User login
Heat Exposure Tied to Acute Immune Changes
In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.
“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.
“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.
“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.
The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.
High Temps Hard on Multiple Organs
Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.
They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.
They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).
They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.
The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).
In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).
Study Raises Important Questions
“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.
Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”
The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.
“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.
The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.
A version of this article appeared on Medscape.com.
In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.
“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.
“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.
“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.
The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.
High Temps Hard on Multiple Organs
Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.
They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.
They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).
They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.
The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).
In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).
Study Raises Important Questions
“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.
Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”
The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.
“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.
The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.
A version of this article appeared on Medscape.com.
In this study, blood work from volunteers was examined for immune biomarkers, and the findings mapped against environmental data.
“With rising global temperatures, the association between heat exposure and a temporarily weakened response from the immune system is a concern because temperature and humidity are known to be important environmental drivers of infectious, airborne disease transmission,” lead author Daniel W. Riggs, PhD, with the Christina Lee Brown Envirome Institute, University of Louisville in Louisville, Kentucky, said in a news release.
“In this study, even exposure to relatively modest increases in temperature were associated with acute changes in immune system functioning indexed by low-grade inflammation known to be linked to cardiovascular disorders, as well as potential secondary effects on the ability to optimally protect against infection,” said Rosalind J. Wright, MD, MPH, who wasn’t involved in the study.
“Further elucidation of the effects of both acute and more prolonged heat exposures (heat waves) on immune signaling will be important given potential broad health implications beyond the heart,” said Dr. Wright, dean of public health and professor and chair, Department of Public Health, Mount Sinai Health System.
The study was presented at the American Heart Association (AHA) Epidemiology and Prevention | Lifestyle and Cardiometabolic Scientific Sessions 2024.
High Temps Hard on Multiple Organs
Extreme-heat events have been shown to increase mortality, and excessive deaths due to heat waves are overwhelmingly cardiovascular in origin. Many prior studies only considered ambient temperature, which fails to capture the actual heat stress experienced by individuals, Dr. Riggs and colleagues wrote.
They designed their study to gauge how short-term heat exposures are related to markers of inflammation and the immune response.
They recruited 624 adults (mean age 49 years, 59% women) from a neighborhood in Louisville during the summer months, when median temperatures over 24 hours were 24.5 °C (76 °F).
They obtained blood samples to measure circulating cytokines and immune cells during clinic visits. Heat metrics, collected on the same day as blood draws, included 24-hour averages of temperature, net effective temperature, and the Universal Thermal Climate Index (UTCI), a metric that incorporates temperature, humidity, wind speed, and ultraviolet radiation, to determine the physiological comfort of the human body under specific weather conditions.
The results were adjusted for multiple factors, including sex, age, race, education, body mass index, smoking status, anti-inflammatory medication use, and daily air pollution (PM 2.5).
In adjusted analyses, for every five-degree increase in UTCI, there was an increase in levels of several inflammatory markers, including monocytes (4.2%), eosinophils (9.5%), natural killer T cells (9.9%), and tumor necrosis factor-alpha (7.0%) and a decrease in infection-fighting B cells (−6.8%).
Study Raises Important Questions
“We’re finding that heat is associated with health effects across a wide range of organ systems and outcomes, but this study helps start to get at the ‘how,’” said Perry E. Sheffield, MD, MPH, with the Departments of Pediatrics and Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai in New York City, who wasn’t involved in the study.
Dr. Sheffield said the study raises “important questions like, Does the timing of heat exposure matter (going in and out of air-conditioned spaces for example)? and Could some people be more vulnerable than others based on things like what they eat, whether they exercise, or their genetics?”
The study comes on the heels of a report released earlier this month from the World Meteorological Organization noting that climate change indicators reached record levels in 2023.
“The most critical challenges facing medicine are occurring at the intersection of climate and health, underscoring the urgent need to understand how climate-related factors, such as exposure to more extreme temperatures, shift key regulatory systems in our bodies to contribute to disease,” Dr. Wright told this news organization.
The study was supported by grants from the National Institute of Environmental Health Sciences. Dr. Riggs, Dr. Wright, and Sheffield had no relevant disclosures.
A version of this article appeared on Medscape.com.
Digital Nudges Found to Be Duds in Flu Vax Trial
TOPLINE:
A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.
METHODOLOGY:
- The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
- Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
- The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.
TAKEAWAY:
- Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
IN PRACTICE:
“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.
SOURCE:
The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.
LIMITATIONS:
The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.
DISCLOSURES:
The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article appeared on Medscape.com.
TOPLINE:
A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.
METHODOLOGY:
- The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
- Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
- The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.
TAKEAWAY:
- Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
IN PRACTICE:
“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.
SOURCE:
The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.
LIMITATIONS:
The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.
DISCLOSURES:
The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article appeared on Medscape.com.
TOPLINE:
A study involving more than 260,000 patients found that neither text messages nor reminders in patient portals significantly increased rates of influenza vaccination.
METHODOLOGY:
- The study was conducted from September 2022 to April 2023 in the University of California, Los Angeles (UCLA) health system, involving 262,085 patients across 79 primary care practices.
- Patients were randomly assigned to one of three groups: A control group that received usual care, a group that received reminders through the patient portal, and a group that received reminders via text message.
- The primary outcome was the influenza vaccination rate by April 30, 2023, including vaccinations from pharmacies and other sources.
TAKEAWAY:
- Neither intervention significantly improved influenza vaccination rates, which remained around 47% for all the groups.
IN PRACTICE:
“Health systems should consider the potential opportunity costs of sending reminders for influenza vaccination and may decide on other, more intensive interventions, such as improving access to vaccinations (eg, Saturday or after-hour clinics) or communication training for clinicians to address vaccine hesitancy,” the authors of the study wrote.
SOURCE:
The study was led by Peter G. Szilagyi, MD, MPH, with the Department of Pediatrics at UCLA Mattel Children’s Hospital, University of California, Los Angeles. It was published online in JAMA Internal Medicine.
LIMITATIONS:
The study was confined to a single health system and did not assess patients’ reasons for not getting vaccinated.
DISCLOSURES:
The study was supported by grants from the National Institutes of Health. Coauthors disclosed financial ties to pharmacy and pharmaceutical companies and the Pediatric Infectious Disease Society.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.
A version of this article appeared on Medscape.com.
Lab Tests Are Key for Diagnosing Chickenpox
, according to a report featured in the Centers for Disease Control and Prevention’s Morbidity and Mortality Weekly Report.
Only about half of clinically diagnosed varicella cases — cases diagnosed by examining rashes without laboratory testing — were positive for the varicella-zoster virus (VZV), suggesting lab testing is important to avoid consequences such as children being kept out of school longer than necessary.
Clinical diagnosis continues to be the primary method for diagnosing varicella, said authors of the report, led by Alison Ruprecht, MPH, a state epidemiologist with the MDH. But the signs and symptoms of those who have received the varicella vaccine (including fewer skin lesions, mostly maculopapular) make it difficult to diagnose.
Minnesota Offers Free Tests
In December 2016, the MDH expanded polymerase chain reaction (PCR) laboratory testing for varicella in the state. The program reached out to clinicians through newsletters, webinars, advisories, and conferences describing the importance of lab testing when clinicians suspect a patient’s rash is varicella. The department also offered free testing at MDH Public Health Laboratory (PHL) through an agreement with the CDC and follow-up, if needed, with clinicians on testing practices.
MDH also provided specimen collection kits (containing a collection swab for vesicular fluid and slides for collection of scabs or scraping of maculopapular lesions) to clinics. Free testing was available for people with suspected varicella, including those who had been clinically diagnosed, or people who self-reported suspected varicella or whose school or child care reported the suspected cases. In addition to testing for varicella, MDH-PHL performed PCR testing for herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), and enterovirus on all samples.
The state then saw lab-confirmed varicella cases double from 17% (235 of 1,426) during January 2013–November 2016 to 36% (619 of 1,717) during December 2016–March 2023 (P < .001).
During December 2016–March 2023, MDH-PHL tested specimens for 420 patients with suspected varicella; the median patient age was 5 years (range = 0-68 years). Of those, 23% provided specimens collected at home.
Clinical Diagnosis Versus Lab Test Confirmation
The researchers found that among 208 patients receiving a clinical diagnosis of varicella after only examination at a medical facility, fewer than half (45%) had positive varicella-zoster virus (VZV) lab test results. VZV detection was 66% lower in those who received varicella vaccine compared with those who did not.
The researchers acknowledged that outreach, at-home specimen collection, and free testing likely increased lab testing numbers.
They added that, “This increase in varicella testing likely also contributed to an increase in appropriate clinical management and school exclusion recommendations for suspect varicella cases.
“Clinicians should incorporate routine laboratory testing whenever varicella is suspected,” the researchers wrote. “Public health and school health professionals should emphasize the importance of laboratory confirmation in their recommendations to clinicians and parents.”
Presentation May Also Be Different in Immunocompromised
Sam Dominguez, MD, infectious disease specialist at Children’s Colorado in Aurora, who was not part of the research, said in addition to presentation being harder to recognize in those who are vaccinated, varicella is harder to diagnose in the immunocompromised population, where the rash may not be as prominent or more localized or appear in any number of atypical presentations.
In addition, he said, clinicians don’t see many cases these days. “Providers aren’t as familiar with what varicella looks like, especially younger providers who weren’t trained in the prevaccination era,” he said.
Cost is often an issue with lab testing as well as turn-around time and access, he said, and those factors can be barriers.
Dr. Dominguez said some classic presentations are easily diagnosed as varicella. “If you have a normal, healthy kid, who you’re seeing in the outpatient world who presents with a very classic rash for chickenpox, I don’t think laboratory testing is necessarily warranted in that scenario.”
But when clinicians aren’t confident in their diagnosis, “I think in those scenarios, testing can be very helpful in terms of management from a treatment standpoint as well as a potential infection control standpoint,” he said.
The authors reported no relevant financial relationships. Dr. Dominguez is a consultant for diagnostic companies Karius and BioFire. He has grant support from Pfizer and BioFire.
, according to a report featured in the Centers for Disease Control and Prevention’s Morbidity and Mortality Weekly Report.
Only about half of clinically diagnosed varicella cases — cases diagnosed by examining rashes without laboratory testing — were positive for the varicella-zoster virus (VZV), suggesting lab testing is important to avoid consequences such as children being kept out of school longer than necessary.
Clinical diagnosis continues to be the primary method for diagnosing varicella, said authors of the report, led by Alison Ruprecht, MPH, a state epidemiologist with the MDH. But the signs and symptoms of those who have received the varicella vaccine (including fewer skin lesions, mostly maculopapular) make it difficult to diagnose.
Minnesota Offers Free Tests
In December 2016, the MDH expanded polymerase chain reaction (PCR) laboratory testing for varicella in the state. The program reached out to clinicians through newsletters, webinars, advisories, and conferences describing the importance of lab testing when clinicians suspect a patient’s rash is varicella. The department also offered free testing at MDH Public Health Laboratory (PHL) through an agreement with the CDC and follow-up, if needed, with clinicians on testing practices.
MDH also provided specimen collection kits (containing a collection swab for vesicular fluid and slides for collection of scabs or scraping of maculopapular lesions) to clinics. Free testing was available for people with suspected varicella, including those who had been clinically diagnosed, or people who self-reported suspected varicella or whose school or child care reported the suspected cases. In addition to testing for varicella, MDH-PHL performed PCR testing for herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), and enterovirus on all samples.
The state then saw lab-confirmed varicella cases double from 17% (235 of 1,426) during January 2013–November 2016 to 36% (619 of 1,717) during December 2016–March 2023 (P < .001).
During December 2016–March 2023, MDH-PHL tested specimens for 420 patients with suspected varicella; the median patient age was 5 years (range = 0-68 years). Of those, 23% provided specimens collected at home.
Clinical Diagnosis Versus Lab Test Confirmation
The researchers found that among 208 patients receiving a clinical diagnosis of varicella after only examination at a medical facility, fewer than half (45%) had positive varicella-zoster virus (VZV) lab test results. VZV detection was 66% lower in those who received varicella vaccine compared with those who did not.
The researchers acknowledged that outreach, at-home specimen collection, and free testing likely increased lab testing numbers.
They added that, “This increase in varicella testing likely also contributed to an increase in appropriate clinical management and school exclusion recommendations for suspect varicella cases.
“Clinicians should incorporate routine laboratory testing whenever varicella is suspected,” the researchers wrote. “Public health and school health professionals should emphasize the importance of laboratory confirmation in their recommendations to clinicians and parents.”
Presentation May Also Be Different in Immunocompromised
Sam Dominguez, MD, infectious disease specialist at Children’s Colorado in Aurora, who was not part of the research, said in addition to presentation being harder to recognize in those who are vaccinated, varicella is harder to diagnose in the immunocompromised population, where the rash may not be as prominent or more localized or appear in any number of atypical presentations.
In addition, he said, clinicians don’t see many cases these days. “Providers aren’t as familiar with what varicella looks like, especially younger providers who weren’t trained in the prevaccination era,” he said.
Cost is often an issue with lab testing as well as turn-around time and access, he said, and those factors can be barriers.
Dr. Dominguez said some classic presentations are easily diagnosed as varicella. “If you have a normal, healthy kid, who you’re seeing in the outpatient world who presents with a very classic rash for chickenpox, I don’t think laboratory testing is necessarily warranted in that scenario.”
But when clinicians aren’t confident in their diagnosis, “I think in those scenarios, testing can be very helpful in terms of management from a treatment standpoint as well as a potential infection control standpoint,” he said.
The authors reported no relevant financial relationships. Dr. Dominguez is a consultant for diagnostic companies Karius and BioFire. He has grant support from Pfizer and BioFire.
, according to a report featured in the Centers for Disease Control and Prevention’s Morbidity and Mortality Weekly Report.
Only about half of clinically diagnosed varicella cases — cases diagnosed by examining rashes without laboratory testing — were positive for the varicella-zoster virus (VZV), suggesting lab testing is important to avoid consequences such as children being kept out of school longer than necessary.
Clinical diagnosis continues to be the primary method for diagnosing varicella, said authors of the report, led by Alison Ruprecht, MPH, a state epidemiologist with the MDH. But the signs and symptoms of those who have received the varicella vaccine (including fewer skin lesions, mostly maculopapular) make it difficult to diagnose.
