User login
More on interventional psychiatry
Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?”
The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:
1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.
2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).
3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (
4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.
5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.
Continue to: 6. Many CTMSS members...
6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.
7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.
Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.
Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?”
The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:
1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.
2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).
3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (
4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.
5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.
Continue to: 6. Many CTMSS members...
6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.
7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.
Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.
Thank you very much to Drs. Vincent, Good, and El-Mallakh for their guest editorial on interventional psychiatry (“Interventional psychiatry: What are the next steps?”
The Clinical Transcranial Magnetic Stimulation Society (CTMSS) is well aware of these issues and is actively addressing them:
1. We have increased the number of PULSES courses—designed to serve as intensive, introductory courses on TMS—we provide, and increased the number of members on our PULSES team to address this. We have also increased the number of PULSES scholarships for psychiatry residents that cover the costs of the conference and materials.
2. We created a standing Resident Subcommittee of our Education Committee that is focused on psychiatry resident training. We realize not all psychiatric residency programs have active TMS programs or attendings who are trained in TMS. Last year we presented lectures aimed at introducing TMS to PGY-1 and PGY-2 psychiatry residents. These were recorded and are available for free on the CTMSS website (www.clinicaltmssociety.org).
3. The Resident Subcommittee presented the American Association of Directors of Psychiatric Residency Training with a curriculum submission that was accepted and will be available to all psychiatric residents across the country free of charge. (
4. The topic of resident/fellow training in all forms of neuromodulation was discussed during our monthly Grand Rounds webinar and at our annual meeting.
5. The issue of having a broader base of knowledge and training in neuromodulation was a topic at a recent Education Committee meeting, and this year we are adding lectures on electroconvulsive therapy and esketamine to our Grand Rounds webinars. Many CTMSS members are trained and knowledgeable in multiple neuromodulation modalities.
Continue to: 6. Many CTMSS members...
6. Many CTMSS members are involved in academic programs or are invited to training programs to teach psychiatric residents as guest lecturers.
7. The UK's Royal College of Psychiatrists has requested access to our prerecorded lectures, and CTMSS members are working on translating our lectures into Spanish.
Resident education is a key component of the main goals of the CTMSS. Our Board of Directors is fully committed to resident education and has directed the Education Committee to address it. We look forward to moving forward on educating psychiatric residents, with the hope of eventually engaging the ACGME to acknowledge TMS by name in the ACGME guidelines, provide residents with at least basic information on TMS, and clarify how competency in these therapies can be achieved.
Neuropsychiatric aspects of Parkinson’s disease: Practical considerations
Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2
Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4
Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.
In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

Mood and motivational disorders
Depression
Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.
Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12
Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.
Continue to: In terms of nonpharmacologic options...
In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.
Apathy
Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18
There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20
Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.
Anxiety disorders
Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharmacologic treatments such as mindfulness yoga, exercise, CBT, and psychotherapy can be effective.16,21,23
Continue to: Because there is the lack...
Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.
Internal tremor
Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24
Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.
Nonmotor ‘off’ anxiety
Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.
In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21
Continue to: Psychosis
Psychosis
Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30
The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30
Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

Cognitive disorders
This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38
Continue to: PD-MCI is present in...
PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39
Treatment-related disorders
Impulse control disorders
Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.
The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45
Deep brain stimulation–related disorders
For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.
Continue to: Bottom Line
Bottom Line
Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.
Related Resources
- Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
- Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
- Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1
Drug Brand Names
Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran
1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.
2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.
3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.
4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.
5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749
6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.
7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.
8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49
9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.
10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.
11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.
12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.
13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.
14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.
15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.
16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.
17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.
18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632
19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096
20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.
21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.
22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.
23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.
24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.
25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.
26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.
27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.
28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.
29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.
30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.
31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.
32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.
33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.
34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.
35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.
36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.
37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.
38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.
39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3
40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.
41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.
42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.
43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.
44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.
45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.
46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.
47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.
Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2
Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4
Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.
In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

Mood and motivational disorders
Depression
Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.
Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12
Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.
Continue to: In terms of nonpharmacologic options...
In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.
Apathy
Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18
There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20
Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.
Anxiety disorders
Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharmacologic treatments such as mindfulness yoga, exercise, CBT, and psychotherapy can be effective.16,21,23
Continue to: Because there is the lack...
Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.
Internal tremor
Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24
Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.
Nonmotor ‘off’ anxiety
Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.
In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21
Continue to: Psychosis
Psychosis
Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30
The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30
Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

Cognitive disorders
This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38
Continue to: PD-MCI is present in...
PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39
Treatment-related disorders
Impulse control disorders
Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.
The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45
Deep brain stimulation–related disorders
For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.
Continue to: Bottom Line
Bottom Line
Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.
Related Resources
- Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
- Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
- Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1
Drug Brand Names
Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran
Parkinson’s disease (PD) is a neurodegenerative condition diagnosed pathologically by alpha synuclein–containing Lewy bodies and dopaminergic cell loss in the substantia nigra pars compacta of the midbrain. Loss of dopaminergic input to the caudate and putamen disrupts the direct and indirect basal ganglia pathways for motor control and contributes to the motor symptoms of PD.1 According to the Movement Disorder Society criteria, PD is diagnosed clinically by bradykinesia (slowness of movement) plus resting tremor and/or rigidity in the presence of supportive criteria, such as levodopa responsiveness and hyposmia, and in the absence of exclusion criteria and red flags that would suggest atypical parkinsonism or an alternative diagnosis.2
Although the diagnosis and treatment of PD focus heavily on the motor symptoms, nonmotor symptoms can arise decades before the onset of motor symptoms and continue throughout the lifespan. Nonmotor symptoms affect patients from head (ie, cognition and mood) to toe (ie, striatal toe pain) and multiple organ systems in between, including the olfactory, integumentary, cardiovascular, gastrointestinal, genitourinary, and autonomic nervous systems. Thus, it is not surprising that nonmotor symptoms of PD impact health-related quality of life more substantially than motor symptoms.3 A helpful analogy is to consider the motor symptoms of PD as the tip of the iceberg and the nonmotor symptoms as the larger, submerged portions of the iceberg.4
Nonmotor symptoms can negatively impact the treatment of motor symptoms. For example, imagine a patient who is very rigid and dyscoordinated in the arms and legs, which limits their ability to dress and walk. If this patient also suffers from nonmotor symptoms of orthostatic hypotension and psychosis—both of which can be exacerbated by levodopa—dose escalation of levodopa for the rigidity and dyscoordination could be compromised, rendering the patient undertreated and less mobile.
In this review, we focus on identifying and managing nonmotor symptoms of PD that are relevant to psychiatric practice, including mood and motivational disorders, anxiety disorders, psychosis, cognitive disorders, and disorders related to the pharmacologic and surgical treatment of PD (Figure 1).

Mood and motivational disorders
Depression
Depression is a common symptom in PD that can occur in the prodromal period years to decades before the onset of motor symptoms, as well as throughout the disease course.5 The prevalence of depression in PD varies from 3% to 90%, depending on the methods of assessment, clinical setting of assessment, motor symptom severity, and other factors; clinically significant depression likely affects approximately 35% to 38% of patients.5,6 How depression in patients with PD differs from depression in the general population is not entirely understood, but there does seem to be less guilt and suicidal ideation and a substantial component of negative affect, including dysphoria and anxiety.7 Practically speaking, depression is treated similarly in PD and general populations, with a few considerations.
Despite limited randomized controlled trials (RCTs) for efficacy specifically in patients with PD, selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are generally considered first-line treatments. There is also evidence for tricyclic antidepressants (TCAs), but due to potential worsening of orthostatic hypotension and cognition, TCAs may not be a favorable option for certain patients with PD.8,9 All antidepressants have the potential to worsen tremor. Theoretically, SNRIs, with noradrenergic activity, may be less tolerable than SSRIs in patients with PD. However, worsening tremor generally has not been a clinically significant adverse event reported in PD depression clinical trials, although it was seen in 17% of patients receiving paroxetine and 21% of patients receiving venlafaxine compared to 7% of patients receiving placebo.9-11 If tremor worsens, mirtazapine could be considered because it has been reported to cause less tremor than SSRIs or TCAs.12
Among medications for PD, pramipexole, a dopamine agonist, may have a beneficial effect on depression.13 Additionally, some evidence supports rasagiline, a monoamine oxidase type B inhibitor, as an adjunctive medication for depression in PD.14 Nevertheless, antidepressant medications remain the standard pharmacologic treatment for PD depression.
Continue to: In terms of nonpharmacologic options...
In terms of nonpharmacologic options, cognitive-behavioral therapy (CBT) is likely efficacious, exercise (especially yoga) is likely efficacious, and repetitive transcranial magnetic stimulation may be efficacious.15,16 While further high-quality trials are needed, these treatments are low-risk and can be considered, especially for patients who cannot tolerate medications.
Apathy
Apathy—a loss of motivation and goal-directed behavior—can occur in up to 30% of patients during the prodromal period of PD, and in up to 70% of patients throughout the disease course.17 Apathy can coexist with depression, which can make apathy difficult to diagnose.17 Given the time constraints of a clinic visit, a practical approach would be to first screen for depression and cognitive impairment. If there is continued suspicion of apathy, the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part I question (“In the past week have you felt indifferent to doing activities or being with people?”) can be used to screen for apathy, and more detailed scales, such as the Apathy Scale (AS) or Lille Apathy Rating Scale (LARS), could be used if indicated.18
There are limited high-quality positive trials of apathy-specific treatments in PD. In an RCT of patients with PD who did not have depression or dementia, rivastigmine improved LARS scores compared to placebo.15 Piribedil, a D2/D3 receptor agonist, improved apathy in patients who underwent subthalamic nucleus deep brain stimulation (STN DBS).15 Exercise such as individualized physical therapy programs, dance, and Nordic walking as well as mindfulness interventions were shown to significantly reduce apathy scale scores.19 SSRIs, SNRIs, and rotigotine showed a trend toward reducing AS scores in RCTs.10,20
Larger, high-quality studies are needed to clarify the treatment of apathy in PD. In the meantime, a reasonable approach is to first treat any comorbid psychiatric or cognitive disorders, since apathy can be associated with these conditions, and to optimize antiparkinsonian medications for motor symptoms, motor fluctuations, and nonmotor fluctuations. Then, the investigational apathy treatments described in this section could be considered on an individual basis.
Anxiety disorders
Anxiety is seen throughout the disease course of PD in approximately 30% to 50% of patients.21 It can manifest as generalized anxiety disorder, panic disorder, and other anxiety disorders. There are no high-quality RCTs of pharmacologic treatments of anxiety specifically in patients with PD, except for a negative safety and tolerability study of buspirone in which one-half of patients experienced worsening motor symptoms.15,22 Thus, the treatment of anxiety in patients with PD is similar to treatments in the general population. SSRIs and SNRIs are typically considered first-line, benzodiazepines are sometimes used with caution (although cognitive adverse effects and fall risk need to be considered), and nonpharmacologic treatments such as mindfulness yoga, exercise, CBT, and psychotherapy can be effective.16,21,23
Continue to: Because there is the lack...
Because there is the lack of evidence-based treatments for anxiety in PD, we highlight 2 PD-specific anxiety disorders: internal tremor, and nonmotor “off” anxiety.
Internal tremor
Internal tremor is a sense of vibration in the axial and/or appendicular muscles that cannot be seen externally by the patient or examiner. It is not yet fully understood if this phenomenon is sensory, anxiety-related, related to subclinical tremor, or the result of a combination of these factors (ie, sensory awareness of a subclinical tremor that triggers or is worsened by anxiety). There is some evidence for subclinical tremor on electromyography, but internal tremor does not respond to antiparkinsonian medications in 70% of patients.24 More electrophysiological research is needed to clarify this phenomenon. Internal tremor has been associated with anxiety in 64% of patients and often improves with anxiolytic therapies.24
Although poorly understood, internal tremor is a documented phenomenon in 33% to 44% of patients with PD, and in some cases, it may be an initial symptom that motivates a patient to seek medical attention for the first time.24,25 Internal tremor has also been reported in patients with essential tremor and multiple sclerosis.25 Therefore, physicians should be aware of internal tremor because this symptom could herald an underlying neurological disease.
Nonmotor ‘off’ anxiety
Patients with PD are commonly prescribed carbidopa-levodopa, a dopamine precursor, at least 3 times daily. Initially, this medication controls motor symptoms well from 1 dose to the next. However, as the disease progresses, some patients report motor fluctuations in which an individual dose of carbidopa-levodopa may wear off early, take longer than usual to take effect, or not take effect at all. Patients describe these periods as an “off” state in which they do not feel their medications are working. Such motor fluctuations can lead to anxiety and avoidance behaviors, because patients fear being in public at times when the medication does not adequately control their motor symptoms.
