LayerRx Mapping ID
968
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Allow Teaser Image
Medscape Lead Concept
5000186

FDA Approves Amivantamab First-line Indication for NSCLC

Article Type
Changed
Wed, 03/06/2024 - 12:37

The US Food and Drug Administration (FDA) has granted new approvals for the use of amivantamab-vmjw (Rybrevant, Janssen Biotech Inc.) in certain patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). 

Specifically, the FDA approved the first-line use of the agent in combination with carboplatin and pemetrexed in patients with locally advanced or metastatic NSCLC with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, as detected by an FDA-approved test. 

The FDA also granted traditional approval for use in these patients after their cancer has progressed on or following platinum-based chemotherapy. The original accelerated approval for this indication occurred in 2021. At that time, the FDA also approved Guardant360® CDx (Guardant Health, Inc.) as a companion diagnostic test for amivantamab-vmjw. 

The first-line approval, which followed priority review, was based on the randomized, open-label PAPILLON trial, which revealed a statistically significant improvement in progression-free survival (PFS) among the 153 patients who received amivantamab-vmjw plus carboplatin and pemetrexed vs the 155 who received the chemotherapy combination alone. Median PFS was 11.4 months in the amivantamab-vmjw arm vs 6.7 months in the control arm (hazard ratio, 0.40).

Data for overall survival, a key secondary endpoint of the study, were immature at the time of the latest analysis, but “no trend toward a detriment was observed,” according to an FDA approval announcement.

Common adverse reactions, occurring in at least 20% of patients in the study, were rash, nail toxicity, stomatitis, infusion-related reaction, fatigue, edema, constipation, decreased appetite, nausea, diarrhea, and vomiting. Weight-based dosing guidance can be found in the full prescribing information.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Food and Drug Administration (FDA) has granted new approvals for the use of amivantamab-vmjw (Rybrevant, Janssen Biotech Inc.) in certain patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). 

Specifically, the FDA approved the first-line use of the agent in combination with carboplatin and pemetrexed in patients with locally advanced or metastatic NSCLC with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, as detected by an FDA-approved test. 

The FDA also granted traditional approval for use in these patients after their cancer has progressed on or following platinum-based chemotherapy. The original accelerated approval for this indication occurred in 2021. At that time, the FDA also approved Guardant360® CDx (Guardant Health, Inc.) as a companion diagnostic test for amivantamab-vmjw. 

The first-line approval, which followed priority review, was based on the randomized, open-label PAPILLON trial, which revealed a statistically significant improvement in progression-free survival (PFS) among the 153 patients who received amivantamab-vmjw plus carboplatin and pemetrexed vs the 155 who received the chemotherapy combination alone. Median PFS was 11.4 months in the amivantamab-vmjw arm vs 6.7 months in the control arm (hazard ratio, 0.40).

Data for overall survival, a key secondary endpoint of the study, were immature at the time of the latest analysis, but “no trend toward a detriment was observed,” according to an FDA approval announcement.

Common adverse reactions, occurring in at least 20% of patients in the study, were rash, nail toxicity, stomatitis, infusion-related reaction, fatigue, edema, constipation, decreased appetite, nausea, diarrhea, and vomiting. Weight-based dosing guidance can be found in the full prescribing information.
 

A version of this article appeared on Medscape.com.

The US Food and Drug Administration (FDA) has granted new approvals for the use of amivantamab-vmjw (Rybrevant, Janssen Biotech Inc.) in certain patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). 

Specifically, the FDA approved the first-line use of the agent in combination with carboplatin and pemetrexed in patients with locally advanced or metastatic NSCLC with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, as detected by an FDA-approved test. 

The FDA also granted traditional approval for use in these patients after their cancer has progressed on or following platinum-based chemotherapy. The original accelerated approval for this indication occurred in 2021. At that time, the FDA also approved Guardant360® CDx (Guardant Health, Inc.) as a companion diagnostic test for amivantamab-vmjw. 

The first-line approval, which followed priority review, was based on the randomized, open-label PAPILLON trial, which revealed a statistically significant improvement in progression-free survival (PFS) among the 153 patients who received amivantamab-vmjw plus carboplatin and pemetrexed vs the 155 who received the chemotherapy combination alone. Median PFS was 11.4 months in the amivantamab-vmjw arm vs 6.7 months in the control arm (hazard ratio, 0.40).

Data for overall survival, a key secondary endpoint of the study, were immature at the time of the latest analysis, but “no trend toward a detriment was observed,” according to an FDA approval announcement.

Common adverse reactions, occurring in at least 20% of patients in the study, were rash, nail toxicity, stomatitis, infusion-related reaction, fatigue, edema, constipation, decreased appetite, nausea, diarrhea, and vomiting. Weight-based dosing guidance can be found in the full prescribing information.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

FDA Removes Harmful Chemicals From Food Packaging

Article Type
Changed
Fri, 03/01/2024 - 11:35

The US Food and Drug Administration (FDA) announced the removal of the endocrine-disrupting chemicals (EDCs) per- and polyfluoroalkyl substances (PFAS) from food packaging.

Issued on February 28, 2024, “this means the major source of dietary exposure to PFAS from food packaging like fast-food wrappers, microwave popcorn bags, take-out paperboard containers, and pet food bags is being eliminated,” the FDA said in a statement.

In 2020, the FDA had secured commitments from manufacturers to stop selling products containing PFAS used in the food packaging for grease-proofing. “Today’s announcement marks the fulfillment of these voluntary commitments,” according to the agency.

PFAS, a class of thousands of chemicals also called “forever chemicals” are widely used in consumer and industrial products. People may be exposed via contaminated food packaging (although perhaps no longer in the United States) or occupationally. Studies have found that some PFAS disrupt hormones including estrogen and testosterone, whereas others may impair thyroid function.
 

Endocrine Society Report Sounds the Alarm About PFAS and Others

The FDA’s announcement came just 2 days after the Endocrine Society issued a new alarm about the human health dangers from environmental EDCs including PFAS in a report covering the latest science.

“Endocrine disrupting chemicals” are individual substances or mixtures that can interfere with natural hormonal function, leading to disease or even death. Many are ubiquitous in the modern environment and contribute to a wide range of human diseases.

The new report Endocrine Disrupting Chemicals: Threats to Human Health was issued jointly with the International Pollutants Elimination Network (IPEN), a global advocacy organization. It’s an update to the Endocrine Society’s 2015 report, providing new data on the endocrine-disrupting substances previously covered and adding four EDCs not discussed in that document: Pesticides, plastics, PFAS, and children’s products containing arsenic.

At a briefing held during the United Nations Environment Assembly meeting in Nairobi, Kenya, last week, the new report’s lead author Andrea C. Gore, PhD, of the University of Texas at Austin, noted, “A well-established body of scientific research indicates that endocrine-disrupting chemicals that are part of our daily lives are making us more susceptible to reproductive disorders, cancer, diabetes, obesity, heart disease, and other serious health conditions.”

Added Dr. Gore, who is also a member of the Endocrine Society’s Board of Directors, “These chemicals pose particularly serious risks to pregnant women and children. Now is the time for the UN Environment Assembly and other global policymakers to take action to address this threat to public health.”

While the science has been emerging rapidly, global and national chemical control policies haven’t kept up, the authors said. Of particular concern is that EDCs behave differently from other chemicals in many ways, including that even very low-dose exposures can pose health threats, but policies thus far haven’t dealt with that aspect.

Moreover, “the effects of low doses cannot be predicted by the effects observed at high doses. This means there may be no safe dose for exposure to EDCs,” according to the report.

Exposures can come from household products, including furniture, toys, and food packages, as well as electronics building materials and cosmetics. These chemicals are also in the outdoor environment, via pesticides, air pollution, and industrial waste.

“IPEN and the Endocrine Society call for chemical regulations based on the most modern scientific understanding of how hormones act and how EDCs can perturb these actions. We work to educate policy makers in global, regional, and national government assemblies and help ensure that regulations correlate with current scientific understanding,” they said in the report.
 

 

 

New Data on Four Classes of EDCs

Chapters of the report summarized the latest information about the science of EDCs and their links to endocrine disease and real-world exposure. It included a special section about “EDCs throughout the plastics life cycle” and a summary of the links between EDCs and climate change.

The report reviewed three pesticides, including the world’s most heavily applied herbicide, glycophosphate. Exposures can occur directly from the air, water, dust, and food residues. Recent data linked glycophosphate to adverse reproductive health outcomes.

Two toxic plastic chemicals, phthalates and bisphenols, are present in personal care products, among others. Emerging evidence links them with impaired neurodevelopment, leading to impaired cognitive function, learning, attention, and impulsivity.

Arsenic has long been linked to human health conditions including cancer, but more recent evidence finds it can disrupt multiple endocrine systems and lead to metabolic conditions including diabetes, reproductive dysfunction, and cardiovascular and neurocognitive conditions.

The special section about plastics noted that they are made from fossil fuels and chemicals, including many toxic substances that are known or suspected EDCs. People who live near plastic production facilities or waste dumps may be at greatest risk, but anyone can be exposed using any plastic product. Plastic waste disposal is increasingly problematic and often foisted on lower- and middle-income countries.
 

‘Additional Education and Awareness-Raising Among Stakeholders Remain Necessary’

Policies aimed at reducing human health risks from EDCs have included the 2022 Plastics Treaty, a resolution adopted by 175 countries at the United Nations Environmental Assembly that “may be a significant step toward global control of plastics and elimination of threats from exposures to EDCs in plastics,” the report said.

The authors added, “While significant progress has been made in recent years connecting scientific advances on EDCs with health-protective policies, additional education and awareness-raising among stakeholders remain necessary to achieve a safer and more sustainable environment that minimizes exposure to these harmful chemicals.”

The document was produced with financial contributions from the Government of Sweden, the Tides Foundation, Passport Foundation, and other donors.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The US Food and Drug Administration (FDA) announced the removal of the endocrine-disrupting chemicals (EDCs) per- and polyfluoroalkyl substances (PFAS) from food packaging.

Issued on February 28, 2024, “this means the major source of dietary exposure to PFAS from food packaging like fast-food wrappers, microwave popcorn bags, take-out paperboard containers, and pet food bags is being eliminated,” the FDA said in a statement.

In 2020, the FDA had secured commitments from manufacturers to stop selling products containing PFAS used in the food packaging for grease-proofing. “Today’s announcement marks the fulfillment of these voluntary commitments,” according to the agency.

PFAS, a class of thousands of chemicals also called “forever chemicals” are widely used in consumer and industrial products. People may be exposed via contaminated food packaging (although perhaps no longer in the United States) or occupationally. Studies have found that some PFAS disrupt hormones including estrogen and testosterone, whereas others may impair thyroid function.
 

Endocrine Society Report Sounds the Alarm About PFAS and Others

The FDA’s announcement came just 2 days after the Endocrine Society issued a new alarm about the human health dangers from environmental EDCs including PFAS in a report covering the latest science.

“Endocrine disrupting chemicals” are individual substances or mixtures that can interfere with natural hormonal function, leading to disease or even death. Many are ubiquitous in the modern environment and contribute to a wide range of human diseases.

The new report Endocrine Disrupting Chemicals: Threats to Human Health was issued jointly with the International Pollutants Elimination Network (IPEN), a global advocacy organization. It’s an update to the Endocrine Society’s 2015 report, providing new data on the endocrine-disrupting substances previously covered and adding four EDCs not discussed in that document: Pesticides, plastics, PFAS, and children’s products containing arsenic.

At a briefing held during the United Nations Environment Assembly meeting in Nairobi, Kenya, last week, the new report’s lead author Andrea C. Gore, PhD, of the University of Texas at Austin, noted, “A well-established body of scientific research indicates that endocrine-disrupting chemicals that are part of our daily lives are making us more susceptible to reproductive disorders, cancer, diabetes, obesity, heart disease, and other serious health conditions.”

