography.

Girls were five times more likely than were boys to have bed-wetting resolve after surgery. Children with prolonged stage 2 sleep were eight times more likely than were those with a normal duration of stage 2 sleep to have bed-wetting resolve.

In addition, when comparing the sleep architecture of the patients to established normal levels, an apnea-hypopnea index greater than 10 was associated with a higher rate of resolution of bed-wetting compared with the rest of the population.

The findings were presented at the annual meeting of the American Academy for Otolaryngology – Head and Neck Surgery Foundation. Dr. Thottam had no financial conflicts to disclose.

Publications
Publications
Topics
Article Type
Display Headline
Adenotonsillectomy Dries Up Some Bed-Wetting
Display Headline
Adenotonsillectomy Dries Up Some Bed-Wetting
Legacy Keywords
adenotonsillectomy, obstructive sleep apnea, bed wetting children, nocturnal enuresis, Dr. Prasad Thottam
Legacy Keywords
adenotonsillectomy, obstructive sleep apnea, bed wetting children, nocturnal enuresis, Dr. Prasad Thottam
Sections
Article Source

AT THE ANNUAL MEETING OF THE AMERICAN ACADEMY OF OTOLARYNGOLOGY - HEAD AND NECK SURGERY FOUNDATION

PURLs Copyright

Inside the Article

Vitals

Major Finding: Adenotonsillectomy reduced bed-wetting and obstructive sleep apnea in 51% of children with both conditions.

Data Source: The data come from a prospective study of 35 children with nighttime enuresis and obstructive sleep apnea.

Disclosures: Dr. Thottam had no financial conflicts to disclose.

SHM Wins Some Hospitalists an Exception to CMS’ Compliance Rule

Article Type
Changed
Fri, 09/14/2018 - 12:21
Display Headline
SHM Wins Some Hospitalists an Exception to CMS’ Compliance Rule

A concerted effort by SHM members has helped win some hospitalists an exemption to the Centers for Medicare & Medicaid Services' (CMS) final rule on Stage 2 compliance for meaningful use [PDF] of electronic health records (EHR).

The "hardship exception" frees hospitalists who round at nursing homes and other post-acute-care facilities from being subject to penalties for not being "meaningful users." SHM successfully argued that it isn't fair for HM clinicians working in such institutions be held accountable for records they can't fully control.

SHM Public Policy Committee member Kerry Weiner, MD, chief clinical officer of IPC: The Hospitalist Company Inc. of North Hollywood, Calif., says about 30% of hospitalists are involved in care delivery at nursing homes, skilled nursing facilities, or other post-acute-care settings. Those physicians need to be aware of how CMS views their job in relation to new regulations.

"Once the physician leaves the hospital, they're generally considered an outpatient doctor by CMS, even though leaving an acute-care facility and going into a step-down unit like a skilled nursing facility is not really going into a primary-care or outpatient practice," Dr. Weiner says. "There are a number of regulations coming down, and hospitalists have to be sensitive to the differences in reimbursement and accountability they'll be held to. Just because you're a hospitalist doesn't mean the government considers you a hospitalist for their regulations."

CMS initially proposed that "eligible professionals" (EPs) needed to meet three criteria to be granted a hardship exception: a lack of face-to-face or telemedicine interaction with patients, a lack of follow-up need with patients, and the "lack of control over the availability" of certified EHR technology. After SHM voiced concern, CMS agreed that EPs who practice at multiple locations can be granted the exception solely for lack of control over the availability of the technology. Dr. Weiner says that CMS' willingness to make changes before finalizing the rule shows the agency understands how difficult the new rules can be.

"CMS has realized they may not get it right the first time," he adds. "This is a dynamic process, and even if they do get it right exactly, it's only right for a particular moment. Medicine is transitioning and changing all the time."

 

Issue
The Hospitalist - 2012(10)
Publications
Sections

A concerted effort by SHM members has helped win some hospitalists an exemption to the Centers for Medicare & Medicaid Services' (CMS) final rule on Stage 2 compliance for meaningful use [PDF] of electronic health records (EHR).