In addition to these motor symptom fluctuations and related anxiety, patients can also experience nonmotor symptom fluctuations. A wide variety of nonmotor symptoms, such as mood, cognitive, and behavioral symptoms, have been reported to fluctuate in parallel with motor symptoms.26,27 One study reported fluctuating restlessness in 39% of patients with PD, excessive worry in 17%, shortness of breath in 13%, excessive sweating and fear in 12%, and palpitations in 10%.27 A patient with fluctuating shortness of breath, sweating, and palpitations (for example) may repeatedly present to the emergency department with a negative cardiac workup and eventually be diagnosed with panic disorder, whereas the patient is truly experiencing nonmotor “off” symptoms. Thus, it is important to be aware of nonmotor fluctuations so this diagnosis can be made and the symptoms appropriately treated. The first step in treating nonmotor fluctuations is to optimize the antiparkinsonian regimen to minimize fluctuations. If “off” anxiety symptoms persist, anxiolytic medications can be prescribed.21
Continue to: Psychosis
Psychosis
Psychosis can occur in prodromal and early PD but is most common in advanced PD.28 One study reported that 60% of patients developed hallucinations or delusions after 12 years of follow-up.29 Disease duration, disease severity, dementia, and rapid eye movement sleep behavior disorder are significant risk factors for psychosis in PD.30 Well-formed visual hallucinations are the most common manifestation of psychosis in patients with PD. Auditory hallucinations and delusions are less common. Delusions are usually seen in patients with dementia and are often paranoid delusions, such as of spousal infidelity.30 Sensory hallucinations can occur, but should not be mistaken with formication, a central pain syndrome in PD that can represent a nonmotor “off” symptom that may respond to dopaminergic medication.31 Other more mild psychotic symptoms include illusions or misinterpretation of stimuli, false sense of presence, and passage hallucinations of fleeting figures in the peripheral vision.30
The pathophysiology of PD psychosis is not entirely understood but differs from psychosis in other disorders. It can occur in the absence of antiparkinsonian medication exposure and is thought to be a consequence of the underlying disease process of PD involving neurodegeneration in certain brain regions and aberrant neurotransmission of not only dopamine but also serotonin, acetylcholine, and glutamate.30
Figure 2 outlines the management of psychosis in PD. After addressing medical and medication-related causes, it is important to determine if the psychotic symptom is sufficiently bothersome to and/or potentially dangerous for the patient to warrant treatment. If treatment is indicated, pimavanserin and clozapine are efficacious for psychosis in PD without worsening motor symptoms, and quetiapine is possibly efficacious with a low risk of worsening motor symptoms.15 Other antipsychotics, such as olanzapine, risperidone, and haloperidol, can substantially worsen motor symptoms.15 Both second-generation antipsychotics and pimavanserin have an FDA black-box warning for a higher risk of all-cause mortality in older patients with dementia; however, because psychosis is associated with early mortality in PD, the risk/benefit ratio should be discussed with the patient and family for shared decision-making.30 If the patient also has dementia, rivastigmine—which is FDA-approved for PD dementia (PDD)—may also improve hallucinations.32

Cognitive disorders
This section focuses on PD mild cognitive impairment (PD-MCI) and PDD. When a patient with PD reports cognitive concerns, the approach outlined in Figure 3 can be used to diagnose the cognitive disorder. A detailed history, medication review, and physical examination can identify any medical or psychiatric conditions that could affect cognition. The American Academy of Neurology recommends screening for depression, obtaining blood levels of vitamin B12 and thyroid-stimulating hormone, and obtaining a CT or MRI of the brain to rule out reversible causes of dementia.33 A validated screening test such as the Montreal Cognitive Assessment, which has higher sensitivity for PD-MCI than the Mini-Mental State Examination, is used to identify and quantify cognitive impairment.34 Neuropsychological testing is the gold standard and can be used to confirm and/or better quantify the degree and domains of cognitive impairment.35 Typically, cognitive deficits in PD affect executive function, attention, and/or visuospatial domains more than memory and language early on, and deficits in visuospatial and language domains have the highest sensitivity for predicting progression to PDD.36

Once reversible causes of dementia are addressed or ruled out and cognitive testing is completed, the Movement Disorder Society (MDS) criteria for PD-MCI and PDD summarized in Figure 3 can be used to diagnose the cognitive disorder.37,38 The MDS criteria for PDD require a diagnosis of PD for ≥1 year prior to the onset of dementia to differentiate PDD from dementia with Lewy bodies (DLB). If the dementia starts within 1 year of the onset of parkinsonism, the diagnosis would be DLB. PDD and DLB are on the spectrum of Lewy body dementia, with the same Lewy body pathology in different temporal and spatial distributions in the brain.38
Continue to: PD-MCI is present in...
PD-MCI is present in approximately 25% of patients.35 PD-MCI does not always progress to dementia but increases the risk of dementia 6-fold. The prevalence of PDD increases with disease duration; it is present in approximately 50% of patients at 10 years and 80% of patients at 20 years of disease.35 Rivastigmine is the only FDA-approved medication to slow progression of PDD. There is insufficient evidence for other acetylcholinesterase inhibitors and memantine.15 Unfortunately, RCTs of pharmacotherapy for PD-MCI have failed to show efficacy. However, exercise, cognitive rehabilitation, and neuromodulation are being studied. In the meantime, addressing modifiable risk factors (such as vascular risk factors and alcohol consumption) and treating comorbid orthostatic hypotension, obstructive sleep apnea, and depression may improve cognition.35,39
Treatment-related disorders
Impulse control disorders
Impulse control disorders (ICDs) are an important medication-related consideration in patients with PD. The ICDs seen in PD include pathological gambling, binge eating, excessive shopping, hypersexual behaviors, and dopamine dysregulation syndrome (Table). These disorders are more common in younger patients with a history of impulsive personality traits and addictive behaviors (eg, history of tobacco or alcohol abuse), and are most strongly associated with dopaminergic therapies, particularly the dopamine agonists.40,41 In the DOMINION study, the odds of ICDs were 2- to 3.5-fold higher in patients taking dopamine agonists.42 This is mainly thought to be due to stimulation of D2/D3 receptors in the mesolimbic system.40 High doses of levodopa, monoamine oxidase inhibitors, and amantadine are also associated with ICDs.40-42

The first step in managing ICDs is diagnosing them, which can be difficult because patients often are not forthcoming about these problems due to embarrassment or failure to recognize that the ICD is related to PD medications. If a family member accompanies the patient at the visit, the patient may not want to disclose the amount of money they spend or the extent to which the behavior is a problem. Thus, a screening questionnaire, such as the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) can be a helpful way for patients to alert the clinician to the issue.41 Education for the patient and family is crucial before the ICD causes significant financial, health, or relationship problems.
The mainstay of treatment is to reduce or taper off the dopamine agonist or other offending agent while monitoring for worsening motor symptoms and dopamine withdrawal syndrome. If this is unsuccessful, there is very limited evidence for further treatment strategies (Table), including antidepressants, antipsychotics, and mood stabilizers.40,43,44 There is insufficient evidence for naltrexone based on an RCT that failed to meet its primary endpoint, although naltrexone did significantly reduce QUIP scores.15,44 There is also insufficient evidence for amantadine, which showed benefit in some studies but was associated with ICDs in the DOMINION study.15,40,42 In terms of nonpharmacologic treatments, CBT is likely efficacious.15,40 There are mixed results for STN DBS. Some studies showed improvement in the ICD, due at least in part to dopaminergic medication reduction postoperatively, but this treatment has also been reported to increase impulsivity.40,45
Deep brain stimulation–related disorders
For patients with PD, the ideal lead location for STN DBS is the dorsolateral aspect of the STN, as this is the motor region of the nucleus. The STN functions in indirect and hyperdirect pathways to put the brake on certain motor programs so only the desired movement can be executed. Its function is clinically demonstrated by patients with STN stroke who develop excessive ballistic movements. Adjacent to the motor region of the STN is a centrally located associative region and a medially located limbic region. Thus, when stimulating the dorsolateral STN, current can spread to those regions as well, and the STN’s ability to put the brake on behavioral and emotional programs can be affected.46 Stimulation of the STN has been associated with mania, euphoria, new-onset ICDs, decreased verbal fluency, and executive dysfunction. Depression, apathy, and anxiety can also occur, but more commonly result from rapid withdrawal of antiparkinsonian medications after DBS surgery.46,47 Therefore, for PD patients with DBS with new or worsening psychiatric or cognitive symptoms, it is important to inquire about any recent programming sessions with neurology as well as recent self-increases in stimulation by the patient using their controller. Collaboration with neurology is important to troubleshoot whether stimulation could be contributing to the patient’s psychiatric or cognitive symptoms.
Continue to: Bottom Line
Bottom Line
Mood, anxiety, psychotic, and cognitive symptoms and disorders are common psychiatric manifestations associated with Parkinson’s disease (PD). In addition, patients with PD may experience impulsive control disorders and other symptoms related to treatments they receive for PD. Careful assessment and collaboration with neurology is crucial to alleviating the effects of these conditions.
Related Resources
- Weintraub D, Aarsland D, Chaudhuri KR, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurology. 2022;21(1):89-102. doi:10.1016/S1474-4422(21)00330-6
- Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurologic Clinics. 2020;38(2):269-292. doi:10.1016/j.ncl.2019.12.003
- Castrioto A, Lhommee E, Moro E et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurology. 2014;13(3):287-305. doi:10.1016/ S1474-4422(13)70294-1
Drug Brand Names
Amantadine • Gocovri
Carbidopa-levodopa • Sinemet
Clozapine • Clozaril
Haloperidol • Haldol
Memantine • Namenda
Mirtazapine • Remeron
Naltrexone • Vivitrol
Olanzapine • Zyprexa
Paroxetine • Paxil
Pimavanserin • Nuplazid
Piribedil • Pronoran
Pramipexole • Mirapex
Quetiapine • Seroquel
Rasagiline • Azilect
Risperidone • Risperdal
Rivastigmine • Exelon
Ropinirole • Requip
Rotigotine • Neupro
Venlafaxine • Effexor
Zonisamide • Zonegran
1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.
2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.
3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.
4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.
5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749
6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.
7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.
8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49
9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.
10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.
11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.
12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.
13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.
14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.
15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.
16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.
17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.
18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632
19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096
20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.
21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.
22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.
23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.
24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.
25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.
26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.
27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.
28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.
29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.
30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.
31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.
32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.
33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.
34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.
35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.
36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.
37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.
38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.
39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3
40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.
41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.
42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.
43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.
44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.
45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.
46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.
47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.
1. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet Neurology. 2021;397(10291):2284-2303.
2. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders. 2015;30(12):1591-1601.
3. Martinez-Martin P, Rodriguez-Blazquez C, Kurtiz MM, et al. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26(3):399-406.
4. Langston WJ. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591-596.
5. Cong S, Xiang C, Zhang S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: a systematic review and meta‑analysis of 129 studies. Neurosci Biobehav Rev. 2022;141:104749. doi:10.1016/j.neubiorev.2022.104749
6. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies in depression in Parkinson’s disease. Mov Disord. 2008;23(2):183-189.
7. Zahodne LB, Marsiske M, Okun MS, et al. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2012;25(3):131-137.
8. Skapinakis P, Bakola E, Salanti G, et al. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurology. 2010;10:49. doi:10.1186/1471-2377-10-49
9. Richard IH, McDermott MP, Kurlan R, et al; SAD-PD Study Group. A randomized, double-blind placebo-controlled trial of antidepressants in Parkinson’s disease. Neurology. 2012;78(16):1229-1236.
10. Takahashi M, Tabu H, Ozaki A, et al. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med. 2019;58(3):361-368.
11. Bonuccelli U, Mecco G, Fabrini G, et al. A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson’s disease. Expert Opin Pharmacother. 2012;13(16):2269-2280.
12. Wantanabe N, Omorio IM, Nakagawa A, et al; MANGA (Meta-Analysis of New Generation Antidepressants) Study Group. Safety reporting and adverse-event profile of mirtazapine described in randomized controlled trials in comparison with other classes of antidepressants in the acute-phase treatment of adults with depression. CNS Drugs. 2010;24(1):35-53.
13. Barone P, Scarzella L, Marconi R, et al; Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601-607.
14. Smith KM, Eyal E, Weintraub D, et al; ADAGIO Investigators. Combined rasagiline and anti-depressant use in Parkinson’s disease in the ADAGIO study: effects on non-motor symptoms and tolerability. JAMA Neurology. 2015;72(1):88-95.
15. Seppi K, Chaudhuri R, Coelho M, et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease--an evidence-based medicine review. Mov Disord. 2019;34(2):180-198.
16. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol. 2019;76(7):755-763.
17. De Waele S, Cras P, Crosiers D. Apathy in Parkinson’s disease: defining the Park apathy subtype. Brain Sci. 2022;12(7):923.
18. Mele B, Van S, Holroyd-Leduc J, et al. Diagnosis, treatment and management of apathy in Parkinson’s disease: a scoping review. BMJ Open. 2020;10(9):037632. doi:10.1136/bmjopen-2020-037632
19. Mele B, Ismail Z, Goodarzi Z, et al. Non-pharmacological interventions to treat apathy in Parkinson’s disease: a realist review. Clin Park Relat Disord. 2021;4:100096. doi:10.1016/j.prdoa.2021.100096
20. Chung SJ, Asgharnejad M, Bauer L, et al. Evaluation of rotigotine transdermal patch for the treatment of depressive symptoms in patients with Parkinson’s disease. Expert Opin Pharmacother. 2016;(17)11:1453-1461.
21. Goldman JG, Guerra CM. Treatment of nonmotor symptoms associated with Parkinson disease. Neurol Clin. 2020;38(2):269-292.
22. Schneider RB, Auinger P, Tarolli CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord. 2020;81:69-74.
23. Moonen AJH, Mulders AEP, Defebvre L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2021;36(11):2539-2548.
24. Shulman LM, Singer C, Bean JA, et al. Internal tremor in patient with Parkinson’s disease. Mov Disord. 1996;11(1):3-7.
