User login
New Multiple Myeloma Staging Systems Outperform the Standard
The findings should encourage greater use of these newer staging systems in routine clinical practice, first author Manni Mohyuddin, MD, said during a presentation at the American Society of Hematology annual meeting.
Dr. Mohyuddin and his colleagues retrospectively compared the standard Revised International Staging System (R-ISS) with two newer systems, the Second Revision of the R-ISS (R2-ISS) and the Mayo Additive Staging System (MASS), using real-world data from nearly 500 patients with newly diagnosed multiple myeloma.
The R-ISS, the most common multiple myeloma staging system, incorporates a range of prognostic features, including high-risk genetic markers assessed using fluorescence in situ hybridization as well as levels of lactate dehydrogenase, albumin, and beta-2 microglobulin, explained Dr. Mohyuddin, assistant professor at the Huntsman Cancer Institute, University of Utah, Salt Lake City.
R2-ISS and MASS include additional factors that reflect experts’ growing understanding of multiple myeloma. Specifically, the systems also evaluate a gain of chromosome 1q, in which patients have an extra copy of chromosome 1q, as well as the additive effects of multiple high-risk cytogenetic abnormalities, both of which indicate worse prognosis in multiple myeloma, Dr. Mohyuddin said in an interview.
To compare the three staging systems, the investigators used information on newly diagnosed patients in the Flatiron Health EHR–derived deidentified database, which includes data from cancer clinics across the United States. Patients were followed from first-line treatment initiation until death, the end of the study period, or last recorded activity.
The patients from the database had a median age of 70 years, and most had not received a transplant. The most common cytogenetic abnormality was gain 1q, present in about one third of patients.
Given that the R2-ISS originated from patients in clinical trials, Dr. Mohyuddin noted the importance of assessing how the system would perform in a real-world setting.
Of the 497 patients in the analysis, the R-ISS staging system classified 24% as stage I, 63% as stage II, and 13% as stage III. Overall survival differed across these R-ISS stages, indicating the system was prognostic for survival. Median overall survival was not reached for those with stage I disease, was 62.9 months for those with stage II disease, and 37.6 months for those with stage III disease.
Because the R-ISS doesn’t consider the additive effect of multiple cytogenetic abnormalities, many patients end up in the R-ISS stage II category but ultimately may have vastly different outcomes, Dr. Mohyuddin said.
The R2-ISS includes four risk categories, which provide more granularity to the stage II classification: Stage I is low risk, stage II is low-intermediate, stage III is intermediate, and stage IV is high risk. Using this staging system, 20% of patients were stage I, 25% were stage II, 46% were stage III, and 9% were stage IV.
The R2-ISS was also prognostic for survival, which generally worsened from stage I to stage IV: Median overall survival was not reached in stage I patients, was 69.3 months for stage II, 50.0 months for stage III, and 50.6 months for stage IV patients. However, Dr. Mohyuddin noted that there was some overlap in the survival curves for stages I and II and for stages III and IV.
When applying MASS, 34% of patients were categorized as stage I, 35% as stage II, and 31% as stage III disease. This system was prognostic for survival as well, with median overall survival of 76.9 months for stage I, 61.2 months for stage II, and 45.0 months for stage III.
With R2-ISS, many of those in R-ISS stage II are moved into stage I and III. With MASS, the R-ISS stage II patients are more evenly distributed across stages I, II, and III.
In other words, “we show that both these newer staging systems basically recategorize patients into different stages,” essentially “decreasing the number of people in the large, ambiguous (R-ISS) stage II category,” said Dr. Mohyuddin.
Dr. Mohyuddin and colleagues also evaluated the staging systems in fully adjusted analyses that controlled for age, race/ethnicity, sex, practice type, and diagnosis year.
Using R2-ISS, stage I patients had a similar risk for death compared with stage II patients (hazard ratio [HR], 1.2). Compared with stage I patients, stage III and IV patients had comparable risks for death, both about 2.5-fold higher than in those with stage I disease (HR, 2.4 and 2.6, respectively).
Compared with stage I MASS patients, those with stage II had a twofold higher risk for death (HR, 2.0), and those with stage III had an almost threefold higher risk (HR, 2.7).
Although no system considers all factors associated with myeloma outcomes, R2-ISS and MASS do offer a benefit over R-ISS, Dr. Mohyuddin said.
He added that the R2-ISS and MASS are similar from a statistical standpoint, but he gave MASS a slight edge for use in clinical practice.
MASS “more cleanly demarcated [patients] into prognostic subsets,” plus it is “a little easier to remember by heart,” he explained. MASS also puts more emphasis on the presence of multiple high-risk cytogenetic abnormalities, which is a worse prognostic in this era of quadruplet therapy for multiple myeloma, he added.
Because the study largely took place in an era when triplet therapy dominated, “we would be curious to see, with longer follow-up and more use of quadruplets, how these staging systems would perform,” he said.
Despite the benefits of these newer staging systems, many factors play a role in multiple myeloma outcomes, Dr. Mohyuddin explained. Staging systems are “only a piece of the puzzle.”
Dr. Mohyuddin reported having no financial interests to disclose.
A version of this article appeared on Medscape.com.
The findings should encourage greater use of these newer staging systems in routine clinical practice, first author Manni Mohyuddin, MD, said during a presentation at the American Society of Hematology annual meeting.
Dr. Mohyuddin and his colleagues retrospectively compared the standard Revised International Staging System (R-ISS) with two newer systems, the Second Revision of the R-ISS (R2-ISS) and the Mayo Additive Staging System (MASS), using real-world data from nearly 500 patients with newly diagnosed multiple myeloma.
The R-ISS, the most common multiple myeloma staging system, incorporates a range of prognostic features, including high-risk genetic markers assessed using fluorescence in situ hybridization as well as levels of lactate dehydrogenase, albumin, and beta-2 microglobulin, explained Dr. Mohyuddin, assistant professor at the Huntsman Cancer Institute, University of Utah, Salt Lake City.
R2-ISS and MASS include additional factors that reflect experts’ growing understanding of multiple myeloma. Specifically, the systems also evaluate a gain of chromosome 1q, in which patients have an extra copy of chromosome 1q, as well as the additive effects of multiple high-risk cytogenetic abnormalities, both of which indicate worse prognosis in multiple myeloma, Dr. Mohyuddin said in an interview.
To compare the three staging systems, the investigators used information on newly diagnosed patients in the Flatiron Health EHR–derived deidentified database, which includes data from cancer clinics across the United States. Patients were followed from first-line treatment initiation until death, the end of the study period, or last recorded activity.
The patients from the database had a median age of 70 years, and most had not received a transplant. The most common cytogenetic abnormality was gain 1q, present in about one third of patients.
Given that the R2-ISS originated from patients in clinical trials, Dr. Mohyuddin noted the importance of assessing how the system would perform in a real-world setting.
Of the 497 patients in the analysis, the R-ISS staging system classified 24% as stage I, 63% as stage II, and 13% as stage III. Overall survival differed across these R-ISS stages, indicating the system was prognostic for survival. Median overall survival was not reached for those with stage I disease, was 62.9 months for those with stage II disease, and 37.6 months for those with stage III disease.
Because the R-ISS doesn’t consider the additive effect of multiple cytogenetic abnormalities, many patients end up in the R-ISS stage II category but ultimately may have vastly different outcomes, Dr. Mohyuddin said.
The R2-ISS includes four risk categories, which provide more granularity to the stage II classification: Stage I is low risk, stage II is low-intermediate, stage III is intermediate, and stage IV is high risk. Using this staging system, 20% of patients were stage I, 25% were stage II, 46% were stage III, and 9% were stage IV.
The R2-ISS was also prognostic for survival, which generally worsened from stage I to stage IV: Median overall survival was not reached in stage I patients, was 69.3 months for stage II, 50.0 months for stage III, and 50.6 months for stage IV patients. However, Dr. Mohyuddin noted that there was some overlap in the survival curves for stages I and II and for stages III and IV.
When applying MASS, 34% of patients were categorized as stage I, 35% as stage II, and 31% as stage III disease. This system was prognostic for survival as well, with median overall survival of 76.9 months for stage I, 61.2 months for stage II, and 45.0 months for stage III.
With R2-ISS, many of those in R-ISS stage II are moved into stage I and III. With MASS, the R-ISS stage II patients are more evenly distributed across stages I, II, and III.
In other words, “we show that both these newer staging systems basically recategorize patients into different stages,” essentially “decreasing the number of people in the large, ambiguous (R-ISS) stage II category,” said Dr. Mohyuddin.
Dr. Mohyuddin and colleagues also evaluated the staging systems in fully adjusted analyses that controlled for age, race/ethnicity, sex, practice type, and diagnosis year.
Using R2-ISS, stage I patients had a similar risk for death compared with stage II patients (hazard ratio [HR], 1.2). Compared with stage I patients, stage III and IV patients had comparable risks for death, both about 2.5-fold higher than in those with stage I disease (HR, 2.4 and 2.6, respectively).
Compared with stage I MASS patients, those with stage II had a twofold higher risk for death (HR, 2.0), and those with stage III had an almost threefold higher risk (HR, 2.7).
Although no system considers all factors associated with myeloma outcomes, R2-ISS and MASS do offer a benefit over R-ISS, Dr. Mohyuddin said.
He added that the R2-ISS and MASS are similar from a statistical standpoint, but he gave MASS a slight edge for use in clinical practice.
MASS “more cleanly demarcated [patients] into prognostic subsets,” plus it is “a little easier to remember by heart,” he explained. MASS also puts more emphasis on the presence of multiple high-risk cytogenetic abnormalities, which is a worse prognostic in this era of quadruplet therapy for multiple myeloma, he added.
Because the study largely took place in an era when triplet therapy dominated, “we would be curious to see, with longer follow-up and more use of quadruplets, how these staging systems would perform,” he said.
Despite the benefits of these newer staging systems, many factors play a role in multiple myeloma outcomes, Dr. Mohyuddin explained. Staging systems are “only a piece of the puzzle.”
Dr. Mohyuddin reported having no financial interests to disclose.
A version of this article appeared on Medscape.com.
The findings should encourage greater use of these newer staging systems in routine clinical practice, first author Manni Mohyuddin, MD, said during a presentation at the American Society of Hematology annual meeting.
Dr. Mohyuddin and his colleagues retrospectively compared the standard Revised International Staging System (R-ISS) with two newer systems, the Second Revision of the R-ISS (R2-ISS) and the Mayo Additive Staging System (MASS), using real-world data from nearly 500 patients with newly diagnosed multiple myeloma.
The R-ISS, the most common multiple myeloma staging system, incorporates a range of prognostic features, including high-risk genetic markers assessed using fluorescence in situ hybridization as well as levels of lactate dehydrogenase, albumin, and beta-2 microglobulin, explained Dr. Mohyuddin, assistant professor at the Huntsman Cancer Institute, University of Utah, Salt Lake City.
R2-ISS and MASS include additional factors that reflect experts’ growing understanding of multiple myeloma. Specifically, the systems also evaluate a gain of chromosome 1q, in which patients have an extra copy of chromosome 1q, as well as the additive effects of multiple high-risk cytogenetic abnormalities, both of which indicate worse prognosis in multiple myeloma, Dr. Mohyuddin said in an interview.
To compare the three staging systems, the investigators used information on newly diagnosed patients in the Flatiron Health EHR–derived deidentified database, which includes data from cancer clinics across the United States. Patients were followed from first-line treatment initiation until death, the end of the study period, or last recorded activity.
The patients from the database had a median age of 70 years, and most had not received a transplant. The most common cytogenetic abnormality was gain 1q, present in about one third of patients.
Given that the R2-ISS originated from patients in clinical trials, Dr. Mohyuddin noted the importance of assessing how the system would perform in a real-world setting.