Added Dr. Gore, who is also a member of the Endocrine Society’s Board of Directors, “These chemicals pose particularly serious risks to pregnant women and children. Now is the time for the UN Environment Assembly and other global policymakers to take action to address this threat to public health.”

While the science has been emerging rapidly, global and national chemical control policies haven’t kept up, the authors said. Of particular concern is that EDCs behave differently from other chemicals in many ways, including that even very low-dose exposures can pose health threats, but policies thus far haven’t dealt with that aspect.

Moreover, “the effects of low doses cannot be predicted by the effects observed at high doses. This means there may be no safe dose for exposure to EDCs,” according to the report.

Exposures can come from household products, including furniture, toys, and food packages, as well as electronics building materials and cosmetics. These chemicals are also in the outdoor environment, via pesticides, air pollution, and industrial waste.

“IPEN and the Endocrine Society call for chemical regulations based on the most modern scientific understanding of how hormones act and how EDCs can perturb these actions. We work to educate policy makers in global, regional, and national government assemblies and help ensure that regulations correlate with current scientific understanding,” they said in the report.
 

 

 

New Data on Four Classes of EDCs

Chapters of the report summarized the latest information about the science of EDCs and their links to endocrine disease and real-world exposure. It included a special section about “EDCs throughout the plastics life cycle” and a summary of the links between EDCs and climate change.

The report reviewed three pesticides, including the world’s most heavily applied herbicide, glycophosphate. Exposures can occur directly from the air, water, dust, and food residues. Recent data linked glycophosphate to adverse reproductive health outcomes.

Two toxic plastic chemicals, phthalates and bisphenols, are present in personal care products, among others. Emerging evidence links them with impaired neurodevelopment, leading to impaired cognitive function, learning, attention, and impulsivity.

Arsenic has long been linked to human health conditions including cancer, but more recent evidence finds it can disrupt multiple endocrine systems and lead to metabolic conditions including diabetes, reproductive dysfunction, and cardiovascular and neurocognitive conditions.

The special section about plastics noted that they are made from fossil fuels and chemicals, including many toxic substances that are known or suspected EDCs. People who live near plastic production facilities or waste dumps may be at greatest risk, but anyone can be exposed using any plastic product. Plastic waste disposal is increasingly problematic and often foisted on lower- and middle-income countries.
 

‘Additional Education and Awareness-Raising Among Stakeholders Remain Necessary’

Policies aimed at reducing human health risks from EDCs have included the 2022 Plastics Treaty, a resolution adopted by 175 countries at the United Nations Environmental Assembly that “may be a significant step toward global control of plastics and elimination of threats from exposures to EDCs in plastics,” the report said.

The authors added, “While significant progress has been made in recent years connecting scientific advances on EDCs with health-protective policies, additional education and awareness-raising among stakeholders remain necessary to achieve a safer and more sustainable environment that minimizes exposure to these harmful chemicals.”

The document was produced with financial contributions from the Government of Sweden, the Tides Foundation, Passport Foundation, and other donors.

A version of this article appeared on Medscape.com.

The US Food and Drug Administration (FDA) announced the removal of the endocrine-disrupting chemicals (EDCs) per- and polyfluoroalkyl substances (PFAS) from food packaging.

Issued on February 28, 2024, “this means the major source of dietary exposure to PFAS from food packaging like fast-food wrappers, microwave popcorn bags, take-out paperboard containers, and pet food bags is being eliminated,” the FDA said in a statement.

In 2020, the FDA had secured commitments from manufacturers to stop selling products containing PFAS used in the food packaging for grease-proofing. “Today’s announcement marks the fulfillment of these voluntary commitments,” according to the agency.

PFAS, a class of thousands of chemicals also called “forever chemicals” are widely used in consumer and industrial products. People may be exposed via contaminated food packaging (although perhaps no longer in the United States) or occupationally. Studies have found that some PFAS disrupt hormones including estrogen and testosterone, whereas others may impair thyroid function.
 

Endocrine Society Report Sounds the Alarm About PFAS and Others

The FDA’s announcement came just 2 days after the Endocrine Society issued a new alarm about the human health dangers from environmental EDCs including PFAS in a report covering the latest science.

“Endocrine disrupting chemicals” are individual substances or mixtures that can interfere with natural hormonal function, leading to disease or even death. Many are ubiquitous in the modern environment and contribute to a wide range of human diseases.

The new report Endocrine Disrupting Chemicals: Threats to Human Health was issued jointly with the International Pollutants Elimination Network (IPEN), a global advocacy organization. It’s an update to the Endocrine Society’s 2015 report, providing new data on the endocrine-disrupting substances previously covered and adding four EDCs not discussed in that document: Pesticides, plastics, PFAS, and children’s products containing arsenic.

At a briefing held during the United Nations Environment Assembly meeting in Nairobi, Kenya, last week, the new report’s lead author Andrea C. Gore, PhD, of the University of Texas at Austin, noted, “A well-established body of scientific research indicates that endocrine-disrupting chemicals that are part of our daily lives are making us more susceptible to reproductive disorders, cancer, diabetes, obesity, heart disease, and other serious health conditions.”

Added Dr. Gore, who is also a member of the Endocrine Society’s Board of Directors, “These chemicals pose particularly serious risks to pregnant women and children. Now is the time for the UN Environment Assembly and other global policymakers to take action to address this threat to public health.”

While the science has been emerging rapidly, global and national chemical control policies haven’t kept up, the authors said. Of particular concern is that EDCs behave differently from other chemicals in many ways, including that even very low-dose exposures can pose health threats, but policies thus far haven’t dealt with that aspect.

Moreover, “the effects of low doses cannot be predicted by the effects observed at high doses. This means there may be no safe dose for exposure to EDCs,” according to the report.

Exposures can come from household products, including furniture, toys, and food packages, as well as electronics building materials and cosmetics. These chemicals are also in the outdoor environment, via pesticides, air pollution, and industrial waste.

“IPEN and the Endocrine Society call for chemical regulations based on the most modern scientific understanding of how hormones act and how EDCs can perturb these actions. We work to educate policy makers in global, regional, and national government assemblies and help ensure that regulations correlate with current scientific understanding,” they said in the report.
 

 

 

New Data on Four Classes of EDCs

Chapters of the report summarized the latest information about the science of EDCs and their links to endocrine disease and real-world exposure. It included a special section about “EDCs throughout the plastics life cycle” and a summary of the links between EDCs and climate change.

The report reviewed three pesticides, including the world’s most heavily applied herbicide, glycophosphate. Exposures can occur directly from the air, water, dust, and food residues. Recent data linked glycophosphate to adverse reproductive health outcomes.

Two toxic plastic chemicals, phthalates and bisphenols, are present in personal care products, among others. Emerging evidence links them with impaired neurodevelopment, leading to impaired cognitive function, learning, attention, and impulsivity.

Arsenic has long been linked to human health conditions including cancer, but more recent evidence finds it can disrupt multiple endocrine systems and lead to metabolic conditions including diabetes, reproductive dysfunction, and cardiovascular and neurocognitive conditions.

The special section about plastics noted that they are made from fossil fuels and chemicals, including many toxic substances that are known or suspected EDCs. People who live near plastic production facilities or waste dumps may be at greatest risk, but anyone can be exposed using any plastic product. Plastic waste disposal is increasingly problematic and often foisted on lower- and middle-income countries.
 

‘Additional Education and Awareness-Raising Among Stakeholders Remain Necessary’

Policies aimed at reducing human health risks from EDCs have included the 2022 Plastics Treaty, a resolution adopted by 175 countries at the United Nations Environmental Assembly that “may be a significant step toward global control of plastics and elimination of threats from exposures to EDCs in plastics,” the report said.

The authors added, “While significant progress has been made in recent years connecting scientific advances on EDCs with health-protective policies, additional education and awareness-raising among stakeholders remain necessary to achieve a safer and more sustainable environment that minimizes exposure to these harmful chemicals.”

The document was produced with financial contributions from the Government of Sweden, the Tides Foundation, Passport Foundation, and other donors.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What Happens to Surgery Candidates with BHDs and Cancer?

Article Type
Changed
Thu, 02/29/2024 - 14:46

Cancer patients with behavioral health disorders are significantly less likely to undergo surgical resections, and more likely to experience poor outcomes when they do have surgery, based on data from a new study of nearly 700,000 individuals.

The reason for this association remains unclear, and highlights the need to address existing behavioral health disorders (BHDs), which can be exacerbated after a patient is diagnosed with cancer, wrote Timothy M. Pawlik, MD, of The Ohio State University, Columbus, and colleagues. A cancer diagnosis can cause not only physical stress, but mental, emotional, social, and economic stress that can prompt a new BHD, cause relapse of a previous BHD, or exacerbate a current BHD, the researchers noted.
 

What is Known About BHDs and Cancer?

Although previous studies have shown a possible association between BHDs and increased cancer risk, as well as reduced compliance with care, the effect of BHDs on outcomes in cancer patients undergoing surgical resection has not been examined, wrote Dr. Pawlik and colleagues.

Previous research has focused on the impact of having a preexisting serious mental illness (SMI) such as schizophrenia and bipolar disorder on cancer care.

A 2023 literature review of 27 studies published in the Journal of Medical Imaging and Radiation Sciences showed that patients with preexisting severe mental illness (such as schizophrenia or bipolar disorder) had greater cancer-related mortality. In that study, the researchers also found that patients with severe mental illness were more likely to have metastatic disease at diagnosis, but less likely to receive optimal treatments, than individuals without SMIs.

Many studies also have focused on patients developing mental health problems (including BHDs) after a cancer diagnosis, but the current study is the first known to examine outcomes in those with BHDs before cancer. 
 

Why Was It Important to Conduct This Study?

“BHDs are a diverse set of mental illnesses that affect an individual’s psychosocial wellbeing, potentially resulting in maladaptive behaviors,” Dr. Pawlik said in an interview. BHDs, which include substance abuse, eating disorders, and sleep disorders, are less common than anxiety/depression, but have an estimated prevalence of 1.3%-3.1% among adults in the United States, he said.

What Does the New Study Add?

In the new review by Dr. Pawlik and colleagues, published in the Journal of the American College of Surgeons (Katayama ES. J Am Coll Surg. 2024 Feb 29. doi: 2024. 10.1097/XCS.0000000000000954), BHDs were defined as substance abuse, eating disorders, or sleep disorders, which had not been the focus of previous studies. The researchers reviewed data from 694,836 adult patients with lung, esophageal, gastric, liver, pancreatic, or colorectal cancer between 2018-2021 using the Medicare Standard Analytic files. A total of 46,719 patients (6.7%) had at least one BHD.

Overall, patients with a BHD were significantly less likely than those without a BHD to undergo surgical resection (20.3% vs. 23.4%). Patients with a BHD also had significantly worse long-term postoperative survival than those without BHDs (median 37.1 months vs. 46.6 months) and significantly higher in-hospital costs ($17,432 vs. 16,159, P less than .001 for all).

Among patients who underwent cancer surgery, the odds of any complication were significantly higher for those with a BHD compared to those with no BHD (odds ratio 1.32), as were the odds of a prolonged length of stay (OR 1.67) and 90-day readmission (OR 1.57).

Dr. Pawlik said he was surprised by several of the findings, including that 1 in 15 Medicare beneficiaries had a BHD diagnosis, “with male sex and minority racial status, as well as higher social vulnerability, being associated with a higher prevalence of BHD.”

Also, the independent association of having a BHD with 30%-50% higher odds of a complication, prolonged length of stay, and 90-day readmission was higher than Dr. Pawlik had anticipated.
 