Minnesota Offers Free Tests
In December 2016, the MDH expanded polymerase chain reaction (PCR) laboratory testing for varicella in the state. The program reached out to clinicians through newsletters, webinars, advisories, and conferences describing the importance of lab testing when clinicians suspect a patient’s rash is varicella. The department also offered free testing at MDH Public Health Laboratory (PHL) through an agreement with the CDC and follow-up, if needed, with clinicians on testing practices.
MDH also provided specimen collection kits (containing a collection swab for vesicular fluid and slides for collection of scabs or scraping of maculopapular lesions) to clinics. Free testing was available for people with suspected varicella, including those who had been clinically diagnosed, or people who self-reported suspected varicella or whose school or child care reported the suspected cases. In addition to testing for varicella, MDH-PHL performed PCR testing for herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), and enterovirus on all samples.
The state then saw lab-confirmed varicella cases double from 17% (235 of 1,426) during January 2013–November 2016 to 36% (619 of 1,717) during December 2016–March 2023 (P < .001).
During December 2016–March 2023, MDH-PHL tested specimens for 420 patients with suspected varicella; the median patient age was 5 years (range = 0-68 years). Of those, 23% provided specimens collected at home.
Clinical Diagnosis Versus Lab Test Confirmation
The researchers found that among 208 patients receiving a clinical diagnosis of varicella after only examination at a medical facility, fewer than half (45%) had positive varicella-zoster virus (VZV) lab test results. VZV detection was 66% lower in those who received varicella vaccine compared with those who did not.
The researchers acknowledged that outreach, at-home specimen collection, and free testing likely increased lab testing numbers.
They added that, “This increase in varicella testing likely also contributed to an increase in appropriate clinical management and school exclusion recommendations for suspect varicella cases.
“Clinicians should incorporate routine laboratory testing whenever varicella is suspected,” the researchers wrote. “Public health and school health professionals should emphasize the importance of laboratory confirmation in their recommendations to clinicians and parents.”
Presentation May Also Be Different in Immunocompromised
Sam Dominguez, MD, infectious disease specialist at Children’s Colorado in Aurora, who was not part of the research, said in addition to presentation being harder to recognize in those who are vaccinated, varicella is harder to diagnose in the immunocompromised population, where the rash may not be as prominent or more localized or appear in any number of atypical presentations.
In addition, he said, clinicians don’t see many cases these days. “Providers aren’t as familiar with what varicella looks like, especially younger providers who weren’t trained in the prevaccination era,” he said.
Cost is often an issue with lab testing as well as turn-around time and access, he said, and those factors can be barriers.
Dr. Dominguez said some classic presentations are easily diagnosed as varicella. “If you have a normal, healthy kid, who you’re seeing in the outpatient world who presents with a very classic rash for chickenpox, I don’t think laboratory testing is necessarily warranted in that scenario.”
But when clinicians aren’t confident in their diagnosis, “I think in those scenarios, testing can be very helpful in terms of management from a treatment standpoint as well as a potential infection control standpoint,” he said.
The authors reported no relevant financial relationships. Dr. Dominguez is a consultant for diagnostic companies Karius and BioFire. He has grant support from Pfizer and BioFire.
FROM MMWR
Severe Flu Confers Higher Risk for Neurologic Disorders Versus COVID
TOPLINE:
, results of a large study show.
METHODOLOGY:
- Researchers used healthcare claims data to compare 77,300 people hospitalized with COVID-19 with 77,300 hospitalized with influenza. The study did not include individuals with long COVID.
- In the final sample of 154,500 participants, the mean age was 51 years, and more than half (58%) were female.
- Investigators followed participants from both cohorts for a year to find out how many of them had medical care for six of the most common neurologic disorders: migraine, epilepsy, stroke, neuropathy, movement disorders, and dementia.
- If participants had one of these neurologic disorders prior to the original hospitalization, the primary outcome involved subsequent healthcare encounters for the neurologic diagnosis.
TAKEAWAY:
- Participants hospitalized with COVID-19 versus influenza were significantly less likely to require care in the following year for migraine (2% vs 3.2%), epilepsy (1.6% vs 2.1%), neuropathy (1.9% vs 3.6%), movement disorders (1.5% vs 2.5%), stroke (2% vs 2.4%), and dementia (2% vs 2.3%) (all P < .001).
- After adjusting for age, sex, and other health conditions, researchers found that people hospitalized with COVID-19 had a 35% lower risk of receiving care for migraine, a 22% lower risk of receiving care for epilepsy, and a 44% lower risk of receiving care for neuropathy than those with influenza. They also had a 36% lower risk of receiving care for movement disorders, a 10% lower risk for stroke (all P < .001), as well as a 7% lower risk for dementia (P = .0007).
- In participants who did not have a preexisting neurologic condition at the time of hospitalization for either COVID-19 or influenza, 2.8% hospitalized with COVID-19 developed one in the next year compared with 5% of those hospitalized with influenza.
IN PRACTICE:
“While the results were not what we expected to find, they are reassuring in that we found being hospitalized with COVID did not lead to more care for common neurologic conditions when compared to being hospitalized with influenza,” study investigator Brian C. Callaghan, MD, of University of Michigan, Ann Arbor, said in a press release.
SOURCE:
Adam de Havenon, MD, of Yale University in New Haven, Connecticut, led the study, which was published online on March 20 in Neurology.
LIMITATIONS:
The study relied on ICD codes in health claims databases, which could introduce misclassification bias. Also, by selecting only individuals who had associated hospital-based care, there may have been a selection bias based on disease severity.
DISCLOSURES:
The study was funded by the American Academy of Neurology. Dr. De Havenon reported receiving consultant fees from Integra and Novo Nordisk and royalty fees from UpToDate and has equity in Titin KM and Certus. Dr. Callaghan has consulted for DynaMed and the Vaccine Injury Compensation Program. Other disclosures were noted in the original article.
A version of this article appeared on Medscape.com.
TOPLINE:
, results of a large study show.
METHODOLOGY:
- Researchers used healthcare claims data to compare 77,300 people hospitalized with COVID-19 with 77,300 hospitalized with influenza. The study did not include individuals with long COVID.
- In the final sample of 154,500 participants, the mean age was 51 years, and more than half (58%) were female.
- Investigators followed participants from both cohorts for a year to find out how many of them had medical care for six of the most common neurologic disorders: migraine, epilepsy, stroke, neuropathy, movement disorders, and dementia.
- If participants had one of these neurologic disorders prior to the original hospitalization, the primary outcome involved subsequent healthcare encounters for the neurologic diagnosis.
TAKEAWAY:
- Participants hospitalized with COVID-19 versus influenza were significantly less likely to require care in the following year for migraine (2% vs 3.2%), epilepsy (1.6% vs 2.1%), neuropathy (1.9% vs 3.6%), movement disorders (1.5% vs 2.5%), stroke (2% vs 2.4%), and dementia (2% vs 2.3%) (all P < .001).
- After adjusting for age, sex, and other health conditions, researchers found that people hospitalized with COVID-19 had a 35% lower risk of receiving care for migraine, a 22% lower risk of receiving care for epilepsy, and a 44% lower risk of receiving care for neuropathy than those with influenza. They also had a 36% lower risk of receiving care for movement disorders, a 10% lower risk for stroke (all P < .001), as well as a 7% lower risk for dementia (P = .0007).
- In participants who did not have a preexisting neurologic condition at the time of hospitalization for either COVID-19 or influenza, 2.8% hospitalized with COVID-19 developed one in the next year compared with 5% of those hospitalized with influenza.
IN PRACTICE:
“While the results were not what we expected to find, they are reassuring in that we found being hospitalized with COVID did not lead to more care for common neurologic conditions when compared to being hospitalized with influenza,” study investigator Brian C. Callaghan, MD, of University of Michigan, Ann Arbor, said in a press release.
SOURCE:
Adam de Havenon, MD, of Yale University in New Haven, Connecticut, led the study, which was published online on March 20 in Neurology.
LIMITATIONS:
The study relied on ICD codes in health claims databases, which could introduce misclassification bias. Also, by selecting only individuals who had associated hospital-based care, there may have been a selection bias based on disease severity.
DISCLOSURES:
The study was funded by the American Academy of Neurology. Dr. De Havenon reported receiving consultant fees from Integra and Novo Nordisk and royalty fees from UpToDate and has equity in Titin KM and Certus. Dr. Callaghan has consulted for DynaMed and the Vaccine Injury Compensation Program. Other disclosures were noted in the original article.
A version of this article appeared on Medscape.com.
TOPLINE:
, results of a large study show.
METHODOLOGY:
- Researchers used healthcare claims data to compare 77,300 people hospitalized with COVID-19 with 77,300 hospitalized with influenza. The study did not include individuals with long COVID.
- In the final sample of 154,500 participants, the mean age was 51 years, and more than half (58%) were female.
- Investigators followed participants from both cohorts for a year to find out how many of them had medical care for six of the most common neurologic disorders: migraine, epilepsy, stroke, neuropathy, movement disorders, and dementia.
- If participants had one of these neurologic disorders prior to the original hospitalization, the primary outcome involved subsequent healthcare encounters for the neurologic diagnosis.
TAKEAWAY:
- Participants hospitalized with COVID-19 versus influenza were significantly less likely to require care in the following year for migraine (2% vs 3.2%), epilepsy (1.6% vs 2.1%), neuropathy (1.9% vs 3.6%), movement disorders (1.5% vs 2.5%), stroke (2% vs 2.4%), and dementia (2% vs 2.3%) (all P < .001).
- After adjusting for age, sex, and other health conditions, researchers found that people hospitalized with COVID-19 had a 35% lower risk of receiving care for migraine, a 22% lower risk of receiving care for epilepsy, and a 44% lower risk of receiving care for neuropathy than those with influenza. They also had a 36% lower risk of receiving care for movement disorders, a 10% lower risk for stroke (all P < .001), as well as a 7% lower risk for dementia (P = .0007).
- In participants who did not have a preexisting neurologic condition at the time of hospitalization for either COVID-19 or influenza, 2.8% hospitalized with COVID-19 developed one in the next year compared with 5% of those hospitalized with influenza.
IN PRACTICE:
“While the results were not what we expected to find, they are reassuring in that we found being hospitalized with COVID did not lead to more care for common neurologic conditions when compared to being hospitalized with influenza,” study investigator Brian C. Callaghan, MD, of University of Michigan, Ann Arbor, said in a press release.
SOURCE:
Adam de Havenon, MD, of Yale University in New Haven, Connecticut, led the study, which was published online on March 20 in Neurology.
LIMITATIONS:
The study relied on ICD codes in health claims databases, which could introduce misclassification bias. Also, by selecting only individuals who had associated hospital-based care, there may have been a selection bias based on disease severity.
DISCLOSURES:
The study was funded by the American Academy of Neurology. Dr. De Havenon reported receiving consultant fees from Integra and Novo Nordisk and royalty fees from UpToDate and has equity in Titin KM and Certus. Dr. Callaghan has consulted for DynaMed and the Vaccine Injury Compensation Program. Other disclosures were noted in the original article.
A version of this article appeared on Medscape.com.
Measles Control So Far in 2024: ‘Not Off to a Great Start’
Just over 2 months into 2024, measles cases in the United States aren’t looking great.
The recent rise in cases across the U.S. is linked to unvaccinated travelers, lower than ideal vaccination rates, and misinformation, experts said.
The Centers for Disease Control and Prevention has identified 45 cases of measles in 17 jurisdictions across the U.S. As of March 7, the federal health agency reported measles cases in Arizona, California, Florida, Georgia, Illinois, Indiana, Louisiana, Maryland, Michigan, Minnesota, Missouri, New Jersey, New York City, Ohio, Pennsylvania, Virginia, and Washington.
As for the 45 cases, “that’s almost as many as we had for the entire calendar year of 2023,” said Sarah Lim, MD, a medical specialist at the Minnesota Department of Health. “So we’re really not off to a great start.” (For context, there were 58 officially reported measles cases last year.)
Chicago is having a measles outbreak — with eight cases reported so far. All but one case has been linked to a migrant child at a city shelter. Given the potential for rapid spread — measles is relatively rare here but potentially very serious — the CDC sent a team of experts to investigate and to help keep this outbreak from growing further.
Sometimes Deadly
About 30% of children have measles symptoms and about 25% end up hospitalized. Complications include diarrhea, a whole-body rash, ear infections that can lead to permanent deafness, and pneumonia. Pneumonia with measles can be so serious that 1 in 20 affected children die. Measles can also cause inflammation of the brain called encephalitis in about 1 in 1,000 children, sometimes causing epilepsy or permanent brain damage.
As with long COVID, some effects can last beyond the early infection. For example, measles “can wipe out immune memory that protects you against other bacterial and viral pathogens,” Dr. Lim said at a media briefing sponsored by the Infectious Diseases Society of America. This vulnerability to other infections can last up to 3 years after the early infection, she noted.
Overall, measles kills between 1 and 3 people infected per thousand, mostly children.
Vaccine Misinformation Playing a Role
Vaccine misinformation is partly behind the uptick, and while many cases are mild, “this can be a devastating disease,” said Joshua Barocas, MD, associate professor of medicine in the divisions of General Internal Medicine and Infectious Diseases at the University of Colorado School of Medicine.
“I’m a parent myself. Parents are flooded with tons of information, some of that time being misinformation,” he said at the media briefing. “If you are a parent who’s been on the fence [about vaccination], now is the time, given the outbreak potential and the outbreaks that we’re seeing.”
Vaccine misinformation “is about as old as vaccines themselves,” Dr. Lim said. Concerns about the MMR vaccine, which includes measles protection, are not new.
“It does seem to change periodically — new things bubble up, new ideas bubble up, and the problem is that it is like the old saying that ‘a lie can get halfway around the world before the truth can get its boots on.’ ” Social media helps to amplify vaccine misinformation, she said.
“You don’t want to scare people unnecessarily — but reminding people what these childhood diseases really look like and what they do is incredibly important,” Dr. Lim said. “It’s so much easier to see stories about potential side effects of vaccines than it is to see stories about parents whose children were in intensive care for 2 weeks with pneumonia because of a severe case of measles.”