Of the 497 patients in the analysis, the R-ISS staging system classified 24% as stage I, 63% as stage II, and 13% as stage III. Overall survival differed across these R-ISS stages, indicating the system was prognostic for survival. Median overall survival was not reached for those with stage I disease, was 62.9 months for those with stage II disease, and 37.6 months for those with stage III disease.
Because the R-ISS doesn’t consider the additive effect of multiple cytogenetic abnormalities, many patients end up in the R-ISS stage II category but ultimately may have vastly different outcomes, Dr. Mohyuddin said.
The R2-ISS includes four risk categories, which provide more granularity to the stage II classification: Stage I is low risk, stage II is low-intermediate, stage III is intermediate, and stage IV is high risk. Using this staging system, 20% of patients were stage I, 25% were stage II, 46% were stage III, and 9% were stage IV.
The R2-ISS was also prognostic for survival, which generally worsened from stage I to stage IV: Median overall survival was not reached in stage I patients, was 69.3 months for stage II, 50.0 months for stage III, and 50.6 months for stage IV patients. However, Dr. Mohyuddin noted that there was some overlap in the survival curves for stages I and II and for stages III and IV.
When applying MASS, 34% of patients were categorized as stage I, 35% as stage II, and 31% as stage III disease. This system was prognostic for survival as well, with median overall survival of 76.9 months for stage I, 61.2 months for stage II, and 45.0 months for stage III.
With R2-ISS, many of those in R-ISS stage II are moved into stage I and III. With MASS, the R-ISS stage II patients are more evenly distributed across stages I, II, and III.
In other words, “we show that both these newer staging systems basically recategorize patients into different stages,” essentially “decreasing the number of people in the large, ambiguous (R-ISS) stage II category,” said Dr. Mohyuddin.
Dr. Mohyuddin and colleagues also evaluated the staging systems in fully adjusted analyses that controlled for age, race/ethnicity, sex, practice type, and diagnosis year.
Using R2-ISS, stage I patients had a similar risk for death compared with stage II patients (hazard ratio [HR], 1.2). Compared with stage I patients, stage III and IV patients had comparable risks for death, both about 2.5-fold higher than in those with stage I disease (HR, 2.4 and 2.6, respectively).
Compared with stage I MASS patients, those with stage II had a twofold higher risk for death (HR, 2.0), and those with stage III had an almost threefold higher risk (HR, 2.7).
Although no system considers all factors associated with myeloma outcomes, R2-ISS and MASS do offer a benefit over R-ISS, Dr. Mohyuddin said.
He added that the R2-ISS and MASS are similar from a statistical standpoint, but he gave MASS a slight edge for use in clinical practice.
MASS “more cleanly demarcated [patients] into prognostic subsets,” plus it is “a little easier to remember by heart,” he explained. MASS also puts more emphasis on the presence of multiple high-risk cytogenetic abnormalities, which is a worse prognostic in this era of quadruplet therapy for multiple myeloma, he added.
Because the study largely took place in an era when triplet therapy dominated, “we would be curious to see, with longer follow-up and more use of quadruplets, how these staging systems would perform,” he said.
Despite the benefits of these newer staging systems, many factors play a role in multiple myeloma outcomes, Dr. Mohyuddin explained. Staging systems are “only a piece of the puzzle.”
Dr. Mohyuddin reported having no financial interests to disclose.
A version of this article appeared on Medscape.com.
FROM ASH 2023
In Transplant-Ineligible Myeloma, This Frontline Tx Is Better
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
FROM ASH 2023
No Benefit to Salvage Transplant in R/R Multiple Myeloma
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
FROM ASH 2023
Distinct toxicity profiles for anti-BCMA myeloma therapies
Among 1803 patients with multiple myeloma treated with either chimeric antigen receptor (CAR) T-cell constructs or a bispecific antibody, CAR T-cell therapy was associated with a “prominent” risk for both cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, while the antibody was associated with a high risk for infection-related mortality, reported Zimu Gong, MD, PhD, from the Cancer Center at Houston Methodist Hospital.“When we are selecting or sequencing these agents, because they are approved for almost identical indications, we need to carefully consider their unique toxicity profile,” he said in an oral abstract session at the annual meeting of the American Society of Hematology (ASH) here.
Going to the FAERS
Dr. Gong and colleagues drew on the FDA Adverse Event Reporting System (FAERS) database for data on toxicities associated with three BCMA-directed therapies: CAR T-cell treatments idecabtagene vicleucel (ide-cel; Abecma) and ciltacabtagene autoleucel (cilta-cel; Carvykti), and the bispecific antibody teclistamab (Tecvayli).
They identified a total of 1803 cases with a total of 4423 reported adverse events.
The authors calculated a reporting odds ratio (ROR) by dividing the odds of a specific event occurring with an agent by the odds of the same event occurring with all other BCMA-directed agents in the FAERS database.
They found that the highest ROR for cytokine release syndrome was with ide-cel, at 1.8, compared with 0.74 with cilta-cel, and 0.63 with teclistamab. Ide-cel was also most strongly associated with risk for both immune effector cell-associated neurotoxicity syndrome, with an ROR of 1.38, compared with 1.04 with cilta-cel and 0.69 with teclistamab, and with non-immune effector cell-associated neurotoxicity, with an ROR of 2.19 vs 0.83 and 0.4, respectively.
There were 14 reported cases of Bell’s palsy, 13 of which were associated with cilta-cel and 1 with teclistamab, and 11 cases of Parkinsonism, including 7 occurring with cilta-cel, 4 with ide-cel, and none with teclistamab.
In contrast, risk for infection was highest with teclistamab, with an ROR of 4.38 compared with 1.3 with cilta-cel and 0.12 with ide-cel. The infections most commonly reported with teclistamab included pneumonia, sepsis, COVID-19 pneumonia, pneumocystis jirovecii pneumonia, cytomegalovirus reactive and cytomegalovirus pneumonia.
The antibody was also associated with the highest risk for nonrelapse mortality, with an ROR of 1.73 compared with 1.28 with cilta-cel and 0.13 with ide-cel.
There were 309 reported deaths. The investigators calculated nonrelapse mortality by excluding disease progress from cases with death as the final reported outcome. Ide-cell had the lowest odds ratio for non-relapse mortality, at 0.53, compared with 0.99 for cilta-cel, and 1.72 for teclistamab. The most common cause of nonrelapse deaths was toxicities associated with CAR T-cell therapy, and infections, Dr. Gong said.
Dr. Gong acknowledged that one of the major limitations of the study is the nature of the FAERS database itself, which includes both mandatory reports on adverse events, medication errors, and product quality complaints submitted as required by law by manufacturers, but also voluntarily reported by healthcare professionals and consumers.
In an interview with this news organization, David Miklos, MD, PhD, chief of the blood and marrow transplantation and cellular therapy division at Stanford University, who attended the session but was not involved in the study, commented that although the study showed differences among various anti-BCMA products in terms of adverse events, the analysis is only one of several that show different values.
“The concern I have about the FAERS database is simply the lack of validation, and maybe, with no disrespect to the institution, this is kind of like review scores on Amazon.com: not validated, nobody knows who put them out there, and we don’t even know if it’s true,” he said.
He noted that whatever the system, data collection and reporting is both time- and resource-consuming, and given the potential of cellular therapies to significantly improve survival may burden clinicians with requirements for decades of follow-up and reporting.
“Self-reporting isn’t the answer either,” said Dr. Miklos. Perhaps, he suggested, there is a role for apps with “patients self-reporting” and medical practitioners validating the reports.
Dr. Gong and colleagues did not report a study funding source. Dr. Gong had no conflict of interest disclosures. Dr. Miklos has disclosed serving as a director, officer, partner, employee, advisor, consultant, or trustee for: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen; received research funding from: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclic; patents, royalties, or other intellectual property from Pharmacyclics, and travel support from Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen.
A version of this article first appeared on Medscape.com.
Among 1803 patients with multiple myeloma treated with either chimeric antigen receptor (CAR) T-cell constructs or a bispecific antibody, CAR T-cell therapy was associated with a “prominent” risk for both cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, while the antibody was associated with a high risk for infection-related mortality, reported Zimu Gong, MD, PhD, from the Cancer Center at Houston Methodist Hospital.“When we are selecting or sequencing these agents, because they are approved for almost identical indications, we need to carefully consider their unique toxicity profile,” he said in an oral abstract session at the annual meeting of the American Society of Hematology (ASH) here.
Going to the FAERS
Dr. Gong and colleagues drew on the FDA Adverse Event Reporting System (FAERS) database for data on toxicities associated with three BCMA-directed therapies: CAR T-cell treatments idecabtagene vicleucel (ide-cel; Abecma) and ciltacabtagene autoleucel (cilta-cel; Carvykti), and the bispecific antibody teclistamab (Tecvayli).
They identified a total of 1803 cases with a total of 4423 reported adverse events.
The authors calculated a reporting odds ratio (ROR) by dividing the odds of a specific event occurring with an agent by the odds of the same event occurring with all other BCMA-directed agents in the FAERS database.
They found that the highest ROR for cytokine release syndrome was with ide-cel, at 1.8, compared with 0.74 with cilta-cel, and 0.63 with teclistamab. Ide-cel was also most strongly associated with risk for both immune effector cell-associated neurotoxicity syndrome, with an ROR of 1.38, compared with 1.04 with cilta-cel and 0.69 with teclistamab, and with non-immune effector cell-associated neurotoxicity, with an ROR of 2.19 vs 0.83 and 0.4, respectively.
There were 14 reported cases of Bell’s palsy, 13 of which were associated with cilta-cel and 1 with teclistamab, and 11 cases of Parkinsonism, including 7 occurring with cilta-cel, 4 with ide-cel, and none with teclistamab.
In contrast, risk for infection was highest with teclistamab, with an ROR of 4.38 compared with 1.3 with cilta-cel and 0.12 with ide-cel. The infections most commonly reported with teclistamab included pneumonia, sepsis, COVID-19 pneumonia, pneumocystis jirovecii pneumonia, cytomegalovirus reactive and cytomegalovirus pneumonia.
The antibody was also associated with the highest risk for nonrelapse mortality, with an ROR of 1.73 compared with 1.28 with cilta-cel and 0.13 with ide-cel.
There were 309 reported deaths. The investigators calculated nonrelapse mortality by excluding disease progress from cases with death as the final reported outcome. Ide-cell had the lowest odds ratio for non-relapse mortality, at 0.53, compared with 0.99 for cilta-cel, and 1.72 for teclistamab. The most common cause of nonrelapse deaths was toxicities associated with CAR T-cell therapy, and infections, Dr. Gong said.
Dr. Gong acknowledged that one of the major limitations of the study is the nature of the FAERS database itself, which includes both mandatory reports on adverse events, medication errors, and product quality complaints submitted as required by law by manufacturers, but also voluntarily reported by healthcare professionals and consumers.
In an interview with this news organization, David Miklos, MD, PhD, chief of the blood and marrow transplantation and cellular therapy division at Stanford University, who attended the session but was not involved in the study, commented that although the study showed differences among various anti-BCMA products in terms of adverse events, the analysis is only one of several that show different values.
“The concern I have about the FAERS database is simply the lack of validation, and maybe, with no disrespect to the institution, this is kind of like review scores on Amazon.com: not validated, nobody knows who put them out there, and we don’t even know if it’s true,” he said.
He noted that whatever the system, data collection and reporting is both time- and resource-consuming, and given the potential of cellular therapies to significantly improve survival may burden clinicians with requirements for decades of follow-up and reporting.
“Self-reporting isn’t the answer either,” said Dr. Miklos. Perhaps, he suggested, there is a role for apps with “patients self-reporting” and medical practitioners validating the reports.