The "hardship exception" frees hospitalists who round at nursing homes and other post-acute-care facilities from being subject to penalties for not being "meaningful users." SHM successfully argued that it isn't fair for HM clinicians working in such institutions be held accountable for records they can't fully control.

SHM Public Policy Committee member Kerry Weiner, MD, chief clinical officer of IPC: The Hospitalist Company Inc. of North Hollywood, Calif., says about 30% of hospitalists are involved in care delivery at nursing homes, skilled nursing facilities, or other post-acute-care settings. Those physicians need to be aware of how CMS views their job in relation to new regulations.

"Once the physician leaves the hospital, they're generally considered an outpatient doctor by CMS, even though leaving an acute-care facility and going into a step-down unit like a skilled nursing facility is not really going into a primary-care or outpatient practice," Dr. Weiner says. "There are a number of regulations coming down, and hospitalists have to be sensitive to the differences in reimbursement and accountability they'll be held to. Just because you're a hospitalist doesn't mean the government considers you a hospitalist for their regulations."

CMS initially proposed that "eligible professionals" (EPs) needed to meet three criteria to be granted a hardship exception: a lack of face-to-face or telemedicine interaction with patients, a lack of follow-up need with patients, and the "lack of control over the availability" of certified EHR technology. After SHM voiced concern, CMS agreed that EPs who practice at multiple locations can be granted the exception solely for lack of control over the availability of the technology. Dr. Weiner says that CMS' willingness to make changes before finalizing the rule shows the agency understands how difficult the new rules can be.

"CMS has realized they may not get it right the first time," he adds. "This is a dynamic process, and even if they do get it right exactly, it's only right for a particular moment. Medicine is transitioning and changing all the time."

 

A concerted effort by SHM members has helped win some hospitalists an exemption to the Centers for Medicare & Medicaid Services' (CMS) final rule on Stage 2 compliance for meaningful use [PDF] of electronic health records (EHR).

The "hardship exception" frees hospitalists who round at nursing homes and other post-acute-care facilities from being subject to penalties for not being "meaningful users." SHM successfully argued that it isn't fair for HM clinicians working in such institutions be held accountable for records they can't fully control.

SHM Public Policy Committee member Kerry Weiner, MD, chief clinical officer of IPC: The Hospitalist Company Inc. of North Hollywood, Calif., says about 30% of hospitalists are involved in care delivery at nursing homes, skilled nursing facilities, or other post-acute-care settings. Those physicians need to be aware of how CMS views their job in relation to new regulations.

"Once the physician leaves the hospital, they're generally considered an outpatient doctor by CMS, even though leaving an acute-care facility and going into a step-down unit like a skilled nursing facility is not really going into a primary-care or outpatient practice," Dr. Weiner says. "There are a number of regulations coming down, and hospitalists have to be sensitive to the differences in reimbursement and accountability they'll be held to. Just because you're a hospitalist doesn't mean the government considers you a hospitalist for their regulations."

CMS initially proposed that "eligible professionals" (EPs) needed to meet three criteria to be granted a hardship exception: a lack of face-to-face or telemedicine interaction with patients, a lack of follow-up need with patients, and the "lack of control over the availability" of certified EHR technology. After SHM voiced concern, CMS agreed that EPs who practice at multiple locations can be granted the exception solely for lack of control over the availability of the technology. Dr. Weiner says that CMS' willingness to make changes before finalizing the rule shows the agency understands how difficult the new rules can be.

"CMS has realized they may not get it right the first time," he adds. "This is a dynamic process, and even if they do get it right exactly, it's only right for a particular moment. Medicine is transitioning and changing all the time."

 

Issue
The Hospitalist - 2012(10)
Issue
The Hospitalist - 2012(10)
Publications
Publications
Article Type
Display Headline
SHM Wins Some Hospitalists an Exception to CMS’ Compliance Rule
Display Headline
SHM Wins Some Hospitalists an Exception to CMS’ Compliance Rule
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)