 

 

Why Do Patients With BHDs Have Fewer Surgeries and Worse Outcomes?

The reasons for this association were likely multifactorial and may reflect the greater burden of medical comorbidity and chronic illness in many patients with BHDs because of maladaptive lifestyles or poor nutrition status, Dr. Pawlik said.

“Patients with BHDs also likely face barriers to accessing care, which was noted particularly among patients with BHDs who lived in socially vulnerable areas,” he said. BHD patients also were more likely to be treated at low-volume rather than high-volume hospitals, “which undoubtedly contributed in part to worse outcomes in this cohort of patients,” he added.
 

What Can Oncologists Do to Help?

The take-home message for clinicians is that BHDs are linked to worse surgical outcomes and higher health care costs in cancer patients, Dr. Pawlik said in an interview.

“Enhanced accessibility to behavioral healthcare, as well as comprehensive policy reform related to mental health services are needed to improve care of patients with BHDs,” he said. “For example, implementing psychiatry compensation programs may encourage practice in vulnerable areas,” he said.

Other strategies include a following a collaborative care model involving mental health professionals working in tandem with primary care and mid-level practitioners and increasing use and establishment of telehealth systems to improve patient access to BHD services, he said.
 

What Are the Limitations?

The study by Dr. Pawlik and colleagues was limited by several factors, including the lack of data on younger patients and the full range of BHDs, as well as underreporting of BHDs and the high copays for mental health care, the researchers noted. However, the results suggest that concomitant BHDs are associated with worse cancer outcomes and higher in-hospital costs, and illustrate the need to screen for and target these conditions in cancer patients, the researchers concluded.

What Are the Next Steps for Research?

The current study involved Medicare beneficiaries aged 65 years or older, and more research is needed to investigate the impact of BHDs among younger cancer patients in whom the prevalence may be higher and the impact of BHDs may be different, Dr. Pawlik said in an interview. In addition, the analysis of BHDs as a composite of substance abuse, eating disorders, and sleep disorders (because the numbers were too small to break out data for each disorder, separately) prevented investigation of potential differences and unique challenges faced by distinct subpopulations of BHD patients, he said.

“Future studies should examine the individual impact of substance abuse, eating disorders, and sleep disorders on access to surgery, as well as the potential different impact that each one of these different BHDs may have on postoperative outcomes,” Dr. Pawlik suggested.

The study was supported by The Ohio State University College of Medicine Roessler Summer Research Scholarship. The researchers had no financial conflicts to disclose.

Publications
Topics
Sections

Cancer patients with behavioral health disorders are significantly less likely to undergo surgical resections, and more likely to experience poor outcomes when they do have surgery, based on data from a new study of nearly 700,000 individuals.

The reason for this association remains unclear, and highlights the need to address existing behavioral health disorders (BHDs), which can be exacerbated after a patient is diagnosed with cancer, wrote Timothy M. Pawlik, MD, of The Ohio State University, Columbus, and colleagues. A cancer diagnosis can cause not only physical stress, but mental, emotional, social, and economic stress that can prompt a new BHD, cause relapse of a previous BHD, or exacerbate a current BHD, the researchers noted.
 

What is Known About BHDs and Cancer?

Although previous studies have shown a possible association between BHDs and increased cancer risk, as well as reduced compliance with care, the effect of BHDs on outcomes in cancer patients undergoing surgical resection has not been examined, wrote Dr. Pawlik and colleagues.

Previous research has focused on the impact of having a preexisting serious mental illness (SMI) such as schizophrenia and bipolar disorder on cancer care.

A 2023 literature review of 27 studies published in the Journal of Medical Imaging and Radiation Sciences showed that patients with preexisting severe mental illness (such as schizophrenia or bipolar disorder) had greater cancer-related mortality. In that study, the researchers also found that patients with severe mental illness were more likely to have metastatic disease at diagnosis, but less likely to receive optimal treatments, than individuals without SMIs.

Many studies also have focused on patients developing mental health problems (including BHDs) after a cancer diagnosis, but the current study is the first known to examine outcomes in those with BHDs before cancer. 
 

Why Was It Important to Conduct This Study?

“BHDs are a diverse set of mental illnesses that affect an individual’s psychosocial wellbeing, potentially resulting in maladaptive behaviors,” Dr. Pawlik said in an interview. BHDs, which include substance abuse, eating disorders, and sleep disorders, are less common than anxiety/depression, but have an estimated prevalence of 1.3%-3.1% among adults in the United States, he said.

What Does the New Study Add?

In the new review by Dr. Pawlik and colleagues, published in the Journal of the American College of Surgeons (Katayama ES. J Am Coll Surg. 2024 Feb 29. doi: 2024. 10.1097/XCS.0000000000000954), BHDs were defined as substance abuse, eating disorders, or sleep disorders, which had not been the focus of previous studies. The researchers reviewed data from 694,836 adult patients with lung, esophageal, gastric, liver, pancreatic, or colorectal cancer between 2018-2021 using the Medicare Standard Analytic files. A total of 46,719 patients (6.7%) had at least one BHD.

Overall, patients with a BHD were significantly less likely than those without a BHD to undergo surgical resection (20.3% vs. 23.4%). Patients with a BHD also had significantly worse long-term postoperative survival than those without BHDs (median 37.1 months vs. 46.6 months) and significantly higher in-hospital costs ($17,432 vs. 16,159, P less than .001 for all).

Among patients who underwent cancer surgery, the odds of any complication were significantly higher for those with a BHD compared to those with no BHD (odds ratio 1.32), as were the odds of a prolonged length of stay (OR 1.67) and 90-day readmission (OR 1.57).

Dr. Pawlik said he was surprised by several of the findings, including that 1 in 15 Medicare beneficiaries had a BHD diagnosis, “with male sex and minority racial status, as well as higher social vulnerability, being associated with a higher prevalence of BHD.”

Also, the independent association of having a BHD with 30%-50% higher odds of a complication, prolonged length of stay, and 90-day readmission was higher than Dr. Pawlik had anticipated.
 

 

 

Why Do Patients With BHDs Have Fewer Surgeries and Worse Outcomes?

The reasons for this association were likely multifactorial and may reflect the greater burden of medical comorbidity and chronic illness in many patients with BHDs because of maladaptive lifestyles or poor nutrition status, Dr. Pawlik said.

“Patients with BHDs also likely face barriers to accessing care, which was noted particularly among patients with BHDs who lived in socially vulnerable areas,” he said. BHD patients also were more likely to be treated at low-volume rather than high-volume hospitals, “which undoubtedly contributed in part to worse outcomes in this cohort of patients,” he added.
 

What Can Oncologists Do to Help?

The take-home message for clinicians is that BHDs are linked to worse surgical outcomes and higher health care costs in cancer patients, Dr. Pawlik said in an interview.

“Enhanced accessibility to behavioral healthcare, as well as comprehensive policy reform related to mental health services are needed to improve care of patients with BHDs,” he said. “For example, implementing psychiatry compensation programs may encourage practice in vulnerable areas,” he said.

Other strategies include a following a collaborative care model involving mental health professionals working in tandem with primary care and mid-level practitioners and increasing use and establishment of telehealth systems to improve patient access to BHD services, he said.
 

What Are the Limitations?

The study by Dr. Pawlik and colleagues was limited by several factors, including the lack of data on younger patients and the full range of BHDs, as well as underreporting of BHDs and the high copays for mental health care, the researchers noted. However, the results suggest that concomitant BHDs are associated with worse cancer outcomes and higher in-hospital costs, and illustrate the need to screen for and target these conditions in cancer patients, the researchers concluded.

What Are the Next Steps for Research?

The current study involved Medicare beneficiaries aged 65 years or older, and more research is needed to investigate the impact of BHDs among younger cancer patients in whom the prevalence may be higher and the impact of BHDs may be different, Dr. Pawlik said in an interview. In addition, the analysis of BHDs as a composite of substance abuse, eating disorders, and sleep disorders (because the numbers were too small to break out data for each disorder, separately) prevented investigation of potential differences and unique challenges faced by distinct subpopulations of BHD patients, he said.

“Future studies should examine the individual impact of substance abuse, eating disorders, and sleep disorders on access to surgery, as well as the potential different impact that each one of these different BHDs may have on postoperative outcomes,” Dr. Pawlik suggested.

The study was supported by The Ohio State University College of Medicine Roessler Summer Research Scholarship. The researchers had no financial conflicts to disclose.

Cancer patients with behavioral health disorders are significantly less likely to undergo surgical resections, and more likely to experience poor outcomes when they do have surgery, based on data from a new study of nearly 700,000 individuals.

The reason for this association remains unclear, and highlights the need to address existing behavioral health disorders (BHDs), which can be exacerbated after a patient is diagnosed with cancer, wrote Timothy M. Pawlik, MD, of The Ohio State University, Columbus, and colleagues. A cancer diagnosis can cause not only physical stress, but mental, emotional, social, and economic stress that can prompt a new BHD, cause relapse of a previous BHD, or exacerbate a current BHD, the researchers noted.
 

What is Known About BHDs and Cancer?

Although previous studies have shown a possible association between BHDs and increased cancer risk, as well as reduced compliance with care, the effect of BHDs on outcomes in cancer patients undergoing surgical resection has not been examined, wrote Dr. Pawlik and colleagues.

Previous research has focused on the impact of having a preexisting serious mental illness (SMI) such as schizophrenia and bipolar disorder on cancer care.

A 2023 literature review of 27 studies published in the Journal of Medical Imaging and Radiation Sciences showed that patients with preexisting severe mental illness (such as schizophrenia or bipolar disorder) had greater cancer-related mortality. In that study, the researchers also found that patients with severe mental illness were more likely to have metastatic disease at diagnosis, but less likely to receive optimal treatments, than individuals without SMIs.

Many studies also have focused on patients developing mental health problems (including BHDs) after a cancer diagnosis, but the current study is the first known to examine outcomes in those with BHDs before cancer. 
 

Why Was It Important to Conduct This Study?

“BHDs are a diverse set of mental illnesses that affect an individual’s psychosocial wellbeing, potentially resulting in maladaptive behaviors,” Dr. Pawlik said in an interview. BHDs, which include substance abuse, eating disorders, and sleep disorders, are less common than anxiety/depression, but have an estimated prevalence of 1.3%-3.1% among adults in the United States, he said.

What Does the New Study Add?

In the new review by Dr. Pawlik and colleagues, published in the Journal of the American College of Surgeons (Katayama ES. J Am Coll Surg. 2024 Feb 29. doi: 2024. 10.1097/XCS.0000000000000954), BHDs were defined as substance abuse, eating disorders, or sleep disorders, which had not been the focus of previous studies. The researchers reviewed data from 694,836 adult patients with lung, esophageal, gastric, liver, pancreatic, or colorectal cancer between 2018-2021 using the Medicare Standard Analytic files. A total of 46,719 patients (6.7%) had at least one BHD.

Overall, patients with a BHD were significantly less likely than those without a BHD to undergo surgical resection (20.3% vs. 23.4%). Patients with a BHD also had significantly worse long-term postoperative survival than those without BHDs (median 37.1 months vs. 46.6 months) and significantly higher in-hospital costs ($17,432 vs. 16,159, P less than .001 for all).

Among patients who underwent cancer surgery, the odds of any complication were significantly higher for those with a BHD compared to those with no BHD (odds ratio 1.32), as were the odds of a prolonged length of stay (OR 1.67) and 90-day readmission (OR 1.57).

Dr. Pawlik said he was surprised by several of the findings, including that 1 in 15 Medicare beneficiaries had a BHD diagnosis, “with male sex and minority racial status, as well as higher social vulnerability, being associated with a higher prevalence of BHD.”