Dr. Gong and colleagues did not report a study funding source. Dr. Gong had no conflict of interest disclosures. Dr. Miklos has disclosed serving as a director, officer, partner, employee, advisor, consultant, or trustee for: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen; received research funding from: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclic; patents, royalties, or other intellectual property from Pharmacyclics, and travel support from Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen.
A version of this article first appeared on Medscape.com.
Among 1803 patients with multiple myeloma treated with either chimeric antigen receptor (CAR) T-cell constructs or a bispecific antibody, CAR T-cell therapy was associated with a “prominent” risk for both cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, while the antibody was associated with a high risk for infection-related mortality, reported Zimu Gong, MD, PhD, from the Cancer Center at Houston Methodist Hospital.“When we are selecting or sequencing these agents, because they are approved for almost identical indications, we need to carefully consider their unique toxicity profile,” he said in an oral abstract session at the annual meeting of the American Society of Hematology (ASH) here.
Going to the FAERS
Dr. Gong and colleagues drew on the FDA Adverse Event Reporting System (FAERS) database for data on toxicities associated with three BCMA-directed therapies: CAR T-cell treatments idecabtagene vicleucel (ide-cel; Abecma) and ciltacabtagene autoleucel (cilta-cel; Carvykti), and the bispecific antibody teclistamab (Tecvayli).
They identified a total of 1803 cases with a total of 4423 reported adverse events.
The authors calculated a reporting odds ratio (ROR) by dividing the odds of a specific event occurring with an agent by the odds of the same event occurring with all other BCMA-directed agents in the FAERS database.
They found that the highest ROR for cytokine release syndrome was with ide-cel, at 1.8, compared with 0.74 with cilta-cel, and 0.63 with teclistamab. Ide-cel was also most strongly associated with risk for both immune effector cell-associated neurotoxicity syndrome, with an ROR of 1.38, compared with 1.04 with cilta-cel and 0.69 with teclistamab, and with non-immune effector cell-associated neurotoxicity, with an ROR of 2.19 vs 0.83 and 0.4, respectively.
There were 14 reported cases of Bell’s palsy, 13 of which were associated with cilta-cel and 1 with teclistamab, and 11 cases of Parkinsonism, including 7 occurring with cilta-cel, 4 with ide-cel, and none with teclistamab.
In contrast, risk for infection was highest with teclistamab, with an ROR of 4.38 compared with 1.3 with cilta-cel and 0.12 with ide-cel. The infections most commonly reported with teclistamab included pneumonia, sepsis, COVID-19 pneumonia, pneumocystis jirovecii pneumonia, cytomegalovirus reactive and cytomegalovirus pneumonia.
The antibody was also associated with the highest risk for nonrelapse mortality, with an ROR of 1.73 compared with 1.28 with cilta-cel and 0.13 with ide-cel.
There were 309 reported deaths. The investigators calculated nonrelapse mortality by excluding disease progress from cases with death as the final reported outcome. Ide-cell had the lowest odds ratio for non-relapse mortality, at 0.53, compared with 0.99 for cilta-cel, and 1.72 for teclistamab. The most common cause of nonrelapse deaths was toxicities associated with CAR T-cell therapy, and infections, Dr. Gong said.
Dr. Gong acknowledged that one of the major limitations of the study is the nature of the FAERS database itself, which includes both mandatory reports on adverse events, medication errors, and product quality complaints submitted as required by law by manufacturers, but also voluntarily reported by healthcare professionals and consumers.
In an interview with this news organization, David Miklos, MD, PhD, chief of the blood and marrow transplantation and cellular therapy division at Stanford University, who attended the session but was not involved in the study, commented that although the study showed differences among various anti-BCMA products in terms of adverse events, the analysis is only one of several that show different values.
“The concern I have about the FAERS database is simply the lack of validation, and maybe, with no disrespect to the institution, this is kind of like review scores on Amazon.com: not validated, nobody knows who put them out there, and we don’t even know if it’s true,” he said.
He noted that whatever the system, data collection and reporting is both time- and resource-consuming, and given the potential of cellular therapies to significantly improve survival may burden clinicians with requirements for decades of follow-up and reporting.
“Self-reporting isn’t the answer either,” said Dr. Miklos. Perhaps, he suggested, there is a role for apps with “patients self-reporting” and medical practitioners validating the reports.
Dr. Gong and colleagues did not report a study funding source. Dr. Gong had no conflict of interest disclosures. Dr. Miklos has disclosed serving as a director, officer, partner, employee, advisor, consultant, or trustee for: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen; received research funding from: Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclic; patents, royalties, or other intellectual property from Pharmacyclics, and travel support from Kite-Gilead, Novartis, Juno-Celgene-Bristol-Myers Squibb, Adaptive Biotech, Pharmacyclics, and Janssen.
A version of this article first appeared on Medscape.com.
FROM ASH 2023
Myeloma: Isatuximab Four-Drug Regimen Boosts MRD Negativity
“This [research] builds on our experience that four-drug combinations with a monoclonal antibody, proteasome inhibitor, immunomodulatory drug and steroids are superior to three-drug combinations,” Joseph Mikhael, MD, chief medical officer of the International Myeloma Foundation, said in an interview on the study.
“It also demonstrates the value of CD38 antibodies, and specifically isatuximab, in the frontline setting,” said Dr. Mikhael, professor at the Translational Genomics Research Institute (TGen), City of Hope Cancer Center in Goodyear, Ariz.
The findings were presented at the annual meeting of the American Society of Hematology.
The current standard of care for transplant-eligible, newly diagnosed MM consists of the quadruple combination of a CD38 monoclonal antibody, an immunomodulatory drug, a proteasome inhibitor, and a glucocorticoid, followed by high-dose melphalan and autologous stem-cell transplantation (ASCT).
Isatuximab already has approval in combination with the regimen of carfilzomib and dexamethasone (KRd) in the treatment of relapsed or refractory MM patients who have received prior lines of therapy.
To investigate the efficacy and safety of addition of isatuximab in the setting of transplant-eligible, newly diagnosed MM patients, first author Francesca Gay, MD, PhD, of the Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy, and colleagues conducted the multisite, phase-3 Iskia trial, enrolling 302 transplant-eligible newly diagnosed MM patients.
The patients were randomized to groups of 151 each to treatment either with IsaKRd or KRd alone. The treatment regimen for KRd included four cycles in induction including weekly carfilzomib at 56 mg on day 1, 8 and 15, lenalidomide 25 mg at day 1-21, and dexamethasone at 40 mg weekly, and the IsaKRd group included four 28-day cycles of isatuximab 10 mg/kg IV days 1, 8, 15, and 22 in cycle 1, followed by 10 mg/kg days 1, 15 in cycles 2-4.
The induction was followed by stem cell mobilization and collection and high dose chemotherapy, followed by four cycles of full-dose consolidation at the same doses and schedule as induction, followed by a light consolidation phase of 12 28-day cycles of reduced dose KRd.
Patients had a median age of 61 and 60 in the isatuximab versus KRd group, respectively, and characteristics were similar between the two arms.
With the current follow-up of a mean of 21 months, the primary endpoint was met, with the intention-to-treat analysis showing a rate of post-consolidation MRD negativity, as assessed with a next-generation sequencing (NGS) cut-off of 10-5, of 77% with isatuximab versus 67% with KRd alone (OR 1.67; P = .049).
With an NGS cut-off of 10-6, the respective rates were 67% vs. 48% (OR 2.29; P < .001).
“This difference in MRD negativity in the depth of response was seen despite the responses analyzed according to the conventional criteria being comparable in the two arms, with more than 90% of patients achieving at least a very good partial response and more than 70% achieving at least a complete response,” Dr. Gay noted.
For the key secondary endpoint of MRD negativity over time, the rates were also significantly higher with IsaKRd vs. KRd at post-induction (10-5 cut-off, 45% vs. 26%, OR 2.34; P < .001; 10-6 cut-off, 27% vs. 14%, OR 2.36, P = .004).
IsaKRd also had greater MRD negativity post-ASCT (10-5 cutoff 64% vs. 49%; P = .006; 10-6 cutoff, 52% vs. 27%, P < .001) and post-consolidation (10-5 cutoff, 77% vs. 67%; P = .049 and 10-6 cutoff, 67% vs. 48%, P < .001).
The increase in the MRD negativity in the IsaKRd group was observed in all subgroups of patients analyzed at the 10-5 and 10-6 cut-offs.
The improved post-consolidation rate of MRD negativity with IsaKRd was also observed among patients based on all levels of cytogenetic risk, which was not the case in the KRd alone arm, which showed a reduction in MRD negativity among very high-risk patients, Dr. Gay observed.
The study’s other key secondary endpoint of progression-free survival will be presented in the future, when longer-term outcomes are available.
As of the current follow-up, 17% of patients in the IsaKRd group had discontinued the study treatment versus 10% with KRd, with the leading cause of adverse events for 6% and 5%, respectively.
At least one hematologic adverse event occurred in 55% of patients treated with IsaKRd and 44% in the KRd alone group, with the most prominent grade 3-4 adverse events occurring more commonly with IsaKRd being neutropenia (36% vs. 22%) and thrombocytopenia (15% vs. 17%).
Non-hematologic grade 3-4 adverse events occurred in 41% of patients in the IsaKRd group versus 37% in KRd only, which included infections (15% vs. 11%), and gastrointestinal (7% vs. 5%), vascular (5% vs. 10%) and cardiac events (<1% vs. 3%).
Discontinuation for toxicity occurred in similar rates in both groups (6% in IsaKRd vs. 5% in KRd); with four treatment-related deaths occurring with IsaKRd (two COVID, one pneumonia, one pulmonary embolism) and one with KRd (septic shock).
“Treatment was tolerable with a toxicity profile that was similar to that in previous reports,” Dr. Gay said.
“In the context of these highly effective regimens that produce a high rate of response, the 10-6 MRD cutoff might be more informative than other result categories,” she added.
Longer follow-up will provide more insights in survival endpoints, and “the trial can potentially offer the opportunity to explore correlations between depth of MRD negativity and survival endpoints,” Dr. Gay noted.
Further commenting on the study, Irene Ghobrial, MD, of Medical Oncology, with the Dana-Farber Cancer Institute, Boston, said the results are encouraging.
“We’re seeing two phase three trials now showing us that indeed a CD38 antibody in addition to our triplet standards of care are making a huge difference in MRD response,” she said in an interview.
“So, I think the main message here is that the four-drug regimen is the way to go from now on in multiple myeloma.”
The study received funding from Sanofi and Amgen. Dr. Gay disclosed relationships with AbbVie; Bristol Myers Squibb/Celgene; Sanofi; Roche; GlaxoSmithKline; Pfizer; Oncopeptides; Takeda; Janssen; and Amgen. Dr. Mikhael reported ties with Amgen, BMS, Janssen, Sanofi and Takeda.
“This [research] builds on our experience that four-drug combinations with a monoclonal antibody, proteasome inhibitor, immunomodulatory drug and steroids are superior to three-drug combinations,” Joseph Mikhael, MD, chief medical officer of the International Myeloma Foundation, said in an interview on the study.
“It also demonstrates the value of CD38 antibodies, and specifically isatuximab, in the frontline setting,” said Dr. Mikhael, professor at the Translational Genomics Research Institute (TGen), City of Hope Cancer Center in Goodyear, Ariz.
The findings were presented at the annual meeting of the American Society of Hematology.
The current standard of care for transplant-eligible, newly diagnosed MM consists of the quadruple combination of a CD38 monoclonal antibody, an immunomodulatory drug, a proteasome inhibitor, and a glucocorticoid, followed by high-dose melphalan and autologous stem-cell transplantation (ASCT).