Dr. Barocas said misinformation is sometimes deliberate, sometimes not. Regardless, “our job as infectious disease physicians and public health professionals is not necessarily to put the counternarrative out there, but to continue to advocate for what we know works based on the best science and the best evidence.”
“And there is no reason to believe that vaccines are anything but helpful when it comes to preventing measles,” he noted.
Lifelong Protection in Most Cases
The MMR vaccine, typically given as two doses in childhood, offers 93% and then 97% protection against the highly contagious virus. During the 2022-to-2023 school year, the measles vaccination rate among kindergarten children nationwide was 92%. That sounds like a high rate, Dr. Lim said, “but because measles is so contagious, vaccination rates need to be 95% or higher to contain transmission.”
One person with measles can infect anywhere from 12 to 18 other people, she said. When an infected person coughs or sneezes, tiny droplets spread through the air. “And if someone is unvaccinated and exposed, 9 times out of 10, that person will go on to develop the disease.” She said given the high transmission rate, measles often spreads within families to infect multiple children.
If you know you’re not vaccinated but exposed, the advice is to get the measles shot as quickly as possible. “There is a recommendation to receive the MMR vaccine within 72 hours as post-exposure prophylaxis,” Dr. Lim said. “That’s a tight time window, but if you can do that, it reduces the risk of developing measles significantly.”
If you’re unsure or do not remember getting vaccinated against measles as a young child, your health care provider may be able to search state registries for an answer. If that doesn’t work, getting revaccinated with the MMR vaccine as an adult is an option. “There is no shame in getting caught up now,” Dr. Barocas said.
Dr. Lim agreed. “There is really no downside to getting additional doses.”
A version of this article appeared on WebMD.com.
Just over 2 months into 2024, measles cases in the United States aren’t looking great.
The recent rise in cases across the U.S. is linked to unvaccinated travelers, lower than ideal vaccination rates, and misinformation, experts said.
The Centers for Disease Control and Prevention has identified 45 cases of measles in 17 jurisdictions across the U.S. As of March 7, the federal health agency reported measles cases in Arizona, California, Florida, Georgia, Illinois, Indiana, Louisiana, Maryland, Michigan, Minnesota, Missouri, New Jersey, New York City, Ohio, Pennsylvania, Virginia, and Washington.
As for the 45 cases, “that’s almost as many as we had for the entire calendar year of 2023,” said Sarah Lim, MD, a medical specialist at the Minnesota Department of Health. “So we’re really not off to a great start.” (For context, there were 58 officially reported measles cases last year.)
Chicago is having a measles outbreak — with eight cases reported so far. All but one case has been linked to a migrant child at a city shelter. Given the potential for rapid spread — measles is relatively rare here but potentially very serious — the CDC sent a team of experts to investigate and to help keep this outbreak from growing further.
Sometimes Deadly
About 30% of children have measles symptoms and about 25% end up hospitalized. Complications include diarrhea, a whole-body rash, ear infections that can lead to permanent deafness, and pneumonia. Pneumonia with measles can be so serious that 1 in 20 affected children die. Measles can also cause inflammation of the brain called encephalitis in about 1 in 1,000 children, sometimes causing epilepsy or permanent brain damage.
As with long COVID, some effects can last beyond the early infection. For example, measles “can wipe out immune memory that protects you against other bacterial and viral pathogens,” Dr. Lim said at a media briefing sponsored by the Infectious Diseases Society of America. This vulnerability to other infections can last up to 3 years after the early infection, she noted.
Overall, measles kills between 1 and 3 people infected per thousand, mostly children.
Vaccine Misinformation Playing a Role
Vaccine misinformation is partly behind the uptick, and while many cases are mild, “this can be a devastating disease,” said Joshua Barocas, MD, associate professor of medicine in the divisions of General Internal Medicine and Infectious Diseases at the University of Colorado School of Medicine.
“I’m a parent myself. Parents are flooded with tons of information, some of that time being misinformation,” he said at the media briefing. “If you are a parent who’s been on the fence [about vaccination], now is the time, given the outbreak potential and the outbreaks that we’re seeing.”
Vaccine misinformation “is about as old as vaccines themselves,” Dr. Lim said. Concerns about the MMR vaccine, which includes measles protection, are not new.
“It does seem to change periodically — new things bubble up, new ideas bubble up, and the problem is that it is like the old saying that ‘a lie can get halfway around the world before the truth can get its boots on.’ ” Social media helps to amplify vaccine misinformation, she said.
“You don’t want to scare people unnecessarily — but reminding people what these childhood diseases really look like and what they do is incredibly important,” Dr. Lim said. “It’s so much easier to see stories about potential side effects of vaccines than it is to see stories about parents whose children were in intensive care for 2 weeks with pneumonia because of a severe case of measles.”
Dr. Barocas said misinformation is sometimes deliberate, sometimes not. Regardless, “our job as infectious disease physicians and public health professionals is not necessarily to put the counternarrative out there, but to continue to advocate for what we know works based on the best science and the best evidence.”
“And there is no reason to believe that vaccines are anything but helpful when it comes to preventing measles,” he noted.
Lifelong Protection in Most Cases
The MMR vaccine, typically given as two doses in childhood, offers 93% and then 97% protection against the highly contagious virus. During the 2022-to-2023 school year, the measles vaccination rate among kindergarten children nationwide was 92%. That sounds like a high rate, Dr. Lim said, “but because measles is so contagious, vaccination rates need to be 95% or higher to contain transmission.”
One person with measles can infect anywhere from 12 to 18 other people, she said. When an infected person coughs or sneezes, tiny droplets spread through the air. “And if someone is unvaccinated and exposed, 9 times out of 10, that person will go on to develop the disease.” She said given the high transmission rate, measles often spreads within families to infect multiple children.
If you know you’re not vaccinated but exposed, the advice is to get the measles shot as quickly as possible. “There is a recommendation to receive the MMR vaccine within 72 hours as post-exposure prophylaxis,” Dr. Lim said. “That’s a tight time window, but if you can do that, it reduces the risk of developing measles significantly.”
If you’re unsure or do not remember getting vaccinated against measles as a young child, your health care provider may be able to search state registries for an answer. If that doesn’t work, getting revaccinated with the MMR vaccine as an adult is an option. “There is no shame in getting caught up now,” Dr. Barocas said.
Dr. Lim agreed. “There is really no downside to getting additional doses.”
A version of this article appeared on WebMD.com.
Just over 2 months into 2024, measles cases in the United States aren’t looking great.
The recent rise in cases across the U.S. is linked to unvaccinated travelers, lower than ideal vaccination rates, and misinformation, experts said.
The Centers for Disease Control and Prevention has identified 45 cases of measles in 17 jurisdictions across the U.S. As of March 7, the federal health agency reported measles cases in Arizona, California, Florida, Georgia, Illinois, Indiana, Louisiana, Maryland, Michigan, Minnesota, Missouri, New Jersey, New York City, Ohio, Pennsylvania, Virginia, and Washington.
As for the 45 cases, “that’s almost as many as we had for the entire calendar year of 2023,” said Sarah Lim, MD, a medical specialist at the Minnesota Department of Health. “So we’re really not off to a great start.” (For context, there were 58 officially reported measles cases last year.)
Chicago is having a measles outbreak — with eight cases reported so far. All but one case has been linked to a migrant child at a city shelter. Given the potential for rapid spread — measles is relatively rare here but potentially very serious — the CDC sent a team of experts to investigate and to help keep this outbreak from growing further.
Sometimes Deadly
About 30% of children have measles symptoms and about 25% end up hospitalized. Complications include diarrhea, a whole-body rash, ear infections that can lead to permanent deafness, and pneumonia. Pneumonia with measles can be so serious that 1 in 20 affected children die. Measles can also cause inflammation of the brain called encephalitis in about 1 in 1,000 children, sometimes causing epilepsy or permanent brain damage.
As with long COVID, some effects can last beyond the early infection. For example, measles “can wipe out immune memory that protects you against other bacterial and viral pathogens,” Dr. Lim said at a media briefing sponsored by the Infectious Diseases Society of America. This vulnerability to other infections can last up to 3 years after the early infection, she noted.
Overall, measles kills between 1 and 3 people infected per thousand, mostly children.
Vaccine Misinformation Playing a Role
Vaccine misinformation is partly behind the uptick, and while many cases are mild, “this can be a devastating disease,” said Joshua Barocas, MD, associate professor of medicine in the divisions of General Internal Medicine and Infectious Diseases at the University of Colorado School of Medicine.
“I’m a parent myself. Parents are flooded with tons of information, some of that time being misinformation,” he said at the media briefing. “If you are a parent who’s been on the fence [about vaccination], now is the time, given the outbreak potential and the outbreaks that we’re seeing.”
Vaccine misinformation “is about as old as vaccines themselves,” Dr. Lim said. Concerns about the MMR vaccine, which includes measles protection, are not new.
“It does seem to change periodically — new things bubble up, new ideas bubble up, and the problem is that it is like the old saying that ‘a lie can get halfway around the world before the truth can get its boots on.’ ” Social media helps to amplify vaccine misinformation, she said.
“You don’t want to scare people unnecessarily — but reminding people what these childhood diseases really look like and what they do is incredibly important,” Dr. Lim said. “It’s so much easier to see stories about potential side effects of vaccines than it is to see stories about parents whose children were in intensive care for 2 weeks with pneumonia because of a severe case of measles.”
Dr. Barocas said misinformation is sometimes deliberate, sometimes not. Regardless, “our job as infectious disease physicians and public health professionals is not necessarily to put the counternarrative out there, but to continue to advocate for what we know works based on the best science and the best evidence.”
“And there is no reason to believe that vaccines are anything but helpful when it comes to preventing measles,” he noted.
Lifelong Protection in Most Cases
The MMR vaccine, typically given as two doses in childhood, offers 93% and then 97% protection against the highly contagious virus. During the 2022-to-2023 school year, the measles vaccination rate among kindergarten children nationwide was 92%. That sounds like a high rate, Dr. Lim said, “but because measles is so contagious, vaccination rates need to be 95% or higher to contain transmission.”
One person with measles can infect anywhere from 12 to 18 other people, she said. When an infected person coughs or sneezes, tiny droplets spread through the air. “And if someone is unvaccinated and exposed, 9 times out of 10, that person will go on to develop the disease.” She said given the high transmission rate, measles often spreads within families to infect multiple children.
If you know you’re not vaccinated but exposed, the advice is to get the measles shot as quickly as possible. “There is a recommendation to receive the MMR vaccine within 72 hours as post-exposure prophylaxis,” Dr. Lim said. “That’s a tight time window, but if you can do that, it reduces the risk of developing measles significantly.”
If you’re unsure or do not remember getting vaccinated against measles as a young child, your health care provider may be able to search state registries for an answer. If that doesn’t work, getting revaccinated with the MMR vaccine as an adult is an option. “There is no shame in getting caught up now,” Dr. Barocas said.
Dr. Lim agreed. “There is really no downside to getting additional doses.”
A version of this article appeared on WebMD.com.
Is Melatonin a Valuable Resource or Children’s Health Risk?
For Courtney Stinson, ensuring her daughter’s comfort is a constant battle against the challenges of congenital myopathy. At 9 years old, she relies on a ventilator to breathe, has multiple respiratory treatments daily, and is under the constant care of rotating skilled caregivers. Last year alone, she endured 36 doctor appointments.
To ease her daughter’s struggles with sleep, and after consulting a pediatrician, Ms. Stinson turned to melatonin, a hormone naturally produced by the body to manage sleep. She gave her daughter a low dose of melatonin and saw significant improvement in her ability to settle down, especially when her mind raced.
“She would have such a hard time sleeping when everything is swirling in her head,” said Ms. Stinson, a mother of two who lives in Milan, Michigan. “It’s really been helpful when her brain is moving 100 miles an hour.”
Melatonin is sold without a prescription as a sleep aid in the form of a supplement.
Recent data from the CDC illustrates one of these drawbacks: a significant surge in accidental melatonin ingestion among young children over the past 2 decades.
Between 2012 and 2021, poison center calls related to pediatric melatonin exposures skyrocketed by 530%, while emergency department visits for unsupervised melatonin ingestion by infants and young children surged by 420% from 2009 to 2020, according to the CDC report.
Between 2019 and 2022, an estimated 10,930 emergency room visits were linked to 295 cases of children under the age of 6 ingesting melatonin. These incidents accounted for 7.1% of all emergency department visits for medication exposures in this age group, according to the report.
The share of U.S. adults using melatonin increased from 0.4% during 1999 to 2000 to 2.1% during 2017 to 2018.
Doctors say the escalating number of melatonin-related incidents underscores the need for increased awareness and safety measures to protect young children from unintentional overdose, which can cause nausea, vomiting, diarrhea, dizziness, and confusion.
“I do think there is a safe way to use it in certain children, but it should only be used under the guidance of a physician,” said Laura Sterni, MD, director of the Johns Hopkins Pediatric Sleep Center. “There are dangers to using it without that guidance.”
Almost 1 in 5 Children Use Melatonin
Nearly 1 in 5 school-age children and preteens take melatonin for sleep, according to research published last year in JAMA Pediatrics, which also found that 18% of children between 5 and 9 take the supplement.
The American Academy of Sleep Medicine issued a warning in 2022 advising parents to approach the sleep aid with caution.
“While melatonin can be useful in treating certain sleep-wake disorders, like jet lag, there is much less evidence it can help healthy children or adults fall asleep faster,” M. Adeel Rishi, MD, vice chair of the Academy of Sleep Medicine’s Public Safety Committee, warned on the academy’s site. “Instead of turning to melatonin, parents should work on encouraging their children to develop good sleep habits, like setting a regular bedtime and wake time, having a bedtime routine, and limiting screen time as bedtime approaches.”
What’s the Best Way to Give Kids Melatonin?
Melatonin has been found to work well for children with attention deficit hyperactive disorder (ADHD), autism spectrum disorder, or other conditions like blindness that can hinder the development of a normal circadian rhythm.
But beyond consulting a pediatrician, caregivers whose children are otherwise healthy should consider trying other approaches to sleep disruption first, Dr. Sterni said, and things like proper sleep hygiene and anxiety should be addressed first.
“Most sleep problems in children really should be managed with behavioral therapy alone,” she said. “To first pull out a medication to treat that I think is the wrong approach.”