Also, the independent association of having a BHD with 30%-50% higher odds of a complication, prolonged length of stay, and 90-day readmission was higher than Dr. Pawlik had anticipated.
 

 

 

Why Do Patients With BHDs Have Fewer Surgeries and Worse Outcomes?

The reasons for this association were likely multifactorial and may reflect the greater burden of medical comorbidity and chronic illness in many patients with BHDs because of maladaptive lifestyles or poor nutrition status, Dr. Pawlik said.

“Patients with BHDs also likely face barriers to accessing care, which was noted particularly among patients with BHDs who lived in socially vulnerable areas,” he said. BHD patients also were more likely to be treated at low-volume rather than high-volume hospitals, “which undoubtedly contributed in part to worse outcomes in this cohort of patients,” he added.
 

What Can Oncologists Do to Help?

The take-home message for clinicians is that BHDs are linked to worse surgical outcomes and higher health care costs in cancer patients, Dr. Pawlik said in an interview.

“Enhanced accessibility to behavioral healthcare, as well as comprehensive policy reform related to mental health services are needed to improve care of patients with BHDs,” he said. “For example, implementing psychiatry compensation programs may encourage practice in vulnerable areas,” he said.

Other strategies include a following a collaborative care model involving mental health professionals working in tandem with primary care and mid-level practitioners and increasing use and establishment of telehealth systems to improve patient access to BHD services, he said.
 

What Are the Limitations?

The study by Dr. Pawlik and colleagues was limited by several factors, including the lack of data on younger patients and the full range of BHDs, as well as underreporting of BHDs and the high copays for mental health care, the researchers noted. However, the results suggest that concomitant BHDs are associated with worse cancer outcomes and higher in-hospital costs, and illustrate the need to screen for and target these conditions in cancer patients, the researchers concluded.

What Are the Next Steps for Research?

The current study involved Medicare beneficiaries aged 65 years or older, and more research is needed to investigate the impact of BHDs among younger cancer patients in whom the prevalence may be higher and the impact of BHDs may be different, Dr. Pawlik said in an interview. In addition, the analysis of BHDs as a composite of substance abuse, eating disorders, and sleep disorders (because the numbers were too small to break out data for each disorder, separately) prevented investigation of potential differences and unique challenges faced by distinct subpopulations of BHD patients, he said.

“Future studies should examine the individual impact of substance abuse, eating disorders, and sleep disorders on access to surgery, as well as the potential different impact that each one of these different BHDs may have on postoperative outcomes,” Dr. Pawlik suggested.

The study was supported by The Ohio State University College of Medicine Roessler Summer Research Scholarship. The researchers had no financial conflicts to disclose.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Lung Cancer Radiation May Up AF Risk

Article Type
Changed
Fri, 02/23/2024 - 13:35

 

TOPLINE:

Radiation exposure to the pulmonary veins during radiotherapy (RT) for non–small cell lung cancer (NSCLC) raises the risk for atrial fibrillation (AF), according to new findings.

METHODOLOGY:

  • Arrhythmia — with AF being the most common type — affects roughly 11% of patients following lung cancer RT.
  • Given RT’s recognized impact on cardiac tissues over time, researchers hypothesized that the dosage affecting pulmonary veins might contribute to the observed increased rates of AF after RT.
  • To investigate, researchers looked back at 420 patients with NSCLC (52% women, median age 70) undergoing definitive RT (± chemo) with modern planning techniques at 55 Gy in 20 once-daily fractions over 4 weeks.
  • Most patients underwent treatment planning using volumetric modulated arc therapy (50%) or static gantry intensity-modulated RT (20%). Chemotherapy was administered in a minority of cases (33%).
  • Pulmonary veins were contoured on planning CT scans, and dose metrics were calculated. The association between pulmonary veins dose and incidence of new AF was evaluated, with AF verified by a cardiologist.

TAKEAWAY:

  • Out of the entire cohort, 26 patients (6%) developed AF a median of 13 months after treatment. All cases of AF were grade 3 except for two grade 4 events.
  • Radiation dose to the left and right pulmonary veins was significantly associated with incident AF. Dose volumes most strongly associated with AF were ≥ 55 Gy (V55) on the left and ≥ 10 Gy (V10) on the right.
  • The risk for AF increased by 2% per percentage point increase in the left pulmonary veins V55 and 1% in the right pulmonary veins V10. The associations were statistically significant after accounting for cardiovascular factors and risk for death risk.
  • The area under the curve for prediction of AF events was 0.64 (P = .02) for the left pulmonary veins V55 and 0.61 (P = .03) for the right pulmonary veins V10. The optimal thresholds for predicting AF were 2% and 54%, respectively.

IN PRACTICE:

“The implications of these data are that actively sparing these structures could reduce the incidence of [AF], and where this is not possible, patients identified as being at high risk of AF could undergo active screening during follow-up,” the researchers said, adding that further validation of these findings should take place before implementation.

SOURCE:

The study, with first author Gerard M. Walls, MB, MRCP, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, was published online on January 4 in Radiotherapy and Oncology .

LIMITATIONS:

This was a single-center, retrospective study with a small number of AF events. The study may have underestimated the relationship between pulmonary vein irradiation and new AF events. The findings needed validation in larger datasets.

DISCLOSURES:

The study had no commercial funding. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Radiation exposure to the pulmonary veins during radiotherapy (RT) for non–small cell lung cancer (NSCLC) raises the risk for atrial fibrillation (AF), according to new findings.

METHODOLOGY:

  • Arrhythmia — with AF being the most common type — affects roughly 11% of patients following lung cancer RT.
  • Given RT’s recognized impact on cardiac tissues over time, researchers hypothesized that the dosage affecting pulmonary veins might contribute to the observed increased rates of AF after RT.
  • To investigate, researchers looked back at 420 patients with NSCLC (52% women, median age 70) undergoing definitive RT (± chemo) with modern planning techniques at 55 Gy in 20 once-daily fractions over 4 weeks.
  • Most patients underwent treatment planning using volumetric modulated arc therapy (50%) or static gantry intensity-modulated RT (20%). Chemotherapy was administered in a minority of cases (33%).
  • Pulmonary veins were contoured on planning CT scans, and dose metrics were calculated. The association between pulmonary veins dose and incidence of new AF was evaluated, with AF verified by a cardiologist.

TAKEAWAY:

  • Out of the entire cohort, 26 patients (6%) developed AF a median of 13 months after treatment. All cases of AF were grade 3 except for two grade 4 events.
  • Radiation dose to the left and right pulmonary veins was significantly associated with incident AF. Dose volumes most strongly associated with AF were ≥ 55 Gy (V55) on the left and ≥ 10 Gy (V10) on the right.
  • The risk for AF increased by 2% per percentage point increase in the left pulmonary veins V55 and 1% in the right pulmonary veins V10. The associations were statistically significant after accounting for cardiovascular factors and risk for death risk.
  • The area under the curve for prediction of AF events was 0.64 (P = .02) for the left pulmonary veins V55 and 0.61 (P = .03) for the right pulmonary veins V10. The optimal thresholds for predicting AF were 2% and 54%, respectively.

IN PRACTICE:

“The implications of these data are that actively sparing these structures could reduce the incidence of [AF], and where this is not possible, patients identified as being at high risk of AF could undergo active screening during follow-up,” the researchers said, adding that further validation of these findings should take place before implementation.

SOURCE:

The study, with first author Gerard M. Walls, MB, MRCP, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, was published online on January 4 in Radiotherapy and Oncology .

LIMITATIONS:

This was a single-center, retrospective study with a small number of AF events. The study may have underestimated the relationship between pulmonary vein irradiation and new AF events. The findings needed validation in larger datasets.

DISCLOSURES:

The study had no commercial funding. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Radiation exposure to the pulmonary veins during radiotherapy (RT) for non–small cell lung cancer (NSCLC) raises the risk for atrial fibrillation (AF), according to new findings.

METHODOLOGY:

  • Arrhythmia — with AF being the most common type — affects roughly 11% of patients following lung cancer RT.
  • Given RT’s recognized impact on cardiac tissues over time, researchers hypothesized that the dosage affecting pulmonary veins might contribute to the observed increased rates of AF after RT.
  • To investigate, researchers looked back at 420 patients with NSCLC (52% women, median age 70) undergoing definitive RT (± chemo) with modern planning techniques at 55 Gy in 20 once-daily fractions over 4 weeks.
  • Most patients underwent treatment planning using volumetric modulated arc therapy (50%) or static gantry intensity-modulated RT (20%). Chemotherapy was administered in a minority of cases (33%).
  • Pulmonary veins were contoured on planning CT scans, and dose metrics were calculated. The association between pulmonary veins dose and incidence of new AF was evaluated, with AF verified by a cardiologist.

TAKEAWAY:

  • Out of the entire cohort, 26 patients (6%) developed AF a median of 13 months after treatment. All cases of AF were grade 3 except for two grade 4 events.
  • Radiation dose to the left and right pulmonary veins was significantly associated with incident AF. Dose volumes most strongly associated with AF were ≥ 55 Gy (V55) on the left and ≥ 10 Gy (V10) on the right.
  • The risk for AF increased by 2% per percentage point increase in the left pulmonary veins V55 and 1% in the right pulmonary veins V10. The associations were statistically significant after accounting for cardiovascular factors and risk for death risk.
  • The area under the curve for prediction of AF events was 0.64 (P = .02) for the left pulmonary veins V55 and 0.61 (P = .03) for the right pulmonary veins V10. The optimal thresholds for predicting AF were 2% and 54%, respectively.

IN PRACTICE:

“The implications of these data are that actively sparing these structures could reduce the incidence of [AF], and where this is not possible, patients identified as being at high risk of AF could undergo active screening during follow-up,” the researchers said, adding that further validation of these findings should take place before implementation.

SOURCE:

The study, with first author Gerard M. Walls, MB, MRCP, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, was published online on January 4 in Radiotherapy and Oncology .

LIMITATIONS:

This was a single-center, retrospective study with a small number of AF events. The study may have underestimated the relationship between pulmonary vein irradiation and new AF events. The findings needed validation in larger datasets.

DISCLOSURES:

The study had no commercial funding. The authors declared no conflicts of interest.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Are Food Emulsifiers Associated With Increased Cancer Risk?

Article Type
Changed
Fri, 02/23/2024 - 13:55

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Food emulsifiers are among the most widespread food additives. A large cohort study highlighted an association between the consumption of certain emulsifiers and an increased risk for certain cancers, particularly breast and prostate cancer.

Ultraprocessed foods constitute a significant part of our diet, representing approximately 30% of energy intake in France.

Large epidemiologic studies have already linked diets rich in ultraprocessed products to an increased risk for cardiovascular diseases, diabetes, obesity, and mortality. Possible explanations for this association include the presence of additives, particularly emulsifiers. These additives are intended to improve the texture and shelf life of foods.

Recent experimental studies have shown that emulsifiers alter the gut microbiota and may lead to low-grade inflammation. Dysbiosis and chronic inflammation not only increase the risk for inflammatory bowel diseases but are also implicated in the etiology of several other chronic pathologies and certain extraintestinal cancers.

The NutriNet-Santé study provided extensive information on the dietary habits of > 100,000 French participants. A new analysis was conducted, examining the possible link between the presence of emulsifiers in the diet and cancer occurrence. Data from 92,000 participants (78.8% women) were utilized. They covered an average follow-up of 6.7 years, during which 2604 cancer cases were diagnosed, including 750 breast cancers, 322 prostate cancers, and 207 colorectal cancers.

In this cohort, the risk for cancer increased with a higher presence in the diet of products containing certain emulsifiers widely used in industrial food in Europe: Carrageenans (E407), mono- and diglycerides of fatty acids (E471), pectins (E440), and sodium carbonate (E500).