Isatuximab already has approval in combination with the regimen of carfilzomib and dexamethasone (KRd) in the treatment of relapsed or refractory MM patients who have received prior lines of therapy.
To investigate the efficacy and safety of addition of isatuximab in the setting of transplant-eligible, newly diagnosed MM patients, first author Francesca Gay, MD, PhD, of the Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy, and colleagues conducted the multisite, phase-3 Iskia trial, enrolling 302 transplant-eligible newly diagnosed MM patients.
The patients were randomized to groups of 151 each to treatment either with IsaKRd or KRd alone. The treatment regimen for KRd included four cycles in induction including weekly carfilzomib at 56 mg on day 1, 8 and 15, lenalidomide 25 mg at day 1-21, and dexamethasone at 40 mg weekly, and the IsaKRd group included four 28-day cycles of isatuximab 10 mg/kg IV days 1, 8, 15, and 22 in cycle 1, followed by 10 mg/kg days 1, 15 in cycles 2-4.
The induction was followed by stem cell mobilization and collection and high dose chemotherapy, followed by four cycles of full-dose consolidation at the same doses and schedule as induction, followed by a light consolidation phase of 12 28-day cycles of reduced dose KRd.
Patients had a median age of 61 and 60 in the isatuximab versus KRd group, respectively, and characteristics were similar between the two arms.
With the current follow-up of a mean of 21 months, the primary endpoint was met, with the intention-to-treat analysis showing a rate of post-consolidation MRD negativity, as assessed with a next-generation sequencing (NGS) cut-off of 10-5, of 77% with isatuximab versus 67% with KRd alone (OR 1.67; P = .049).
With an NGS cut-off of 10-6, the respective rates were 67% vs. 48% (OR 2.29; P < .001).
“This difference in MRD negativity in the depth of response was seen despite the responses analyzed according to the conventional criteria being comparable in the two arms, with more than 90% of patients achieving at least a very good partial response and more than 70% achieving at least a complete response,” Dr. Gay noted.
For the key secondary endpoint of MRD negativity over time, the rates were also significantly higher with IsaKRd vs. KRd at post-induction (10-5 cut-off, 45% vs. 26%, OR 2.34; P < .001; 10-6 cut-off, 27% vs. 14%, OR 2.36, P = .004).
IsaKRd also had greater MRD negativity post-ASCT (10-5 cutoff 64% vs. 49%; P = .006; 10-6 cutoff, 52% vs. 27%, P < .001) and post-consolidation (10-5 cutoff, 77% vs. 67%; P = .049 and 10-6 cutoff, 67% vs. 48%, P < .001).
The increase in the MRD negativity in the IsaKRd group was observed in all subgroups of patients analyzed at the 10-5 and 10-6 cut-offs.
The improved post-consolidation rate of MRD negativity with IsaKRd was also observed among patients based on all levels of cytogenetic risk, which was not the case in the KRd alone arm, which showed a reduction in MRD negativity among very high-risk patients, Dr. Gay observed.
The study’s other key secondary endpoint of progression-free survival will be presented in the future, when longer-term outcomes are available.
As of the current follow-up, 17% of patients in the IsaKRd group had discontinued the study treatment versus 10% with KRd, with the leading cause of adverse events for 6% and 5%, respectively.
At least one hematologic adverse event occurred in 55% of patients treated with IsaKRd and 44% in the KRd alone group, with the most prominent grade 3-4 adverse events occurring more commonly with IsaKRd being neutropenia (36% vs. 22%) and thrombocytopenia (15% vs. 17%).
Non-hematologic grade 3-4 adverse events occurred in 41% of patients in the IsaKRd group versus 37% in KRd only, which included infections (15% vs. 11%), and gastrointestinal (7% vs. 5%), vascular (5% vs. 10%) and cardiac events (<1% vs. 3%).
Discontinuation for toxicity occurred in similar rates in both groups (6% in IsaKRd vs. 5% in KRd); with four treatment-related deaths occurring with IsaKRd (two COVID, one pneumonia, one pulmonary embolism) and one with KRd (septic shock).
“Treatment was tolerable with a toxicity profile that was similar to that in previous reports,” Dr. Gay said.
“In the context of these highly effective regimens that produce a high rate of response, the 10-6 MRD cutoff might be more informative than other result categories,” she added.
Longer follow-up will provide more insights in survival endpoints, and “the trial can potentially offer the opportunity to explore correlations between depth of MRD negativity and survival endpoints,” Dr. Gay noted.
Further commenting on the study, Irene Ghobrial, MD, of Medical Oncology, with the Dana-Farber Cancer Institute, Boston, said the results are encouraging.
“We’re seeing two phase three trials now showing us that indeed a CD38 antibody in addition to our triplet standards of care are making a huge difference in MRD response,” she said in an interview.
“So, I think the main message here is that the four-drug regimen is the way to go from now on in multiple myeloma.”
The study received funding from Sanofi and Amgen. Dr. Gay disclosed relationships with AbbVie; Bristol Myers Squibb/Celgene; Sanofi; Roche; GlaxoSmithKline; Pfizer; Oncopeptides; Takeda; Janssen; and Amgen. Dr. Mikhael reported ties with Amgen, BMS, Janssen, Sanofi and Takeda.
“This [research] builds on our experience that four-drug combinations with a monoclonal antibody, proteasome inhibitor, immunomodulatory drug and steroids are superior to three-drug combinations,” Joseph Mikhael, MD, chief medical officer of the International Myeloma Foundation, said in an interview on the study.
“It also demonstrates the value of CD38 antibodies, and specifically isatuximab, in the frontline setting,” said Dr. Mikhael, professor at the Translational Genomics Research Institute (TGen), City of Hope Cancer Center in Goodyear, Ariz.
The findings were presented at the annual meeting of the American Society of Hematology.
The current standard of care for transplant-eligible, newly diagnosed MM consists of the quadruple combination of a CD38 monoclonal antibody, an immunomodulatory drug, a proteasome inhibitor, and a glucocorticoid, followed by high-dose melphalan and autologous stem-cell transplantation (ASCT).
Isatuximab already has approval in combination with the regimen of carfilzomib and dexamethasone (KRd) in the treatment of relapsed or refractory MM patients who have received prior lines of therapy.
To investigate the efficacy and safety of addition of isatuximab in the setting of transplant-eligible, newly diagnosed MM patients, first author Francesca Gay, MD, PhD, of the Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy, and colleagues conducted the multisite, phase-3 Iskia trial, enrolling 302 transplant-eligible newly diagnosed MM patients.
The patients were randomized to groups of 151 each to treatment either with IsaKRd or KRd alone. The treatment regimen for KRd included four cycles in induction including weekly carfilzomib at 56 mg on day 1, 8 and 15, lenalidomide 25 mg at day 1-21, and dexamethasone at 40 mg weekly, and the IsaKRd group included four 28-day cycles of isatuximab 10 mg/kg IV days 1, 8, 15, and 22 in cycle 1, followed by 10 mg/kg days 1, 15 in cycles 2-4.
The induction was followed by stem cell mobilization and collection and high dose chemotherapy, followed by four cycles of full-dose consolidation at the same doses and schedule as induction, followed by a light consolidation phase of 12 28-day cycles of reduced dose KRd.
Patients had a median age of 61 and 60 in the isatuximab versus KRd group, respectively, and characteristics were similar between the two arms.
With the current follow-up of a mean of 21 months, the primary endpoint was met, with the intention-to-treat analysis showing a rate of post-consolidation MRD negativity, as assessed with a next-generation sequencing (NGS) cut-off of 10-5, of 77% with isatuximab versus 67% with KRd alone (OR 1.67; P = .049).
With an NGS cut-off of 10-6, the respective rates were 67% vs. 48% (OR 2.29; P < .001).
“This difference in MRD negativity in the depth of response was seen despite the responses analyzed according to the conventional criteria being comparable in the two arms, with more than 90% of patients achieving at least a very good partial response and more than 70% achieving at least a complete response,” Dr. Gay noted.
For the key secondary endpoint of MRD negativity over time, the rates were also significantly higher with IsaKRd vs. KRd at post-induction (10-5 cut-off, 45% vs. 26%, OR 2.34; P < .001; 10-6 cut-off, 27% vs. 14%, OR 2.36, P = .004).
IsaKRd also had greater MRD negativity post-ASCT (10-5 cutoff 64% vs. 49%; P = .006; 10-6 cutoff, 52% vs. 27%, P < .001) and post-consolidation (10-5 cutoff, 77% vs. 67%; P = .049 and 10-6 cutoff, 67% vs. 48%, P < .001).
The increase in the MRD negativity in the IsaKRd group was observed in all subgroups of patients analyzed at the 10-5 and 10-6 cut-offs.
The improved post-consolidation rate of MRD negativity with IsaKRd was also observed among patients based on all levels of cytogenetic risk, which was not the case in the KRd alone arm, which showed a reduction in MRD negativity among very high-risk patients, Dr. Gay observed.
The study’s other key secondary endpoint of progression-free survival will be presented in the future, when longer-term outcomes are available.
As of the current follow-up, 17% of patients in the IsaKRd group had discontinued the study treatment versus 10% with KRd, with the leading cause of adverse events for 6% and 5%, respectively.
At least one hematologic adverse event occurred in 55% of patients treated with IsaKRd and 44% in the KRd alone group, with the most prominent grade 3-4 adverse events occurring more commonly with IsaKRd being neutropenia (36% vs. 22%) and thrombocytopenia (15% vs. 17%).
Non-hematologic grade 3-4 adverse events occurred in 41% of patients in the IsaKRd group versus 37% in KRd only, which included infections (15% vs. 11%), and gastrointestinal (7% vs. 5%), vascular (5% vs. 10%) and cardiac events (<1% vs. 3%).
Discontinuation for toxicity occurred in similar rates in both groups (6% in IsaKRd vs. 5% in KRd); with four treatment-related deaths occurring with IsaKRd (two COVID, one pneumonia, one pulmonary embolism) and one with KRd (septic shock).
“Treatment was tolerable with a toxicity profile that was similar to that in previous reports,” Dr. Gay said.
“In the context of these highly effective regimens that produce a high rate of response, the 10-6 MRD cutoff might be more informative than other result categories,” she added.
Longer follow-up will provide more insights in survival endpoints, and “the trial can potentially offer the opportunity to explore correlations between depth of MRD negativity and survival endpoints,” Dr. Gay noted.
Further commenting on the study, Irene Ghobrial, MD, of Medical Oncology, with the Dana-Farber Cancer Institute, Boston, said the results are encouraging.
“We’re seeing two phase three trials now showing us that indeed a CD38 antibody in addition to our triplet standards of care are making a huge difference in MRD response,” she said in an interview.
“So, I think the main message here is that the four-drug regimen is the way to go from now on in multiple myeloma.”
The study received funding from Sanofi and Amgen. Dr. Gay disclosed relationships with AbbVie; Bristol Myers Squibb/Celgene; Sanofi; Roche; GlaxoSmithKline; Pfizer; Oncopeptides; Takeda; Janssen; and Amgen. Dr. Mikhael reported ties with Amgen, BMS, Janssen, Sanofi and Takeda.
FROM ASH 2023
In real world, patients with myeloma have worse outcomes
The analysis, which included nearly 4,000 patients with multiple myeloma, revealed that patients in a real-world setting demonstrated worse progression-free and overall survival on six of seven standard treatments compared with patients evaluated in randomized controlled trials.
Lead author Alissa Visram, MD, MPH, who spoke about the study at the annual meeting of the American Society of Hematology, said the findings will likely change the way she speaks to patients about their potential outcomes.
“I’ll probably present both numbers [from real-life and clinical-trial data] and give them a sense of the best-case scenario,” Dr. Visram said during an ASH media briefing. But she said she will also caution her patients that the real-world numbers reflect how people on these drugs actually fare.