Sterni also recommends starting with the lowest dose possible, which is 0.5 milligrams, with the help of pediatrician. It should be taken 1 to 2 hours before bedtime and 2 hours after their last meal, she said.
But she notes that because melatonin is sold as a supplement and is not regulated by the FDA, it is impossible to know the exact amount in each dose.
According to JAMA, out of 25 supplements of melatonin, most of the products contained up to 50% more melatonin than what was listed.
Dangers of Keeping It Within Reach
One of the biggest dangers for children is that melatonin is often sold in the form of gummies or chewable tablets — things that appeal to children, said Jenna Wheeler, MD, a pediatric critical care doctor at Orlando Health Arnold Palmer Hospital for Children.
Because it is sold as a supplement, there are no child-safe packaging requirements.
“From a critical care standpoint, just remember to keep it up high, not on the nightstand or in a drawer,” Dr. Wheeler said. “A child may eat the whole bottle, thinking, ‘This is just like fruits snacks.’ ”
She noted that the amount people need is often lower than what they buy at the store, and that regardless of whether it is used in proper amounts, it is not meant to be a long-term supplement — for adults or for children.
“Like with anything that’s out there, it’s all about how it’s used,” Dr. Wheeler said. “The problem is when kids get into it accidentally or when it’s not used appropriately.”
A version of this article appeared on WebMD.com.
For Courtney Stinson, ensuring her daughter’s comfort is a constant battle against the challenges of congenital myopathy. At 9 years old, she relies on a ventilator to breathe, has multiple respiratory treatments daily, and is under the constant care of rotating skilled caregivers. Last year alone, she endured 36 doctor appointments.
To ease her daughter’s struggles with sleep, and after consulting a pediatrician, Ms. Stinson turned to melatonin, a hormone naturally produced by the body to manage sleep. She gave her daughter a low dose of melatonin and saw significant improvement in her ability to settle down, especially when her mind raced.
“She would have such a hard time sleeping when everything is swirling in her head,” said Ms. Stinson, a mother of two who lives in Milan, Michigan. “It’s really been helpful when her brain is moving 100 miles an hour.”
Melatonin is sold without a prescription as a sleep aid in the form of a supplement.
Recent data from the CDC illustrates one of these drawbacks: a significant surge in accidental melatonin ingestion among young children over the past 2 decades.
Between 2012 and 2021, poison center calls related to pediatric melatonin exposures skyrocketed by 530%, while emergency department visits for unsupervised melatonin ingestion by infants and young children surged by 420% from 2009 to 2020, according to the CDC report.
Between 2019 and 2022, an estimated 10,930 emergency room visits were linked to 295 cases of children under the age of 6 ingesting melatonin. These incidents accounted for 7.1% of all emergency department visits for medication exposures in this age group, according to the report.
The share of U.S. adults using melatonin increased from 0.4% during 1999 to 2000 to 2.1% during 2017 to 2018.
Doctors say the escalating number of melatonin-related incidents underscores the need for increased awareness and safety measures to protect young children from unintentional overdose, which can cause nausea, vomiting, diarrhea, dizziness, and confusion.
“I do think there is a safe way to use it in certain children, but it should only be used under the guidance of a physician,” said Laura Sterni, MD, director of the Johns Hopkins Pediatric Sleep Center. “There are dangers to using it without that guidance.”
Almost 1 in 5 Children Use Melatonin
Nearly 1 in 5 school-age children and preteens take melatonin for sleep, according to research published last year in JAMA Pediatrics, which also found that 18% of children between 5 and 9 take the supplement.
The American Academy of Sleep Medicine issued a warning in 2022 advising parents to approach the sleep aid with caution.
“While melatonin can be useful in treating certain sleep-wake disorders, like jet lag, there is much less evidence it can help healthy children or adults fall asleep faster,” M. Adeel Rishi, MD, vice chair of the Academy of Sleep Medicine’s Public Safety Committee, warned on the academy’s site. “Instead of turning to melatonin, parents should work on encouraging their children to develop good sleep habits, like setting a regular bedtime and wake time, having a bedtime routine, and limiting screen time as bedtime approaches.”
What’s the Best Way to Give Kids Melatonin?
Melatonin has been found to work well for children with attention deficit hyperactive disorder (ADHD), autism spectrum disorder, or other conditions like blindness that can hinder the development of a normal circadian rhythm.
But beyond consulting a pediatrician, caregivers whose children are otherwise healthy should consider trying other approaches to sleep disruption first, Dr. Sterni said, and things like proper sleep hygiene and anxiety should be addressed first.
“Most sleep problems in children really should be managed with behavioral therapy alone,” she said. “To first pull out a medication to treat that I think is the wrong approach.”
Sterni also recommends starting with the lowest dose possible, which is 0.5 milligrams, with the help of pediatrician. It should be taken 1 to 2 hours before bedtime and 2 hours after their last meal, she said.
But she notes that because melatonin is sold as a supplement and is not regulated by the FDA, it is impossible to know the exact amount in each dose.
According to JAMA, out of 25 supplements of melatonin, most of the products contained up to 50% more melatonin than what was listed.
Dangers of Keeping It Within Reach
One of the biggest dangers for children is that melatonin is often sold in the form of gummies or chewable tablets — things that appeal to children, said Jenna Wheeler, MD, a pediatric critical care doctor at Orlando Health Arnold Palmer Hospital for Children.
Because it is sold as a supplement, there are no child-safe packaging requirements.
“From a critical care standpoint, just remember to keep it up high, not on the nightstand or in a drawer,” Dr. Wheeler said. “A child may eat the whole bottle, thinking, ‘This is just like fruits snacks.’ ”
She noted that the amount people need is often lower than what they buy at the store, and that regardless of whether it is used in proper amounts, it is not meant to be a long-term supplement — for adults or for children.
“Like with anything that’s out there, it’s all about how it’s used,” Dr. Wheeler said. “The problem is when kids get into it accidentally or when it’s not used appropriately.”
A version of this article appeared on WebMD.com.
For Courtney Stinson, ensuring her daughter’s comfort is a constant battle against the challenges of congenital myopathy. At 9 years old, she relies on a ventilator to breathe, has multiple respiratory treatments daily, and is under the constant care of rotating skilled caregivers. Last year alone, she endured 36 doctor appointments.
To ease her daughter’s struggles with sleep, and after consulting a pediatrician, Ms. Stinson turned to melatonin, a hormone naturally produced by the body to manage sleep. She gave her daughter a low dose of melatonin and saw significant improvement in her ability to settle down, especially when her mind raced.
“She would have such a hard time sleeping when everything is swirling in her head,” said Ms. Stinson, a mother of two who lives in Milan, Michigan. “It’s really been helpful when her brain is moving 100 miles an hour.”
Melatonin is sold without a prescription as a sleep aid in the form of a supplement.
Recent data from the CDC illustrates one of these drawbacks: a significant surge in accidental melatonin ingestion among young children over the past 2 decades.
Between 2012 and 2021, poison center calls related to pediatric melatonin exposures skyrocketed by 530%, while emergency department visits for unsupervised melatonin ingestion by infants and young children surged by 420% from 2009 to 2020, according to the CDC report.
Between 2019 and 2022, an estimated 10,930 emergency room visits were linked to 295 cases of children under the age of 6 ingesting melatonin. These incidents accounted for 7.1% of all emergency department visits for medication exposures in this age group, according to the report.
The share of U.S. adults using melatonin increased from 0.4% during 1999 to 2000 to 2.1% during 2017 to 2018.
Doctors say the escalating number of melatonin-related incidents underscores the need for increased awareness and safety measures to protect young children from unintentional overdose, which can cause nausea, vomiting, diarrhea, dizziness, and confusion.
“I do think there is a safe way to use it in certain children, but it should only be used under the guidance of a physician,” said Laura Sterni, MD, director of the Johns Hopkins Pediatric Sleep Center. “There are dangers to using it without that guidance.”
Almost 1 in 5 Children Use Melatonin
Nearly 1 in 5 school-age children and preteens take melatonin for sleep, according to research published last year in JAMA Pediatrics, which also found that 18% of children between 5 and 9 take the supplement.
The American Academy of Sleep Medicine issued a warning in 2022 advising parents to approach the sleep aid with caution.
“While melatonin can be useful in treating certain sleep-wake disorders, like jet lag, there is much less evidence it can help healthy children or adults fall asleep faster,” M. Adeel Rishi, MD, vice chair of the Academy of Sleep Medicine’s Public Safety Committee, warned on the academy’s site. “Instead of turning to melatonin, parents should work on encouraging their children to develop good sleep habits, like setting a regular bedtime and wake time, having a bedtime routine, and limiting screen time as bedtime approaches.”
What’s the Best Way to Give Kids Melatonin?
Melatonin has been found to work well for children with attention deficit hyperactive disorder (ADHD), autism spectrum disorder, or other conditions like blindness that can hinder the development of a normal circadian rhythm.
But beyond consulting a pediatrician, caregivers whose children are otherwise healthy should consider trying other approaches to sleep disruption first, Dr. Sterni said, and things like proper sleep hygiene and anxiety should be addressed first.
“Most sleep problems in children really should be managed with behavioral therapy alone,” she said. “To first pull out a medication to treat that I think is the wrong approach.”
Sterni also recommends starting with the lowest dose possible, which is 0.5 milligrams, with the help of pediatrician. It should be taken 1 to 2 hours before bedtime and 2 hours after their last meal, she said.
But she notes that because melatonin is sold as a supplement and is not regulated by the FDA, it is impossible to know the exact amount in each dose.
According to JAMA, out of 25 supplements of melatonin, most of the products contained up to 50% more melatonin than what was listed.
Dangers of Keeping It Within Reach
One of the biggest dangers for children is that melatonin is often sold in the form of gummies or chewable tablets — things that appeal to children, said Jenna Wheeler, MD, a pediatric critical care doctor at Orlando Health Arnold Palmer Hospital for Children.
Because it is sold as a supplement, there are no child-safe packaging requirements.
“From a critical care standpoint, just remember to keep it up high, not on the nightstand or in a drawer,” Dr. Wheeler said. “A child may eat the whole bottle, thinking, ‘This is just like fruits snacks.’ ”
She noted that the amount people need is often lower than what they buy at the store, and that regardless of whether it is used in proper amounts, it is not meant to be a long-term supplement — for adults or for children.
“Like with anything that’s out there, it’s all about how it’s used,” Dr. Wheeler said. “The problem is when kids get into it accidentally or when it’s not used appropriately.”
A version of this article appeared on WebMD.com.
COVID Levels Decline, but Other Viruses Remain High
COVID-19 may be headed toward a springtime retreat.
The indication comes from declining levels of SARS-CoV-2 being detected in wastewater over the past 3 weeks. Virus levels are already considered “low” throughout western U.S. states. Detections are at medium levels in the Midwest and South, while high levels persist in the Northeast, according to WastewaterSCAN.
But it’s not time to let your guard down because high levels of other viruses that cause stomach and respiratory illnesses continue to circulate widely nationwide. Wastewater data currently shows threats from flu, RSV, norovirus, and rotavirus.
The rate of positive flu tests reported to the CDC had been a downward trend since peaking around a rate of 16% in mid-January, but positive test rates are now climbing again, with the most recent weekly rate back around 15%. So far this flu season, 116 children and an estimated 20,000 adults have died from the flu, according to the CDC’s weekly flu publication, FluView.
RSV wastewater detection remains high, especially in the Midwest and Northeast, WastewaterSCAN data shows. But positive RSV test results reported to the CDC are at the lowest point of the 2023 to 2024 season, with less than 2,000 positive results listed for the week of March 9, down from a peak of more than 14,000 cases around Christmas.
About 12% of norovirus tests reported to the CDC in the last 3 weeks of February were positive, mirroring an upward trend observed during the same time period last year. In 2023, norovirus peaked in the U.S. in March with a positive test rate around 16%, CDC data show.
Last year, COVID also followed a downward springtime trend. Around this time last year, there were about 20,000 weekly hospital admissions due to COVID-19, compared to just over 13,000 in early March this year. All COVID metrics, including the positive test rate, hospitalizations, and ER visits, are currently trending downward, the CDC’s COVID Data Tracker indicates. The positive COVID test rate is 5%, and just 1% of ER visits in the U.S. involve a COVID-19 diagnosis.
“We’re seeing a downward trend, which is fantastic,” Marlene Wolfe, PhD, WastewaterSCAN’s program director, told USA Today. “Hopefully, that pattern continues as we enjoy some warmer weather and longer daylight.”
A version of this article appeared on WebMD.com.
COVID-19 may be headed toward a springtime retreat.
The indication comes from declining levels of SARS-CoV-2 being detected in wastewater over the past 3 weeks. Virus levels are already considered “low” throughout western U.S. states. Detections are at medium levels in the Midwest and South, while high levels persist in the Northeast, according to WastewaterSCAN.
But it’s not time to let your guard down because high levels of other viruses that cause stomach and respiratory illnesses continue to circulate widely nationwide. Wastewater data currently shows threats from flu, RSV, norovirus, and rotavirus.
The rate of positive flu tests reported to the CDC had been a downward trend since peaking around a rate of 16% in mid-January, but positive test rates are now climbing again, with the most recent weekly rate back around 15%. So far this flu season, 116 children and an estimated 20,000 adults have died from the flu, according to the CDC’s weekly flu publication, FluView.
RSV wastewater detection remains high, especially in the Midwest and Northeast, WastewaterSCAN data shows. But positive RSV test results reported to the CDC are at the lowest point of the 2023 to 2024 season, with less than 2,000 positive results listed for the week of March 9, down from a peak of more than 14,000 cases around Christmas.
About 12% of norovirus tests reported to the CDC in the last 3 weeks of February were positive, mirroring an upward trend observed during the same time period last year. In 2023, norovirus peaked in the U.S. in March with a positive test rate around 16%, CDC data show.
Last year, COVID also followed a downward springtime trend. Around this time last year, there were about 20,000 weekly hospital admissions due to COVID-19, compared to just over 13,000 in early March this year. All COVID metrics, including the positive test rate, hospitalizations, and ER visits, are currently trending downward, the CDC’s COVID Data Tracker indicates. The positive COVID test rate is 5%, and just 1% of ER visits in the U.S. involve a COVID-19 diagnosis.