Notably, the highest consumption of mono- and diglycerides of fatty acids (E471) was associated with a 15% increase in the risk for all types of cancer, a 24% increase in breast cancer risk, and a 46% increase in prostate cancer risk. The highest consumption of carrageenans (E407) was associated with a 28% increase in breast cancer risk.

In an analysis by menopausal status, the risk for breast cancer before menopause was associated with high consumption of diphosphates (E450; 45% increase), pectins (E440; 55% increase), and sodium bicarbonate (E500; 48% increase). No link was found between emulsifier consumption and colorectal cancer risk. While some associations were observed for other emulsifiers, they did not persist in sensitivity analyses.

The European Food Safety Agency recently evaluated the risks of emulsifiers, however, and found no safety issues or need to limit daily consumption of several of them, notably E471.

It is certain that cancer is multifactorial, and a single factor (here, exposure to emulsifiers) will not significantly increase the risk. However, while not essential to human health, emulsifiers are widely prevalent in the global market. Therefore, if causality is established, the increased risk could translate into a significant number of preventable cancers at the population level. Confirmation of this causal link will need to be obtained through experimental and epidemiological studies.

This story was translated from JIM, which is part of the Medscape professional network, using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Democratic Lawmakers Press Pfizer on Chemotherapy Drug Shortages

Article Type
Changed
Thu, 02/22/2024 - 17:57

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

Publications
Topics
Sections

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

 

A group of 16 Democratic legislators on the House Committee on Oversight and Reform has demanded in a letter that the drugmaker Pfizer present details on how the company is responding to shortages of the generic chemotherapy drugs carboplatin, cisplatin, and methotrexate.

In a statement about their February 21 action, the legislators, led by Rep. Jamie Raskin (D-Md.), the committee’s ranking minority member, described their work as a follow up to an earlier investigation into price hikes of generic drugs. While the committee members queried Pfizer over the three oncology medications only, they also sent letters to drugmakers Teva and Sandoz with respect to shortages in other drug classes.

A representative for Pfizer confirmed to MDedge Oncology that the company had received the representatives’ letter but said “we have no further details to provide at this time.”

What is the basis for concern?

All three generic chemotherapy drugs are mainstay treatments used across a broad array of cancers. Though shortages have been reported for several years, they became especially acute after December 2022, when an inspection by the US Food and Drug Administration (FDA) led to regulatory action against an Indian manufacturer, Intas, that produced up to half of the platinum-based therapies supplied globally. The National Comprehensive Cancer Care Network reported in October 2023 that more than 90% of its member centers were struggling to maintain adequate supplies of carboplatin, and 70% had trouble obtaining cisplatin, while the American Society of Clinical Oncology published clinical guidance on alternative treatment strategies.

What has the government done in response to the recent shortages?

The White House and the FDA announced in September that they were working with several manufacturers to help increase supplies of the platinum-based chemotherapies and of methotrexate, and taking measures that included relaxing rules on imports. Recent guidance under a pandemic-era federal law, the 2020 CARES Act, strengthened manufacturer reporting requirements related to drug shortages, and other measures have been proposed. While federal regulators have many tools with which to address drug shortages, they cannot legally oblige a manufacturer to increase production of a drug.

What can the lawmakers expect to achieve with their letter?

By pressuring Pfizer publicly, the lawmakers may be able to nudge the company to take measures to assure more consistent supplies of the three drugs. The lawmakers also said they hoped to glean from Pfizer more insight into the root causes of the shortages and potential remedies. They noted that, in a May 2023 letter by Pfizer to customers, the company had warned of depleted and limited supplies of the three drugs and said it was “working diligently” to increase output. However, the lawmakers wrote, “the root cause is not yet resolved and carboplatin, cisplatin, and methotrexate continue to experience residual delays.”

Why did the committee target Pfizer specifically?

Pfizer and its subsidiaries are among the major manufacturers of the three generic chemotherapy agents mentioned in the letter. The legislators noted that “pharmaceutical companies may not be motivated to produce generic drugs like carboplatin, cisplatin, and methotrexate, because they are not as lucrative as producing patented brand name drugs,” and that “as a principal supplier of carboplatin, cisplatin, and methotrexate, it is critical that Pfizer continues to increase production of these life-sustaining cancer medications, even amidst potential lower profitability.”

 

 

The committee members also made reference to news reports of price-gouging with these medications, as smaller hospitals or oncology centers are forced to turn to unscrupulous third-party suppliers.

What is being demanded of Pfizer?

Pfizer was given until March 6 to respond, in writing and in a briefing with committee staff, to a six questions. These queries concern what specific steps the company has taken to increase supplies of the three generic oncology drugs, what Pfizer is doing to help avert price-gouging, whether further oncology drug shortages are anticipated, and how the company is working with the FDA on the matter.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Unleashing Our Immune Response to Quash Cancer

Article Type
Changed
Wed, 02/21/2024 - 21:08

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

This article was originally published on February 10 in Eric Topol’s substack “Ground Truths.”

It’s astounding how devious cancer cells and tumor tissue can be. This week in Science we learned how certain lung cancer cells can function like “Catch Me If You Can” — changing their driver mutation and cell identity to escape targeted therapy. This histologic transformation, as seen in an experimental model, is just one of so many cancer tricks that we are learning about.

Recently, as shown by single-cell sequencing, cancer cells can steal the mitochondria from T cells, a double whammy that turbocharges cancer cells with the hijacked fuel supply and, at the same time, dismantles the immune response.

Last week, we saw how tumor cells can release a virus-like protein that unleashes a vicious autoimmune response.

And then there’s the finding that cancer cell spread predominantly is occurring while we sleep.

As I previously reviewed, the ability for cancer cells to hijack neurons and neural circuits is now well established, no less their ability to reprogram neurons to become adrenergic and stimulate tumor progression, and interfere with the immune response. Stay tuned on that for a new Ground Truths podcast with Prof Michelle Monje, a leader in cancer neuroscience, which will post soon.

Add advancing age’s immunosenescence as yet another challenge to the long and growing list of formidable ways that cancer cells, and the tumor microenvironment, evade our immune response.

An Ever-Expanding Armamentarium

All of this is telling us how we need to ramp up our game if we are going to be able to use our immune system to quash a cancer. Fortunately, we have abundant and ever-growing capabilities for doing just that.

Immune Checkpoint Inhibitors

The field of immunotherapies took off with the immune checkpoint inhibitors, first approved by the FDA in 2011, that take the brakes off of T cells, with the programmed death-1 (PD-1), PD-ligand1, and anti-CTLA-4 monoclonal antibodies.

But we’re clearly learning they are not enough to prevail over cancer with common recurrences, only short term success in most patients, with some notable exceptions. Adding other immune response strategies, such as a vaccine, or antibody-drug conjugates, or engineered T cells, are showing improved chances for success.

Therapeutic Cancer Vaccines

There are many therapeutic cancer vaccines in the works, as reviewed in depth here.

Here’s a list of ongoing clinical trials of cancer vaccines. You’ll note most of these are on top of a checkpoint inhibitor and use personalized neoantigens (cancer cell surface proteins) derived from sequencing (whole-exome or whole genome, RNA-sequencing and HLA-profiling) the patient’s tumor.

An example of positive findings is with the combination of an mRNA-nanoparticle vaccine with up to 34 personalized neoantigens and pembrolizumab (Keytruda) vs pembrolizumab alone in advanced melanoma after resection, with improved outcomes at 3-year follow-up, cutting death or relapse rate in half.

Antibody-Drug Conjugates (ADC)

There is considerable excitement about antibody-drug conjugates (ADC) whereby a linker is used to attach a chemotherapy agent to the checkpoint inhibitor antibody, specifically targeting the cancer cell and facilitating entry of the chemotherapy into the cell. Akin to these are bispecific antibodies (BiTEs, binding to a tumor antigen and T cell receptor simultaneously), both of these conjugates acting as “biologic” or “guided” missiles.

A very good example of the potency of an ADC was seen in a “HER2-low” breast cancer randomized trial. The absence or very low expression or amplification of the HER2 receptor is common in breast cancer and successful treatment has been elusive. A randomized trial of an ADC (trastuzumab deruxtecan) compared to physician’s choice therapy demonstrated a marked success for progression-free survival in HER2-low patients, which was characterized as “unheard-of success” by media coverage.

This strategy is being used to target some of the most difficult cancer driver mutations such as TP53 and KRAS.

Oncolytic Viruses

Modifying viruses to infect the tumor and make it more visible to the immune system, potentiating anti-tumor responses, known as oncolytic viruses, have been proposed as a way to rev up the immune response for a long time but without positive Phase 3 clinical trials.

After decades of failure, a recent trial in refractory bladder cancer showed marked success, along with others, summarized here, now providing very encouraging results. It looks like oncolytic viruses are on a comeback path.

Engineering T Cells (Chimeric Antigen Receptor [CAR-T])

As I recently reviewed, there are over 500 ongoing clinical trials to build on the success of the first CAR-T approval for leukemia 7 years ago. I won’t go through that all again here, but to reiterate most of the success to date has been in “liquid” blood (leukemia and lymphoma) cancer tumors. This week in Nature is the discovery of a T cell cancer mutation, a gene fusion CARD11-PIK3R3, from a T cell lymphoma that can potentially be used to augment CAR-T efficacy. It has pronounced and prolonged effects in the experimental model. Instead of 1 million cells needed for treatment, even 20,000 were enough to melt the tumor. This is a noteworthy discovery since CAR-T work to date has largely not exploited such naturally occurring mutations, while instead concentrating on those seen in the patient’s set of key tumor mutations.

As currently conceived, CAR-T, and what is being referred to more broadly as adoptive cell therapies, involves removing T cells from the patient’s body and engineering their activation, then reintroducing them back to the patient. This is laborious, technically difficult, and very expensive. Recently, the idea of achieving all of this via an injection of virus that specifically infects T cells and inserts the genes needed, was advanced by two biotech companies with preclinical results, one in non-human primates.

Gearing up to meet the challenge of solid tumor CAR-T intervention, there’s more work using CRISPR genome editing of T cell receptorsA.I. is increasingly being exploited to process the data from sequencing and identify optimal neoantigens.

Instead of just CAR-T, we’re seeing the emergence of CAR-macrophage and CAR-natural killer (NK) cells strategies, and rapidly expanding potential combinations of all the strategies I’ve mentioned. No less, there’s been maturation of on-off suicide switches programmed in, to limit cytokine release and promote safety of these interventions. Overall, major side effects of immunotherapies are not only cytokine release syndromes, but also include interstitial pneumonitis and neurotoxicity.

Summary

Given the multitude of ways cancer cells and tumor tissue can evade our immune response, durably successful treatment remains a daunting challenge. But the ingenuity of so many different approaches to unleash our immune response, and their combinations, provides considerable hope that we’ll increasingly meet the challenge in the years ahead. We have clearly learned that combining different immunotherapy strategies will be essential for many patients with the most resilient solid tumors.

Of concern, as noted by a recent editorial in The Lancet, entitled “Cancer Research Equity: Innovations For The Many, Not The Few,” is that these individualized, sophisticated strategies are not scalable; they will have limited reach and benefit. The movement towards “off the shelf” CAR-T and inexpensive, orally active checkpoint inhibitors may help mitigate this issue.

Notwithstanding this important concern, we’re seeing an array of diverse and potent immunotherapy strategies that are providing highly encouraging results, engendering more excitement than we’ve seen in this space for some time. These should propel substantial improvements in outcomes for patients in the years ahead. It can’t happen soon enough.

Thanks for reading this edition of Ground Truths. If you found it informative, please share it with your colleagues.