The effectiveness of multiple myeloma drugs remains unclear outside the clinical trial setting, explained Dr. Visram, of the Division of Hematology at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Outcomes from randomized controlled trials form the basis of drug approvals but many patients in the real world do not meet the “stringent” trial inclusion criteria.
Dr. Visram and colleagues launched the current study to better understand the potential differences between real-world and clinical trial outcomes. In the analysis, the researchers compared real-world outcomes among patients receiving seven standard multiple myeloma regimens covered by Ontario’s public health plan with patient outcomes reported in phase 3 randomized controlled trials.
The retrospective study included 3951 patients with newly diagnosed and refractory multiple myeloma treated from 2007 to 2020 in Ontario. Regimens for newly diagnosed transplant ineligible patients included lenalidomide plus dexamethasone and triple therapy with bortezomib, lenalidomide, and dexamethasone. Regimens for patients with relapsed disease included pomalidomide plus dexamethasone or carfilzomib plus dexamethasone as well as triple combinations including carfilzomib, lenalidomide, and dexamethasone.
Overall, Dr. Visram and colleagues found that patients in the real-world setting demonstrated worse overall survival for six of the seven regimens evaluated (pooled hazard ratio [HR], 1.75; P = .010).
The real-world patients also had worse progression-free survival for six of the seven regimens (pooled HR, 1.44; P = .034).
For these regimens, progression-free survival was at least 3-18 months longer in the clinical trial cohort, while median overall survival was at least 19 months longer compared with real-world patients, Dr. Visram explained.
The only regimen with comparable outcomes in the clinical trial and real-world settings was pomalidomide and dexamethasone, she said. One reason could be that patients receiving pomalidomide plus dexamethasone in the clinical trial setting had similar or more advanced disease than those in the real-world setting.
The study also found that adverse effects were similar between the clinical and real-world groups.
The next step, Dr. Visram said, would be to explore what’s driving the differences in outcomes.
Are patients in the real-world setting older or frailer? Do they have more advanced disease? Are providers using these regimens differently?
Mikkael A. Sekeres, MD, MS, explained that the difference likely comes down to the health of the patient.
Patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated,” Dr. Sekeres, of the Sylvester Comprehensive Cancer Center at the University of Miami, Florida, said in an earlier ASH press briefing.
Cynthia E. Dunbar, MD, noted that patients in clinical trials have other advantages as well.
“Patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects,” said Dr. Dunbar, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH. These patients also “might stay on the drug for longer, or they have nurses who are always encouraging them on how to make it through a toxicity.”
Dr. Dunbar said hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly.”
No study funding was reported. Dr. Visram reported consulting and honoraria relationships with Apotex, Janssen, and Sanofi. Other study authors reported multiple relationships with industry. Disclosures for Dr. Dunbar and Dr. Sekeres were unavailable.
A version of this article appeared on Medscape.com.
The analysis, which included nearly 4,000 patients with multiple myeloma, revealed that patients in a real-world setting demonstrated worse progression-free and overall survival on six of seven standard treatments compared with patients evaluated in randomized controlled trials.
Lead author Alissa Visram, MD, MPH, who spoke about the study at the annual meeting of the American Society of Hematology, said the findings will likely change the way she speaks to patients about their potential outcomes.
“I’ll probably present both numbers [from real-life and clinical-trial data] and give them a sense of the best-case scenario,” Dr. Visram said during an ASH media briefing. But she said she will also caution her patients that the real-world numbers reflect how people on these drugs actually fare.
The effectiveness of multiple myeloma drugs remains unclear outside the clinical trial setting, explained Dr. Visram, of the Division of Hematology at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Outcomes from randomized controlled trials form the basis of drug approvals but many patients in the real world do not meet the “stringent” trial inclusion criteria.
Dr. Visram and colleagues launched the current study to better understand the potential differences between real-world and clinical trial outcomes. In the analysis, the researchers compared real-world outcomes among patients receiving seven standard multiple myeloma regimens covered by Ontario’s public health plan with patient outcomes reported in phase 3 randomized controlled trials.
The retrospective study included 3951 patients with newly diagnosed and refractory multiple myeloma treated from 2007 to 2020 in Ontario. Regimens for newly diagnosed transplant ineligible patients included lenalidomide plus dexamethasone and triple therapy with bortezomib, lenalidomide, and dexamethasone. Regimens for patients with relapsed disease included pomalidomide plus dexamethasone or carfilzomib plus dexamethasone as well as triple combinations including carfilzomib, lenalidomide, and dexamethasone.
Overall, Dr. Visram and colleagues found that patients in the real-world setting demonstrated worse overall survival for six of the seven regimens evaluated (pooled hazard ratio [HR], 1.75; P = .010).
The real-world patients also had worse progression-free survival for six of the seven regimens (pooled HR, 1.44; P = .034).
For these regimens, progression-free survival was at least 3-18 months longer in the clinical trial cohort, while median overall survival was at least 19 months longer compared with real-world patients, Dr. Visram explained.
The only regimen with comparable outcomes in the clinical trial and real-world settings was pomalidomide and dexamethasone, she said. One reason could be that patients receiving pomalidomide plus dexamethasone in the clinical trial setting had similar or more advanced disease than those in the real-world setting.
The study also found that adverse effects were similar between the clinical and real-world groups.
The next step, Dr. Visram said, would be to explore what’s driving the differences in outcomes.
Are patients in the real-world setting older or frailer? Do they have more advanced disease? Are providers using these regimens differently?
Mikkael A. Sekeres, MD, MS, explained that the difference likely comes down to the health of the patient.
Patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated,” Dr. Sekeres, of the Sylvester Comprehensive Cancer Center at the University of Miami, Florida, said in an earlier ASH press briefing.
Cynthia E. Dunbar, MD, noted that patients in clinical trials have other advantages as well.
“Patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects,” said Dr. Dunbar, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH. These patients also “might stay on the drug for longer, or they have nurses who are always encouraging them on how to make it through a toxicity.”
Dr. Dunbar said hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly.”
No study funding was reported. Dr. Visram reported consulting and honoraria relationships with Apotex, Janssen, and Sanofi. Other study authors reported multiple relationships with industry. Disclosures for Dr. Dunbar and Dr. Sekeres were unavailable.
A version of this article appeared on Medscape.com.
The analysis, which included nearly 4,000 patients with multiple myeloma, revealed that patients in a real-world setting demonstrated worse progression-free and overall survival on six of seven standard treatments compared with patients evaluated in randomized controlled trials.
Lead author Alissa Visram, MD, MPH, who spoke about the study at the annual meeting of the American Society of Hematology, said the findings will likely change the way she speaks to patients about their potential outcomes.
“I’ll probably present both numbers [from real-life and clinical-trial data] and give them a sense of the best-case scenario,” Dr. Visram said during an ASH media briefing. But she said she will also caution her patients that the real-world numbers reflect how people on these drugs actually fare.
The effectiveness of multiple myeloma drugs remains unclear outside the clinical trial setting, explained Dr. Visram, of the Division of Hematology at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Outcomes from randomized controlled trials form the basis of drug approvals but many patients in the real world do not meet the “stringent” trial inclusion criteria.
Dr. Visram and colleagues launched the current study to better understand the potential differences between real-world and clinical trial outcomes. In the analysis, the researchers compared real-world outcomes among patients receiving seven standard multiple myeloma regimens covered by Ontario’s public health plan with patient outcomes reported in phase 3 randomized controlled trials.
The retrospective study included 3951 patients with newly diagnosed and refractory multiple myeloma treated from 2007 to 2020 in Ontario. Regimens for newly diagnosed transplant ineligible patients included lenalidomide plus dexamethasone and triple therapy with bortezomib, lenalidomide, and dexamethasone. Regimens for patients with relapsed disease included pomalidomide plus dexamethasone or carfilzomib plus dexamethasone as well as triple combinations including carfilzomib, lenalidomide, and dexamethasone.
Overall, Dr. Visram and colleagues found that patients in the real-world setting demonstrated worse overall survival for six of the seven regimens evaluated (pooled hazard ratio [HR], 1.75; P = .010).
The real-world patients also had worse progression-free survival for six of the seven regimens (pooled HR, 1.44; P = .034).
For these regimens, progression-free survival was at least 3-18 months longer in the clinical trial cohort, while median overall survival was at least 19 months longer compared with real-world patients, Dr. Visram explained.
The only regimen with comparable outcomes in the clinical trial and real-world settings was pomalidomide and dexamethasone, she said. One reason could be that patients receiving pomalidomide plus dexamethasone in the clinical trial setting had similar or more advanced disease than those in the real-world setting.
The study also found that adverse effects were similar between the clinical and real-world groups.
The next step, Dr. Visram said, would be to explore what’s driving the differences in outcomes.
Are patients in the real-world setting older or frailer? Do they have more advanced disease? Are providers using these regimens differently?
Mikkael A. Sekeres, MD, MS, explained that the difference likely comes down to the health of the patient.
Patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated,” Dr. Sekeres, of the Sylvester Comprehensive Cancer Center at the University of Miami, Florida, said in an earlier ASH press briefing.
Cynthia E. Dunbar, MD, noted that patients in clinical trials have other advantages as well.
“Patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects,” said Dr. Dunbar, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH. These patients also “might stay on the drug for longer, or they have nurses who are always encouraging them on how to make it through a toxicity.”
Dr. Dunbar said hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly.”
No study funding was reported. Dr. Visram reported consulting and honoraria relationships with Apotex, Janssen, and Sanofi. Other study authors reported multiple relationships with industry. Disclosures for Dr. Dunbar and Dr. Sekeres were unavailable.
A version of this article appeared on Medscape.com.
FROM ASH 2023
ASH 2023: Equity, Sickle Cell, and Real-Life Outcomes
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
AT ASH 2023
Time to stop routine maintenance therapy in myeloma?
For more than 10 years, ongoing treatment with lenalidomide following autologous hematopoietic stem cell transplantation (ASCT) has been the unchallenged gold standard.
The new findings were from the MASTER study, published in The Lancet Haematology, along with an invited commentary by Dr. Derman. In MASTER, patients who showed no evidence of disease after transplantation and two phases of consolidation therapy had the opportunity to avoid lenalidomide maintenance.
In the lenalidomide-free group, just 9% of patients without high-risk chromosome abnormalities or just one HRCA progressed within 2 years. About 47% of patients with two or more HRCAs progressed within 2 years.
The MASTER authors concluded that modern regimens of induction plus ASCT/consolidation might be good enough for many patients. Avoiding maintenance therapy “lead to most patients with newly diagnosed multiple myeloma reaching an MRD [minimal residual disease]-free, treatment-free state with a low risk of disease progression.” They also cautioned that the approach was “not optimal” for high-risk patients.
“We have been indoctrinated into continuous therapy,” said lead author Luciano Costa, MD, professor of medicine at the University of Alabama at Birmingham. “This was a reasonable approach at the time when [induction and consolidation] therapy was not as effective.”
Lenalidomide for post-ASCT maintenance became a guideline standard following a pivotal study published in the New England Journal of Medicine in 2012. The study showed that lenalidomide maintenance after transplantation almost doubled the time to progression (P < .001) and improved survival (P = .03).
Shaji Kumar, MD, is chair of the National Comprehensive Cancer Network Multiple Myeloma Guidelines and professor of medicine at the Mayo Clinic in Rochester, Minn.
Dr. Kumar said that the MASTER results alone are not sufficient to change current guidelines because the study was a single-arm, uncontrolled, phase 2 trial. However, there are “multiple reasons why we would like to stop treatment at some point in time,” Dr. Kumar said.