“We’re seeing a downward trend, which is fantastic,” Marlene Wolfe, PhD, WastewaterSCAN’s program director, told USA Today. “Hopefully, that pattern continues as we enjoy some warmer weather and longer daylight.”
A version of this article appeared on WebMD.com.
COVID-19 may be headed toward a springtime retreat.
The indication comes from declining levels of SARS-CoV-2 being detected in wastewater over the past 3 weeks. Virus levels are already considered “low” throughout western U.S. states. Detections are at medium levels in the Midwest and South, while high levels persist in the Northeast, according to WastewaterSCAN.
But it’s not time to let your guard down because high levels of other viruses that cause stomach and respiratory illnesses continue to circulate widely nationwide. Wastewater data currently shows threats from flu, RSV, norovirus, and rotavirus.
The rate of positive flu tests reported to the CDC had been a downward trend since peaking around a rate of 16% in mid-January, but positive test rates are now climbing again, with the most recent weekly rate back around 15%. So far this flu season, 116 children and an estimated 20,000 adults have died from the flu, according to the CDC’s weekly flu publication, FluView.
RSV wastewater detection remains high, especially in the Midwest and Northeast, WastewaterSCAN data shows. But positive RSV test results reported to the CDC are at the lowest point of the 2023 to 2024 season, with less than 2,000 positive results listed for the week of March 9, down from a peak of more than 14,000 cases around Christmas.
About 12% of norovirus tests reported to the CDC in the last 3 weeks of February were positive, mirroring an upward trend observed during the same time period last year. In 2023, norovirus peaked in the U.S. in March with a positive test rate around 16%, CDC data show.
Last year, COVID also followed a downward springtime trend. Around this time last year, there were about 20,000 weekly hospital admissions due to COVID-19, compared to just over 13,000 in early March this year. All COVID metrics, including the positive test rate, hospitalizations, and ER visits, are currently trending downward, the CDC’s COVID Data Tracker indicates. The positive COVID test rate is 5%, and just 1% of ER visits in the U.S. involve a COVID-19 diagnosis.
“We’re seeing a downward trend, which is fantastic,” Marlene Wolfe, PhD, WastewaterSCAN’s program director, told USA Today. “Hopefully, that pattern continues as we enjoy some warmer weather and longer daylight.”
A version of this article appeared on WebMD.com.
Systematic Viral Testing in Emergency Departments Has Limited Benefit for General Population
Routine use of rapid respiratory virus testing in the emergency department (ED) appears to show limited benefit among patients with signs and symptoms of acute respiratory infection (ARI), according to a new study.
Rapid viral testing wasn’t associated with reduced antibiotic use, ED length of stay, or rates of ED return visits or hospitalization. However, testing was associated with a small increase in antiviral prescriptions and a small reduction in blood tests and chest x-rays.
“Our interest in studying the benefits of rapid viral testing in emergency departments comes from a commitment to diagnostic stewardship — ensuring that the right tests are administered to the right patients at the right time while also curbing overuse,” said lead author Tilmann Schober, MD, a resident in pediatric infectious disease at McGill University and Montreal Children’s Hospital.
“Following the SARS-CoV-2 pandemic, we have seen a surge in the availability of rapid viral testing, including molecular multiplex panels,” he said. “However, the actual impact of these advancements on patient care in the ED remains uncertain.”
The study was published online on March 4, 2024, in JAMA Internal Medicine).
Rapid Viral Testing
Dr. Schober and colleagues conducted a systematic review and meta-analysis of 11 randomized clinical trials to understand whether rapid testing for respiratory viruses was associated with patient treatment in the ED.
In particular, the research team looked at whether testing in patients with suspected ARI was associated with decreased antibiotic use, ancillary tests, ED length of stay, ED return visits, hospitalization, and increased influenza antiviral treatment.
Among the trials, seven studies included molecular testing, and eight used multiplex panels, including influenza and respiratory syncytial virus (RSV), influenza/RSV/adenovirus/parainfluenza, or a panel of 15 or more respiratory viruses. No study evaluated testing for SARS-CoV-2. The research team reported risk ratios (RRs) and risk difference estimates.
In general, routine rapid viral testing was associated with higher use of influenza antivirals (RR, 1.33) and lower use of chest radiography (RR, 0.88) and blood tests (RR, 0.81). However, the magnitude of these effects was small. For instance, to achieve one additional viral prescription, 70 patients would need to be tested, and to save one x-ray, 30 patients would need to be tested.
“This suggests that, while statistically significant, the practical impact of these secondary outcomes may not justify the extensive effort and resources involved in widespread testing,” Dr. Schober said.
In addition, there was no association between rapid testing and antibiotic use (RR, 0.99), urine testing (RR, 0.95), ED length of stay (0 h), return visits (RR, 0.93), or hospitalization (RR, 1.01).
Notably, there was no association between rapid viral testing and antibiotic use in any prespecified subgroup based on age, test method, publication date, number of viral targets, risk of bias, or industry funding, the authors said. They concluded that rapid virus testing should be reserved for patients for whom the testing will change treatment, such as high-risk patients or those with severe disease.
“It’s crucial to note that our study specifically evaluated the impact of systematic testing of patients with signs and symptoms of acute respiratory infection. Our findings do not advocate against rapid respiratory virus testing in general,” Dr. Schober said. “There is well-established evidence supporting the benefits of viral testing in certain contexts, such as hospitalized patients, to guide infection control practices or in specific high-risk populations.”
Future Research
Additional studies should look at testing among subgroups, particularly those with high-risk conditions, the study authors wrote. In addition, the research team would like to study the implementation of novel diagnostic stewardship programs as compared with well-established antibiotic stewardship programs.
“Acute respiratory tract illnesses represent one of the most common reasons for being evaluated in an acute care setting, especially in pediatrics, and these visits have traditionally resulted in excessive antibiotic prescribing, despite the etiology of the infection mostly being viral,” said Suchitra Rao, MBBS, associate professor of pediatrics at the University of Colorado School of Medicine and associate medical director of infection prevention and control at Children’s Hospital Colorado, Aurora.
Dr. Rao, who wasn’t involved with this study, has surveyed ED providers about respiratory viral testing and changes in clinical decision-making. She and colleagues found that providers most commonly changed clinical decision-making while prescribing an antiviral if influenza was detected or withholding antivirals if influenza wasn’t detected.
“Multiplex testing for respiratory viruses and atypical bacteria is becoming more widespread, with newer-generation platforms having shorter turnaround times, and offers the potential to impact point-of-care decision-making,” she said. “However, these tests are expensive, and more studies are needed to explore whether respiratory pathogen panel testing in the acute care setting has an impact in terms of reduced antibiotic use as well as other outcomes, including ED visits, health-seeking behaviors, and hospitalization.”
For instance, more recent studies around SARS-CoV-2 with newer-generation panels may make a difference, as well as multiplex panels that include numerous viral targets, she said.
“Further RCTs are required to evaluate the impact of influenza/RSV/SARS-CoV-2 panels, as well as respiratory pathogen panel testing in conjunction with antimicrobial and diagnostic stewardship efforts, which have been associated with improved outcomes for other rapid molecular platforms, such as blood culture identification panels,” Rao said.
The study was funded by the Research Institute of the McGill University Health Center. Dr. Schober reported no disclosures, and several study authors reported grants or personal fees from companies outside of this research. Dr. Rao disclosed no relevant relationships.
A version of this article appeared on Medscape.com .
Routine use of rapid respiratory virus testing in the emergency department (ED) appears to show limited benefit among patients with signs and symptoms of acute respiratory infection (ARI), according to a new study.
Rapid viral testing wasn’t associated with reduced antibiotic use, ED length of stay, or rates of ED return visits or hospitalization. However, testing was associated with a small increase in antiviral prescriptions and a small reduction in blood tests and chest x-rays.
“Our interest in studying the benefits of rapid viral testing in emergency departments comes from a commitment to diagnostic stewardship — ensuring that the right tests are administered to the right patients at the right time while also curbing overuse,” said lead author Tilmann Schober, MD, a resident in pediatric infectious disease at McGill University and Montreal Children’s Hospital.
“Following the SARS-CoV-2 pandemic, we have seen a surge in the availability of rapid viral testing, including molecular multiplex panels,” he said. “However, the actual impact of these advancements on patient care in the ED remains uncertain.”
The study was published online on March 4, 2024, in JAMA Internal Medicine).
Rapid Viral Testing
Dr. Schober and colleagues conducted a systematic review and meta-analysis of 11 randomized clinical trials to understand whether rapid testing for respiratory viruses was associated with patient treatment in the ED.
In particular, the research team looked at whether testing in patients with suspected ARI was associated with decreased antibiotic use, ancillary tests, ED length of stay, ED return visits, hospitalization, and increased influenza antiviral treatment.
Among the trials, seven studies included molecular testing, and eight used multiplex panels, including influenza and respiratory syncytial virus (RSV), influenza/RSV/adenovirus/parainfluenza, or a panel of 15 or more respiratory viruses. No study evaluated testing for SARS-CoV-2. The research team reported risk ratios (RRs) and risk difference estimates.
In general, routine rapid viral testing was associated with higher use of influenza antivirals (RR, 1.33) and lower use of chest radiography (RR, 0.88) and blood tests (RR, 0.81). However, the magnitude of these effects was small. For instance, to achieve one additional viral prescription, 70 patients would need to be tested, and to save one x-ray, 30 patients would need to be tested.
“This suggests that, while statistically significant, the practical impact of these secondary outcomes may not justify the extensive effort and resources involved in widespread testing,” Dr. Schober said.
In addition, there was no association between rapid testing and antibiotic use (RR, 0.99), urine testing (RR, 0.95), ED length of stay (0 h), return visits (RR, 0.93), or hospitalization (RR, 1.01).
Notably, there was no association between rapid viral testing and antibiotic use in any prespecified subgroup based on age, test method, publication date, number of viral targets, risk of bias, or industry funding, the authors said. They concluded that rapid virus testing should be reserved for patients for whom the testing will change treatment, such as high-risk patients or those with severe disease.
“It’s crucial to note that our study specifically evaluated the impact of systematic testing of patients with signs and symptoms of acute respiratory infection. Our findings do not advocate against rapid respiratory virus testing in general,” Dr. Schober said. “There is well-established evidence supporting the benefits of viral testing in certain contexts, such as hospitalized patients, to guide infection control practices or in specific high-risk populations.”
Future Research
Additional studies should look at testing among subgroups, particularly those with high-risk conditions, the study authors wrote. In addition, the research team would like to study the implementation of novel diagnostic stewardship programs as compared with well-established antibiotic stewardship programs.
“Acute respiratory tract illnesses represent one of the most common reasons for being evaluated in an acute care setting, especially in pediatrics, and these visits have traditionally resulted in excessive antibiotic prescribing, despite the etiology of the infection mostly being viral,” said Suchitra Rao, MBBS, associate professor of pediatrics at the University of Colorado School of Medicine and associate medical director of infection prevention and control at Children’s Hospital Colorado, Aurora.
Dr. Rao, who wasn’t involved with this study, has surveyed ED providers about respiratory viral testing and changes in clinical decision-making. She and colleagues found that providers most commonly changed clinical decision-making while prescribing an antiviral if influenza was detected or withholding antivirals if influenza wasn’t detected.
“Multiplex testing for respiratory viruses and atypical bacteria is becoming more widespread, with newer-generation platforms having shorter turnaround times, and offers the potential to impact point-of-care decision-making,” she said. “However, these tests are expensive, and more studies are needed to explore whether respiratory pathogen panel testing in the acute care setting has an impact in terms of reduced antibiotic use as well as other outcomes, including ED visits, health-seeking behaviors, and hospitalization.”
For instance, more recent studies around SARS-CoV-2 with newer-generation panels may make a difference, as well as multiplex panels that include numerous viral targets, she said.
“Further RCTs are required to evaluate the impact of influenza/RSV/SARS-CoV-2 panels, as well as respiratory pathogen panel testing in conjunction with antimicrobial and diagnostic stewardship efforts, which have been associated with improved outcomes for other rapid molecular platforms, such as blood culture identification panels,” Rao said.
The study was funded by the Research Institute of the McGill University Health Center. Dr. Schober reported no disclosures, and several study authors reported grants or personal fees from companies outside of this research. Dr. Rao disclosed no relevant relationships.
A version of this article appeared on Medscape.com .
Routine use of rapid respiratory virus testing in the emergency department (ED) appears to show limited benefit among patients with signs and symptoms of acute respiratory infection (ARI), according to a new study.
Rapid viral testing wasn’t associated with reduced antibiotic use, ED length of stay, or rates of ED return visits or hospitalization. However, testing was associated with a small increase in antiviral prescriptions and a small reduction in blood tests and chest x-rays.
“Our interest in studying the benefits of rapid viral testing in emergency departments comes from a commitment to diagnostic stewardship — ensuring that the right tests are administered to the right patients at the right time while also curbing overuse,” said lead author Tilmann Schober, MD, a resident in pediatric infectious disease at McGill University and Montreal Children’s Hospital.
“Following the SARS-CoV-2 pandemic, we have seen a surge in the availability of rapid viral testing, including molecular multiplex panels,” he said. “However, the actual impact of these advancements on patient care in the ED remains uncertain.”
The study was published online on March 4, 2024, in JAMA Internal Medicine).
Rapid Viral Testing
Dr. Schober and colleagues conducted a systematic review and meta-analysis of 11 randomized clinical trials to understand whether rapid testing for respiratory viruses was associated with patient treatment in the ED.
In particular, the research team looked at whether testing in patients with suspected ARI was associated with decreased antibiotic use, ancillary tests, ED length of stay, ED return visits, hospitalization, and increased influenza antiviral treatment.
Among the trials, seven studies included molecular testing, and eight used multiplex panels, including influenza and respiratory syncytial virus (RSV), influenza/RSV/adenovirus/parainfluenza, or a panel of 15 or more respiratory viruses. No study evaluated testing for SARS-CoV-2. The research team reported risk ratios (RRs) and risk difference estimates.
In general, routine rapid viral testing was associated with higher use of influenza antivirals (RR, 1.33) and lower use of chest radiography (RR, 0.88) and blood tests (RR, 0.81). However, the magnitude of these effects was small. For instance, to achieve one additional viral prescription, 70 patients would need to be tested, and to save one x-ray, 30 patients would need to be tested.