Dr. Topol has disclosed the following relevant financial relationships: Serve(d) as a director, officer, partner, employee, advisor, consultant, or trustee for Dexcom; Illumina; Molecular Stethoscope; Quest Diagnostics; Blue Cross Blue Shield Association. Received research grant from National Institutes of Health.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Circulating Tumor Cells Can Predict Progression in Stage 3 NSCLC

Article Type
Changed
Fri, 02/09/2024 - 12:51

Circulating tumor cells (CTCs), the cells shed from a solid tumor into the bloodstream, may help doctors avoid having to do repeat needle biopsies on patients with unresectable non–small cell lung cancer.

Challenges to using CTCs clinically are that they are not abundant in the blood and have been difficult to isolate in patients with this type of cancer with commercially available assays.

New research published in Cell Reports may bring doctors closer to using CTCs as a biomarker for patients with non–small cell lung cancer (NSCLC) in clinic. In their paper, the authors show that an experimental nanotechnology can effectively isolate and measure CTCs in patients with stage 3 NSCLC. They also found that a precipitous drop in CTCs during chemoradiation treatment predicted significantly longer progression-free survival in those patients.
 

Study Results and Methods

For their research, study coauthors Shruti Jolly, MD, and Sunitha Nagrath, PhD, used a novel graphene oxide technology called the GO chip, developed more than a decade ago by Dr. Nagrath and her colleagues, to isolate CTCs from patients with stage 3 NSCLC. While a different technology, which is approved by the US Food and Drug Administration (FDA), uses a single antibody to pick up CTCs, the GO chip uses a cocktail of three antibodies to CTC proteins, making it more sensitive.

The 26 patients in the study (mean age 67, 27% female) all received radiation treatment for 6 weeks, plus weekly carboplatin and paclitaxel chemotherapy. Sixteen of the patients afterward went on to have immunotherapy with durvalumab. Blood was drawn at six fixed time points: before treatment, and at weeks 1, 4, 10, 18, and 30. CTCs were measured and analyzed with every draw.

Previous studies showed that absolute number of CTCs did not correlate with either tumor volume or progression-free survival in NSCLC.

Dr. Jolly and Dr. Nagrath sought to measure change in CTCs from baseline for each patient, having the patient serve as his or her own control. They found that patients whose individual CTC counts dropped by 75% or more between pretreatment and week 4 of chemoradiation saw a mean 21 months of progression-free survival compared with 7 months for patients whose CTCs dropped by less than 75% in the same period (P = .0076).

Dr. Jolly and Dr. Nagrath also aimed to determine, as an exploratory outcome of their study, whether other information collected from the CTCs could predict response to treatment with durvalumab immunotherapy. They found that having more than 50% of CTCs positive for the protein PD-L1 correlated to shorter progression-free survival among the 16 patients receiving durvalumab (P = .04).

“Every person’s tumor is unique in terms of its response to treatment,” said Dr. Jolly, a radiation oncologist and professor and associate chair of community practices in the Department of Radiation Oncology at the University of Michigan, Ann Arbor.

“Two people with a three-centimeter lung tumor will not necessarily shed the same amount of tumor cells into circulation. CTCs are reflective of disease burden; however, this is not related to the absolute numbers. That’s why we decided to use individualized baselines and look at the percentage of decrease,” she said.

Dr. Nagrath, professor of chemical and biomedical engineering at the University of Michigan, noted, in the same interview, that the findings argue for CTCs as a biomarker in stage 3 NSCLC.

“A lot of researchers who do lung cancer studies struggle with isolating lung cancer CTCs,” Dr. Nagrath said. “We showed, with repeated blood draws during treatment, what is changing at a molecular level and that you can see it with a simple blood draw. It also gives the proof of concept that if these cells are present, this is a good way to monitor and see if a treatment is working, even early in the treatment.” Moreover, she added, “many studies in lung cancer are in stage 4.”

Our study is unique as it followed patients with locally advanced tumors from their being treatment naive to all the way through immunotherapy,” she continued.

The University of Michigan has a patent on the GO chip technology, but thus far no company has made efforts to license it and submit it for approval. While “liquid biopsy” is an important emerging concept in lung cancer, there is little consensus yet as to which blood biomarkers — whether CTCs, circulating tumor DNA (ctDNA), or extracellular vesicles (EVs) — are most clinically relevant, Dr. Nagrath said.

The study’s small size is one of its weaknesses, according to the authors.
 

 

 

Findings are ‘Particularly Intriguing’

Majid Ebrahimi Warkiani, PhD, who was not involved in the study, described the new findings as “particularly intriguing [and] highlighting the efficacy of liquid biopsy using CTCs for predicting treatment outcomes.”

A challenge within the realm of CTCs lies in the community’s ongoing struggle to define and classify these cells accurately, Dr. Warkiani said in an interview.

“While surface protein markers offer valuable insights, emerging layers of analysis, such as metabolomics, are increasingly entering the scene to bolster the identification of putative cancer cells, alongside molecular tests like fluorescence in situ hybridization (FISH),” said Dr. Warkiani of the University of Technology Sydney in Australia. “The amalgamation of these approaches simultaneously presents a significant challenge, particularly in terms of standardization for patient care, unlike ctDNA, which faces fewer bottlenecks.

“The robustness of the research in this study is commendable. However, further clinical testing and randomized trials are imperative,” Dr. Warkiani continued. “Companies like Epic Sciences are actively engaged in advancing research and standardization in this field.”

The study by Dr. Jolly and Dr. Nagrath was funded by the National Institutes of Health. None of the study authors reported financial conflicts of interest. Dr. Warkiani reported no conflicts of interest related to his comment.

Publications
Topics
Sections

Circulating tumor cells (CTCs), the cells shed from a solid tumor into the bloodstream, may help doctors avoid having to do repeat needle biopsies on patients with unresectable non–small cell lung cancer.

Challenges to using CTCs clinically are that they are not abundant in the blood and have been difficult to isolate in patients with this type of cancer with commercially available assays.

New research published in Cell Reports may bring doctors closer to using CTCs as a biomarker for patients with non–small cell lung cancer (NSCLC) in clinic. In their paper, the authors show that an experimental nanotechnology can effectively isolate and measure CTCs in patients with stage 3 NSCLC. They also found that a precipitous drop in CTCs during chemoradiation treatment predicted significantly longer progression-free survival in those patients.
 

Study Results and Methods

For their research, study coauthors Shruti Jolly, MD, and Sunitha Nagrath, PhD, used a novel graphene oxide technology called the GO chip, developed more than a decade ago by Dr. Nagrath and her colleagues, to isolate CTCs from patients with stage 3 NSCLC. While a different technology, which is approved by the US Food and Drug Administration (FDA), uses a single antibody to pick up CTCs, the GO chip uses a cocktail of three antibodies to CTC proteins, making it more sensitive.

The 26 patients in the study (mean age 67, 27% female) all received radiation treatment for 6 weeks, plus weekly carboplatin and paclitaxel chemotherapy. Sixteen of the patients afterward went on to have immunotherapy with durvalumab. Blood was drawn at six fixed time points: before treatment, and at weeks 1, 4, 10, 18, and 30. CTCs were measured and analyzed with every draw.

Previous studies showed that absolute number of CTCs did not correlate with either tumor volume or progression-free survival in NSCLC.

Dr. Jolly and Dr. Nagrath sought to measure change in CTCs from baseline for each patient, having the patient serve as his or her own control. They found that patients whose individual CTC counts dropped by 75% or more between pretreatment and week 4 of chemoradiation saw a mean 21 months of progression-free survival compared with 7 months for patients whose CTCs dropped by less than 75% in the same period (P = .0076).

Dr. Jolly and Dr. Nagrath also aimed to determine, as an exploratory outcome of their study, whether other information collected from the CTCs could predict response to treatment with durvalumab immunotherapy. They found that having more than 50% of CTCs positive for the protein PD-L1 correlated to shorter progression-free survival among the 16 patients receiving durvalumab (P = .04).

“Every person’s tumor is unique in terms of its response to treatment,” said Dr. Jolly, a radiation oncologist and professor and associate chair of community practices in the Department of Radiation Oncology at the University of Michigan, Ann Arbor.

“Two people with a three-centimeter lung tumor will not necessarily shed the same amount of tumor cells into circulation. CTCs are reflective of disease burden; however, this is not related to the absolute numbers. That’s why we decided to use individualized baselines and look at the percentage of decrease,” she said.

Dr. Nagrath, professor of chemical and biomedical engineering at the University of Michigan, noted, in the same interview, that the findings argue for CTCs as a biomarker in stage 3 NSCLC.

“A lot of researchers who do lung cancer studies struggle with isolating lung cancer CTCs,” Dr. Nagrath said. “We showed, with repeated blood draws during treatment, what is changing at a molecular level and that you can see it with a simple blood draw. It also gives the proof of concept that if these cells are present, this is a good way to monitor and see if a treatment is working, even early in the treatment.” Moreover, she added, “many studies in lung cancer are in stage 4.”

Our study is unique as it followed patients with locally advanced tumors from their being treatment naive to all the way through immunotherapy,” she continued.

The University of Michigan has a patent on the GO chip technology, but thus far no company has made efforts to license it and submit it for approval. While “liquid biopsy” is an important emerging concept in lung cancer, there is little consensus yet as to which blood biomarkers — whether CTCs, circulating tumor DNA (ctDNA), or extracellular vesicles (EVs) — are most clinically relevant, Dr. Nagrath said.

The study’s small size is one of its weaknesses, according to the authors.
 

 

 

Findings are ‘Particularly Intriguing’

Majid Ebrahimi Warkiani, PhD, who was not involved in the study, described the new findings as “particularly intriguing [and] highlighting the efficacy of liquid biopsy using CTCs for predicting treatment outcomes.”

A challenge within the realm of CTCs lies in the community’s ongoing struggle to define and classify these cells accurately, Dr. Warkiani said in an interview.

“While surface protein markers offer valuable insights, emerging layers of analysis, such as metabolomics, are increasingly entering the scene to bolster the identification of putative cancer cells, alongside molecular tests like fluorescence in situ hybridization (FISH),” said Dr. Warkiani of the University of Technology Sydney in Australia. “The amalgamation of these approaches simultaneously presents a significant challenge, particularly in terms of standardization for patient care, unlike ctDNA, which faces fewer bottlenecks.

“The robustness of the research in this study is commendable. However, further clinical testing and randomized trials are imperative,” Dr. Warkiani continued. “Companies like Epic Sciences are actively engaged in advancing research and standardization in this field.”

The study by Dr. Jolly and Dr. Nagrath was funded by the National Institutes of Health. None of the study authors reported financial conflicts of interest. Dr. Warkiani reported no conflicts of interest related to his comment.

Circulating tumor cells (CTCs), the cells shed from a solid tumor into the bloodstream, may help doctors avoid having to do repeat needle biopsies on patients with unresectable non–small cell lung cancer.

Challenges to using CTCs clinically are that they are not abundant in the blood and have been difficult to isolate in patients with this type of cancer with commercially available assays.

New research published in Cell Reports may bring doctors closer to using CTCs as a biomarker for patients with non–small cell lung cancer (NSCLC) in clinic. In their paper, the authors show that an experimental nanotechnology can effectively isolate and measure CTCs in patients with stage 3 NSCLC. They also found that a precipitous drop in CTCs during chemoradiation treatment predicted significantly longer progression-free survival in those patients.
 

Study Results and Methods

For their research, study coauthors Shruti Jolly, MD, and Sunitha Nagrath, PhD, used a novel graphene oxide technology called the GO chip, developed more than a decade ago by Dr. Nagrath and her colleagues, to isolate CTCs from patients with stage 3 NSCLC. While a different technology, which is approved by the US Food and Drug Administration (FDA), uses a single antibody to pick up CTCs, the GO chip uses a cocktail of three antibodies to CTC proteins, making it more sensitive.