“Quality of life, the financial cost, and the toxicity are three main reasons why we would like to discontinue the maintenance or give maintenance only for the amount of time that a patient needs it,” Dr. Kumar added. “So then the question comes up, how do we identify the people who need long term treatment versus the people who don’t?”
“Response” in MM is conventionally classified by criteria laid down by the International Myeloma Working Group. However, the MASTER trial made use of a different measure: MRD negativity, in which myeloma cells can no longer be detected in bone-marrow aspirate at a level of 1 in 100,000 (10–5) or, in some studies, 1 in 1 million (10–6).
MRD is a rare bird in oncology: A surrogate endpoint that provides answers faster than progression-free survival or overall survival but is a reliable guide to both. In 2020 a team headed by Nikhil Munshi, MD, professor of medicine at Harvard Medical School, Boston, published a large meta-analysis showing that a negative MRD in a patient with MM was significantly prognostic for both progression-free survival (hazard ratio, 0.33; P < .001) and overall survival (HR, 0.45; P < .001).
In an interview from 2022, Dr. Munshi explained that patients with MRD negativity are not necessarily “cured”: “Simply, physiologically, it means that if a patient has one [myeloma] cell in a million, that cell is going to take a much longer time to grow up to be myeloma.”
In MASTER, which was based at five U.S. academic medical centers, 81% of participants (96/118) achieved MRD negativity at the 10–5 cutoff. Eighty-four people (71%) had two consecutive MRD-negative results and did not go on to lenalidomide maintenance. Instead, they were monitored with lab tests every 8 weeks for the first 24 weeks and every 16 weeks thereafter and assessed for any changes in MRD after 6 months and 18 months.
The median age in MASTER was 61 years, 43% were women, and 20% were non-Hispanic Black. About 20% of participants had two or more HRCAs, 37% had one HRCA, and 43% had no HRCAs. All participants had four 28-day cycles of induction with Dara-KRd (daratumumab, carfilzomib, lenalidomide, and dexamethasone). This was followed by ASCT and up to two phases of consolidation with Dara-KRd.
MASTER is not the only study to show that MRD-guided discontinuation of lenalidomide seems feasible in some patients. In November 2023, Spanish researchers published a study in Blood testing a combination of lenalidomide, dexamethasone, and ixazomib. The trial allowed MRD-negative patients to stop therapy after 2 years. Progression was 17.2% over the following 4 years in the group that dropped maintenance, which included high-risk patients. The authors concluded that their results “support the safety of maintenance therapy discontinuation in patients with negative MRD at 2 years.”
These two trials are conspicuous by their rarity.
Said Dr. Derman: “We haven’t done a great job until recently of designing trials that look into discontinuation.”
Both Dr. Derman and Dr. Costa raised the elephant in the room: industry funding.
“Maintenance therapy is big business,” said Dr. Derman. He added that he had experienced problems in the past obtaining industry funding for research that involved stopping therapy.
Dr. Costa, coauthor of the MASTER trial, agreed in part: “Most pharmaceutical companies do not embark on trials like this because they’re primarily doing registration trials.” MASTER garnered some industry funding, however, and Dr. Costa found that encouraging.
How much money is at stake? In other words, what are the financial savings if patients with zero to one HRCAs who are MRD negative start to take treatment holidays from lenalidomide maintenance?
In the United States in 2019 approximately 6,410 patients received ASCT. The MASTER publication stated that “around 85%” of newly diagnosed MM patients have zero to one HRCAs and that 73% of these patients were able to stop therapy in the trial. This suggests that, each year, approximately 4,000 new patients might be eligible to avoid lenalidomide after ASCT.
The price tag of lenalidomide is approximately $20,000 per month in the United States, according to Dr. Derman. A cohort of 4,000 patients avoiding lenalidomide each year represents lost revenue of $80 million per month or almost $1 billion per year. And this does not take into account patients already on lenalidomide from previous years – or sales outside the United States. The MM multiple research pipeline reflects a lack of enthusiasm for paring down maintenance.
There are currently 229 interventional clinical studies in MM taking place nationwide. Of these, just three trials are testing what happens when patients stop therapy in the post-ASCT setting and none of the three is sponsored by industry (NCT04108624, NCT05091372, and NCT04071457). (All data from clinicaltrials.gov; search covered phase 2, 3, or 4 studies still accruing data; descriptions hand-checked; search terms: maintenance/consolidation/post-ASCT.)
Dr. Derman said that it is “incumbent on investigators” to carry out the studies to identify who is eligible to stop therapy because industry is “probably always going to err on the side of treating more.”
Sergio Giralt, MD, head of the adult bone marrow transplant service at Memorial Sloan Kettering Cancer Center, New York, was an author of the key 2012 study that enshrined lenalidomide maintenance in the guidelines. Dr. Giralt expressed concerns about the single-arm design of MASTER and said he would like to see a randomized study where some patients continued treatment and others stopped.
Dr. Giralt cautioned: “If you’re MRD negative, the chances of having to deal with your disease in the next 5 years is one in five.” Physicians could certainly “have a conversation” with patients who are MRD negative about stopping therapy, but this would need to be weighed against the need for bone-marrow biopsies every 3-6 months to check progress. (In MASTER, MRD was checked at 6 and 18 months.)
Dr. Kumar believes that “we need to pursue the concept of decreasing the duration of treatment.” However, newer immunotherapies may be the answer: “Who knows? That may be the future, that we will do more of this hit-and-run approach rather than trying to keep them persistently on something.”
Dr. Derman said: “I personally think that the data is already there ... [MASTER] shows that perhaps this notion of indefinite maintenance therapy is one that really has to go by the wayside ... patients should have the option to consider with their physician [the chance to] potentially discontinue treatment.”
For 15 years, relentless lenalidomide maintenance has “quite rightly been the strongest pillar of therapy”, said Dr. Costa. “But for patients, this is not something that they easily embrace – it’s not ideal that you are going to have to take therapy for the rest of your life.”
Dr. Costa concluded: “I don’t think we had a single patient who was reluctant to stop therapy.”
Dr. Munshi reported relationships with Adaptive, Abbvie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Karyopharm, Legend, Millennium, Novartis, Pfizer, and he is the scientific founder of Oncopep and DCT. Dr. Derman disclosed ties with Janssen, Cota, and BMS. Dr. Costa reported ties with Amgen, Cota, Janssen, BMS, AbbVie, Ionis, Genentech, Sanofi, Karyopharm, AstraZeneca, Adaptive Biotechnologies, Takeda, and Pfizer. Dr. Kumar declared relationships with AbbVie, Amgen, BMS, GlaxoSmithKline, Karyopharm, Regeneron, Roche, Sanofi, Takeda, and BeiGene. Dr. Giralt reported ties with Amgen, CSL Behring, Caladrius, Celgene, Ceramedix, ExpertConnect, GlaxoSmithKline, Janssen, Karyopharm, Kite Pharmaceuticals, Magnolia Innovation, Novartis, Omeros, Pfizer, Physicians’ Education Resource, Sanofi, TRM Oncology, and Xcenda.
For more than 10 years, ongoing treatment with lenalidomide following autologous hematopoietic stem cell transplantation (ASCT) has been the unchallenged gold standard.
The new findings were from the MASTER study, published in The Lancet Haematology, along with an invited commentary by Dr. Derman. In MASTER, patients who showed no evidence of disease after transplantation and two phases of consolidation therapy had the opportunity to avoid lenalidomide maintenance.
In the lenalidomide-free group, just 9% of patients without high-risk chromosome abnormalities or just one HRCA progressed within 2 years. About 47% of patients with two or more HRCAs progressed within 2 years.
The MASTER authors concluded that modern regimens of induction plus ASCT/consolidation might be good enough for many patients. Avoiding maintenance therapy “lead to most patients with newly diagnosed multiple myeloma reaching an MRD [minimal residual disease]-free, treatment-free state with a low risk of disease progression.” They also cautioned that the approach was “not optimal” for high-risk patients.
“We have been indoctrinated into continuous therapy,” said lead author Luciano Costa, MD, professor of medicine at the University of Alabama at Birmingham. “This was a reasonable approach at the time when [induction and consolidation] therapy was not as effective.”
Lenalidomide for post-ASCT maintenance became a guideline standard following a pivotal study published in the New England Journal of Medicine in 2012. The study showed that lenalidomide maintenance after transplantation almost doubled the time to progression (P < .001) and improved survival (P = .03).
Shaji Kumar, MD, is chair of the National Comprehensive Cancer Network Multiple Myeloma Guidelines and professor of medicine at the Mayo Clinic in Rochester, Minn.
Dr. Kumar said that the MASTER results alone are not sufficient to change current guidelines because the study was a single-arm, uncontrolled, phase 2 trial. However, there are “multiple reasons why we would like to stop treatment at some point in time,” Dr. Kumar said.
“Quality of life, the financial cost, and the toxicity are three main reasons why we would like to discontinue the maintenance or give maintenance only for the amount of time that a patient needs it,” Dr. Kumar added. “So then the question comes up, how do we identify the people who need long term treatment versus the people who don’t?”
“Response” in MM is conventionally classified by criteria laid down by the International Myeloma Working Group. However, the MASTER trial made use of a different measure: MRD negativity, in which myeloma cells can no longer be detected in bone-marrow aspirate at a level of 1 in 100,000 (10–5) or, in some studies, 1 in 1 million (10–6).
MRD is a rare bird in oncology: A surrogate endpoint that provides answers faster than progression-free survival or overall survival but is a reliable guide to both. In 2020 a team headed by Nikhil Munshi, MD, professor of medicine at Harvard Medical School, Boston, published a large meta-analysis showing that a negative MRD in a patient with MM was significantly prognostic for both progression-free survival (hazard ratio, 0.33; P < .001) and overall survival (HR, 0.45; P < .001).
In an interview from 2022, Dr. Munshi explained that patients with MRD negativity are not necessarily “cured”: “Simply, physiologically, it means that if a patient has one [myeloma] cell in a million, that cell is going to take a much longer time to grow up to be myeloma.”
In MASTER, which was based at five U.S. academic medical centers, 81% of participants (96/118) achieved MRD negativity at the 10–5 cutoff. Eighty-four people (71%) had two consecutive MRD-negative results and did not go on to lenalidomide maintenance. Instead, they were monitored with lab tests every 8 weeks for the first 24 weeks and every 16 weeks thereafter and assessed for any changes in MRD after 6 months and 18 months.
The median age in MASTER was 61 years, 43% were women, and 20% were non-Hispanic Black. About 20% of participants had two or more HRCAs, 37% had one HRCA, and 43% had no HRCAs. All participants had four 28-day cycles of induction with Dara-KRd (daratumumab, carfilzomib, lenalidomide, and dexamethasone). This was followed by ASCT and up to two phases of consolidation with Dara-KRd.
MASTER is not the only study to show that MRD-guided discontinuation of lenalidomide seems feasible in some patients. In November 2023, Spanish researchers published a study in Blood testing a combination of lenalidomide, dexamethasone, and ixazomib. The trial allowed MRD-negative patients to stop therapy after 2 years. Progression was 17.2% over the following 4 years in the group that dropped maintenance, which included high-risk patients. The authors concluded that their results “support the safety of maintenance therapy discontinuation in patients with negative MRD at 2 years.”
These two trials are conspicuous by their rarity.
Said Dr. Derman: “We haven’t done a great job until recently of designing trials that look into discontinuation.”
Both Dr. Derman and Dr. Costa raised the elephant in the room: industry funding.
“Maintenance therapy is big business,” said Dr. Derman. He added that he had experienced problems in the past obtaining industry funding for research that involved stopping therapy.
Dr. Costa, coauthor of the MASTER trial, agreed in part: “Most pharmaceutical companies do not embark on trials like this because they’re primarily doing registration trials.” MASTER garnered some industry funding, however, and Dr. Costa found that encouraging.