25. Cochrane GD, Rizvi S, Abrantes A, et al. Internal tremor in Parkinson’s disease, multiple sclerosis, and essential tremor. Parkinsonism Relat Disord. 2015;21(10):1145-1147.
26. Del Prete E, Schmitt E, Meoni S, et al. Do neuropsychiatric fluctuations temporally match motor fluctuations in Parkinson’s disease? Neurol Sci. 2022;43(6):3641-3647.
27. Kleiner G, Fernandez HH, Chou KL, et al. Non-motor fluctuations in Parkinson’s disease: validation of the non-motor fluctuation assessment questionnaire. Mov Disord. 2021;36(6):1392-1400.
28. Pachi I, Maraki MI, Giagkou N, et al. Late life psychotic features in prodromal Parkinson’s disease. Parkinsonism Relat Disord. 2021;86:67-73.
29. Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. A 12-year population-based study of psychosis in Parkinson’s disease. Arch Neurol. 2010;67(8):996-1001.
30. Chang A, Fox SH. Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs. 2016;76(11):1093-1118.
31. Kasunich A, Kilbane C, Wiggins R. Movement disorders moment: pain and palliative care in movement disorders. Practical Neurology. 2021;20(4):63-67.
32. Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s disease. Mov Disord. 2006;21(11):1899-1907.
33. Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009; 51 Suppl 1(Suppl 1): S52-S55.
34. Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.
35. Goldman J, Sieg, E. Cognitive impairment and dementia in Parkinson disease. Clin Geriatr Med. 2020;36(2):365-377.
36. Gonzalez-Latapi P, Bayram E, Litvan I, et al. Cognitive impairment in Parkinson’s disease: epidemiology, clinical profile, protective and risk factors. Behav Sci (Basel). 2021;11(5):74.
37. Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord. 2012;27(3):349-356.
38. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-2324.
39. Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3
40. Weintraub D, Claassen DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol. 2017;133:679-717.
41. Vilas D, Pont-Sunyer C, Tolosa E. Impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S80-S84.
42. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589-595.
43. Faouzi J, Corvol JC, Mariani LL. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol. 2021;34(4):547-555.
44. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse control disorders in Parkinson’s disease: management, controversies, and potential approaches. Mov Disord. 2015;30(2):150-159.
45. Frank MJ, Samanta J, Moustafa AA, et al. Hold your horses: impulsivity, deep brain stimulation and medication in Parkinsonism. Science. 2007;318(5854):1309-1312.
46. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015;30(2):128-140.
47. Castrioto A, Lhommée E, Moro E, et al. Mood and behavioral effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13(3):287-305.
New York GI advocates for team approach in GI care
“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”
This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.
In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.
The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.
Q: What was the inspiration behind Oshi Health?
Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.
Q: Why is multidisciplinary care the right approach?
Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.
Q: What grant-funded clinical research are you doing right now?
Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?
Q: What teacher or mentor had the greatest impact on you?
Dr. Berry: Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.
Q: Describe how you would spend a free Saturday afternoon.
Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.
Lightning round! Do you prefer texting or talking?
Texting
What’s high on your list of travel destinations?
Antarctica
Where was your most memorable vacation?
Patagonia
How many cups of coffee do you drink daily?
Four
What’s your favorite holiday?
Halloween
What’s your favorite junk food?
In-N-Out Burger
If you weren’t a gastroenterologist, what would you be?
Anthropologist
“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”
This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.
In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.
The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.
Q: What was the inspiration behind Oshi Health?
Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.
Q: Why is multidisciplinary care the right approach?
Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.
Q: What grant-funded clinical research are you doing right now?
Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?
Q: What teacher or mentor had the greatest impact on you?
Dr. Berry: Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.
Q: Describe how you would spend a free Saturday afternoon.
Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.
Lightning round! Do you prefer texting or talking?
Texting
What’s high on your list of travel destinations?
Antarctica
Where was your most memorable vacation?
Patagonia
How many cups of coffee do you drink daily?
Four
What’s your favorite holiday?
Halloween
What’s your favorite junk food?
In-N-Out Burger
If you weren’t a gastroenterologist, what would you be?
Anthropologist
“I was a little kid, so I wasn’t helping him,” but he said he learned a great deal by sitting in the hallways and listening to his father talk to patients. “I could clearly hear the human suffering on the other side.”
This experience had a big impact on Dr. Berry, who continues the family trade. Like his father, talking with patients about their condition is his favorite part of the job, but especially talking about the role of diet, lifestyle, and stress on GI health, said Dr. Berry, who is a gastroenterologist and clinical assistant professor of medicine at New York University’s Grossman School of Medicine.
In addition to his clinical practice, Dr.Berry serves as the co-founder & chief medical officer at Oshi Health. Oshi is an integrative healthcare clinic that is entirely virtual and entirely and solely about GI health. The clinic works with GI clinicians and other healthcare providers, allowing patients access to multidisciplinary care that has proven to reduce healthcare costs and improve patient outcomes. The company was recently named a recipient of funding through the American College of Gastroenterology and the American Gastroenterological Association’s Center for GI Innovation & Technology’s GI Opportunity Fund.
The Oshi model is a whole-person, multidisciplinary GI care model, which includes traditional medical care for GI conditions but also provides access to health coaching, nutrition and diet support, and behavioral and mental health services. Research shows the approach is effective in mitigating symptoms. A 2020 randomized controlled trial published in Lancet Gastroenterology and Hepatology demonstrated that integrated multidisciplinary care led to improvement in symptoms, quality of life, and cost of care for complex GI conditions, as compared with the traditional GI specialist care model. Numerous similar studies have found that integrated care teams were better equipped to meet the needs of patients with inflammatory bowel disease (IBD) and patients with disorders of gut-brain interaction (DGBIs), patient outcomes and satisfaction were better, overall direct and indirect costs were lower and psychological health needs better addressed.
Q: What was the inspiration behind Oshi Health?
Dr. Berry: Gastroenterologists continue to witness unnecessary patient suffering due to antiquated care delivery models and perverse incentives in our healthcare system. Oshi’s care model was designed to align incentives and provide patients with access to clinicians who are traditionally not reimbursed in fee-for-service healthcare while also helping GI practices provide this care to their patients. During my clinical training it was easy for me to order expensive and invasive testing for my patients, but very difficult for me to get them the multidisciplinary care they needed. Many of the patients I would see didn’t need more MRIs, CT scans, or expensive medications. They needed access to a team of clinicians to help with all the aspects of GI care, including diet, behavioral, and medical.
Q: Why is multidisciplinary care the right approach?
Dr. Berry: GI is a very complex field with many nuances that can impact a patient’s symptoms. As physicians, our role is now evolving to oversee a team of clinicians working together to maximize expertise in nutrition and the gut-brain axis. With these new multidisciplinary care models, GI practices can expand their capabilities. At Oshi Health, every single patient has access to a nurse practitioner, dietician, psychologist, and health coach — all overseen by a gastroenterologist — as a covered benefit through their health plan. Providing multidisciplinary care through a virtual-first model solves some of the scalability challenges of these intensive care models and can significantly improve access to care.
Q: What grant-funded clinical research are you doing right now?
Dr. Berry: Most of my research focuses on evaluating the impact of novel care delivery models in GI and the evaluation of digital technologies in GI and how we can incorporate those digital technologies into clinical practice. How can we determine what type of care can be done remotely via video visits? What can be done on the phone or via text messaging? How can we get these new services paid for so patients can reap the benefits of seeing their doctor more frequently?
Q: What teacher or mentor had the greatest impact on you?
Dr. Berry: Dr. John Allen, MD, MBA has had an incredible impact on my career. He’s the former president of the American Gastroenterological Association, and was the chief clinical officer and a professor at the University of Michigan. He’s one of the rare GI doctors that has both a strong clinical and leadership role in GI. I can’t thank him enough for planting the seeds to encourage me to focus on improving the ways we deliver care to patients.
Q: Describe how you would spend a free Saturday afternoon.
Dr. Berry: Roaming around and exploring a new neighborhood either in New York City or anywhere in the world. If I wasn’t going to be a doctor, I’d probably be an anthropologist. I love observing people in their element, and exploring new neighborhoods that are off the beaten path is a great way to do that.
Lightning round! Do you prefer texting or talking?
Texting
What’s high on your list of travel destinations?
Antarctica
Where was your most memorable vacation?
Patagonia
How many cups of coffee do you drink daily?
Four
What’s your favorite holiday?
Halloween
What’s your favorite junk food?
In-N-Out Burger
If you weren’t a gastroenterologist, what would you be?
Anthropologist
Obesity in GI care
While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.
This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.
In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.
In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.
On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.
This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.
In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.
This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.
We hope you enjoy this, and all the exciting content included in our October issue.
Megan A. Adams, MD, JD, MSc
While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.
This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.
In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.
In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.
On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.
This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.
In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.
This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.
We hope you enjoy this, and all the exciting content included in our October issue.
Megan A. Adams, MD, JD, MSc
While AGA’s advocacy efforts related to access to colorectal cancer screening are frequently highlighted, this is one aspect of a larger advocacy agenda.
This month, I wish to highlight AGA’s extensive advocacy efforts focused on expanding access to obesity treatment. More than 2 in 5 adults in the U.S. have obesity, and weight management has been shown to be beneficial in patients with comorbid gastrointestinal diseases, such as metabolic dysfunction–associated steatotic liver disease, gastroesophageal reflux disease, gallbladder disease, pancreatitis, and GI malignancy.
In 2022, Inside Scope, a podcast by AGA, featured a 6-part seriescalled “Obesity in GI.” In July, Drs. Octavia Pickett-Blakely and Naresh Gunaratnam moderated a Gastro Bites lunch-and-learn session on “Obesity in GI Care – Embracing and Putting It into Practice” in which they discussed models of care delivery supporting obesity management in GI practice.
In November 2022, AGA released “AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity,” (https://shorturl.at/bDNOV) to aid clinicians in appropriately prescribing obesity pharmacotherapy on the front lines of care.
On the policy front, in June, AGA held a Capitol Hill briefing in support of H.R.1577 - Treat and Reduce Obesity Act of 2021 (TROA), a bipartisan bill that would improve access to obesity treatment and care by expanding coverage under Medicare Part D for FDA-approved obesity pharmacotherapy, as well as related services such as behavioral, nutrition, and other counseling. Please check out our new obesity advocacy toolkit for more information.
This month we update you on important multi-society guidance regarding peri-endoscopic management of GLP-1 receptor agonists. We highlight new AGA Clinical Practice Updates on ostomy management and use of gastric POEM for treatment of gastroparesis, as well as a randomized controlled trial from Gastroenterology showing the effectiveness of hemostatic powder in the management of malignant GI bleeding as compared with standard care.
In our Member Spotlight, we feature gastroenterologist Sameer Berry, MD, MBA, who discusses his role as a physician-entrepreneur seeking to transform GI care delivery through his AGA GI Opportunity Fund–supported company, Oshi Health.
This issue includes our annual supplement, “Gastroenterology Data Trends.” It features a collection of contributions on GI and climate change, long COVID and the GI tract, and the evolution of targeted therapies for C. difficile, among others.
We hope you enjoy this, and all the exciting content included in our October issue.
Megan A. Adams, MD, JD, MSc
Commentary: Chronic and Remission Treatment in RA, October 2023
It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.
The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.
Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.
It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.
The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.
Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.
It is well known that the best outcomes for patients with rheumatoid arthritis (RA) are achieved with a treat-to-target strategy, but recent research has also focused on tapering therapy, especially biologics, in patients who are in prolonged disease remission without synovitis. In the open-label, randomized, noninferiority ARCTIC REWIND trial, Lillegraven and colleagues looked at the effects of tapering tumor necrosis factor inhibitors (TNFi) in 84 patients at different sites in Norway. Patients who had been in remission for a year or more on stable therapy (including TNFi and conventional synthetic disease-modifying antirheumatic drugs [csDMARD]) were included in the study. Of the 43 randomly assigned to tapering TNFi therapy, nearly two-thirds had a flare in 12 months of follow-up, compared with 5% in the stable TNFi group; thus, noninferiority of tapering TNFi was not supported. This study is small and seems to highlight a greater disparity between the two groups than expected from prior studies. Given the stark difference between the two groups, however, caution is advised in tapering TNFi therapy in patients with RA, even those in "deep remission." This information is reassuring in that most patients who flared had a good response to reinstating TNFi therapy, and it is helpful in counseling patients who prefer to try to reduce their medication burden despite the potential for flare.
The impact of chronic steroid use in RA has also received a lot of scrutiny in recent literature due to possible long-term side effects such as bone loss, hyperglycemia, and accelerated atherosclerotic disease. Palmowski and colleagues conducted a pooled analysis of several European randomized trials comparing the use of low-dose glucocorticoids (< 7.5 mg/d prednisone) vs placebo in combination with targeted therapy for RA. Data from over 1100 patients in five trials were analyzed. Over the course of 2 years, participants in both groups had gained weight, more so in the glucocorticoid group compared with the control group (1.8 kg vs 0.7 kg), with negligible effects on blood pressure. While use of moderate and high doses of glucocorticoids is not advisable for the long term, the use of low doses appears to be tolerable, with relatively minor effects on weight and blood pressure.