“This suggests that, while statistically significant, the practical impact of these secondary outcomes may not justify the extensive effort and resources involved in widespread testing,” Dr. Schober said.
In addition, there was no association between rapid testing and antibiotic use (RR, 0.99), urine testing (RR, 0.95), ED length of stay (0 h), return visits (RR, 0.93), or hospitalization (RR, 1.01).
Notably, there was no association between rapid viral testing and antibiotic use in any prespecified subgroup based on age, test method, publication date, number of viral targets, risk of bias, or industry funding, the authors said. They concluded that rapid virus testing should be reserved for patients for whom the testing will change treatment, such as high-risk patients or those with severe disease.
“It’s crucial to note that our study specifically evaluated the impact of systematic testing of patients with signs and symptoms of acute respiratory infection. Our findings do not advocate against rapid respiratory virus testing in general,” Dr. Schober said. “There is well-established evidence supporting the benefits of viral testing in certain contexts, such as hospitalized patients, to guide infection control practices or in specific high-risk populations.”
Future Research
Additional studies should look at testing among subgroups, particularly those with high-risk conditions, the study authors wrote. In addition, the research team would like to study the implementation of novel diagnostic stewardship programs as compared with well-established antibiotic stewardship programs.
“Acute respiratory tract illnesses represent one of the most common reasons for being evaluated in an acute care setting, especially in pediatrics, and these visits have traditionally resulted in excessive antibiotic prescribing, despite the etiology of the infection mostly being viral,” said Suchitra Rao, MBBS, associate professor of pediatrics at the University of Colorado School of Medicine and associate medical director of infection prevention and control at Children’s Hospital Colorado, Aurora.
Dr. Rao, who wasn’t involved with this study, has surveyed ED providers about respiratory viral testing and changes in clinical decision-making. She and colleagues found that providers most commonly changed clinical decision-making while prescribing an antiviral if influenza was detected or withholding antivirals if influenza wasn’t detected.
“Multiplex testing for respiratory viruses and atypical bacteria is becoming more widespread, with newer-generation platforms having shorter turnaround times, and offers the potential to impact point-of-care decision-making,” she said. “However, these tests are expensive, and more studies are needed to explore whether respiratory pathogen panel testing in the acute care setting has an impact in terms of reduced antibiotic use as well as other outcomes, including ED visits, health-seeking behaviors, and hospitalization.”
For instance, more recent studies around SARS-CoV-2 with newer-generation panels may make a difference, as well as multiplex panels that include numerous viral targets, she said.
“Further RCTs are required to evaluate the impact of influenza/RSV/SARS-CoV-2 panels, as well as respiratory pathogen panel testing in conjunction with antimicrobial and diagnostic stewardship efforts, which have been associated with improved outcomes for other rapid molecular platforms, such as blood culture identification panels,” Rao said.
The study was funded by the Research Institute of the McGill University Health Center. Dr. Schober reported no disclosures, and several study authors reported grants or personal fees from companies outside of this research. Dr. Rao disclosed no relevant relationships.
A version of this article appeared on Medscape.com .
Hormones and Viruses Influence Each Other: Consider These Connections in Your Patients
Stefan Bornstein, MD, PhD, professor, made it clear during a press conference at the 67th Congress of the German Society of Endocrinology (DGE) that there is more than one interaction between them. Nowadays, one can almost speak of an “endocrine virology and even of the virome as an additional, hormonally metabolically active gland,” said Dr. Bornstein, who will receive the Berthold Medal from the DGE in 2024.
Many questions remain unanswered: “We need a better understanding of the interaction of hormone systems with infectious agents — from basics to therapeutic applications,” emphasized the director of the Medical Clinic and Polyclinic III and the Center for Internal Medicine at the Carl Gustav Carus University Hospital, Dresden, Germany.
If infectious diseases could trigger diabetes and other metabolic diseases, this means that “through vaccination programs, we may be able to prevent the occurrence of common metabolic diseases such as diabetes,” said Dr. Bornstein. He highlighted that many people who experienced severe COVID-19 during the pandemic, or died from it, exhibited diabetes or a pre-metabolic syndrome.
“SARS-CoV-2 has utilized an endocrine signaling pathway to invade our cells and cause damage in the organ systems and inflammation,” said Dr. Bornstein. Conversely, it is now known that infections with coronaviruses or other infectious agents like influenza can significantly worsen metabolic status, diabetes, and other endocrine diseases.
SARS-CoV-2 Infects the Beta Cells
Data from the COVID-19 pandemic showed that the likelihood of developing type 1 diabetes significantly increases with a SARS-CoV-2 infection. Researchers led by Dr. Bornstein demonstrated in 2021 that SARS-CoV-2 can infect the insulin-producing cells of the organ. They examined pancreatic tissue from 20 patients who died from COVID-19 using immunofluorescence, immunohistochemistry, RNA in situ hybridization, and electron microscopy.
They found viral SARS-CoV-2 infiltration of the beta cells in all patients. In 11 patients with COVID-19, the expression of ACE2, TMPRSS, and other receptors and factors like DPP4, HMBG1, and NRP1 that can facilitate virus entry was examined. They found that even in the absence of manifest newly onset diabetes, necroptotic cell death, immune cell infiltration, and SARS-CoV-2 infection of the pancreas beta cells can contribute to varying degrees of metabolic disturbance in patients with COVID-19.
In a report published in October 2020, Tim Hollstein, MD, from the Institute for Diabetology and Clinical Metabolic Research at UKSH in Kiel, Germany, and colleagues described the case of a 19-year-old man who developed symptoms of insulin-dependent diabetes after a SARS-CoV-2 infection, without the presence of autoantibodies typical for type 1 diabetes.
The man presented to the emergency department with diabetic ketoacidosis, a C-peptide level of 0.62 µg/L, a blood glucose concentration of 30.6 mmol/L (552 mg/dL), and an A1c level of 16.8%. The patient’s history revealed a probable SARS-CoV-2 infection 5-7 weeks before admission, based on a positive antibody test against SARS-CoV-2.
Some Viruses Produce Insulin-Like Proteins
Recent studies have shown that some viruses can produce insulin-like proteins or hormones that interfere with the metabolism of the affected organism, reported Dr. Bornstein. In addition to metabolic regulation, these “viral hormones” also seem to influence cell turnover and cell death.
Dr. Bornstein pointed out that antiviral medications can delay the onset of type 1 diabetes by preserving the function of insulin-producing beta cells. It has also been shown that conventional medications used to treat hormonal disorders can reduce the susceptibility of the organism to infections — such as antidiabetic preparations like DPP-4 inhibitors or metformin.
In a review published in 2023, Nikolaos Perakakis, MD, professor, research group leader at the Paul Langerhans Institute Dresden, Dresden, Germany, Dr. Bornstein, and colleagues discussed scientific evidence for a close mutual dependence between various virus infections and metabolic diseases. They discussed how viruses can lead to the development or progression of metabolic diseases and vice versa and how metabolic diseases can increase the severity of a virus infection.
Viruses Favor Metabolic Diseases...
Viruses can favor metabolic diseases by, for example, influencing the regulation of cell survival and specific signaling pathways relevant for cell death, proliferation, or dedifferentiation in important endocrine and metabolic organs. Viruses are also capable of controlling cellular glucose metabolism by modulating glucose transporters, altering glucose uptake, regulating signaling pathways, and stimulating glycolysis in infected cells.
Due to the destruction of beta cells, enteroviruses, but also the mumps virus, parainfluenza virus, or human herpes virus 6, are associated with the development of diabetes. The timing of infection often precedes or coincides with the peak of development of islet autoantibodies. The fact that only a small proportion of patients actually develop type 1 diabetes suggests that genetic background, and likely the timing of infection, play an important role.
...And Metabolic Diseases Influence the Course of Infection
Infection with hepatitis C virus (HCV), on the other hand, is associated with an increased risk for type 2 diabetes, with the risk being higher for older individuals with a family history of diabetes. The negative effects of HCV on glucose balance are mainly attributed to increased insulin resistance in the liver. HCV reduces hepatic glucose uptake by downregulating the expression of glucose transporters and additionally impairs insulin signal transduction by inhibiting the PI3K/Akt signaling pathway.
People with obesity, diabetes, or insulin resistance show significant changes in the innate and adaptive functions of the immune system. Regarding the innate immune system, impaired chemotaxis and phagocytosis of neutrophils have been observed in patients with type 2 diabetes.
In the case of obesity, the number of natural killer T cells in adipose tissue decreases, whereas B cells accumulate in adipose tissue and secrete more proinflammatory cytokines. Longitudinal multiomics analyses of various biopsies from individuals with insulin resistance showed a delayed immune response to respiratory virus infections compared with individuals with normal insulin sensitivity.
This story was translated from Medscape Germany using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Stefan Bornstein, MD, PhD, professor, made it clear during a press conference at the 67th Congress of the German Society of Endocrinology (DGE) that there is more than one interaction between them. Nowadays, one can almost speak of an “endocrine virology and even of the virome as an additional, hormonally metabolically active gland,” said Dr. Bornstein, who will receive the Berthold Medal from the DGE in 2024.
Many questions remain unanswered: “We need a better understanding of the interaction of hormone systems with infectious agents — from basics to therapeutic applications,” emphasized the director of the Medical Clinic and Polyclinic III and the Center for Internal Medicine at the Carl Gustav Carus University Hospital, Dresden, Germany.
If infectious diseases could trigger diabetes and other metabolic diseases, this means that “through vaccination programs, we may be able to prevent the occurrence of common metabolic diseases such as diabetes,” said Dr. Bornstein. He highlighted that many people who experienced severe COVID-19 during the pandemic, or died from it, exhibited diabetes or a pre-metabolic syndrome.
“SARS-CoV-2 has utilized an endocrine signaling pathway to invade our cells and cause damage in the organ systems and inflammation,” said Dr. Bornstein. Conversely, it is now known that infections with coronaviruses or other infectious agents like influenza can significantly worsen metabolic status, diabetes, and other endocrine diseases.
SARS-CoV-2 Infects the Beta Cells
Data from the COVID-19 pandemic showed that the likelihood of developing type 1 diabetes significantly increases with a SARS-CoV-2 infection. Researchers led by Dr. Bornstein demonstrated in 2021 that SARS-CoV-2 can infect the insulin-producing cells of the organ. They examined pancreatic tissue from 20 patients who died from COVID-19 using immunofluorescence, immunohistochemistry, RNA in situ hybridization, and electron microscopy.
They found viral SARS-CoV-2 infiltration of the beta cells in all patients. In 11 patients with COVID-19, the expression of ACE2, TMPRSS, and other receptors and factors like DPP4, HMBG1, and NRP1 that can facilitate virus entry was examined. They found that even in the absence of manifest newly onset diabetes, necroptotic cell death, immune cell infiltration, and SARS-CoV-2 infection of the pancreas beta cells can contribute to varying degrees of metabolic disturbance in patients with COVID-19.
In a report published in October 2020, Tim Hollstein, MD, from the Institute for Diabetology and Clinical Metabolic Research at UKSH in Kiel, Germany, and colleagues described the case of a 19-year-old man who developed symptoms of insulin-dependent diabetes after a SARS-CoV-2 infection, without the presence of autoantibodies typical for type 1 diabetes.
The man presented to the emergency department with diabetic ketoacidosis, a C-peptide level of 0.62 µg/L, a blood glucose concentration of 30.6 mmol/L (552 mg/dL), and an A1c level of 16.8%. The patient’s history revealed a probable SARS-CoV-2 infection 5-7 weeks before admission, based on a positive antibody test against SARS-CoV-2.
Some Viruses Produce Insulin-Like Proteins
Recent studies have shown that some viruses can produce insulin-like proteins or hormones that interfere with the metabolism of the affected organism, reported Dr. Bornstein. In addition to metabolic regulation, these “viral hormones” also seem to influence cell turnover and cell death.
Dr. Bornstein pointed out that antiviral medications can delay the onset of type 1 diabetes by preserving the function of insulin-producing beta cells. It has also been shown that conventional medications used to treat hormonal disorders can reduce the susceptibility of the organism to infections — such as antidiabetic preparations like DPP-4 inhibitors or metformin.
In a review published in 2023, Nikolaos Perakakis, MD, professor, research group leader at the Paul Langerhans Institute Dresden, Dresden, Germany, Dr. Bornstein, and colleagues discussed scientific evidence for a close mutual dependence between various virus infections and metabolic diseases. They discussed how viruses can lead to the development or progression of metabolic diseases and vice versa and how metabolic diseases can increase the severity of a virus infection.
Viruses Favor Metabolic Diseases...
Viruses can favor metabolic diseases by, for example, influencing the regulation of cell survival and specific signaling pathways relevant for cell death, proliferation, or dedifferentiation in important endocrine and metabolic organs. Viruses are also capable of controlling cellular glucose metabolism by modulating glucose transporters, altering glucose uptake, regulating signaling pathways, and stimulating glycolysis in infected cells.
Due to the destruction of beta cells, enteroviruses, but also the mumps virus, parainfluenza virus, or human herpes virus 6, are associated with the development of diabetes. The timing of infection often precedes or coincides with the peak of development of islet autoantibodies. The fact that only a small proportion of patients actually develop type 1 diabetes suggests that genetic background, and likely the timing of infection, play an important role.
...And Metabolic Diseases Influence the Course of Infection
Infection with hepatitis C virus (HCV), on the other hand, is associated with an increased risk for type 2 diabetes, with the risk being higher for older individuals with a family history of diabetes. The negative effects of HCV on glucose balance are mainly attributed to increased insulin resistance in the liver. HCV reduces hepatic glucose uptake by downregulating the expression of glucose transporters and additionally impairs insulin signal transduction by inhibiting the PI3K/Akt signaling pathway.
People with obesity, diabetes, or insulin resistance show significant changes in the innate and adaptive functions of the immune system. Regarding the innate immune system, impaired chemotaxis and phagocytosis of neutrophils have been observed in patients with type 2 diabetes.
In the case of obesity, the number of natural killer T cells in adipose tissue decreases, whereas B cells accumulate in adipose tissue and secrete more proinflammatory cytokines. Longitudinal multiomics analyses of various biopsies from individuals with insulin resistance showed a delayed immune response to respiratory virus infections compared with individuals with normal insulin sensitivity.