How much money is at stake? In other words, what are the financial savings if patients with zero to one HRCAs who are MRD negative start to take treatment holidays from lenalidomide maintenance?
In the United States in 2019 approximately 6,410 patients received ASCT. The MASTER publication stated that “around 85%” of newly diagnosed MM patients have zero to one HRCAs and that 73% of these patients were able to stop therapy in the trial. This suggests that, each year, approximately 4,000 new patients might be eligible to avoid lenalidomide after ASCT.
The price tag of lenalidomide is approximately $20,000 per month in the United States, according to Dr. Derman. A cohort of 4,000 patients avoiding lenalidomide each year represents lost revenue of $80 million per month or almost $1 billion per year. And this does not take into account patients already on lenalidomide from previous years – or sales outside the United States. The MM multiple research pipeline reflects a lack of enthusiasm for paring down maintenance.
There are currently 229 interventional clinical studies in MM taking place nationwide. Of these, just three trials are testing what happens when patients stop therapy in the post-ASCT setting and none of the three is sponsored by industry (NCT04108624, NCT05091372, and NCT04071457). (All data from clinicaltrials.gov; search covered phase 2, 3, or 4 studies still accruing data; descriptions hand-checked; search terms: maintenance/consolidation/post-ASCT.)
Dr. Derman said that it is “incumbent on investigators” to carry out the studies to identify who is eligible to stop therapy because industry is “probably always going to err on the side of treating more.”
Sergio Giralt, MD, head of the adult bone marrow transplant service at Memorial Sloan Kettering Cancer Center, New York, was an author of the key 2012 study that enshrined lenalidomide maintenance in the guidelines. Dr. Giralt expressed concerns about the single-arm design of MASTER and said he would like to see a randomized study where some patients continued treatment and others stopped.
Dr. Giralt cautioned: “If you’re MRD negative, the chances of having to deal with your disease in the next 5 years is one in five.” Physicians could certainly “have a conversation” with patients who are MRD negative about stopping therapy, but this would need to be weighed against the need for bone-marrow biopsies every 3-6 months to check progress. (In MASTER, MRD was checked at 6 and 18 months.)
Dr. Kumar believes that “we need to pursue the concept of decreasing the duration of treatment.” However, newer immunotherapies may be the answer: “Who knows? That may be the future, that we will do more of this hit-and-run approach rather than trying to keep them persistently on something.”
Dr. Derman said: “I personally think that the data is already there ... [MASTER] shows that perhaps this notion of indefinite maintenance therapy is one that really has to go by the wayside ... patients should have the option to consider with their physician [the chance to] potentially discontinue treatment.”
For 15 years, relentless lenalidomide maintenance has “quite rightly been the strongest pillar of therapy”, said Dr. Costa. “But for patients, this is not something that they easily embrace – it’s not ideal that you are going to have to take therapy for the rest of your life.”
Dr. Costa concluded: “I don’t think we had a single patient who was reluctant to stop therapy.”
Dr. Munshi reported relationships with Adaptive, Abbvie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Karyopharm, Legend, Millennium, Novartis, Pfizer, and he is the scientific founder of Oncopep and DCT. Dr. Derman disclosed ties with Janssen, Cota, and BMS. Dr. Costa reported ties with Amgen, Cota, Janssen, BMS, AbbVie, Ionis, Genentech, Sanofi, Karyopharm, AstraZeneca, Adaptive Biotechnologies, Takeda, and Pfizer. Dr. Kumar declared relationships with AbbVie, Amgen, BMS, GlaxoSmithKline, Karyopharm, Regeneron, Roche, Sanofi, Takeda, and BeiGene. Dr. Giralt reported ties with Amgen, CSL Behring, Caladrius, Celgene, Ceramedix, ExpertConnect, GlaxoSmithKline, Janssen, Karyopharm, Kite Pharmaceuticals, Magnolia Innovation, Novartis, Omeros, Pfizer, Physicians’ Education Resource, Sanofi, TRM Oncology, and Xcenda.
For more than 10 years, ongoing treatment with lenalidomide following autologous hematopoietic stem cell transplantation (ASCT) has been the unchallenged gold standard.
The new findings were from the MASTER study, published in The Lancet Haematology, along with an invited commentary by Dr. Derman. In MASTER, patients who showed no evidence of disease after transplantation and two phases of consolidation therapy had the opportunity to avoid lenalidomide maintenance.
In the lenalidomide-free group, just 9% of patients without high-risk chromosome abnormalities or just one HRCA progressed within 2 years. About 47% of patients with two or more HRCAs progressed within 2 years.
The MASTER authors concluded that modern regimens of induction plus ASCT/consolidation might be good enough for many patients. Avoiding maintenance therapy “lead to most patients with newly diagnosed multiple myeloma reaching an MRD [minimal residual disease]-free, treatment-free state with a low risk of disease progression.” They also cautioned that the approach was “not optimal” for high-risk patients.
“We have been indoctrinated into continuous therapy,” said lead author Luciano Costa, MD, professor of medicine at the University of Alabama at Birmingham. “This was a reasonable approach at the time when [induction and consolidation] therapy was not as effective.”
Lenalidomide for post-ASCT maintenance became a guideline standard following a pivotal study published in the New England Journal of Medicine in 2012. The study showed that lenalidomide maintenance after transplantation almost doubled the time to progression (P < .001) and improved survival (P = .03).
Shaji Kumar, MD, is chair of the National Comprehensive Cancer Network Multiple Myeloma Guidelines and professor of medicine at the Mayo Clinic in Rochester, Minn.
Dr. Kumar said that the MASTER results alone are not sufficient to change current guidelines because the study was a single-arm, uncontrolled, phase 2 trial. However, there are “multiple reasons why we would like to stop treatment at some point in time,” Dr. Kumar said.
“Quality of life, the financial cost, and the toxicity are three main reasons why we would like to discontinue the maintenance or give maintenance only for the amount of time that a patient needs it,” Dr. Kumar added. “So then the question comes up, how do we identify the people who need long term treatment versus the people who don’t?”
“Response” in MM is conventionally classified by criteria laid down by the International Myeloma Working Group. However, the MASTER trial made use of a different measure: MRD negativity, in which myeloma cells can no longer be detected in bone-marrow aspirate at a level of 1 in 100,000 (10–5) or, in some studies, 1 in 1 million (10–6).
MRD is a rare bird in oncology: A surrogate endpoint that provides answers faster than progression-free survival or overall survival but is a reliable guide to both. In 2020 a team headed by Nikhil Munshi, MD, professor of medicine at Harvard Medical School, Boston, published a large meta-analysis showing that a negative MRD in a patient with MM was significantly prognostic for both progression-free survival (hazard ratio, 0.33; P < .001) and overall survival (HR, 0.45; P < .001).
In an interview from 2022, Dr. Munshi explained that patients with MRD negativity are not necessarily “cured”: “Simply, physiologically, it means that if a patient has one [myeloma] cell in a million, that cell is going to take a much longer time to grow up to be myeloma.”
In MASTER, which was based at five U.S. academic medical centers, 81% of participants (96/118) achieved MRD negativity at the 10–5 cutoff. Eighty-four people (71%) had two consecutive MRD-negative results and did not go on to lenalidomide maintenance. Instead, they were monitored with lab tests every 8 weeks for the first 24 weeks and every 16 weeks thereafter and assessed for any changes in MRD after 6 months and 18 months.
The median age in MASTER was 61 years, 43% were women, and 20% were non-Hispanic Black. About 20% of participants had two or more HRCAs, 37% had one HRCA, and 43% had no HRCAs. All participants had four 28-day cycles of induction with Dara-KRd (daratumumab, carfilzomib, lenalidomide, and dexamethasone). This was followed by ASCT and up to two phases of consolidation with Dara-KRd.
MASTER is not the only study to show that MRD-guided discontinuation of lenalidomide seems feasible in some patients. In November 2023, Spanish researchers published a study in Blood testing a combination of lenalidomide, dexamethasone, and ixazomib. The trial allowed MRD-negative patients to stop therapy after 2 years. Progression was 17.2% over the following 4 years in the group that dropped maintenance, which included high-risk patients. The authors concluded that their results “support the safety of maintenance therapy discontinuation in patients with negative MRD at 2 years.”
These two trials are conspicuous by their rarity.
Said Dr. Derman: “We haven’t done a great job until recently of designing trials that look into discontinuation.”
Both Dr. Derman and Dr. Costa raised the elephant in the room: industry funding.
“Maintenance therapy is big business,” said Dr. Derman. He added that he had experienced problems in the past obtaining industry funding for research that involved stopping therapy.
Dr. Costa, coauthor of the MASTER trial, agreed in part: “Most pharmaceutical companies do not embark on trials like this because they’re primarily doing registration trials.” MASTER garnered some industry funding, however, and Dr. Costa found that encouraging.
How much money is at stake? In other words, what are the financial savings if patients with zero to one HRCAs who are MRD negative start to take treatment holidays from lenalidomide maintenance?
In the United States in 2019 approximately 6,410 patients received ASCT. The MASTER publication stated that “around 85%” of newly diagnosed MM patients have zero to one HRCAs and that 73% of these patients were able to stop therapy in the trial. This suggests that, each year, approximately 4,000 new patients might be eligible to avoid lenalidomide after ASCT.
The price tag of lenalidomide is approximately $20,000 per month in the United States, according to Dr. Derman. A cohort of 4,000 patients avoiding lenalidomide each year represents lost revenue of $80 million per month or almost $1 billion per year. And this does not take into account patients already on lenalidomide from previous years – or sales outside the United States. The MM multiple research pipeline reflects a lack of enthusiasm for paring down maintenance.
There are currently 229 interventional clinical studies in MM taking place nationwide. Of these, just three trials are testing what happens when patients stop therapy in the post-ASCT setting and none of the three is sponsored by industry (NCT04108624, NCT05091372, and NCT04071457). (All data from clinicaltrials.gov; search covered phase 2, 3, or 4 studies still accruing data; descriptions hand-checked; search terms: maintenance/consolidation/post-ASCT.)
Dr. Derman said that it is “incumbent on investigators” to carry out the studies to identify who is eligible to stop therapy because industry is “probably always going to err on the side of treating more.”
Sergio Giralt, MD, head of the adult bone marrow transplant service at Memorial Sloan Kettering Cancer Center, New York, was an author of the key 2012 study that enshrined lenalidomide maintenance in the guidelines. Dr. Giralt expressed concerns about the single-arm design of MASTER and said he would like to see a randomized study where some patients continued treatment and others stopped.
Dr. Giralt cautioned: “If you’re MRD negative, the chances of having to deal with your disease in the next 5 years is one in five.” Physicians could certainly “have a conversation” with patients who are MRD negative about stopping therapy, but this would need to be weighed against the need for bone-marrow biopsies every 3-6 months to check progress. (In MASTER, MRD was checked at 6 and 18 months.)
Dr. Kumar believes that “we need to pursue the concept of decreasing the duration of treatment.” However, newer immunotherapies may be the answer: “Who knows? That may be the future, that we will do more of this hit-and-run approach rather than trying to keep them persistently on something.”
Dr. Derman said: “I personally think that the data is already there ... [MASTER] shows that perhaps this notion of indefinite maintenance therapy is one that really has to go by the wayside ... patients should have the option to consider with their physician [the chance to] potentially discontinue treatment.”
For 15 years, relentless lenalidomide maintenance has “quite rightly been the strongest pillar of therapy”, said Dr. Costa. “But for patients, this is not something that they easily embrace – it’s not ideal that you are going to have to take therapy for the rest of your life.”
Dr. Costa concluded: “I don’t think we had a single patient who was reluctant to stop therapy.”