Given the chronic nature of RA and increasing incidence with age, comorbidities and multimorbidity (two or more comorbidities) are common in patients with RA. Stevens and colleagues used a national claims database to examine the burden of multimorbidity in people with RA and its association with sex and age in two different age groups (18-50 years and older than 51 years). Over 154,000 patients with RA were matched 1:1 to those without. The risk for multimorbidity was higher in women vs men with RA, though the absolute difference in risk was not large. The magnitude of these differences (between women and men, and between those with and without RA) was more pronounced in the younger age group and, as expected, decreased in the older age group. Of note, men with RA, compared with women with RA, had a higher risk for cardiovascular disease, including hypertension, high cholesterol, coronary artery disease, valvular disease, and heart failure. Women with RA had more psychological, neurologic, and comorbid noninflammatory musculoskeletal conditions, such as chronic lower back pain. These differences stress the need for attention to individualized care to improve patients' quality of life and reduce adverse effects on other areas of health.
Commentary: Genetics, prognosis score, and PI3K in MCL, October 2023
The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.
Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.
Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.
Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.
Additional References
1. Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797
2. Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543
3. Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499
The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.
Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.
Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.
Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.
Additional References
1. Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797
2. Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543
3. Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499
The treatment of mantle cell lymphoma (MCL) continues to evolve. In the front-line setting, studies are evaluating the role of novel therapies as well as consolidation with autologous stem cell transplantation. In the relapsed/refractory setting, patients can be considered for treatment with Bruton tyrosine kinase (BTK) inhibitors, other targeted therapies, or chimeric antigen receptor (CAR) T-cell therapy. Other novel therapies, including bispecific antibodies and novel antibody drug conjugates, are being studied as well.
Despite the availability of novel agents, a subset of patients continues to have difficult-to-treat disease and a poor prognosis. Established prognostic tools that aid in identifying high-risk patients include alternations in TP53, high proliferation rates, nonclassic morphology, and the Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which incorporates age, performance status, lactate dehydrogenase levels, and white blood cell count. The Nordic study group recently published a paper which provides additional prognostic information beyond these known variables (Rodrigues et al). They examined MYC expression in a cohort of 251 patients with MCL and structural aberrations in MYC and MYC mRNA levels in a smaller cohort. They found that patients with tumors comprising 20% or more cells with MYC overexpression (MYChigh tumors) vs MYClow tumors had significantly higher risks for death (adjusted hazard ratio [aHR] 2.03; P = .007) and disease progression (aHR 2.20; P = .04), when adjusted for additional high-risk features. Patients with tumors with concomitant MYChigh expression and TP53/p53 alterations vs MYClow tumors had a particularly poor prognosis, with significantly increased risks for progression (HR 16.90) and death (HR 7.83) with a median overall survival of only 0.9 years (both P < .001). Though MYC overexpression was rare, this study identified a high-risk group of patients, especially those harboring concurrent TP53 aberrations, that may benefit from novel treatment approaches.
Another study recently aimed to identify patients who are at risk for poor outcomes after treatment with brexucabtagene autoleucel (brexu-cel) infusion. Though brexu-cel is an active therapy for patients with relapsed/refractory MCL, there are known toxicities, including cytokine release syndrome, neurologic toxicity, and hematologic toxicity. Given the potential for prolonged cytopenias and immune suppression, patients are also at risk for severe infections, which currently represent the driving determinant of nonrelapse mortality.1 The CAR-HEMATOTOX (HT) score was previously found to identify patients who are at increased risk for hematologic toxicity after CAR T-cell therapy in diffuse large B-cell lymphoma.2 In the current multicenter observational study, which included 103 patients receiving brexu-cel, the authors reported an association between baseline HT score and outcome in MCL as well. Patients with high (2-7) vs low (0-1) HT scores had significantly longer median duration of severe neutropenia (P < .0001), higher rates of severe infections (P = .001), and lower overall response rates (P = .003). The HT score represented an independent predictor of poor progression-free (aHR 3.7; P < .001) and overall (aHR 5.6; P = .002) survival. This tool may provide a helpful guide when counseling patients on treatment options and allow for more personalized toxicity management.
Despite availability of BTK inhibitors and CAR T-cell therapy for patients with MCL, relapses remain common. As upregulation of phosphoinositide 3-kinase (PI3K) is known to play a critical role in lymphomagenesis, there has been interest in targeting this pathway across lymphoma subtypes. Though PI3K inhibitors have been found to be active agents, they have also been associated with poor tolerability and safety concerns. Parsaclisib is a selective PI3K delta inhibitor that showed encouraging data in the phase 1/2 study in patients with non-Hodgkin lymphoma.3 More recently, the phase 2 CITADEL-205 study, which included adult patients with relapsed or refractory MCL previously treated with one to three systemic therapies, with (n = 53) or without (n = 108) prior BTK inhibitor treatment, was published (Zinazni et al). Patients received 20 mg parsaclisib once daily for 8 weeks followed by either 20 mg parsaclisib once weekly or 2.5 mg parsaclisib once daily. Among BTK inhibitor–naive patients who received parsaclisib once daily, 70.1% (95% CI 58.6%-80.0%) and 15.6% (95% CI 8.3%-25.6%) achieved an objective response and a complete response, respectively, with the median duration of response being 12.1 months (95% CI 9.0 to not evaluable). Responses were not thought to be clinically meaningful in the patients treated with prior BTK inhibitors. Most treatment-emergent adverse events were low grade and manageable by dose interruptions or reductions. A total of 30% of patients required drug discontinuation due to adverse events. Though parsaclisib demonstrated activity in patients with relapsed/refractory MCL, the role of this drug in clinical practice is not clear given the increased use of BTK inhibitors as a preferred second-line therapy and ongoing concerns regarding PI3K inhibitor-related toxicity.
Additional References
1. Wang Y, Jain P, Locke FL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: Results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2023;41:2594-2606. doi: 10.1200/JCO.22.01797
2. Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138:2499-2513. doi: 10.1182/blood.2020010543
3. Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133:1742-1752. doi: 10.1182/blood-2018-08-867499
Cost concerns lead to cancer treatment delays, nonadherence
TOPLINE:
METHODOLOGY:
- Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
- To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
- The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
- Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.
TAKEAWAY:
- Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
- After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
- Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
- Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.
IN PRACTICE:
- “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.
SOURCE:
- The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.
LIMITATIONS:
The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.
DISCLOSURES:
The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
- To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
- The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
- Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.
TAKEAWAY:
- Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
- After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
- Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
- Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.
IN PRACTICE:
- “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.
SOURCE:
- The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.
LIMITATIONS:
The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.
DISCLOSURES:
The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Navigating the complexities of insurance coverage is difficult for cancer patients, and the clinical impact of managing these intricacies remains unclear.
- To understand the issue, investigators surveyed 510 insured cancer patients in the United States about how often they estimate out-of-pocket costs for medications, doctors’ visits, and lab tests and scans, as well as how often they ask their insurance company to help them understand their coverage and how often they appeal coverage decisions.
- The team then correlated the answers with how often patients reported postponing or skipping doctors’ appointments and lab tests and how often they delayed filling prescriptions or skipped doses.
- Breast, colorectal, lung, and prostate cancer were the most common diagnoses among respondents.
TAKEAWAY:
- Overall, 55% of participants said they “never” or “rarely” engaged in any insurance-related cost tasks. The most frequently performed administrative tasks included finding out the cost before filling a prescription (28%) or before undergoing lab tests or scans (20%), as well as estimating the cost before agreeing to a treatment (20%), asking an insurance company for help understanding coverage (18%), or appealing a denial (17%).
- After adjusting for age, race/ethnicity, education, and monthly out-of-pocket costs, participants who engaged in any cost task were 18% more likely to experience treatment delays or forgo care.
- Every additional cost task or increase in frequency of a cost task was associated with 32% higher frequency of treatment delay or nonadherence.
- Age, race, and monthly out-of-pocket costs were more strongly associated with treatment delays/nonadherence than cost-task burden. Younger patients and Black patients were more likely than others to experience cost-related delays/nonadherence.
IN PRACTICE:
- “Reductions to administrative burden on patients, whether through patient-level education interventions, the adaptation of hospital-based navigation programs, or policy-focused changes to insurance systems, will be crucial” for helping patients with cancer to overcome administrative burdens and improve access to care, the authors said.
SOURCE:
- The study, led by Meredith Doherty, PhD, of the University of Pennsylvania, Philadelphia, was published in Cancer Epidemiology, Biomarkers and Prevention.
LIMITATIONS:
The survey was voluntary, which raises the possibility of self-selection bias. Recall bias may also have occurred, particularly among patients farther out from diagnosis and treatment. The investigators did not include uninsured patients and did not stratify patients by insurance type, and they did not measure or account for health care literacy.
DISCLOSURES:
The study was funded by the American Cancer Society. The investigators have disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
FROM CANCER EPIDEMIOLOGY, BIOMARKERS AND PREVENTION
Commentary: Radiation therapy, endocrine therapy, metformin, and statins in breast cancer, October 2023
Endocrine therapy (ET) remains the backbone of treatment for hormone receptor–positive breast cancer; however, 15%-20% of tumors are initially resistant to ET and endocrine resistance develops over time in approximately 30%-40%.2 In an effort to overcome limitations with historical standard-of-care endocrine agents, the class of oral potent selective estrogen receptor degraders (SERD) is evolving. The phase 2, randomized, controlled coopERA Breast Cancer trial evaluated the antiproliferative effect of giredestrant (a highly potent nonsteroidal oral SERD) compared with anastrozole (each combined with palbociclib after 2-week window-of-opportunity phase) among postmenopausal women with early-stage (cT1c-cT4) ER+/HER2- breast cancer with a Ki67 score ≥ 5% (Hurvitz et al). Among 221 enrolled patients (giredestrant group n = 112, and anastrozole group n = 109), giredestrant led to a significantly greater relative geometric mean reduction of Ki67 at 2 weeks from baseline compared with anastrozole (-75% vs -67%; P = 0.043). Neutropenia (26% and 27%) and decreased neutrophil count (15% and 15%) were the most common grade 3-4 adverse events in the giredestrant-palbociclib and anastrozole-palbociclib groups, respectively. The value of Ki67 as a biomarker for efficacy and outcome was demonstrated in the phase 3 POETIC trial, which showed that the degree of Ki67 reduction after 2 weeks of ET correlated with 5-year recurrence risk.3 These data encourage further investigation of oral SERD combinations, predictors of response, and long-term outcomes that may influence agent selection and sequencing.
Anticancer properties have been demonstrated with aspirin, statins, and metformin, although the data on the prognostic impact of these agents in breast cancer have shown mixed results.4 A nationwide population-based cohort study including 26,190 women aged 50 years or older diagnosed with breast cancer and surviving 12 months or more after diagnosis was performed to evaluate the postdiagnosis use of aspirin, statins, and metformin and association with breast cancer-specific survival (BCSS) (Löfling et al). At 6.1 years of follow-up, there were 2169 deaths related to breast cancer and the results supported an association of postdiagnostic use of statins and metformin with survival (hazard ratio for association between use of statins vs no use and BCSS was 0.84 [95% CI 0.75-0.94]; hazard ratio for association between metformin use vs use of nonmetformin antidiabetics and BCSS was 0.70 [95% CI 0.51-0.96]). Furthermore, there appeared to be differences in association by ER status. An important relationship exists between cardiovascular health and breast cancer, and future efforts should continue to study pharmacologic and lifestyle interventions that may optimize metabolic profiles and improve outcomes for patients.
Additional References
- Kunkler IH, Williams LJ, Jack WJL, et al. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388:585-594. doi: 10.1056/NEJMoa2207586
- Lei JT, Anurag M, Haricharan S, et al. Endocrine therapy resistance: New insights. Breast. 2019;48:S26-S30. doi: 10.1016/S0960-9776(19)31118-X
- Smith I, Robertson J, Kilburn L, et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): An open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol. 2020;21:1443-1454. doi: 10.1016/S1470-2045(20)30458-7
- Nowakowska MK, Lei X, Thompson MT, et al. Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer. 2021;127:4142-4150. doi: 10.1002/cncr.33797
Endocrine therapy (ET) remains the backbone of treatment for hormone receptor–positive breast cancer; however, 15%-20% of tumors are initially resistant to ET and endocrine resistance develops over time in approximately 30%-40%.2 In an effort to overcome limitations with historical standard-of-care endocrine agents, the class of oral potent selective estrogen receptor degraders (SERD) is evolving. The phase 2, randomized, controlled coopERA Breast Cancer trial evaluated the antiproliferative effect of giredestrant (a highly potent nonsteroidal oral SERD) compared with anastrozole (each combined with palbociclib after 2-week window-of-opportunity phase) among postmenopausal women with early-stage (cT1c-cT4) ER+/HER2- breast cancer with a Ki67 score ≥ 5% (Hurvitz et al). Among 221 enrolled patients (giredestrant group n = 112, and anastrozole group n = 109), giredestrant led to a significantly greater relative geometric mean reduction of Ki67 at 2 weeks from baseline compared with anastrozole (-75% vs -67%; P = 0.043). Neutropenia (26% and 27%) and decreased neutrophil count (15% and 15%) were the most common grade 3-4 adverse events in the giredestrant-palbociclib and anastrozole-palbociclib groups, respectively. The value of Ki67 as a biomarker for efficacy and outcome was demonstrated in the phase 3 POETIC trial, which showed that the degree of Ki67 reduction after 2 weeks of ET correlated with 5-year recurrence risk.3 These data encourage further investigation of oral SERD combinations, predictors of response, and long-term outcomes that may influence agent selection and sequencing.