This story was translated from Medscape Germany using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Stefan Bornstein, MD, PhD, professor, made it clear during a press conference at the 67th Congress of the German Society of Endocrinology (DGE) that there is more than one interaction between them. Nowadays, one can almost speak of an “endocrine virology and even of the virome as an additional, hormonally metabolically active gland,” said Dr. Bornstein, who will receive the Berthold Medal from the DGE in 2024.
Many questions remain unanswered: “We need a better understanding of the interaction of hormone systems with infectious agents — from basics to therapeutic applications,” emphasized the director of the Medical Clinic and Polyclinic III and the Center for Internal Medicine at the Carl Gustav Carus University Hospital, Dresden, Germany.
If infectious diseases could trigger diabetes and other metabolic diseases, this means that “through vaccination programs, we may be able to prevent the occurrence of common metabolic diseases such as diabetes,” said Dr. Bornstein. He highlighted that many people who experienced severe COVID-19 during the pandemic, or died from it, exhibited diabetes or a pre-metabolic syndrome.
“SARS-CoV-2 has utilized an endocrine signaling pathway to invade our cells and cause damage in the organ systems and inflammation,” said Dr. Bornstein. Conversely, it is now known that infections with coronaviruses or other infectious agents like influenza can significantly worsen metabolic status, diabetes, and other endocrine diseases.
SARS-CoV-2 Infects the Beta Cells
Data from the COVID-19 pandemic showed that the likelihood of developing type 1 diabetes significantly increases with a SARS-CoV-2 infection. Researchers led by Dr. Bornstein demonstrated in 2021 that SARS-CoV-2 can infect the insulin-producing cells of the organ. They examined pancreatic tissue from 20 patients who died from COVID-19 using immunofluorescence, immunohistochemistry, RNA in situ hybridization, and electron microscopy.
They found viral SARS-CoV-2 infiltration of the beta cells in all patients. In 11 patients with COVID-19, the expression of ACE2, TMPRSS, and other receptors and factors like DPP4, HMBG1, and NRP1 that can facilitate virus entry was examined. They found that even in the absence of manifest newly onset diabetes, necroptotic cell death, immune cell infiltration, and SARS-CoV-2 infection of the pancreas beta cells can contribute to varying degrees of metabolic disturbance in patients with COVID-19.
In a report published in October 2020, Tim Hollstein, MD, from the Institute for Diabetology and Clinical Metabolic Research at UKSH in Kiel, Germany, and colleagues described the case of a 19-year-old man who developed symptoms of insulin-dependent diabetes after a SARS-CoV-2 infection, without the presence of autoantibodies typical for type 1 diabetes.
The man presented to the emergency department with diabetic ketoacidosis, a C-peptide level of 0.62 µg/L, a blood glucose concentration of 30.6 mmol/L (552 mg/dL), and an A1c level of 16.8%. The patient’s history revealed a probable SARS-CoV-2 infection 5-7 weeks before admission, based on a positive antibody test against SARS-CoV-2.
Some Viruses Produce Insulin-Like Proteins
Recent studies have shown that some viruses can produce insulin-like proteins or hormones that interfere with the metabolism of the affected organism, reported Dr. Bornstein. In addition to metabolic regulation, these “viral hormones” also seem to influence cell turnover and cell death.
Dr. Bornstein pointed out that antiviral medications can delay the onset of type 1 diabetes by preserving the function of insulin-producing beta cells. It has also been shown that conventional medications used to treat hormonal disorders can reduce the susceptibility of the organism to infections — such as antidiabetic preparations like DPP-4 inhibitors or metformin.
In a review published in 2023, Nikolaos Perakakis, MD, professor, research group leader at the Paul Langerhans Institute Dresden, Dresden, Germany, Dr. Bornstein, and colleagues discussed scientific evidence for a close mutual dependence between various virus infections and metabolic diseases. They discussed how viruses can lead to the development or progression of metabolic diseases and vice versa and how metabolic diseases can increase the severity of a virus infection.
Viruses Favor Metabolic Diseases...
Viruses can favor metabolic diseases by, for example, influencing the regulation of cell survival and specific signaling pathways relevant for cell death, proliferation, or dedifferentiation in important endocrine and metabolic organs. Viruses are also capable of controlling cellular glucose metabolism by modulating glucose transporters, altering glucose uptake, regulating signaling pathways, and stimulating glycolysis in infected cells.
Due to the destruction of beta cells, enteroviruses, but also the mumps virus, parainfluenza virus, or human herpes virus 6, are associated with the development of diabetes. The timing of infection often precedes or coincides with the peak of development of islet autoantibodies. The fact that only a small proportion of patients actually develop type 1 diabetes suggests that genetic background, and likely the timing of infection, play an important role.
...And Metabolic Diseases Influence the Course of Infection
Infection with hepatitis C virus (HCV), on the other hand, is associated with an increased risk for type 2 diabetes, with the risk being higher for older individuals with a family history of diabetes. The negative effects of HCV on glucose balance are mainly attributed to increased insulin resistance in the liver. HCV reduces hepatic glucose uptake by downregulating the expression of glucose transporters and additionally impairs insulin signal transduction by inhibiting the PI3K/Akt signaling pathway.
People with obesity, diabetes, or insulin resistance show significant changes in the innate and adaptive functions of the immune system. Regarding the innate immune system, impaired chemotaxis and phagocytosis of neutrophils have been observed in patients with type 2 diabetes.
In the case of obesity, the number of natural killer T cells in adipose tissue decreases, whereas B cells accumulate in adipose tissue and secrete more proinflammatory cytokines. Longitudinal multiomics analyses of various biopsies from individuals with insulin resistance showed a delayed immune response to respiratory virus infections compared with individuals with normal insulin sensitivity.
This story was translated from Medscape Germany using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Summertime and Mosquitoes Are Breeding
There are over 3700 types of mosquitoes worldwide and over 200 types in the continental United States, of which only 12 are associated with transmitting diseases to humans. The majority are just a nuisance. Since they cannot readily be distinguished, strategies to prevent any bites are recommended.
West Nile Virus
In the US, West Nile virus (WNV) is the leading cause of neuroinvasive arboviral disease. Just hearing the name took me back to New York in 1999 when sightings of dead birds around the city and boroughs were reported daily. The virus was isolated that same year. The enzootic circle occurs between mosquitoes and birds, which are the primary vertebrate host via the bite of Culex mosquitoes. After a bite from an infected mosquito, humans are usually a dead-end host since the level and duration of viremia needed to infect another mosquito is insufficient.
Human-to-human transmission is documented through blood transfusion and solid organ transplantation. Vertical transmission is rarely described. Initially isolated in New York, WNV quickly spread across North America and has been isolated in every continent except Antarctica. Most cases occur in the summer and autumn.
Most infected individuals are asymptomatic. Those who do develop symptoms have fever, headache, myalgia, arthralgia, nausea, vomiting, and a transient rash. Less than 1% develop meningitis/encephalitis symptoms similar to other causes of aseptic meningitis. Those with encephalitis in addition to fever and headache may have altered mental status and focal neurologic deficits including flaccid paralysis or movement disorders.
Detection of anti-WNV IgM antibodies (AB) in serum or CSF is the most common way to make the diagnosis. IgM AB usually is present within 3-8 days after onset of symptoms and persists up to 90 days. Data from ArboNET, the national arboviral surveillance system managed by Centers for Disease Control and Prevention and state health departments, reveal that from 1999 to 2022 there were 56,575 cases of WNV including 28,684 cases of neuroinvasive disease. In 2023 there were 2,406 and 1,599 cases, respectively. Those historic totals for WNV are 10 times greater than the totals for all the other etiologies of neuroinvasive arboviral diseases in the US combined (Jamestown Canyon, LaCrosse, St. Louis, and Eastern Equine encephalitis n = 1813).
Remember to include WNV in your differential of a febrile patient with neurologic symptoms, mosquito bites, blood transfusions, and organ transplantation. Treatment is supportive care.
The US began screening all blood donations for WNV in 2003. Organ donor screening is not universal.
Dengue
Dengue, another arbovirus, is transmitted by bites of infected Aedes aegypti and Aedes albopictus mosquitoes, which prefer to feed during the daytime. There are four dengue virus serotypes: DENV-1 DENV-2, DENV-3 and DENV-4. In endemic areas, all four serotypes are usually co-circulating and people can be infected by each one.
Long-term immunity is type specific. Heterologous protection lasts only a few months. Dengue is endemic throughout the tropics and subtropics of Asia, Africa, and the Americas. Approximately 53% of the world’s population live in an area where dengue transmission can occur. In the US, most cases are reported from Puerto Rico. Dengue is endemic in the following US territories: Puerto Rico, US Virgin Islands, American Samoa, and free associated states. Most cases reported on the mainland are travel related. However, locally acquired dengue has been reported. From 2010 to 2023 Hawaii reported 250 cases, Florida 438, and Texas 40 locally acquired cases. During that same period, Puerto Rico reported more than 32,000 cases. It is the leading cause of febrile illness for travelers returning from the Caribbean, Latin America, and South Asia. Peru is currently experiencing an outbreak with more than 25,000 cases reported since January 2024. Most cases of dengue occur in adolescents and young adults. Severe disease occurs most often in infants, those with underlying chronic disease, pregnant women, and persons infected with dengue for the second time.
Symptoms range from a mild febrile illness to severe disease associated with hemorrhage and shock. Onset is usually 7-10 days after infection and symptoms include high fever, severe headache, retro-orbital pain, arthralgia and myalgias, nausea, and vomiting; some may develop a generalized rash.
The World Health Organization (WHO) classifies dengue as 1) dengue with or without warning signs for progression of disease and 2) severe dengue. Warning signs for disease progression include abdominal pain or tenderness, persistent vomiting, fluid accumulation (e.g., ascites, pericardial or pleural effusion), mucosal bleeding, restlessness, postural hypotension, liver enlargement greater than 2 cm. Severe dengue is defined as any sign of severe plasma leakage leading to shock, severe bleeding or organ failure, or fluid accumulation with respiratory distress. Management is supportive care.
Prevention: In the US, Dengvaxia, a live attenuated tetravalent vaccine, is approved for use in children aged 9–16 years with laboratory-confirmed previous dengue virus infection and living in areas where dengue is endemic. It is administered at 0, 6, and 12 months. It is not available for purchase on the mainland. Continued control of the vector and personal protection is necessary to prevent recurrent infections.
CHIKV
Chikungunya (CHIKV), which means “that which bends up” in the Mkonde language of Tanzania, refers to the appearance of the person with severe usually symmetric arthralgias characteristic for this infection that otherwise is often clinically confused with dengue and Zika. It too is transmitted by A. aegypti and A. albopictus and is prevalent in tropical Africa, Asia, Central and South America, and the Caribbean. Like dengue it is predominantly an urban disease. The WHO reported the first case in the Western Hemisphere in Saint Martin in December 2013. By August 2014, 31 additional territories and Caribbean or South American countries reported 576,535 suspected cases. Florida first reported locally acquired CHIKV in June 2014. By December an additional 11 cases had been identified. Texas reported one case in 2015. Diagnosis is with IgM ab or PCR. Treatment is supportive with most recovering from acute illness within 2 weeks. Data in adults indicate 40-52% may develop chronic or recurrent joint pain.
Prevention: IXCHIQ, a live attenuated vaccine, was licensed in November 2023 and recommended by the CDC in February 2024 for use in persons at least 18 years of age with travel to destinations where there is a CHIKV outbreak. It may be considered for persons traveling to a country or territory without an outbreak but with evidence of CHIKV transmission among humans within the last 5 years and those staying in endemic areas for a cumulative period of at least 6 months over a 2-year period. Specific recommendations for lab workers and persons older than 65 years were also made. This is good news for your older patients who may be participating in mission trips, volunteering, studying abroad, or just vacationing in an endemic area. Adolescent vaccine trials are ongoing and pediatric trials will soon be initiated. In addition, vector control and use of personal protective measures cannot be emphasized enough.
There are several other mosquito borne diseases, however our discussion here is limited to three. Why these three? WNV as a reminder that it is the most common neuroinvasive agent in the US. Dengue and CHIKV because they are not endemic in the US so they might not routinely be considered in febrile patients; both diseases have been reported and acquired on the mainland and your patients may travel to an endemic area and return home with an unwanted souvenir. You will be ready for them.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She said she had no relevant financial disclosures.
Suggested Reading
Chikungunya. Centers for Disease Control and Prevention. 2024. https://www.cdc.gov/vaccines/acip/recommendations.html.
Fagrem AC et al. West Nile and Other Nationally Notifiable Arboviral Diseases–United States, 2021. MMWR Morb Mortal Wkly Rep. 2023 Aug 25;72(34):901-906.
Fever in Returned Travelers, Travel Medicine (Fourth Edition). 2019. doi: 10.1016/B978-0-323-54696-6.00056-2.
Paz-Baily et al. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021 MMWR Recomm Rep. 2021 Dec 17;70(6):1-16).
Staples JE and Fischer M. Chikungunya virus in the Americas — what a vectorborne pathogen can do. N Engl J Med. 2014 Sep 4;371(10):887-9.
Mosquitoes and Diseases A-Z, Centers for Disease Control and Prevention. https://www.cdc.gov/mosquitoes/about/diseases.html.
There are over 3700 types of mosquitoes worldwide and over 200 types in the continental United States, of which only 12 are associated with transmitting diseases to humans. The majority are just a nuisance. Since they cannot readily be distinguished, strategies to prevent any bites are recommended.
West Nile Virus
In the US, West Nile virus (WNV) is the leading cause of neuroinvasive arboviral disease. Just hearing the name took me back to New York in 1999 when sightings of dead birds around the city and boroughs were reported daily. The virus was isolated that same year. The enzootic circle occurs between mosquitoes and birds, which are the primary vertebrate host via the bite of Culex mosquitoes. After a bite from an infected mosquito, humans are usually a dead-end host since the level and duration of viremia needed to infect another mosquito is insufficient.
Human-to-human transmission is documented through blood transfusion and solid organ transplantation. Vertical transmission is rarely described. Initially isolated in New York, WNV quickly spread across North America and has been isolated in every continent except Antarctica. Most cases occur in the summer and autumn.