Dr. Munshi reported relationships with Adaptive, Abbvie, Amgen, Bristol-Myers Squibb, Celgene, Janssen, Karyopharm, Legend, Millennium, Novartis, Pfizer, and he is the scientific founder of Oncopep and DCT. Dr. Derman disclosed ties with Janssen, Cota, and BMS. Dr. Costa reported ties with Amgen, Cota, Janssen, BMS, AbbVie, Ionis, Genentech, Sanofi, Karyopharm, AstraZeneca, Adaptive Biotechnologies, Takeda, and Pfizer. Dr. Kumar declared relationships with AbbVie, Amgen, BMS, GlaxoSmithKline, Karyopharm, Regeneron, Roche, Sanofi, Takeda, and BeiGene. Dr. Giralt reported ties with Amgen, CSL Behring, Caladrius, Celgene, Ceramedix, ExpertConnect, GlaxoSmithKline, Janssen, Karyopharm, Kite Pharmaceuticals, Magnolia Innovation, Novartis, Omeros, Pfizer, Physicians’ Education Resource, Sanofi, TRM Oncology, and Xcenda.
FDA OKs new agent to block chemotherapy-induced neutropenia
Efbemalenograstim joins other agents already on the U.S. market, including pegfilgrastim (Neulasta), that aim to reduce the incidence of chemotherapy-induced febrile neutropenia.
The approval of efbemalenograstim was based on two randomized trials. The first included 122 women with either metastatic or nonmetastatic breast cancer who were receiving doxorubicin and docetaxel. These patients were randomly assigned to receive either one subcutaneous injection of efbemalenograstim or placebo on the second day of their first chemotherapy cycle. All patients received efbemalenograstim on the second day of cycles two through four.
The mean duration of grade 4 neutropenia in the first cycle was 1.4 days with efbemalenograstim versus 4.3 days with placebo. Only 4.8% of patients who received efbemalenograstim experienced chemotherapy-induced febrile neutropenia, compared with 25.6% who received the placebo.
The new agent went up against pegfilgrastim in the second trial, which included 393 women who received docetaxel and cyclophosphamide as treatment for nonmetastatic breast cancer. These patients were randomly assigned to receive either a single subcutaneous injection of efbemalenograstim or pegfilgrastim on the second day of each cycle.
During the first cycle, patients in both arms of the trial experienced a mean of 0.2 days of grade 4 neutropenia.
The most common side effects associated with efbemalenograstim were nausea, anemia, and thrombocytopenia. Similar to pegfilgrastim’s label, efbemalenograstim’s label warns of possible splenic rupture, respiratory distress syndrome, sickle cell crisis, and other serious adverse events.
The FDA recommends a dose of 20 mg subcutaneous once per chemotherapy cycle.
A version of this article first appeared on Medscape.com.
Efbemalenograstim joins other agents already on the U.S. market, including pegfilgrastim (Neulasta), that aim to reduce the incidence of chemotherapy-induced febrile neutropenia.
The approval of efbemalenograstim was based on two randomized trials. The first included 122 women with either metastatic or nonmetastatic breast cancer who were receiving doxorubicin and docetaxel. These patients were randomly assigned to receive either one subcutaneous injection of efbemalenograstim or placebo on the second day of their first chemotherapy cycle. All patients received efbemalenograstim on the second day of cycles two through four.
The mean duration of grade 4 neutropenia in the first cycle was 1.4 days with efbemalenograstim versus 4.3 days with placebo. Only 4.8% of patients who received efbemalenograstim experienced chemotherapy-induced febrile neutropenia, compared with 25.6% who received the placebo.
The new agent went up against pegfilgrastim in the second trial, which included 393 women who received docetaxel and cyclophosphamide as treatment for nonmetastatic breast cancer. These patients were randomly assigned to receive either a single subcutaneous injection of efbemalenograstim or pegfilgrastim on the second day of each cycle.
During the first cycle, patients in both arms of the trial experienced a mean of 0.2 days of grade 4 neutropenia.
The most common side effects associated with efbemalenograstim were nausea, anemia, and thrombocytopenia. Similar to pegfilgrastim’s label, efbemalenograstim’s label warns of possible splenic rupture, respiratory distress syndrome, sickle cell crisis, and other serious adverse events.
The FDA recommends a dose of 20 mg subcutaneous once per chemotherapy cycle.
A version of this article first appeared on Medscape.com.
Efbemalenograstim joins other agents already on the U.S. market, including pegfilgrastim (Neulasta), that aim to reduce the incidence of chemotherapy-induced febrile neutropenia.
The approval of efbemalenograstim was based on two randomized trials. The first included 122 women with either metastatic or nonmetastatic breast cancer who were receiving doxorubicin and docetaxel. These patients were randomly assigned to receive either one subcutaneous injection of efbemalenograstim or placebo on the second day of their first chemotherapy cycle. All patients received efbemalenograstim on the second day of cycles two through four.
The mean duration of grade 4 neutropenia in the first cycle was 1.4 days with efbemalenograstim versus 4.3 days with placebo. Only 4.8% of patients who received efbemalenograstim experienced chemotherapy-induced febrile neutropenia, compared with 25.6% who received the placebo.
The new agent went up against pegfilgrastim in the second trial, which included 393 women who received docetaxel and cyclophosphamide as treatment for nonmetastatic breast cancer. These patients were randomly assigned to receive either a single subcutaneous injection of efbemalenograstim or pegfilgrastim on the second day of each cycle.
During the first cycle, patients in both arms of the trial experienced a mean of 0.2 days of grade 4 neutropenia.
The most common side effects associated with efbemalenograstim were nausea, anemia, and thrombocytopenia. Similar to pegfilgrastim’s label, efbemalenograstim’s label warns of possible splenic rupture, respiratory distress syndrome, sickle cell crisis, and other serious adverse events.
The FDA recommends a dose of 20 mg subcutaneous once per chemotherapy cycle.
A version of this article first appeared on Medscape.com.
FDA panel voices concerns over 2 lymphoma accelerated approvals
At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.
“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.
Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.
The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.
Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.
Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.
The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.
The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.
For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.
At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.
“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
‘Dangerous precedent’
The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.
For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.
But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.
And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.
“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.
The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.
The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.
Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.
ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.
“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.
Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.
Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.
Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”
At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.
“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.
Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.
The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.
Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.
Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.
The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.
The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.
For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.
At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.
“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
‘Dangerous precedent’
The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.
For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.
But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.
And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.
“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.
The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.
The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.
Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.
ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.
“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.
Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.
Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.
Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”
At a Nov. 16 meeting, the Oncologic Drugs Advisory Committee of the Food and Drug Administration reviewed the reasons for delays in confirmatory trials for pralatrexate (Folotyn) and belinostat (Beleodaq), both now owned by East Windsor, N.J.–based Acrotech. The FDA granted accelerated approval for pralatrexate in 2009 and belinostat in 2014.
“The consensus of the advisory committee is that we have significant concerns about the very prolonged delay and getting these confirmatory studies underway,” said Andy Chen, MD, PhD, of Oregon Health & Science University, Portland, who served as acting ODAC chair for the meeting.
Corporate ownership changes were among the reasons Acrotech cited for the long delays in producing the confirmatory research on pralatrexate and belinostat. Allos Therapeutics won the FDA approval of pralatrexate in 2009. In 2012, Spectrum Pharmaceuticals acquired Acrotech. Spectrum won approval of belinostat in 2014. Acrotech acquired Spectrum in 2019.
The FDA didn’t ask ODAC to take votes on any questions at the meeting. Instead, the FDA sought its expert feedback about how to address the prolonged delays with pralatrexate and belinostat research and, in general, how to promote more timely completion of confirmatory trials for drugs cleared by accelerated approval.
Pralatrexate and belinostat are both used to treat relapsed or refractory peripheral T-cell lymphoma, a rare and aggressive disease affecting about 10,000-15,000 people annually in the United States.
Through the accelerated approval process, the FDA seeks to speed medicines to people with fatal and serious conditions based on promising signs in clinical testing.
The initial pralatrexate and belinostat were based on phase 2, single-arm, monotherapy studies, with about 109 evaluable patients in the key pralatrexate study and 120 evaluable patients in the belinostat study. As is common, these phase 2 tests used measurements of cancer progression, known as the overall response rate.
The FDA then expects companies to show through more extensive testing that medicines cleared with accelerated approvals can deliver significant benefits, such as extending lives. When there are delays in confirmatory trials, patients can be exposed to medicines, often with significant side effects, that are unlikely to benefit them.
For example, the FDA granted an accelerated approval in 2011 for romidepsin for this use for peripheral T-cell lymphoma, the same condition for which pralatrexate and belinostat are used. But in 2021, Bristol-Myers Squibb withdrew the approval for that use of romidepsin when a confirmatory trial failed to meet the primary efficacy endpoint of progression free survival.
At the meeting, Richard Pazdur, MD, who leads oncology medicine at the FDA, urged Acrotech to shorten the time needed to determine whether its medicines deliver significant benefits to patients and thus merit full approval, or whether they too may fall short.
“We’re really in a situation where patients are caught in the middle here,” Dr. Pazdur said. “I feel very bad for that situation and very bad for the patients that they don’t have this information.”
‘Dangerous precedent’
The FDA in recent years has stepped up its efforts to get companies to complete their required studies on drugs cleared by accelerated approvals. The FDA has granted a total of 187 accelerated approvals for cancer drugs. Many of these cover new uses of established drugs and others serve to allow the introduction of new medicines.
For more than half of these cases, 96 of 187, the FDA already has learned that it made the right call in allowing early access to medicines. Companies have presented study results that confirmed the benefit of drugs and thus been able to convert accelerated approvals to traditional approvals.
But 27 of the 187 oncology accelerated approvals have been withdrawn. In these cases, subsequent research failed to establish the expected benefits of these cancer drugs.
And in 95 cases, the FDA and companies are still waiting for the results of studies to confirm the expected benefit of drugs granted accelerated approvals. The FDA classifies these as ongoing accelerated approvals. About 85% of these ongoing approvals were granted in the past 5 years, in contrast to 14 years for pralatrexate and 9 for belinostat.
“It sets a dangerous precedent for the other sponsors and drug companies to have such outliers from the same company,” said ODAC member Toni K. Choueiri, MD, of Harvard Medical School and the Dana-Farber Cancer Institute, both in Boston.
The current agreement between the FDA and Acrotech focuses on a phase 3 trial, SPI-BEL-301 as the confirmatory study. Acrotech’s plan is to start with dose optimization studies in part 1 of the trial, with part 2 meant to see if its medicines provide a significant benefit as measured by progression-free survival.
The plan is to compare treatments. One group of patients would get belinostat plus a common cancer regimen known as CHOP, another group would get pralatrexate plus the COP cancer regimen, which is CHOP without doxorubicin, and a third group would get CHOP.
Acrotech’s current time line is for part 1, which began in October, to finish by December 2025. Then the part 2 timeline would run from 2026 to 2030, with interim progression-free survival possible by 2028.
ODAC member Ashley Rosko, MD, a hematologist from Ohio State University, Columbus, asked Acrotech what steps it will take to try to speed recruitment for the study.
“We are going to implement many strategies,” including what’s called digital amplification, replied Ashish Anvekar, president of Acrotech. This will help identify patients and channel them toward participating clinical sites.
Alexander A. Vinks, PhD, PharmD, who served as a temporary member of ODAC for the Nov. 16 meeting, said many clinicians will not be excited about enrolling patients in this kind of large, traditionally designed study.
Dr. Vinks, who is professor emeritus at Cincinnati Children’s Hospital Medical Center and University of Cincinnati, now works with consultant group NDA, a firm that advises companies on developing drugs.
Dr. Vinks advised Acrotech should try “to pin down what is most likely a smaller study that could be simpler, but still give robust, informative data.”