Anticancer properties have been demonstrated with aspirin, statins, and metformin, although the data on the prognostic impact of these agents in breast cancer have shown mixed results.4 A nationwide population-based cohort study including 26,190 women aged 50 years or older diagnosed with breast cancer and surviving 12 months or more after diagnosis was performed to evaluate the postdiagnosis use of aspirin, statins, and metformin and association with breast cancer-specific survival (BCSS) (Löfling et al). At 6.1 years of follow-up, there were 2169 deaths related to breast cancer and the results supported an association of postdiagnostic use of statins and metformin with survival (hazard ratio for association between use of statins vs no use and BCSS was 0.84 [95% CI 0.75-0.94]; hazard ratio for association between metformin use vs use of nonmetformin antidiabetics and BCSS was 0.70 [95% CI 0.51-0.96]). Furthermore, there appeared to be differences in association by ER status. An important relationship exists between cardiovascular health and breast cancer, and future efforts should continue to study pharmacologic and lifestyle interventions that may optimize metabolic profiles and improve outcomes for patients.
Additional References
- Kunkler IH, Williams LJ, Jack WJL, et al. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388:585-594. doi: 10.1056/NEJMoa2207586
- Lei JT, Anurag M, Haricharan S, et al. Endocrine therapy resistance: New insights. Breast. 2019;48:S26-S30. doi: 10.1016/S0960-9776(19)31118-X
- Smith I, Robertson J, Kilburn L, et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): An open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol. 2020;21:1443-1454. doi: 10.1016/S1470-2045(20)30458-7
- Nowakowska MK, Lei X, Thompson MT, et al. Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer. 2021;127:4142-4150. doi: 10.1002/cncr.33797
Endocrine therapy (ET) remains the backbone of treatment for hormone receptor–positive breast cancer; however, 15%-20% of tumors are initially resistant to ET and endocrine resistance develops over time in approximately 30%-40%.2 In an effort to overcome limitations with historical standard-of-care endocrine agents, the class of oral potent selective estrogen receptor degraders (SERD) is evolving. The phase 2, randomized, controlled coopERA Breast Cancer trial evaluated the antiproliferative effect of giredestrant (a highly potent nonsteroidal oral SERD) compared with anastrozole (each combined with palbociclib after 2-week window-of-opportunity phase) among postmenopausal women with early-stage (cT1c-cT4) ER+/HER2- breast cancer with a Ki67 score ≥ 5% (Hurvitz et al). Among 221 enrolled patients (giredestrant group n = 112, and anastrozole group n = 109), giredestrant led to a significantly greater relative geometric mean reduction of Ki67 at 2 weeks from baseline compared with anastrozole (-75% vs -67%; P = 0.043). Neutropenia (26% and 27%) and decreased neutrophil count (15% and 15%) were the most common grade 3-4 adverse events in the giredestrant-palbociclib and anastrozole-palbociclib groups, respectively. The value of Ki67 as a biomarker for efficacy and outcome was demonstrated in the phase 3 POETIC trial, which showed that the degree of Ki67 reduction after 2 weeks of ET correlated with 5-year recurrence risk.3 These data encourage further investigation of oral SERD combinations, predictors of response, and long-term outcomes that may influence agent selection and sequencing.
Anticancer properties have been demonstrated with aspirin, statins, and metformin, although the data on the prognostic impact of these agents in breast cancer have shown mixed results.4 A nationwide population-based cohort study including 26,190 women aged 50 years or older diagnosed with breast cancer and surviving 12 months or more after diagnosis was performed to evaluate the postdiagnosis use of aspirin, statins, and metformin and association with breast cancer-specific survival (BCSS) (Löfling et al). At 6.1 years of follow-up, there were 2169 deaths related to breast cancer and the results supported an association of postdiagnostic use of statins and metformin with survival (hazard ratio for association between use of statins vs no use and BCSS was 0.84 [95% CI 0.75-0.94]; hazard ratio for association between metformin use vs use of nonmetformin antidiabetics and BCSS was 0.70 [95% CI 0.51-0.96]). Furthermore, there appeared to be differences in association by ER status. An important relationship exists between cardiovascular health and breast cancer, and future efforts should continue to study pharmacologic and lifestyle interventions that may optimize metabolic profiles and improve outcomes for patients.
Additional References
- Kunkler IH, Williams LJ, Jack WJL, et al. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388:585-594. doi: 10.1056/NEJMoa2207586
- Lei JT, Anurag M, Haricharan S, et al. Endocrine therapy resistance: New insights. Breast. 2019;48:S26-S30. doi: 10.1016/S0960-9776(19)31118-X
- Smith I, Robertson J, Kilburn L, et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): An open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol. 2020;21:1443-1454. doi: 10.1016/S1470-2045(20)30458-7
- Nowakowska MK, Lei X, Thompson MT, et al. Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer. 2021;127:4142-4150. doi: 10.1002/cncr.33797
Commentary: New treatments and trial results, October 2023
A recently published study by Rugo and colleagues presented the final analysis of overall survival and endpoints by trophoblast cell surface antigen 2 (Trop-2) expression. Results showed that at the 12.5-month median follow-up, sacituzumab govitecan vs chemotherapy improved overall survival by 3.2 months (hazard ratio 0.79; P = .020). The survival benefit was consistent across different levels of Trop-2 expression. No new adverse events were reported; however, one fatal adverse event (septic shock caused by neutropenic colitis) was determined to be related to sacituzumab govitecan treatment. These updated data continue to support the use of sacituzumab govitecan as a new treatment option for patients with endocrine-resistant HR+ and HER2- MBC.
It remains unclear whether anti-HER2 therapy alone (without chemotherapy) is an effective treatment approach for patients with ERBB2-positive MBC in the first-line setting. Huober and the Swiss Group for Clinical Cancer Research, the Unicancer Breast Group, and the Dutch Breast Cancer Research Group report a phase 2 trial that included 210 patients with ERBB2+ MBC who were randomly assigned to receive pertuzumab plus trastuzumab with or without chemotherapy followed by trastuzumab-emtansine as the second-line therapy in both groups. Despite worse progression-free survival in the nonchemotherapy vs the chemotherapy group (8.4 months [95% CI 7.9-12.0] vs 23.3 months [95% CI 18.9-33.1]), overall survival rates were comparable at 2 years of follow-up (79.0% [90% CI 71.4%-85.4%] vs 78.1% [90% CI 70.4%-84.5%]). Furthermore, adverse events were more frequent in the chemotherapy cohort, with small quality-of-life improvements from baseline in the nonchemotherapy cohort. Further prospective data are needed to confirm whether a chemotherapy-free approach is an acceptable treatment approach in certain population of patients, without unfavorable effects on overall survival.
Prior results from the SOFT and TEXT trials have shown improved survival with the addition of ovarian function suppression (OFS) in premenopausal women after chemotherapy. The ASTRRA trial is a similar phase 3 study that included 1282 premenopausal women with estrogen receptor–positive BC who remained premenopausal or regained ovarian function after chemotherapy and were randomly assigned to receive tamoxifen with or without OFS. The results showed a consistent disease-free survival benefit in women who received tamoxifen plus OFS vs tamoxifen alone (85.4% vs 80.2%; hazard ratio 0.67; P = .003) after a median follow-up of 8 years. There were no significant differences in 8-year OS rates between the two groups (P = .305), although both cohorts had high OS rates overall (> 95%). This trial highlights the overall excellent prognosis in this patient population and underscores the importance of OFS in the subgroup of patients who remain in a premenopausal state or resume ovarian function after chemotherapy.
The ICE study (Ibandronate with or without Capecitabine in Elderly patients with early breast cancer) was a phase 3 trial looking at 1358 patients age ≥ 65 years with node-positive or high-risk node-negative early BC who were randomly assigned to receive 2 years of ibandronate with or without capecitabine for six cycles in the adjuvant setting. At a median follow-up of 61 months, the 5-year invasive disease-free survival rates were similar amongst patients treated with adjuvant ibandronate plus capecitabine and ibandronate alone (hazard ratio 0.96; 95% CI 0.78-1.19). Outcomes were independent of age, nodal status, and hormone receptor status. The incidences of high-grade gastrointestinal disorders (6.7% vs 1.0%; P < .001) and skin toxicity (14.6% vs 0.6%; P < .01) were significantly higher in the capecitabine plus ibandronate arm vs the ibandronate alone arm.
Adjuvant capecitabine plus ibandronate failed to show improved survival outcomes compared with ibandronate alone in older patients with node-positive/high-risk node-negative BC. This was similar to results of the CALGB 49907 trial, which showed inferior survival for adjuvant capecitabine compared with standard adjuvant chemotherapy in patients ≥ 65 years of age.1 Therefore, although oral capecitabine may be more tolerable than intravenous polychemotherapy in older patients with high-risk BC, this should be weighed against lower efficacy.
Additional Reference
- Muss HB, Berry DA, Cirrincione CT, et al, for the CALGB Investigators. Adjuvant chemotherapy in older women with early-stage breast cancer. N Engl J Med. 2009;360:2055-2065. doi: 10.1056/NEJMoa0810266
A recently published study by Rugo and colleagues presented the final analysis of overall survival and endpoints by trophoblast cell surface antigen 2 (Trop-2) expression. Results showed that at the 12.5-month median follow-up, sacituzumab govitecan vs chemotherapy improved overall survival by 3.2 months (hazard ratio 0.79; P = .020). The survival benefit was consistent across different levels of Trop-2 expression. No new adverse events were reported; however, one fatal adverse event (septic shock caused by neutropenic colitis) was determined to be related to sacituzumab govitecan treatment. These updated data continue to support the use of sacituzumab govitecan as a new treatment option for patients with endocrine-resistant HR+ and HER2- MBC.
It remains unclear whether anti-HER2 therapy alone (without chemotherapy) is an effective treatment approach for patients with ERBB2-positive MBC in the first-line setting. Huober and the Swiss Group for Clinical Cancer Research, the Unicancer Breast Group, and the Dutch Breast Cancer Research Group report a phase 2 trial that included 210 patients with ERBB2+ MBC who were randomly assigned to receive pertuzumab plus trastuzumab with or without chemotherapy followed by trastuzumab-emtansine as the second-line therapy in both groups. Despite worse progression-free survival in the nonchemotherapy vs the chemotherapy group (8.4 months [95% CI 7.9-12.0] vs 23.3 months [95% CI 18.9-33.1]), overall survival rates were comparable at 2 years of follow-up (79.0% [90% CI 71.4%-85.4%] vs 78.1% [90% CI 70.4%-84.5%]). Furthermore, adverse events were more frequent in the chemotherapy cohort, with small quality-of-life improvements from baseline in the nonchemotherapy cohort. Further prospective data are needed to confirm whether a chemotherapy-free approach is an acceptable treatment approach in certain population of patients, without unfavorable effects on overall survival.
Prior results from the SOFT and TEXT trials have shown improved survival with the addition of ovarian function suppression (OFS) in premenopausal women after chemotherapy. The ASTRRA trial is a similar phase 3 study that included 1282 premenopausal women with estrogen receptor–positive BC who remained premenopausal or regained ovarian function after chemotherapy and were randomly assigned to receive tamoxifen with or without OFS. The results showed a consistent disease-free survival benefit in women who received tamoxifen plus OFS vs tamoxifen alone (85.4% vs 80.2%; hazard ratio 0.67; P = .003) after a median follow-up of 8 years. There were no significant differences in 8-year OS rates between the two groups (P = .305), although both cohorts had high OS rates overall (> 95%). This trial highlights the overall excellent prognosis in this patient population and underscores the importance of OFS in the subgroup of patients who remain in a premenopausal state or resume ovarian function after chemotherapy.
The ICE study (Ibandronate with or without Capecitabine in Elderly patients with early breast cancer) was a phase 3 trial looking at 1358 patients age ≥ 65 years with node-positive or high-risk node-negative early BC who were randomly assigned to receive 2 years of ibandronate with or without capecitabine for six cycles in the adjuvant setting. At a median follow-up of 61 months, the 5-year invasive disease-free survival rates were similar amongst patients treated with adjuvant ibandronate plus capecitabine and ibandronate alone (hazard ratio 0.96; 95% CI 0.78-1.19). Outcomes were independent of age, nodal status, and hormone receptor status. The incidences of high-grade gastrointestinal disorders (6.7% vs 1.0%; P < .001) and skin toxicity (14.6% vs 0.6%; P < .01) were significantly higher in the capecitabine plus ibandronate arm vs the ibandronate alone arm.
Adjuvant capecitabine plus ibandronate failed to show improved survival outcomes compared with ibandronate alone in older patients with node-positive/high-risk node-negative BC. This was similar to results of the CALGB 49907 trial, which showed inferior survival for adjuvant capecitabine compared with standard adjuvant chemotherapy in patients ≥ 65 years of age.1 Therefore, although oral capecitabine may be more tolerable than intravenous polychemotherapy in older patients with high-risk BC, this should be weighed against lower efficacy.
Additional Reference
- Muss HB, Berry DA, Cirrincione CT, et al, for the CALGB Investigators. Adjuvant chemotherapy in older women with early-stage breast cancer. N Engl J Med. 2009;360:2055-2065. doi: 10.1056/NEJMoa0810266
A recently published study by Rugo and colleagues presented the final analysis of overall survival and endpoints by trophoblast cell surface antigen 2 (Trop-2) expression. Results showed that at the 12.5-month median follow-up, sacituzumab govitecan vs chemotherapy improved overall survival by 3.2 months (hazard ratio 0.79; P = .020). The survival benefit was consistent across different levels of Trop-2 expression. No new adverse events were reported; however, one fatal adverse event (septic shock caused by neutropenic colitis) was determined to be related to sacituzumab govitecan treatment. These updated data continue to support the use of sacituzumab govitecan as a new treatment option for patients with endocrine-resistant HR+ and HER2- MBC.