The 26 patients in the study (mean age 67, 27% female) all received radiation treatment for 6 weeks, plus weekly carboplatin and paclitaxel chemotherapy. Sixteen of the patients afterward went on to have immunotherapy with durvalumab. Blood was drawn at six fixed time points: before treatment, and at weeks 1, 4, 10, 18, and 30. CTCs were measured and analyzed with every draw.

Previous studies showed that absolute number of CTCs did not correlate with either tumor volume or progression-free survival in NSCLC.

Dr. Jolly and Dr. Nagrath sought to measure change in CTCs from baseline for each patient, having the patient serve as his or her own control. They found that patients whose individual CTC counts dropped by 75% or more between pretreatment and week 4 of chemoradiation saw a mean 21 months of progression-free survival compared with 7 months for patients whose CTCs dropped by less than 75% in the same period (P = .0076).

Dr. Jolly and Dr. Nagrath also aimed to determine, as an exploratory outcome of their study, whether other information collected from the CTCs could predict response to treatment with durvalumab immunotherapy. They found that having more than 50% of CTCs positive for the protein PD-L1 correlated to shorter progression-free survival among the 16 patients receiving durvalumab (P = .04).

“Every person’s tumor is unique in terms of its response to treatment,” said Dr. Jolly, a radiation oncologist and professor and associate chair of community practices in the Department of Radiation Oncology at the University of Michigan, Ann Arbor.

“Two people with a three-centimeter lung tumor will not necessarily shed the same amount of tumor cells into circulation. CTCs are reflective of disease burden; however, this is not related to the absolute numbers. That’s why we decided to use individualized baselines and look at the percentage of decrease,” she said.

Dr. Nagrath, professor of chemical and biomedical engineering at the University of Michigan, noted, in the same interview, that the findings argue for CTCs as a biomarker in stage 3 NSCLC.

“A lot of researchers who do lung cancer studies struggle with isolating lung cancer CTCs,” Dr. Nagrath said. “We showed, with repeated blood draws during treatment, what is changing at a molecular level and that you can see it with a simple blood draw. It also gives the proof of concept that if these cells are present, this is a good way to monitor and see if a treatment is working, even early in the treatment.” Moreover, she added, “many studies in lung cancer are in stage 4.”

Our study is unique as it followed patients with locally advanced tumors from their being treatment naive to all the way through immunotherapy,” she continued.

The University of Michigan has a patent on the GO chip technology, but thus far no company has made efforts to license it and submit it for approval. While “liquid biopsy” is an important emerging concept in lung cancer, there is little consensus yet as to which blood biomarkers — whether CTCs, circulating tumor DNA (ctDNA), or extracellular vesicles (EVs) — are most clinically relevant, Dr. Nagrath said.

The study’s small size is one of its weaknesses, according to the authors.
 

 

 

Findings are ‘Particularly Intriguing’

Majid Ebrahimi Warkiani, PhD, who was not involved in the study, described the new findings as “particularly intriguing [and] highlighting the efficacy of liquid biopsy using CTCs for predicting treatment outcomes.”

A challenge within the realm of CTCs lies in the community’s ongoing struggle to define and classify these cells accurately, Dr. Warkiani said in an interview.

“While surface protein markers offer valuable insights, emerging layers of analysis, such as metabolomics, are increasingly entering the scene to bolster the identification of putative cancer cells, alongside molecular tests like fluorescence in situ hybridization (FISH),” said Dr. Warkiani of the University of Technology Sydney in Australia. “The amalgamation of these approaches simultaneously presents a significant challenge, particularly in terms of standardization for patient care, unlike ctDNA, which faces fewer bottlenecks.

“The robustness of the research in this study is commendable. However, further clinical testing and randomized trials are imperative,” Dr. Warkiani continued. “Companies like Epic Sciences are actively engaged in advancing research and standardization in this field.”

The study by Dr. Jolly and Dr. Nagrath was funded by the National Institutes of Health. None of the study authors reported financial conflicts of interest. Dr. Warkiani reported no conflicts of interest related to his comment.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CELL REPORTS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Examining the past and looking toward the future: The need for quality data in interventional pulmonology

Article Type
Changed
Wed, 02/07/2024 - 15:45

 

THORACIC ONCOLOGY AND CHEST PROCEDURES NETWORK

Interventional Procedures Section

During the last decade, the explosion of technological advancements in the field of interventional pulmonary (IP) has afforded patients the opportunity to undergo novel, minimally invasive diagnostic and therapeutic procedures. However, these unprecedented technological advances have often been introduced without the support of high-quality research on safety and efficacy, and without evaluating their impact on meaningful patient outcomes. Encouraging and participating in high-quality IP research should remain a top priority for those practicing in the field.

CHEST
Dr. Jennifer D. Duke

Structured research networks, such as the UK Pleural Society and more recently the Interventional Pulmonary Outcome Group, have facilitated the transition of IP research from observational case series and single-center experiences to multicenter, randomized controlled trials to generate level I evidence and inform patient care (Laskawiec-Szkonter M, et al. Br J Hosp Med (Lond). 2019 Apr 2;80[4]:186-7) (Maldonado F, et al. J Bronchology Interv Pulmonol. 2019 Jul;26(3):150-2). In the bronchoscopy space, important investigator-initiated clinical trial results anticipated in 2024 include VERITAS (NCT04250194), FROSTBITE2 (NCT05751278), and RELIANT (NCT05705544), among others. These research efforts complement industry-sponsored clinical trials (such as RheSolve, NCT04677465) and aim to emulate the extraordinary track record achieved in the field of pleural disease that has led to recently updated evidence-based guidelines for the management of challenging diseases like malignant pleural effusions, pleural space infections, and pneumothorax (Davies HE, et a l. JAMA. 2012 Jun 13;307[22]:2383-9, Mishra EK, et al. Am J Respir Crit Care Med. 2018 Feb 15;197[4]:502-8) (Rahman NM, et al. N Engl J Med. 2011 Aug 11;365[6]:518-26) (Hallifax RJ, et al. Lancet. 2020 Jul 4;396[10243]:39-49).

Ultimately, the rapidly evolving technological advancements in interventional pulmonology must be supported by research based on high-quality clinical trials, which will be contingent on appropriate trial funding requiring partnership with industry and federal funding agencies. Only through such collaboration can researchers design robust clinical trials based on complex methodology, which will advance patient care and lead to improved patient outcomes.

– Jennifer D. Duke, MD

Section Fellow-in-Training

– Fabien Maldonado, MD, MSc, FCCP

Section Member

Publications
Topics
Sections

 

THORACIC ONCOLOGY AND CHEST PROCEDURES NETWORK

Interventional Procedures Section

During the last decade, the explosion of technological advancements in the field of interventional pulmonary (IP) has afforded patients the opportunity to undergo novel, minimally invasive diagnostic and therapeutic procedures. However, these unprecedented technological advances have often been introduced without the support of high-quality research on safety and efficacy, and without evaluating their impact on meaningful patient outcomes. Encouraging and participating in high-quality IP research should remain a top priority for those practicing in the field.

CHEST
Dr. Jennifer D. Duke

Structured research networks, such as the UK Pleural Society and more recently the Interventional Pulmonary Outcome Group, have facilitated the transition of IP research from observational case series and single-center experiences to multicenter, randomized controlled trials to generate level I evidence and inform patient care (Laskawiec-Szkonter M, et al. Br J Hosp Med (Lond). 2019 Apr 2;80[4]:186-7) (Maldonado F, et al. J Bronchology Interv Pulmonol. 2019 Jul;26(3):150-2). In the bronchoscopy space, important investigator-initiated clinical trial results anticipated in 2024 include VERITAS (NCT04250194), FROSTBITE2 (NCT05751278), and RELIANT (NCT05705544), among others. These research efforts complement industry-sponsored clinical trials (such as RheSolve, NCT04677465) and aim to emulate the extraordinary track record achieved in the field of pleural disease that has led to recently updated evidence-based guidelines for the management of challenging diseases like malignant pleural effusions, pleural space infections, and pneumothorax (Davies HE, et a l. JAMA. 2012 Jun 13;307[22]:2383-9, Mishra EK, et al. Am J Respir Crit Care Med. 2018 Feb 15;197[4]:502-8) (Rahman NM, et al. N Engl J Med. 2011 Aug 11;365[6]:518-26) (Hallifax RJ, et al. Lancet. 2020 Jul 4;396[10243]:39-49).

Ultimately, the rapidly evolving technological advancements in interventional pulmonology must be supported by research based on high-quality clinical trials, which will be contingent on appropriate trial funding requiring partnership with industry and federal funding agencies. Only through such collaboration can researchers design robust clinical trials based on complex methodology, which will advance patient care and lead to improved patient outcomes.

– Jennifer D. Duke, MD

Section Fellow-in-Training

– Fabien Maldonado, MD, MSc, FCCP

Section Member

 

THORACIC ONCOLOGY AND CHEST PROCEDURES NETWORK

Interventional Procedures Section

During the last decade, the explosion of technological advancements in the field of interventional pulmonary (IP) has afforded patients the opportunity to undergo novel, minimally invasive diagnostic and therapeutic procedures. However, these unprecedented technological advances have often been introduced without the support of high-quality research on safety and efficacy, and without evaluating their impact on meaningful patient outcomes. Encouraging and participating in high-quality IP research should remain a top priority for those practicing in the field.

CHEST
Dr. Jennifer D. Duke

Structured research networks, such as the UK Pleural Society and more recently the Interventional Pulmonary Outcome Group, have facilitated the transition of IP research from observational case series and single-center experiences to multicenter, randomized controlled trials to generate level I evidence and inform patient care (Laskawiec-Szkonter M, et al. Br J Hosp Med (Lond). 2019 Apr 2;80[4]:186-7) (Maldonado F, et al. J Bronchology Interv Pulmonol. 2019 Jul;26(3):150-2). In the bronchoscopy space, important investigator-initiated clinical trial results anticipated in 2024 include VERITAS (NCT04250194), FROSTBITE2 (NCT05751278), and RELIANT (NCT05705544), among others. These research efforts complement industry-sponsored clinical trials (such as RheSolve, NCT04677465) and aim to emulate the extraordinary track record achieved in the field of pleural disease that has led to recently updated evidence-based guidelines for the management of challenging diseases like malignant pleural effusions, pleural space infections, and pneumothorax (Davies HE, et a l. JAMA. 2012 Jun 13;307[22]:2383-9, Mishra EK, et al. Am J Respir Crit Care Med. 2018 Feb 15;197[4]:502-8) (Rahman NM, et al. N Engl J Med. 2011 Aug 11;365[6]:518-26) (Hallifax RJ, et al. Lancet. 2020 Jul 4;396[10243]:39-49).

Ultimately, the rapidly evolving technological advancements in interventional pulmonology must be supported by research based on high-quality clinical trials, which will be contingent on appropriate trial funding requiring partnership with industry and federal funding agencies. Only through such collaboration can researchers design robust clinical trials based on complex methodology, which will advance patient care and lead to improved patient outcomes.

– Jennifer D. Duke, MD

Section Fellow-in-Training

– Fabien Maldonado, MD, MSc, FCCP

Section Member

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Unlikely Breakthrough of the Year: Chemo for Lung Cancer

Article Type
Changed
Fri, 02/02/2024 - 09:27

 

This transcript has been edited for clarity.

I’ve been spending time recently reflecting on the biggest developments from last year. I have to say that the breakthrough of the year, based on the amount of data presented and the importance of the data, is chemotherapy. I never thought I would say that. Many folks have tried to relegate chemotherapy to the museum, but last year it came to the forefront.