Most infected individuals are asymptomatic. Those who do develop symptoms have fever, headache, myalgia, arthralgia, nausea, vomiting, and a transient rash. Less than 1% develop meningitis/encephalitis symptoms similar to other causes of aseptic meningitis. Those with encephalitis in addition to fever and headache may have altered mental status and focal neurologic deficits including flaccid paralysis or movement disorders.
Detection of anti-WNV IgM antibodies (AB) in serum or CSF is the most common way to make the diagnosis. IgM AB usually is present within 3-8 days after onset of symptoms and persists up to 90 days. Data from ArboNET, the national arboviral surveillance system managed by Centers for Disease Control and Prevention and state health departments, reveal that from 1999 to 2022 there were 56,575 cases of WNV including 28,684 cases of neuroinvasive disease. In 2023 there were 2,406 and 1,599 cases, respectively. Those historic totals for WNV are 10 times greater than the totals for all the other etiologies of neuroinvasive arboviral diseases in the US combined (Jamestown Canyon, LaCrosse, St. Louis, and Eastern Equine encephalitis n = 1813).
Remember to include WNV in your differential of a febrile patient with neurologic symptoms, mosquito bites, blood transfusions, and organ transplantation. Treatment is supportive care.
The US began screening all blood donations for WNV in 2003. Organ donor screening is not universal.
Dengue
Dengue, another arbovirus, is transmitted by bites of infected Aedes aegypti and Aedes albopictus mosquitoes, which prefer to feed during the daytime. There are four dengue virus serotypes: DENV-1 DENV-2, DENV-3 and DENV-4. In endemic areas, all four serotypes are usually co-circulating and people can be infected by each one.
Long-term immunity is type specific. Heterologous protection lasts only a few months. Dengue is endemic throughout the tropics and subtropics of Asia, Africa, and the Americas. Approximately 53% of the world’s population live in an area where dengue transmission can occur. In the US, most cases are reported from Puerto Rico. Dengue is endemic in the following US territories: Puerto Rico, US Virgin Islands, American Samoa, and free associated states. Most cases reported on the mainland are travel related. However, locally acquired dengue has been reported. From 2010 to 2023 Hawaii reported 250 cases, Florida 438, and Texas 40 locally acquired cases. During that same period, Puerto Rico reported more than 32,000 cases. It is the leading cause of febrile illness for travelers returning from the Caribbean, Latin America, and South Asia. Peru is currently experiencing an outbreak with more than 25,000 cases reported since January 2024. Most cases of dengue occur in adolescents and young adults. Severe disease occurs most often in infants, those with underlying chronic disease, pregnant women, and persons infected with dengue for the second time.
Symptoms range from a mild febrile illness to severe disease associated with hemorrhage and shock. Onset is usually 7-10 days after infection and symptoms include high fever, severe headache, retro-orbital pain, arthralgia and myalgias, nausea, and vomiting; some may develop a generalized rash.
The World Health Organization (WHO) classifies dengue as 1) dengue with or without warning signs for progression of disease and 2) severe dengue. Warning signs for disease progression include abdominal pain or tenderness, persistent vomiting, fluid accumulation (e.g., ascites, pericardial or pleural effusion), mucosal bleeding, restlessness, postural hypotension, liver enlargement greater than 2 cm. Severe dengue is defined as any sign of severe plasma leakage leading to shock, severe bleeding or organ failure, or fluid accumulation with respiratory distress. Management is supportive care.
Prevention: In the US, Dengvaxia, a live attenuated tetravalent vaccine, is approved for use in children aged 9–16 years with laboratory-confirmed previous dengue virus infection and living in areas where dengue is endemic. It is administered at 0, 6, and 12 months. It is not available for purchase on the mainland. Continued control of the vector and personal protection is necessary to prevent recurrent infections.
CHIKV
Chikungunya (CHIKV), which means “that which bends up” in the Mkonde language of Tanzania, refers to the appearance of the person with severe usually symmetric arthralgias characteristic for this infection that otherwise is often clinically confused with dengue and Zika. It too is transmitted by A. aegypti and A. albopictus and is prevalent in tropical Africa, Asia, Central and South America, and the Caribbean. Like dengue it is predominantly an urban disease. The WHO reported the first case in the Western Hemisphere in Saint Martin in December 2013. By August 2014, 31 additional territories and Caribbean or South American countries reported 576,535 suspected cases. Florida first reported locally acquired CHIKV in June 2014. By December an additional 11 cases had been identified. Texas reported one case in 2015. Diagnosis is with IgM ab or PCR. Treatment is supportive with most recovering from acute illness within 2 weeks. Data in adults indicate 40-52% may develop chronic or recurrent joint pain.
Prevention: IXCHIQ, a live attenuated vaccine, was licensed in November 2023 and recommended by the CDC in February 2024 for use in persons at least 18 years of age with travel to destinations where there is a CHIKV outbreak. It may be considered for persons traveling to a country or territory without an outbreak but with evidence of CHIKV transmission among humans within the last 5 years and those staying in endemic areas for a cumulative period of at least 6 months over a 2-year period. Specific recommendations for lab workers and persons older than 65 years were also made. This is good news for your older patients who may be participating in mission trips, volunteering, studying abroad, or just vacationing in an endemic area. Adolescent vaccine trials are ongoing and pediatric trials will soon be initiated. In addition, vector control and use of personal protective measures cannot be emphasized enough.
There are several other mosquito borne diseases, however our discussion here is limited to three. Why these three? WNV as a reminder that it is the most common neuroinvasive agent in the US. Dengue and CHIKV because they are not endemic in the US so they might not routinely be considered in febrile patients; both diseases have been reported and acquired on the mainland and your patients may travel to an endemic area and return home with an unwanted souvenir. You will be ready for them.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She said she had no relevant financial disclosures.
Suggested Reading
Chikungunya. Centers for Disease Control and Prevention. 2024. https://www.cdc.gov/vaccines/acip/recommendations.html.
Fagrem AC et al. West Nile and Other Nationally Notifiable Arboviral Diseases–United States, 2021. MMWR Morb Mortal Wkly Rep. 2023 Aug 25;72(34):901-906.
Fever in Returned Travelers, Travel Medicine (Fourth Edition). 2019. doi: 10.1016/B978-0-323-54696-6.00056-2.
Paz-Baily et al. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021 MMWR Recomm Rep. 2021 Dec 17;70(6):1-16).
Staples JE and Fischer M. Chikungunya virus in the Americas — what a vectorborne pathogen can do. N Engl J Med. 2014 Sep 4;371(10):887-9.
Mosquitoes and Diseases A-Z, Centers for Disease Control and Prevention. https://www.cdc.gov/mosquitoes/about/diseases.html.
There are over 3700 types of mosquitoes worldwide and over 200 types in the continental United States, of which only 12 are associated with transmitting diseases to humans. The majority are just a nuisance. Since they cannot readily be distinguished, strategies to prevent any bites are recommended.
West Nile Virus
In the US, West Nile virus (WNV) is the leading cause of neuroinvasive arboviral disease. Just hearing the name took me back to New York in 1999 when sightings of dead birds around the city and boroughs were reported daily. The virus was isolated that same year. The enzootic circle occurs between mosquitoes and birds, which are the primary vertebrate host via the bite of Culex mosquitoes. After a bite from an infected mosquito, humans are usually a dead-end host since the level and duration of viremia needed to infect another mosquito is insufficient.
Human-to-human transmission is documented through blood transfusion and solid organ transplantation. Vertical transmission is rarely described. Initially isolated in New York, WNV quickly spread across North America and has been isolated in every continent except Antarctica. Most cases occur in the summer and autumn.
Most infected individuals are asymptomatic. Those who do develop symptoms have fever, headache, myalgia, arthralgia, nausea, vomiting, and a transient rash. Less than 1% develop meningitis/encephalitis symptoms similar to other causes of aseptic meningitis. Those with encephalitis in addition to fever and headache may have altered mental status and focal neurologic deficits including flaccid paralysis or movement disorders.
Detection of anti-WNV IgM antibodies (AB) in serum or CSF is the most common way to make the diagnosis. IgM AB usually is present within 3-8 days after onset of symptoms and persists up to 90 days. Data from ArboNET, the national arboviral surveillance system managed by Centers for Disease Control and Prevention and state health departments, reveal that from 1999 to 2022 there were 56,575 cases of WNV including 28,684 cases of neuroinvasive disease. In 2023 there were 2,406 and 1,599 cases, respectively. Those historic totals for WNV are 10 times greater than the totals for all the other etiologies of neuroinvasive arboviral diseases in the US combined (Jamestown Canyon, LaCrosse, St. Louis, and Eastern Equine encephalitis n = 1813).
Remember to include WNV in your differential of a febrile patient with neurologic symptoms, mosquito bites, blood transfusions, and organ transplantation. Treatment is supportive care.
The US began screening all blood donations for WNV in 2003. Organ donor screening is not universal.
Dengue
Dengue, another arbovirus, is transmitted by bites of infected Aedes aegypti and Aedes albopictus mosquitoes, which prefer to feed during the daytime. There are four dengue virus serotypes: DENV-1 DENV-2, DENV-3 and DENV-4. In endemic areas, all four serotypes are usually co-circulating and people can be infected by each one.
Long-term immunity is type specific. Heterologous protection lasts only a few months. Dengue is endemic throughout the tropics and subtropics of Asia, Africa, and the Americas. Approximately 53% of the world’s population live in an area where dengue transmission can occur. In the US, most cases are reported from Puerto Rico. Dengue is endemic in the following US territories: Puerto Rico, US Virgin Islands, American Samoa, and free associated states. Most cases reported on the mainland are travel related. However, locally acquired dengue has been reported. From 2010 to 2023 Hawaii reported 250 cases, Florida 438, and Texas 40 locally acquired cases. During that same period, Puerto Rico reported more than 32,000 cases. It is the leading cause of febrile illness for travelers returning from the Caribbean, Latin America, and South Asia. Peru is currently experiencing an outbreak with more than 25,000 cases reported since January 2024. Most cases of dengue occur in adolescents and young adults. Severe disease occurs most often in infants, those with underlying chronic disease, pregnant women, and persons infected with dengue for the second time.
Symptoms range from a mild febrile illness to severe disease associated with hemorrhage and shock. Onset is usually 7-10 days after infection and symptoms include high fever, severe headache, retro-orbital pain, arthralgia and myalgias, nausea, and vomiting; some may develop a generalized rash.
The World Health Organization (WHO) classifies dengue as 1) dengue with or without warning signs for progression of disease and 2) severe dengue. Warning signs for disease progression include abdominal pain or tenderness, persistent vomiting, fluid accumulation (e.g., ascites, pericardial or pleural effusion), mucosal bleeding, restlessness, postural hypotension, liver enlargement greater than 2 cm. Severe dengue is defined as any sign of severe plasma leakage leading to shock, severe bleeding or organ failure, or fluid accumulation with respiratory distress. Management is supportive care.
Prevention: In the US, Dengvaxia, a live attenuated tetravalent vaccine, is approved for use in children aged 9–16 years with laboratory-confirmed previous dengue virus infection and living in areas where dengue is endemic. It is administered at 0, 6, and 12 months. It is not available for purchase on the mainland. Continued control of the vector and personal protection is necessary to prevent recurrent infections.
CHIKV
Chikungunya (CHIKV), which means “that which bends up” in the Mkonde language of Tanzania, refers to the appearance of the person with severe usually symmetric arthralgias characteristic for this infection that otherwise is often clinically confused with dengue and Zika. It too is transmitted by A. aegypti and A. albopictus and is prevalent in tropical Africa, Asia, Central and South America, and the Caribbean. Like dengue it is predominantly an urban disease. The WHO reported the first case in the Western Hemisphere in Saint Martin in December 2013. By August 2014, 31 additional territories and Caribbean or South American countries reported 576,535 suspected cases. Florida first reported locally acquired CHIKV in June 2014. By December an additional 11 cases had been identified. Texas reported one case in 2015. Diagnosis is with IgM ab or PCR. Treatment is supportive with most recovering from acute illness within 2 weeks. Data in adults indicate 40-52% may develop chronic or recurrent joint pain.
Prevention: IXCHIQ, a live attenuated vaccine, was licensed in November 2023 and recommended by the CDC in February 2024 for use in persons at least 18 years of age with travel to destinations where there is a CHIKV outbreak. It may be considered for persons traveling to a country or territory without an outbreak but with evidence of CHIKV transmission among humans within the last 5 years and those staying in endemic areas for a cumulative period of at least 6 months over a 2-year period. Specific recommendations for lab workers and persons older than 65 years were also made. This is good news for your older patients who may be participating in mission trips, volunteering, studying abroad, or just vacationing in an endemic area. Adolescent vaccine trials are ongoing and pediatric trials will soon be initiated. In addition, vector control and use of personal protective measures cannot be emphasized enough.
There are several other mosquito borne diseases, however our discussion here is limited to three. Why these three? WNV as a reminder that it is the most common neuroinvasive agent in the US. Dengue and CHIKV because they are not endemic in the US so they might not routinely be considered in febrile patients; both diseases have been reported and acquired on the mainland and your patients may travel to an endemic area and return home with an unwanted souvenir. You will be ready for them.
Dr. Word is a pediatric infectious disease specialist and director of the Houston Travel Medicine Clinic. She said she had no relevant financial disclosures.
Suggested Reading
Chikungunya. Centers for Disease Control and Prevention. 2024. https://www.cdc.gov/vaccines/acip/recommendations.html.
Fagrem AC et al. West Nile and Other Nationally Notifiable Arboviral Diseases–United States, 2021. MMWR Morb Mortal Wkly Rep. 2023 Aug 25;72(34):901-906.
Fever in Returned Travelers, Travel Medicine (Fourth Edition). 2019. doi: 10.1016/B978-0-323-54696-6.00056-2.
Paz-Baily et al. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021 MMWR Recomm Rep. 2021 Dec 17;70(6):1-16).
Staples JE and Fischer M. Chikungunya virus in the Americas — what a vectorborne pathogen can do. N Engl J Med. 2014 Sep 4;371(10):887-9.
Mosquitoes and Diseases A-Z, Centers for Disease Control and Prevention. https://www.cdc.gov/mosquitoes/about/diseases.html.