It remains unclear whether anti-HER2 therapy alone (without chemotherapy) is an effective treatment approach for patients with ERBB2-positive MBC in the first-line setting. Huober and the Swiss Group for Clinical Cancer Research, the Unicancer Breast Group, and the Dutch Breast Cancer Research Group report a phase 2 trial that included 210 patients with ERBB2+ MBC who were randomly assigned to receive pertuzumab plus trastuzumab with or without chemotherapy followed by trastuzumab-emtansine as the second-line therapy in both groups. Despite worse progression-free survival in the nonchemotherapy vs the chemotherapy group (8.4 months [95% CI 7.9-12.0] vs 23.3 months [95% CI 18.9-33.1]), overall survival rates were comparable at 2 years of follow-up (79.0% [90% CI 71.4%-85.4%] vs 78.1% [90% CI 70.4%-84.5%]). Furthermore, adverse events were more frequent in the chemotherapy cohort, with small quality-of-life improvements from baseline in the nonchemotherapy cohort. Further prospective data are needed to confirm whether a chemotherapy-free approach is an acceptable treatment approach in certain population of patients, without unfavorable effects on overall survival.
Prior results from the SOFT and TEXT trials have shown improved survival with the addition of ovarian function suppression (OFS) in premenopausal women after chemotherapy. The ASTRRA trial is a similar phase 3 study that included 1282 premenopausal women with estrogen receptor–positive BC who remained premenopausal or regained ovarian function after chemotherapy and were randomly assigned to receive tamoxifen with or without OFS. The results showed a consistent disease-free survival benefit in women who received tamoxifen plus OFS vs tamoxifen alone (85.4% vs 80.2%; hazard ratio 0.67; P = .003) after a median follow-up of 8 years. There were no significant differences in 8-year OS rates between the two groups (P = .305), although both cohorts had high OS rates overall (> 95%). This trial highlights the overall excellent prognosis in this patient population and underscores the importance of OFS in the subgroup of patients who remain in a premenopausal state or resume ovarian function after chemotherapy.
The ICE study (Ibandronate with or without Capecitabine in Elderly patients with early breast cancer) was a phase 3 trial looking at 1358 patients age ≥ 65 years with node-positive or high-risk node-negative early BC who were randomly assigned to receive 2 years of ibandronate with or without capecitabine for six cycles in the adjuvant setting. At a median follow-up of 61 months, the 5-year invasive disease-free survival rates were similar amongst patients treated with adjuvant ibandronate plus capecitabine and ibandronate alone (hazard ratio 0.96; 95% CI 0.78-1.19). Outcomes were independent of age, nodal status, and hormone receptor status. The incidences of high-grade gastrointestinal disorders (6.7% vs 1.0%; P < .001) and skin toxicity (14.6% vs 0.6%; P < .01) were significantly higher in the capecitabine plus ibandronate arm vs the ibandronate alone arm.
Adjuvant capecitabine plus ibandronate failed to show improved survival outcomes compared with ibandronate alone in older patients with node-positive/high-risk node-negative BC. This was similar to results of the CALGB 49907 trial, which showed inferior survival for adjuvant capecitabine compared with standard adjuvant chemotherapy in patients ≥ 65 years of age.1 Therefore, although oral capecitabine may be more tolerable than intravenous polychemotherapy in older patients with high-risk BC, this should be weighed against lower efficacy.
Additional Reference
- Muss HB, Berry DA, Cirrincione CT, et al, for the CALGB Investigators. Adjuvant chemotherapy in older women with early-stage breast cancer. N Engl J Med. 2009;360:2055-2065. doi: 10.1056/NEJMoa0810266
Factor XI inhibitors: The promise of a truly safe anticoagulant?
The quest to find an anticoagulant that can prevent strokes, cardiovascular events, and venous thrombosis without significantly increasing risk of bleeding is something of a holy grail in cardiovascular medicine. Could the latest focus of interest in this field – the factor XI inhibitors – be the long–sought-after answer?
Topline results from the largest study so far of a factor XI inhibitor – released on Sep. 18 – are indeed very encouraging. The phase 2 AZALEA-TIMI 71 study was stopped early because of an “overwhelming” reduction in major and clinically relevant nonmajor bleeding shown with the factor XI inhibitor abelacimab (Anthos), compared with apixaban for patients with atrial fibrillation (AFib).
Very few other data from this study have yet been released. Full results are due to be presented at the scientific sessions of the American Heart Association in November. Researchers in the field are optimistic that this new class of drugs may allow millions more patients who are at risk of thrombotic events but are concerned about bleeding risk to be treated, with a consequent reduction in strokes and possibly cardiovascular events as well.
Why factor XI?
In natural physiology, there are two ongoing processes: hemostasis – a set of actions that cause bleeding to stop after an injury – and thrombosis – a pathologic clotting process in which thrombus is formed and causes a stroke, MI, or deep venous thrombosis (DVT).
In patients prone to pathologic clotting, such as those with AFib, the balance of these two processes has shifted toward thrombosis, so anticoagulants are used to reduce the thrombotic risks. For many years, the only available oral anticoagulant was warfarin, a vitamin K antagonist that was very effective at preventing strokes but that comes with a high risk for bleeding, including intracranial hemorrhage (ICH) and fatal bleeding.
The introduction of the direct-acting anticoagulants (DOACs) a few years ago was a step forward in that these drugs have been shown to be as effective as warfarin but are associated with a lower risk of bleeding, particularly of ICH and fatal bleeding. But they still cause bleeding, and concerns over that risk of bleeding prevent millions of patients from taking these drugs and receiving protection against stroke.
John Alexander, MD, professor of medicine at Duke University Medical Center, Durham, N.C., a researcher active in this area, notes that “while the DOACs cause less bleeding than warfarin, they still cause two or three times more bleeding than placebo, and there is a huge, unmet need for safer anticoagulants that don’t cause as much bleeding. We are hopeful that factor XI inhibitors might be those anticoagulants.”
The lead investigator the AZALEA study, Christian Ruff, MD, professor of medicine at Brigham and Women’s Hospital, Boston, explained why it is thought that factor XI inhibitors may be different.
“There’s a lot of different clotting factors, and most of them converge in a central pathway. The problem, therefore, with anticoagulants used to date that block one of these factors is that they prevent clotting but also cause bleeding.
“It has been discovered that factor XI has a really unique position in the cascade of how our body forms clots in that it seems to be important in clot formation, but it doesn’t seem to play a major role in our ability to heal and repair blood vessels.”
Another doctor involved in the field, Manesh Patel, MD, chief of cardiology at Duke University Medical Center, added, “We think that factor XI inhibitors may prevent the pathologic formation of thrombosis while allowing formation of thrombus for natural hemostasis to prevent bleeding. That is why they are so promising.”
This correlates with epidemiologic data suggesting that patients with a genetic factor XI deficiency have low rates of stroke and MI but don’t appear to bleed spontaneously, Dr. Patel notes.
Candidates in development
The pharmaceutical industry is on the case with several factor XI inhibitors now in clinical development. At present, three main candidates lead the field. These are abelacimab (Anthos), a monoclonal antibody given by subcutaneous injection once a month; and two small molecules, milvexian (BMS/Janssen) and asundexian (Bayer), which are both given orally.
Phase 3 trials of these three factor XI inhibitors have recently started for a variety of thrombotic indications, including the prevention of stroke in patients with AFib, prevention of recurrent stroke in patients with ischemic stroke, and prevention of future cardiovascular events in patients with acute coronary syndrome (ACS).
Dr. Alexander, who has been involved in clinical trials of both milvexian and asundexian, commented: “We have pretty good data from a number of phase 2 trials now that these factor XI inhibitors at the doses used in these studies cause a lot less bleeding than therapeutic doses of DOACs and low-molecular-weight heparins.”
He pointed out that, in addition to the AZALEA trial with abelacimab, the phase 2 PACIFIC program of studies has shown less bleeding with asundexian than with apixaban in patients with AFib and a similar amount of bleeding as placebo in ACS/stroke patients on top of antiplatelet therapy. Milvexian has also shown similar results in the AXIOMATIC program of studies.
Dr. Ruff noted that the biggest need for new anticoagulants in general is in the AFib population. “Atrial fibrillation is one of the most common medical conditions in the world. Approximately one in every three people will develop AFib in their lifetime, and it is associated with more than a fivefold increased risk of stroke. But up to half of patients with AFib currently do not take anticoagulants because of concerns about bleeding risks, so these patients are being left unprotected from stroke risk.”
Dr. Ruff pointed out that the AZALEA study was the largest and longest study of a factor XI inhibitor to date; 1,287 patients were followed for a median of 2 years.
“This was the first trial of long-term administration of factor XI inhibitor against a full-dose DOAC, and it was stopped because of an overwhelming reduction in a major bleeding with abelacimab, compared with rivaroxaban,” he noted. “That is very encouraging. It looks like our quest to develop a safe anticoagulant with much lower rates of bleeding, compared with standard of care, seems to have been borne out. I think the field is very excited that we may finally have something that protects patients from thrombosis whilst being much safer than current agents.”
While all this sounds very promising, for these drugs to be successful, in addition to reducing bleeding risk, they will also have to be effective at preventing strokes and other thrombotic events.
“While we are pretty sure that factor XI inhibitors will cause less bleeding than current anticoagulants, what is unknown still is how effective they will be at preventing pathologic blood clots,” Dr. Alexander points out.
“We have some data from studies of these drugs in DVT prophylaxis after orthopedic surgery which suggest that they are effective in preventing blood clots in that scenario. But we don’t know yet about whether they can prevent pathologic blood clots that occur in AFib patients or in poststroke or post-ACS patients. Phase 3 studies are now underway with these three leading drug candidates which will answer some of these questions.”
Dr. Patel agrees that the efficacy data in the phase 3 trials will be key to the success of these drugs. “That is a very important part of the puzzle that is still missing,” he says.
Dr. Ruff notes that the AZALEA study will provide some data on efficacy. “But we already know that in the orthopedic surgery trials there was a 70%-80% reduction in VTE with abelacimab (at the 150-mg dose going forward) vs. prophylactic doses of low-molecular-weight heparin. And we know from the DOACs that the doses preventing clots on the venous side also translated into preventing strokes on the [AFib] side. So that is very encouraging,” Dr. Ruff adds.
Potential indications
The three leading factor XI inhibitors have slightly different phase 3 development programs.
Dr. Ruff notes that not every agent is being investigated in phase 3 trials for all the potential indications, but all three are going for the AFib indication. “This is by far the biggest population, the biggest market, and the biggest clinical need for these agents,” he says.
While the milvexian and asundexian trials are using an active comparator – pitting the factor XI inhibitors against apixaban in AFib patients – the Anthos LILAC trial is taking a slightly different approach and is comparing abelacimab with placebo in patients with AFib who are not currently taking an anticoagulant because of concerns about bleeding risk.
Janssen/BMS is conducting two other phase 3 trials of milvexian in their LIBREXIA phase 3 program. Those trials involve poststroke patients and ACS patients. Bayer is also involved in a poststroke trial of asundexian as part of its OCEANIC phase 3 program.
Dr. Ruff points out that anticoagulants currently do not have a large role in the poststroke or post-ACS population. “But the hope is that, if factor XI inhibitors are so safe, then there will be more enthusiasm about using an anticoagulant on top of antiplatelet therapy, which is the cornerstone of therapy in atherosclerotic cardiovascular disease.”
In addition to its phase 3 LILAC study in patients with AFib, Anthos is conducting two major phase 3 trials with abelacimab for the treatment of cancer-associated venous thromboembolism.
Dr. Ruff notes that the indication of postsurgery or general prevention of VTE is not being pursued at present.
“The orthopedic surgery studies were done mainly for dose finding and proof of principle reasons,” he explains. “In orthopedic surgery the window for anticoagulation is quite short – a few weeks or months. And for the prevention of recurrent VTE in general in the community, those people are at a relatively low risk of bleeding, so there may not be much advantage of the factor XI inhibitors, whereas AFib patients and those with stroke or ACS are usually older and have a much higher bleeding risk. I think this is where the advantages of an anticoagulant with a lower bleeding risk are most needed.”
Dr. Alexander points out that to date anticoagulants have shown more efficacy in venous clotting, which appears to be more dependent on coagulation factors and less dependent on platelets. “Atrial fibrillation is a mix between venous and arterial clotting, but it has more similarities to venous, so I think AFib is a place where new anticoagulants such as the factor XI inhibitors are more likely to have success,” he suggests.
“So far, anticoagulants have had a less clear long-term role in the poststroke and post-ACS populations, so these indications may be a more difficult goal,” he added.
The phase 3 studies are just starting and will take a few years before results are known.
Differences between the agents
The three factor XI inhibitors also have some differences. Dr. Ruff points out that most important will be the safety and efficacy of the drugs in phase 3 trials.
“Early data suggest that the various agents being developed may not have equal inhibition of factor XI. The monoclonal antibody abelacimab may produce a higher degree of inhibition than the small molecules. But we don’t know if that matters or not – whether we need to achieve a certain threshold to prevent stroke. The efficacy and safety data from the phase 3 trials are what will primarily guide use.”