Let’s start with neoadjuvant therapy. We now have multiple drug approvals for giving a checkpoint inhibitor and neoadjuvant therapy in what I would say is a new standard of care for patients with locally advanced lung cancers who are candidates for surgery. In all those trials, there was a clear improvement in progression-free survival by adding a checkpoint inhibitor to chemotherapy. The cornerstone of this regimen is chemotherapy.

What about adjuvant therapy? I think one of the most astounding pieces of data last year was in the adjuvant realm. In the trial comparing adjuvant osimertinib with placebo in patients with EGFR-mutant disease, patients who received chemotherapy in addition to osimertinib had a 7% improvement in 5-year survival. Patients who had placebo, who got chemotherapy vs didn’t, had a 9% improvement in 5-year survival. Those are huge numbers for that kind of metric, and it happened with chemotherapy.

What about targeted therapies? Again, I think people were astounded that, by adding chemotherapy to osimertinib compared with osimertinib alone, there was a 9-month improvement overall in progression-free survival. I think in the presentation of the data that has been made, the most remarkable piece of data is that, in patients with brain metastases, chemotherapy on top of osimertinib improved progression-free survival. Not only did it improve progression-free survival, but it did it with brain metastases, where people think it just doesn’t help at all.

What about other, newer agents with chemotherapy? Amivantamab, I would say, has hitched itself to chemotherapy. A trial in EGFR exon 20 compared chemo to amivantamab plus chemotherapy. There again, chemo is the common denominator. Amivantamab added approximately 5 months of improved progression-free survival. Again, chemo was used. In adjuvant, neoadjuvant, and targeted therapies, chemotherapy adds.

What about the second line? I think everybody was very disappointed when second-line sotorasib gave a very tiny amount of progression-free survival improvement over docetaxel. I think we all want more for our patients than we can deliver with docetaxel. The roughly 5-week improvement seen with sotorasib was one that raised a question about the place of sotorasib in this setting.

Clearly, we’ve all seen patients have an excellent result with sotorasib as an additional option for treating patients with long progression-free survival, high rates of response, and good tolerability even at the 960 mg dose. But in the randomized trial, it wasn’t better than docetaxel. Again, I think we were disappointed with tusamitamab ravtansine in that it could not beat docetaxel either. I think the idea here is that chemo still has a huge place and still remains the treatment that we have to beat.

We’re all very excited about the antibody-drug conjugates and I think everybody sees them as another advance. Many folks have said that they are just a more precise way of delivering chemotherapy, and when you look at the side effects, it supports that — they’re largely side effects of chemotherapy with these drugs across the board. Also, when you look at the patterns of resistance, the resistance really isn’t a resistance to the targeted therapy; it’s a resistance to chemotherapy more than anything else.

So we’re happy that the antibody-drug conjugates are available and we were disappointed with tusamitamab ravtansine because we thought that it could beat docetaxel. But in truth, it didn’t, and unfortunately, that pivotal trial led to the end of the entire development program for that agent, as stated in a press release.

The molecule or treatment of the year is chemotherapy — added to targeted therapies, used with immunotherapy, and now attached to antibodies as part of antibody-drug conjugates. I think it remains, more than any one treatment, a very effective treatment for patients and deserves to be used.

There are a lot of choices here. I think you have to be very careful to choose wisely, and you also have to be careful because chemotherapy has side effects. The nice thing is that many of those side effects can be ameliorated. We have to make sure that we use all the supportive medications we can.

Who would have thought that chemotherapy would be the treatment of the year in 2023 for lung cancers?
 

Dr. Kris is chief of the thoracic oncology service and the William and Joy Ruane Chair in Thoracic Oncology at Memorial Sloan Kettering Cancer Center in New York City. He disclosed ties with AstraZeneca, Roche/Genentech, Ariad Pharmaceuticals, Pfizer Inc, and PUMA.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

I’ve been spending time recently reflecting on the biggest developments from last year. I have to say that the breakthrough of the year, based on the amount of data presented and the importance of the data, is chemotherapy. I never thought I would say that. Many folks have tried to relegate chemotherapy to the museum, but last year it came to the forefront.

Let’s start with neoadjuvant therapy. We now have multiple drug approvals for giving a checkpoint inhibitor and neoadjuvant therapy in what I would say is a new standard of care for patients with locally advanced lung cancers who are candidates for surgery. In all those trials, there was a clear improvement in progression-free survival by adding a checkpoint inhibitor to chemotherapy. The cornerstone of this regimen is chemotherapy.

What about adjuvant therapy? I think one of the most astounding pieces of data last year was in the adjuvant realm. In the trial comparing adjuvant osimertinib with placebo in patients with EGFR-mutant disease, patients who received chemotherapy in addition to osimertinib had a 7% improvement in 5-year survival. Patients who had placebo, who got chemotherapy vs didn’t, had a 9% improvement in 5-year survival. Those are huge numbers for that kind of metric, and it happened with chemotherapy.

What about targeted therapies? Again, I think people were astounded that, by adding chemotherapy to osimertinib compared with osimertinib alone, there was a 9-month improvement overall in progression-free survival. I think in the presentation of the data that has been made, the most remarkable piece of data is that, in patients with brain metastases, chemotherapy on top of osimertinib improved progression-free survival. Not only did it improve progression-free survival, but it did it with brain metastases, where people think it just doesn’t help at all.

What about other, newer agents with chemotherapy? Amivantamab, I would say, has hitched itself to chemotherapy. A trial in EGFR exon 20 compared chemo to amivantamab plus chemotherapy. There again, chemo is the common denominator. Amivantamab added approximately 5 months of improved progression-free survival. Again, chemo was used. In adjuvant, neoadjuvant, and targeted therapies, chemotherapy adds.

What about the second line? I think everybody was very disappointed when second-line sotorasib gave a very tiny amount of progression-free survival improvement over docetaxel. I think we all want more for our patients than we can deliver with docetaxel. The roughly 5-week improvement seen with sotorasib was one that raised a question about the place of sotorasib in this setting.

Clearly, we’ve all seen patients have an excellent result with sotorasib as an additional option for treating patients with long progression-free survival, high rates of response, and good tolerability even at the 960 mg dose. But in the randomized trial, it wasn’t better than docetaxel. Again, I think we were disappointed with tusamitamab ravtansine in that it could not beat docetaxel either. I think the idea here is that chemo still has a huge place and still remains the treatment that we have to beat.

We’re all very excited about the antibody-drug conjugates and I think everybody sees them as another advance. Many folks have said that they are just a more precise way of delivering chemotherapy, and when you look at the side effects, it supports that — they’re largely side effects of chemotherapy with these drugs across the board. Also, when you look at the patterns of resistance, the resistance really isn’t a resistance to the targeted therapy; it’s a resistance to chemotherapy more than anything else.

So we’re happy that the antibody-drug conjugates are available and we were disappointed with tusamitamab ravtansine because we thought that it could beat docetaxel. But in truth, it didn’t, and unfortunately, that pivotal trial led to the end of the entire development program for that agent, as stated in a press release.

The molecule or treatment of the year is chemotherapy — added to targeted therapies, used with immunotherapy, and now attached to antibodies as part of antibody-drug conjugates. I think it remains, more than any one treatment, a very effective treatment for patients and deserves to be used.

There are a lot of choices here. I think you have to be very careful to choose wisely, and you also have to be careful because chemotherapy has side effects. The nice thing is that many of those side effects can be ameliorated. We have to make sure that we use all the supportive medications we can.

Who would have thought that chemotherapy would be the treatment of the year in 2023 for lung cancers?
 

Dr. Kris is chief of the thoracic oncology service and the William and Joy Ruane Chair in Thoracic Oncology at Memorial Sloan Kettering Cancer Center in New York City. He disclosed ties with AstraZeneca, Roche/Genentech, Ariad Pharmaceuticals, Pfizer Inc, and PUMA.

A version of this article appeared on Medscape.com.

 

This transcript has been edited for clarity.

I’ve been spending time recently reflecting on the biggest developments from last year. I have to say that the breakthrough of the year, based on the amount of data presented and the importance of the data, is chemotherapy. I never thought I would say that. Many folks have tried to relegate chemotherapy to the museum, but last year it came to the forefront.

Let’s start with neoadjuvant therapy. We now have multiple drug approvals for giving a checkpoint inhibitor and neoadjuvant therapy in what I would say is a new standard of care for patients with locally advanced lung cancers who are candidates for surgery. In all those trials, there was a clear improvement in progression-free survival by adding a checkpoint inhibitor to chemotherapy. The cornerstone of this regimen is chemotherapy.

What about adjuvant therapy? I think one of the most astounding pieces of data last year was in the adjuvant realm. In the trial comparing adjuvant osimertinib with placebo in patients with EGFR-mutant disease, patients who received chemotherapy in addition to osimertinib had a 7% improvement in 5-year survival. Patients who had placebo, who got chemotherapy vs didn’t, had a 9% improvement in 5-year survival. Those are huge numbers for that kind of metric, and it happened with chemotherapy.

What about targeted therapies? Again, I think people were astounded that, by adding chemotherapy to osimertinib compared with osimertinib alone, there was a 9-month improvement overall in progression-free survival. I think in the presentation of the data that has been made, the most remarkable piece of data is that, in patients with brain metastases, chemotherapy on top of osimertinib improved progression-free survival. Not only did it improve progression-free survival, but it did it with brain metastases, where people think it just doesn’t help at all.

What about other, newer agents with chemotherapy? Amivantamab, I would say, has hitched itself to chemotherapy. A trial in EGFR exon 20 compared chemo to amivantamab plus chemotherapy. There again, chemo is the common denominator. Amivantamab added approximately 5 months of improved progression-free survival. Again, chemo was used. In adjuvant, neoadjuvant, and targeted therapies, chemotherapy adds.

What about the second line? I think everybody was very disappointed when second-line sotorasib gave a very tiny amount of progression-free survival improvement over docetaxel. I think we all want more for our patients than we can deliver with docetaxel. The roughly 5-week improvement seen with sotorasib was one that raised a question about the place of sotorasib in this setting.

Clearly, we’ve all seen patients have an excellent result with sotorasib as an additional option for treating patients with long progression-free survival, high rates of response, and good tolerability even at the 960 mg dose. But in the randomized trial, it wasn’t better than docetaxel. Again, I think we were disappointed with tusamitamab ravtansine in that it could not beat docetaxel either. I think the idea here is that chemo still has a huge place and still remains the treatment that we have to beat.

We’re all very excited about the antibody-drug conjugates and I think everybody sees them as another advance. Many folks have said that they are just a more precise way of delivering chemotherapy, and when you look at the side effects, it supports that — they’re largely side effects of chemotherapy with these drugs across the board. Also, when you look at the patterns of resistance, the resistance really isn’t a resistance to the targeted therapy; it’s a resistance to chemotherapy more than anything else.

So we’re happy that the antibody-drug conjugates are available and we were disappointed with tusamitamab ravtansine because we thought that it could beat docetaxel. But in truth, it didn’t, and unfortunately, that pivotal trial led to the end of the entire development program for that agent, as stated in a press release.

The molecule or treatment of the year is chemotherapy — added to targeted therapies, used with immunotherapy, and now attached to antibodies as part of antibody-drug conjugates. I think it remains, more than any one treatment, a very effective treatment for patients and deserves to be used.

There are a lot of choices here. I think you have to be very careful to choose wisely, and you also have to be careful because chemotherapy has side effects. The nice thing is that many of those side effects can be ameliorated. We have to make sure that we use all the supportive medications we can.

Who would have thought that chemotherapy would be the treatment of the year in 2023 for lung cancers?
 

Dr. Kris is chief of the thoracic oncology service and the William and Joy Ruane Chair in Thoracic Oncology at Memorial Sloan Kettering Cancer Center in New York City. He disclosed ties with AstraZeneca, Roche/Genentech, Ariad Pharmaceuticals, Pfizer Inc, and PUMA.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article