There are also differences in formulations and dosage. Abelacimab is administered by subcutaneous injection once a month and has a long duration of activity, whereas the small molecules are taken orally and their duration of action is much shorter.
Dr. Ruff notes: “If these drugs cause bleeding, having a long-acting drug like abelacimab could be a disadvantage because we wouldn’t be able to stop it. But if they are very safe with regard to bleeding, then having the drug hang around for a long time is not necessarily a disadvantage, and it may improve compliance. These older patients often miss doses, and with a shorter-acting drug, that will mean they will be unprotected from stroke risk for a period of time, so there is a trade-off here.”
Dr. Ruff says that the AZALEA phase 2 study will provide some data on patients being managed around procedures. “The hope is that these drugs are so safe that they will not have to be stopped for procedures. And then the compliance issue of a once-a-month dosing would be an advantage.”
Dr. Patel says he believes there is a place for different formations. “Some patients may prefer a once-monthly injection; others will prefer a daily tablet. It may come down to patient preference, but a lot will depend on the study results with the different agents,” he commented.
What effect could these drugs have?
If these drugs do show efficacy in these phase 3 trials, what difference will they make to clinical practice? The potential appears to be very large.
“If these drugs are as effective at preventing strokes as DOACs, they will be a huge breakthrough, and there is good reason to think they would replace the DOACs,” Dr. Alexander says. “It would be a really big deal to have an anticoagulant that causes almost no bleeding and could prevent clots as well as the DOACs. This would enable a lot more patients to receive protection against stroke.”
Dr. Alexander believes the surgery studies are hopeful. “They show that the factor XI inhibitors are doing something to prevent blood clots. The big question is whether they are as effective as what we already have for the prevention of stroke and if not, what is the trade-off with bleeding?”
He points out that, even if the factor XI inhibitors are not as effective as DOACs but are found to be much safer, they might still have a potential clinical role, especially for those patients who currently do not take an anticoagulant because of concerns regarding bleeding.
But Dr. Patel points out that there is always the issue of costs with new drugs. “New drugs are always expensive. The DOACS are just about to become generic, and there will inevitably be concerns about access to an expensive new therapy.”
Dr. Alexander adds: “Yes, costs could be an issue, but a safer drug will definitely help to get more patients treated and in preventing more strokes, which would be a great thing.”
Dr. Patel has received grants from and acts as an adviser to Bayer (asundexian) and Janssen (milvexian). Dr. Alexander receives research funding from Bayer. Dr. Ruff receives research funding from Anthos for abelacimab trials, is on an AFib executive committee for BMS/Janssen, and has been on an advisory board for Bayer.
A version of this article first appeared on Medscape.com.
The quest to find an anticoagulant that can prevent strokes, cardiovascular events, and venous thrombosis without significantly increasing risk of bleeding is something of a holy grail in cardiovascular medicine. Could the latest focus of interest in this field – the factor XI inhibitors – be the long–sought-after answer?
Topline results from the largest study so far of a factor XI inhibitor – released on Sep. 18 – are indeed very encouraging. The phase 2 AZALEA-TIMI 71 study was stopped early because of an “overwhelming” reduction in major and clinically relevant nonmajor bleeding shown with the factor XI inhibitor abelacimab (Anthos), compared with apixaban for patients with atrial fibrillation (AFib).
Very few other data from this study have yet been released. Full results are due to be presented at the scientific sessions of the American Heart Association in November. Researchers in the field are optimistic that this new class of drugs may allow millions more patients who are at risk of thrombotic events but are concerned about bleeding risk to be treated, with a consequent reduction in strokes and possibly cardiovascular events as well.
Why factor XI?
In natural physiology, there are two ongoing processes: hemostasis – a set of actions that cause bleeding to stop after an injury – and thrombosis – a pathologic clotting process in which thrombus is formed and causes a stroke, MI, or deep venous thrombosis (DVT).
In patients prone to pathologic clotting, such as those with AFib, the balance of these two processes has shifted toward thrombosis, so anticoagulants are used to reduce the thrombotic risks. For many years, the only available oral anticoagulant was warfarin, a vitamin K antagonist that was very effective at preventing strokes but that comes with a high risk for bleeding, including intracranial hemorrhage (ICH) and fatal bleeding.
The introduction of the direct-acting anticoagulants (DOACs) a few years ago was a step forward in that these drugs have been shown to be as effective as warfarin but are associated with a lower risk of bleeding, particularly of ICH and fatal bleeding. But they still cause bleeding, and concerns over that risk of bleeding prevent millions of patients from taking these drugs and receiving protection against stroke.
John Alexander, MD, professor of medicine at Duke University Medical Center, Durham, N.C., a researcher active in this area, notes that “while the DOACs cause less bleeding than warfarin, they still cause two or three times more bleeding than placebo, and there is a huge, unmet need for safer anticoagulants that don’t cause as much bleeding. We are hopeful that factor XI inhibitors might be those anticoagulants.”
The lead investigator the AZALEA study, Christian Ruff, MD, professor of medicine at Brigham and Women’s Hospital, Boston, explained why it is thought that factor XI inhibitors may be different.
“There’s a lot of different clotting factors, and most of them converge in a central pathway. The problem, therefore, with anticoagulants used to date that block one of these factors is that they prevent clotting but also cause bleeding.
“It has been discovered that factor XI has a really unique position in the cascade of how our body forms clots in that it seems to be important in clot formation, but it doesn’t seem to play a major role in our ability to heal and repair blood vessels.”
Another doctor involved in the field, Manesh Patel, MD, chief of cardiology at Duke University Medical Center, added, “We think that factor XI inhibitors may prevent the pathologic formation of thrombosis while allowing formation of thrombus for natural hemostasis to prevent bleeding. That is why they are so promising.”
This correlates with epidemiologic data suggesting that patients with a genetic factor XI deficiency have low rates of stroke and MI but don’t appear to bleed spontaneously, Dr. Patel notes.
Candidates in development
The pharmaceutical industry is on the case with several factor XI inhibitors now in clinical development. At present, three main candidates lead the field. These are abelacimab (Anthos), a monoclonal antibody given by subcutaneous injection once a month; and two small molecules, milvexian (BMS/Janssen) and asundexian (Bayer), which are both given orally.
Phase 3 trials of these three factor XI inhibitors have recently started for a variety of thrombotic indications, including the prevention of stroke in patients with AFib, prevention of recurrent stroke in patients with ischemic stroke, and prevention of future cardiovascular events in patients with acute coronary syndrome (ACS).
Dr. Alexander, who has been involved in clinical trials of both milvexian and asundexian, commented: “We have pretty good data from a number of phase 2 trials now that these factor XI inhibitors at the doses used in these studies cause a lot less bleeding than therapeutic doses of DOACs and low-molecular-weight heparins.”
He pointed out that, in addition to the AZALEA trial with abelacimab, the phase 2 PACIFIC program of studies has shown less bleeding with asundexian than with apixaban in patients with AFib and a similar amount of bleeding as placebo in ACS/stroke patients on top of antiplatelet therapy. Milvexian has also shown similar results in the AXIOMATIC program of studies.
Dr. Ruff noted that the biggest need for new anticoagulants in general is in the AFib population. “Atrial fibrillation is one of the most common medical conditions in the world. Approximately one in every three people will develop AFib in their lifetime, and it is associated with more than a fivefold increased risk of stroke. But up to half of patients with AFib currently do not take anticoagulants because of concerns about bleeding risks, so these patients are being left unprotected from stroke risk.”
Dr. Ruff pointed out that the AZALEA study was the largest and longest study of a factor XI inhibitor to date; 1,287 patients were followed for a median of 2 years.
“This was the first trial of long-term administration of factor XI inhibitor against a full-dose DOAC, and it was stopped because of an overwhelming reduction in a major bleeding with abelacimab, compared with rivaroxaban,” he noted. “That is very encouraging. It looks like our quest to develop a safe anticoagulant with much lower rates of bleeding, compared with standard of care, seems to have been borne out. I think the field is very excited that we may finally have something that protects patients from thrombosis whilst being much safer than current agents.”
While all this sounds very promising, for these drugs to be successful, in addition to reducing bleeding risk, they will also have to be effective at preventing strokes and other thrombotic events.
“While we are pretty sure that factor XI inhibitors will cause less bleeding than current anticoagulants, what is unknown still is how effective they will be at preventing pathologic blood clots,” Dr. Alexander points out.
“We have some data from studies of these drugs in DVT prophylaxis after orthopedic surgery which suggest that they are effective in preventing blood clots in that scenario. But we don’t know yet about whether they can prevent pathologic blood clots that occur in AFib patients or in poststroke or post-ACS patients. Phase 3 studies are now underway with these three leading drug candidates which will answer some of these questions.”
Dr. Patel agrees that the efficacy data in the phase 3 trials will be key to the success of these drugs. “That is a very important part of the puzzle that is still missing,” he says.
Dr. Ruff notes that the AZALEA study will provide some data on efficacy. “But we already know that in the orthopedic surgery trials there was a 70%-80% reduction in VTE with abelacimab (at the 150-mg dose going forward) vs. prophylactic doses of low-molecular-weight heparin. And we know from the DOACs that the doses preventing clots on the venous side also translated into preventing strokes on the [AFib] side. So that is very encouraging,” Dr. Ruff adds.
Potential indications
The three leading factor XI inhibitors have slightly different phase 3 development programs.
Dr. Ruff notes that not every agent is being investigated in phase 3 trials for all the potential indications, but all three are going for the AFib indication. “This is by far the biggest population, the biggest market, and the biggest clinical need for these agents,” he says.
While the milvexian and asundexian trials are using an active comparator – pitting the factor XI inhibitors against apixaban in AFib patients – the Anthos LILAC trial is taking a slightly different approach and is comparing abelacimab with placebo in patients with AFib who are not currently taking an anticoagulant because of concerns about bleeding risk.
Janssen/BMS is conducting two other phase 3 trials of milvexian in their LIBREXIA phase 3 program. Those trials involve poststroke patients and ACS patients. Bayer is also involved in a poststroke trial of asundexian as part of its OCEANIC phase 3 program.
Dr. Ruff points out that anticoagulants currently do not have a large role in the poststroke or post-ACS population. “But the hope is that, if factor XI inhibitors are so safe, then there will be more enthusiasm about using an anticoagulant on top of antiplatelet therapy, which is the cornerstone of therapy in atherosclerotic cardiovascular disease.”
In addition to its phase 3 LILAC study in patients with AFib, Anthos is conducting two major phase 3 trials with abelacimab for the treatment of cancer-associated venous thromboembolism.
Dr. Ruff notes that the indication of postsurgery or general prevention of VTE is not being pursued at present.
“The orthopedic surgery studies were done mainly for dose finding and proof of principle reasons,” he explains. “In orthopedic surgery the window for anticoagulation is quite short – a few weeks or months. And for the prevention of recurrent VTE in general in the community, those people are at a relatively low risk of bleeding, so there may not be much advantage of the factor XI inhibitors, whereas AFib patients and those with stroke or ACS are usually older and have a much higher bleeding risk. I think this is where the advantages of an anticoagulant with a lower bleeding risk are most needed.”
Dr. Alexander points out that to date anticoagulants have shown more efficacy in venous clotting, which appears to be more dependent on coagulation factors and less dependent on platelets. “Atrial fibrillation is a mix between venous and arterial clotting, but it has more similarities to venous, so I think AFib is a place where new anticoagulants such as the factor XI inhibitors are more likely to have success,” he suggests.
“So far, anticoagulants have had a less clear long-term role in the poststroke and post-ACS populations, so these indications may be a more difficult goal,” he added.
The phase 3 studies are just starting and will take a few years before results are known.
Differences between the agents
The three factor XI inhibitors also have some differences. Dr. Ruff points out that most important will be the safety and efficacy of the drugs in phase 3 trials.
“Early data suggest that the various agents being developed may not have equal inhibition of factor XI. The monoclonal antibody abelacimab may produce a higher degree of inhibition than the small molecules. But we don’t know if that matters or not – whether we need to achieve a certain threshold to prevent stroke. The efficacy and safety data from the phase 3 trials are what will primarily guide use.”
There are also differences in formulations and dosage. Abelacimab is administered by subcutaneous injection once a month and has a long duration of activity, whereas the small molecules are taken orally and their duration of action is much shorter.
Dr. Ruff notes: “If these drugs cause bleeding, having a long-acting drug like abelacimab could be a disadvantage because we wouldn’t be able to stop it. But if they are very safe with regard to bleeding, then having the drug hang around for a long time is not necessarily a disadvantage, and it may improve compliance. These older patients often miss doses, and with a shorter-acting drug, that will mean they will be unprotected from stroke risk for a period of time, so there is a trade-off here.”
Dr. Ruff says that the AZALEA phase 2 study will provide some data on patients being managed around procedures. “The hope is that these drugs are so safe that they will not have to be stopped for procedures. And then the compliance issue of a once-a-month dosing would be an advantage.”
Dr. Patel says he believes there is a place for different formations. “Some patients may prefer a once-monthly injection; others will prefer a daily tablet. It may come down to patient preference, but a lot will depend on the study results with the different agents,” he commented.
What effect could these drugs have?
If these drugs do show efficacy in these phase 3 trials, what difference will they make to clinical practice? The potential appears to be very large.
“If these drugs are as effective at preventing strokes as DOACs, they will be a huge breakthrough, and there is good reason to think they would replace the DOACs,” Dr. Alexander says. “It would be a really big deal to have an anticoagulant that causes almost no bleeding and could prevent clots as well as the DOACs. This would enable a lot more patients to receive protection against stroke.”
Dr. Alexander believes the surgery studies are hopeful. “They show that the factor XI inhibitors are doing something to prevent blood clots. The big question is whether they are as effective as what we already have for the prevention of stroke and if not, what is the trade-off with bleeding?”
He points out that, even if the factor XI inhibitors are not as effective as DOACs but are found to be much safer, they might still have a potential clinical role, especially for those patients who currently do not take an anticoagulant because of concerns regarding bleeding.
But Dr. Patel points out that there is always the issue of costs with new drugs. “New drugs are always expensive. The DOACS are just about to become generic, and there will inevitably be concerns about access to an expensive new therapy.”
Dr. Alexander adds: “Yes, costs could be an issue, but a safer drug will definitely help to get more patients treated and in preventing more strokes, which would be a great thing.”
Dr. Patel has received grants from and acts as an adviser to Bayer (asundexian) and Janssen (milvexian). Dr. Alexander receives research funding from Bayer. Dr. Ruff receives research funding from Anthos for abelacimab trials, is on an AFib executive committee for BMS/Janssen, and has been on an advisory board for Bayer.
A version of this article first appeared on Medscape.com.
The quest to find an anticoagulant that can prevent strokes, cardiovascular events, and venous thrombosis without significantly increasing risk of bleeding is something of a holy grail in cardiovascular medicine. Could the latest focus of interest in this field – the factor XI inhibitors – be the long–sought-after answer?
Topline results from the largest study so far of a factor XI inhibitor – released on Sep. 18 – are indeed very encouraging. The phase 2 AZALEA-TIMI 71 study was stopped early because of an “overwhelming” reduction in major and clinically relevant nonmajor bleeding shown with the factor XI inhibitor abelacimab (Anthos), compared with apixaban for patients with atrial fibrillation (AFib).
Very few other data from this study have yet been released. Full results are due to be presented at the scientific sessions of the American Heart Association in November. Researchers in the field are optimistic that this new class of drugs may allow millions more patients who are at risk of thrombotic events but are concerned about bleeding risk to be treated, with a consequent reduction in strokes and possibly cardiovascular events as well.
Why factor XI?
In natural physiology, there are two ongoing processes: hemostasis – a set of actions that cause bleeding to stop after an injury – and thrombosis – a pathologic clotting process in which thrombus is formed and causes a stroke, MI, or deep venous thrombosis (DVT).
In patients prone to pathologic clotting, such as those with AFib, the balance of these two processes has shifted toward thrombosis, so anticoagulants are used to reduce the thrombotic risks. For many years, the only available oral anticoagulant was warfarin, a vitamin K antagonist that was very effective at preventing strokes but that comes with a high risk for bleeding, including intracranial hemorrhage (ICH) and fatal bleeding.
The introduction of the direct-acting anticoagulants (DOACs) a few years ago was a step forward in that these drugs have been shown to be as effective as warfarin but are associated with a lower risk of bleeding, particularly of ICH and fatal bleeding. But they still cause bleeding, and concerns over that risk of bleeding prevent millions of patients from taking these drugs and receiving protection against stroke.
John Alexander, MD, professor of medicine at Duke University Medical Center, Durham, N.C., a researcher active in this area, notes that “while the DOACs cause less bleeding than warfarin, they still cause two or three times more bleeding than placebo, and there is a huge, unmet need for safer anticoagulants that don’t cause as much bleeding. We are hopeful that factor XI inhibitors might be those anticoagulants.”
The lead investigator the AZALEA study, Christian Ruff, MD, professor of medicine at Brigham and Women’s Hospital, Boston, explained why it is thought that factor XI inhibitors may be different.
“There’s a lot of different clotting factors, and most of them converge in a central pathway. The problem, therefore, with anticoagulants used to date that block one of these factors is that they prevent clotting but also cause bleeding.
“It has been discovered that factor XI has a really unique position in the cascade of how our body forms clots in that it seems to be important in clot formation, but it doesn’t seem to play a major role in our ability to heal and repair blood vessels.”
Another doctor involved in the field, Manesh Patel, MD, chief of cardiology at Duke University Medical Center, added, “We think that factor XI inhibitors may prevent the pathologic formation of thrombosis while allowing formation of thrombus for natural hemostasis to prevent bleeding. That is why they are so promising.”
This correlates with epidemiologic data suggesting that patients with a genetic factor XI deficiency have low rates of stroke and MI but don’t appear to bleed spontaneously, Dr. Patel notes.
Candidates in development
The pharmaceutical industry is on the case with several factor XI inhibitors now in clinical development. At present, three main candidates lead the field. These are abelacimab (Anthos), a monoclonal antibody given by subcutaneous injection once a month; and two small molecules, milvexian (BMS/Janssen) and asundexian (Bayer), which are both given orally.
Phase 3 trials of these three factor XI inhibitors have recently started for a variety of thrombotic indications, including the prevention of stroke in patients with AFib, prevention of recurrent stroke in patients with ischemic stroke, and prevention of future cardiovascular events in patients with acute coronary syndrome (ACS).
Dr. Alexander, who has been involved in clinical trials of both milvexian and asundexian, commented: “We have pretty good data from a number of phase 2 trials now that these factor XI inhibitors at the doses used in these studies cause a lot less bleeding than therapeutic doses of DOACs and low-molecular-weight heparins.”
He pointed out that, in addition to the AZALEA trial with abelacimab, the phase 2 PACIFIC program of studies has shown less bleeding with asundexian than with apixaban in patients with AFib and a similar amount of bleeding as placebo in ACS/stroke patients on top of antiplatelet therapy. Milvexian has also shown similar results in the AXIOMATIC program of studies.
Dr. Ruff noted that the biggest need for new anticoagulants in general is in the AFib population. “Atrial fibrillation is one of the most common medical conditions in the world. Approximately one in every three people will develop AFib in their lifetime, and it is associated with more than a fivefold increased risk of stroke. But up to half of patients with AFib currently do not take anticoagulants because of concerns about bleeding risks, so these patients are being left unprotected from stroke risk.”
Dr. Ruff pointed out that the AZALEA study was the largest and longest study of a factor XI inhibitor to date; 1,287 patients were followed for a median of 2 years.
“This was the first trial of long-term administration of factor XI inhibitor against a full-dose DOAC, and it was stopped because of an overwhelming reduction in a major bleeding with abelacimab, compared with rivaroxaban,” he noted. “That is very encouraging. It looks like our quest to develop a safe anticoagulant with much lower rates of bleeding, compared with standard of care, seems to have been borne out. I think the field is very excited that we may finally have something that protects patients from thrombosis whilst being much safer than current agents.”
While all this sounds very promising, for these drugs to be successful, in addition to reducing bleeding risk, they will also have to be effective at preventing strokes and other thrombotic events.
“While we are pretty sure that factor XI inhibitors will cause less bleeding than current anticoagulants, what is unknown still is how effective they will be at preventing pathologic blood clots,” Dr. Alexander points out.
“We have some data from studies of these drugs in DVT prophylaxis after orthopedic surgery which suggest that they are effective in preventing blood clots in that scenario. But we don’t know yet about whether they can prevent pathologic blood clots that occur in AFib patients or in poststroke or post-ACS patients. Phase 3 studies are now underway with these three leading drug candidates which will answer some of these questions.”
Dr. Patel agrees that the efficacy data in the phase 3 trials will be key to the success of these drugs. “That is a very important part of the puzzle that is still missing,” he says.
Dr. Ruff notes that the AZALEA study will provide some data on efficacy. “But we already know that in the orthopedic surgery trials there was a 70%-80% reduction in VTE with abelacimab (at the 150-mg dose going forward) vs. prophylactic doses of low-molecular-weight heparin. And we know from the DOACs that the doses preventing clots on the venous side also translated into preventing strokes on the [AFib] side. So that is very encouraging,” Dr. Ruff adds.
Potential indications
The three leading factor XI inhibitors have slightly different phase 3 development programs.
Dr. Ruff notes that not every agent is being investigated in phase 3 trials for all the potential indications, but all three are going for the AFib indication. “This is by far the biggest population, the biggest market, and the biggest clinical need for these agents,” he says.
While the milvexian and asundexian trials are using an active comparator – pitting the factor XI inhibitors against apixaban in AFib patients – the Anthos LILAC trial is taking a slightly different approach and is comparing abelacimab with placebo in patients with AFib who are not currently taking an anticoagulant because of concerns about bleeding risk.
Janssen/BMS is conducting two other phase 3 trials of milvexian in their LIBREXIA phase 3 program. Those trials involve poststroke patients and ACS patients. Bayer is also involved in a poststroke trial of asundexian as part of its OCEANIC phase 3 program.
Dr. Ruff points out that anticoagulants currently do not have a large role in the poststroke or post-ACS population. “But the hope is that, if factor XI inhibitors are so safe, then there will be more enthusiasm about using an anticoagulant on top of antiplatelet therapy, which is the cornerstone of therapy in atherosclerotic cardiovascular disease.”
In addition to its phase 3 LILAC study in patients with AFib, Anthos is conducting two major phase 3 trials with abelacimab for the treatment of cancer-associated venous thromboembolism.
Dr. Ruff notes that the indication of postsurgery or general prevention of VTE is not being pursued at present.
“The orthopedic surgery studies were done mainly for dose finding and proof of principle reasons,” he explains. “In orthopedic surgery the window for anticoagulation is quite short – a few weeks or months. And for the prevention of recurrent VTE in general in the community, those people are at a relatively low risk of bleeding, so there may not be much advantage of the factor XI inhibitors, whereas AFib patients and those with stroke or ACS are usually older and have a much higher bleeding risk. I think this is where the advantages of an anticoagulant with a lower bleeding risk are most needed.”
Dr. Alexander points out that to date anticoagulants have shown more efficacy in venous clotting, which appears to be more dependent on coagulation factors and less dependent on platelets. “Atrial fibrillation is a mix between venous and arterial clotting, but it has more similarities to venous, so I think AFib is a place where new anticoagulants such as the factor XI inhibitors are more likely to have success,” he suggests.
“So far, anticoagulants have had a less clear long-term role in the poststroke and post-ACS populations, so these indications may be a more difficult goal,” he added.
The phase 3 studies are just starting and will take a few years before results are known.
Differences between the agents
The three factor XI inhibitors also have some differences. Dr. Ruff points out that most important will be the safety and efficacy of the drugs in phase 3 trials.
“Early data suggest that the various agents being developed may not have equal inhibition of factor XI. The monoclonal antibody abelacimab may produce a higher degree of inhibition than the small molecules. But we don’t know if that matters or not – whether we need to achieve a certain threshold to prevent stroke. The efficacy and safety data from the phase 3 trials are what will primarily guide use.”
There are also differences in formulations and dosage. Abelacimab is administered by subcutaneous injection once a month and has a long duration of activity, whereas the small molecules are taken orally and their duration of action is much shorter.
Dr. Ruff notes: “If these drugs cause bleeding, having a long-acting drug like abelacimab could be a disadvantage because we wouldn’t be able to stop it. But if they are very safe with regard to bleeding, then having the drug hang around for a long time is not necessarily a disadvantage, and it may improve compliance. These older patients often miss doses, and with a shorter-acting drug, that will mean they will be unprotected from stroke risk for a period of time, so there is a trade-off here.”
Dr. Ruff says that the AZALEA phase 2 study will provide some data on patients being managed around procedures. “The hope is that these drugs are so safe that they will not have to be stopped for procedures. And then the compliance issue of a once-a-month dosing would be an advantage.”
Dr. Patel says he believes there is a place for different formations. “Some patients may prefer a once-monthly injection; others will prefer a daily tablet. It may come down to patient preference, but a lot will depend on the study results with the different agents,” he commented.
What effect could these drugs have?
If these drugs do show efficacy in these phase 3 trials, what difference will they make to clinical practice? The potential appears to be very large.
“If these drugs are as effective at preventing strokes as DOACs, they will be a huge breakthrough, and there is good reason to think they would replace the DOACs,” Dr. Alexander says. “It would be a really big deal to have an anticoagulant that causes almost no bleeding and could prevent clots as well as the DOACs. This would enable a lot more patients to receive protection against stroke.”
Dr. Alexander believes the surgery studies are hopeful. “They show that the factor XI inhibitors are doing something to prevent blood clots. The big question is whether they are as effective as what we already have for the prevention of stroke and if not, what is the trade-off with bleeding?”
He points out that, even if the factor XI inhibitors are not as effective as DOACs but are found to be much safer, they might still have a potential clinical role, especially for those patients who currently do not take an anticoagulant because of concerns regarding bleeding.
But Dr. Patel points out that there is always the issue of costs with new drugs. “New drugs are always expensive. The DOACS are just about to become generic, and there will inevitably be concerns about access to an expensive new therapy.”
Dr. Alexander adds: “Yes, costs could be an issue, but a safer drug will definitely help to get more patients treated and in preventing more strokes, which would be a great thing.”
Dr. Patel has received grants from and acts as an adviser to Bayer (asundexian) and Janssen (milvexian). Dr. Alexander receives research funding from Bayer. Dr. Ruff receives research funding from Anthos for abelacimab trials, is on an AFib executive committee for BMS/Janssen, and has been on an advisory board for Bayer.
A version of this article first appeared on Medscape.com.



